
RDFFrames: Knowledge Graph Access for Machine
Learning Tools

Aisha MohamedF∗ Ghadeer Abuoda�∗ Abdurrahman GhanemN†

Zoi KaoudiH† Ashraf AboulnagaF
FQatar Computing Research Institute, HBKU �College of Science and Engineering, HBKU

NBluescape HTechnische Universität Berlin

ABSTRACT
Knowledge graphs represented in RDF are becoming in-
creasingly popular and are essential to many machine learn-
ing applications. A rich ecosystem of RDF data manage-
ment systems and tools has evolved over the years, most
notably RDF database management systems that support
the SPARQL query language. Surprisingly, machine learn-
ing tools for knowledge graphs typically do not use SPARQL
despite the obvious advantages of using a database system.
This is due to the mismatch between SPARQL and machine
learning tools in terms of expected data model and interface
style. Machine learning tools work on data in tabular format
and process it using imperative relational API calls, while
SPARQL matches graph patterns to RDF triples. To access
knowledge graphs for machine learning, we observe that it is
more natural to use a navigational paradigm based on graph
traversal rather than the SPARQL paradigm based on triple
patterns. We demonstrate RDFFrames, a framework that
bridges the gap between machine learning tools and RDF
database systems by offering the usability and flexibility of
machine learning tools together with the performance of a
database system. RDFFrames enables the user to make a
sequence of Python calls to define the data to be extracted
from a knowledge graph stored in an RDF database system,
and it translates these calls into a compact SPARQL query,
executes it on the database system, and returns the results
in a standard tabular format.

PVLDB Reference Format:
Aisha Mohamed, Ghadeer Abuoda, Abdurrahman Ghanem, Zoi
Kaoudi, and Ashraf Aboulnaga. RDFFrames: Knowledge Graph
Access for Machine Learning Tools. PVLDB, 13(12): 2889 - 2892,
2020.
DOI: https://doi.org/10.14778/3415478.3415501

∗Joint first authors.
†Work done while at QCRI.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415501

1. INTRODUCTION
There has recently been a sharp growth in the number

of knowledge graph datasets that are made available in
the RDF (Resource Description Framework)1 data model.
Examples include general knowledge graphs such as DB-
pedia, YAGO, and Wikidata, and domain-specific knowl-
edge graphs such as BioRDF. The rich information and se-
mantic structure of knowledge graphs makes them useful in
many machine learning applications such as recommender
systems, search, and question answering. Recently, many
machine learning algorithms have been developed specifi-
cally for analyzing knowledge graphs (e.g., [3]).

The RDF data model provides a powerful abstraction
for representing heterogeneous, incomplete, and potentially
noisy knowledge graphs. A rich ecosystem of data manage-
ment systems and tools that support RDF has evolved over
the years. This ecosystem includes standard serialization
formats, parsing and processing libraries, and most notably
RDF database management systems (a.k.a. RDF engines
or triple stores) that support SPARQL, the W3C standard
query language for RDF data. Examples of these systems
include Virtuoso,2 Apache Jena, and managed services such
as Amazon Neptune.

We make the observation that none of the publicly avail-
able machine learning tools for knowledge graphs that we are
aware of uses SPARQL and RDF engines. This, despite the
obvious advantage of using a database system such as data
independence, declarative querying, and efficient and scal-
able query processing. For example, we investigated all the
prominent open-source implementations of knowledge graph
embeddings, an active research area, and we found that they
process data by ad-hoc scripts rather than using SPARQL.

We posit that machine learning tools do not use RDF
engines due to an “impedance mismatch.” Specifically, ma-
chine learning software stacks are based on data in tabu-
lar format and the split-apply-combine paradigm [4]. An
example tabular format is the highly popular dataframes,
supported by libraries in several languages such as Python
and R, and by systems such as Apache Spark. Thus, the
first step in most machine learning pipelines is to identify
the required data and extract this data into a table. We
observe that it is more natural in machine learning to iden-
tify and extract data from a knowledge graph into a table
using navigation in the graph, rather than the declarative,
pattern-based querying provided by SPARQL.

1https://www.w3.org/RDF
2https://virtuoso.openlinksw.com

2889



In this demonstration, we showcase RDFFrames, a frame-
work that bridges the gap between machine learning tools
and RDF engines. Specifically, RDFFrames provides a set
of operators that use the navigational paradigm familiar in
machine learning to explore an RDF graph, identify the data
required from this graph, and extract this data into a tab-
ular format. RDFFrames processes the operators called by
the user and produces a corresponding SPARQL query, exe-
cutes it on an RDF engine or SPARQL endpoint, and returns
the results as a table. In principle, the RDFFrames opera-
tors can be implemented in any programming language and
can return data in any tabular format. However, concretely,
our current implementation of RDFFrames is a Python li-
brary that returns data as dataframes of the popular pandas
library3 so that further processing can be done in the rich
PyData ecosystem. RDFFrames is available as open source4

and via the Python pip installer.
The novelty of RDFFrames lies mainly in two aspects:

First, the API provided to the user is designed to be intu-
itive and flexible. The API consists of navigational operators
and data processing operators based on familiar relational
algebra operations. Second, RDFFrames retrieves the re-
quired data efficiently by using lazy execution and convert-
ing the operators called by a user into compact and efficient
SPARQL. We present an overview of RDFFrames in Sec-
tion 2. A full description can be found in [1].

The demonstration is based on machine learning appli-
cations that use RDFFrames to access data in real knowl-
edge graphs. Demonstration participants can interact with
these applications, visualize the input graph, observe and
change the RDFFrames calls used to retrieve data, observe
and change the corresponding SPARQL, execute it against
an RDF engine, and interactively run the machine learning
task. In general, data access for machine learning is an im-
portant topic, and the demonstration explores this topic for
RDF knowledge graphs.

2. OVERVIEW OF RDFFrames
This section provides an overview of RDFFrames (more

details in [1]). We describe the Python API then discuss
how API calls are converted to SPARQL.

Python API: The goal of the API is to allow users to con-
struct a tabular dataset from a knowledge graph for a spe-
cific machine learning task. The API provides functions to
explore a knowledge graph and initialize the tabular dataset
with relevant entities (RDF resources), expand a dataset by
following RDF predicates (edges in the knowledge graph),
filter the extracted data according to simple or complex con-
ditions, group and aggregate the extracted data, and com-
bine datasets through the join operator. The challenge when
designing this API was to provide a set of functions that en-
able complex query operations (e.g., group-by and join) and
can be composed with each other in a flexible way (e.g., ap-
plying a filter on the results of group-by and aggregation),
all while maintaining the navigational nature of the API.

The core Python class of the API is the Dataset class.
This class is a logical representation of a tabular dataset
that is retrieved from an RDF graph. The user calls the
functions of this class to create a logical description of the
data that she wants. It is important to note that creating

3https://pandas.pydata.org
4https://github.com/qcri/rdfframes

data = graph.feature_domain_range(
"dbp:starring", "movie", "actor")

american = data.expand(
"actor" ,[("dbp:birthPlace", "country")])

.filter ({"country": ["=dbpr:UnitedStates"]})
prolific = data.group_by (["actor"])

.count("movie", "movie_count")

.filter ({"movie_count": [" >=20"]})
actors = american.join(prolific ,"actor", OuterJoin)

Listing 1: RDFFrames code for American or prolific actors
and their movies.

this logical description does not cause queries to be generated
or executed. This is done later using lazy execution.

Example code using the Dataset class is shown in List-
ing 1. This code is a succinct version of the first application
in the demo scenarios of Section 3, and it identifies actors
and the movies they have starred in. The returned data is
restricted to actors who are American or prolific (defined
as having 20 or more movies). The core functions of the
Dataset class can be grouped into the following categories:
• Initialization: These are functions that logically retrieve

columns from an RDF knowledge graph to initialize the
Dataset based on a specific condition (e.g., instances of
a specific class or pairs of entities connected by a predi-
cate). The feature domain range function called in the
first line of Listing 1 is an example initialization function.
This function logically creates a table with two columns,
movie and actor, containing all pairs of RDF entities
linked by a starring RDF predicate, that is, all movies
and actors starring in them. We reiterate that this call
does not access the RDF engine yet, but rather provides
a logical description of the desired dataset.

• Expand: The main operation in RDFFrames is navigat-
ing the edges of the knowledge graph. This operation is
implemented in the expand function. This function adds
columns to a dataset by “expanding” entities in an exist-
ing source column, that is, traversing edges in the graph
starting from these entities. The first argument to this
function is the source column. The second argument is a
list of (predicate, new col) pairs. The function follows
the edges representing predicate from/to entities in the
source column and adds the resources reached by this
navigation to a new column named new col. If there is
no edge in the graph to expand an existing row in the
dataset, the function can either drop that row (inner-join
semantics) or keep it but add a null value to the new col-
umn (outer-join semantics). In Listing 1, expand is used
to add each actor’s country to the dataset.

• Relational Operators: The Dataset class provides func-
tions for relational operators such as filtering, grouping,
aggregation, and join. These functions are used to ma-
nipulate a dataset (or join two datasets) using familiar
relational semantics. Note that even though these func-
tions logically view the dataset as a table, RDFFrames
translates them to SPARQL. Relational operators can be
implemented in pandas when the dataframe is returned,
but including them in the RDFFrames API increases effi-
ciency since they can be pushed into the RDF engine [1].

In addition to these core functions, RDFFrames provides
other functions for, e.g., exploring the RDF data, defining
namespaces, handling the connection and communication
with the RDF engine, caching a dataset, and others.

2890



Figure 1: RDFFrames architecture.

Conversion to SPARQL: A naive way to implement RDF-
Frames is to convert every API call to a SPARQL query and
eagerly send these queries to the RDF engine. This would
be highly inefficient, as shown in [1]. Instead, Dataset ob-
jects are designed to be logical descriptions of a dataset, and
RDFFrames generates SPARQL queries to physically create
the dataset using the architecture presented in Figure 1.

The sequence of function calls to a Dataset object is
recorded and then used to generate an intermediate repre-
sentation of the required dataset termed a query model. The
goal of the query model is (i) to separate the API parsing
logic from the query construction logic for flexible imple-
mentation, and (ii) to simplify optimizing the constructed
SPARQL query, especially in the case of nested queries. In-
spired by the Query Graph Model [2], the query model is a
structure that contains, among other information, returned
columns, graph patterns, filter conditions, and references to
other query models in the case of nested queries [1].

After the query model is created, a translation algorithm
generates the corresponding SPARQL query. Our design
of the query model and translation algorithm guarantees
that any valid sequence of function calls to a Dataset can
be converted to a query model, and any query model can
be translated to a single, semantically equivalent SPARQL
query. This SPARQL query is created and sent to the RDF
engine when the user calls a special execute function, and
the results are returned as a pandas dataframe.

The SPARQL query corresponding to the code in List-
ing 1 is shown in Listing 2. We believe that the RDFFrames
code in Listing 1 is simpler than the corresponding SPARQL
query in Listing 2, in addition to being better suited to the
Python machine learning environment and better integrated
with this environment. This is the primary motivation be-
hind RDFFrames. Note that this query is certainly not
the most complex that we have seen in our experience with
RDFFrames.

Several features of RDFFrames make it efficient and con-
venient to use (the performance of RDFFrames is studied
in [1]). First, RDFFrames adopts a lazy execution model,
generating and processing a query only when needed. Sec-
ond, RDFFrames always generates exactly one SPARQL
query for each dataset, never more. This minimizes the num-
ber of interactions with the RDF engine and gives the query
optimizer a chance to explore all optimization opportuni-
ties. Third, RDFFrames generates a SPARQL query that
is as compact and simple as possible by minimizing the use
of nested subqueries and union operators in SPARQL, since

SELECT ?actor FROM <http :// dbpedia.org > WHERE
{ { SELECT * WHERE

{ { SELECT * WHERE
{ ?movie dbpp:starring ?actor .

?actor dbpp:birthPlace ?country
FILTER (? country = dbpr:UnitedStates)

}
}
OPTIONAL
{ { SELECT ?actor (COUNT(DISTINCT ?movie)

AS ?movie_count)
WHERE
{ ?movie dbpp:starring ?actor }

GROUP BY ?actor
HAVING (COUNT(DISTINCT ?movie) >= 20)

}
}

}
}
UNION
{ SELECT * WHERE

{ { SELECT ?actor (COUNT(DISTINCT ?movie)
AS ?movie_count)

WHERE
{ ?movie dbpp:starring ?actor }

GROUP BY ?actor
HAVING (COUNT(DISTINCT ?movie) >= 20)

}
OPTIONAL
{ { SELECT * WHERE

{ ?movie dbpp:starring ?actor .
?actor dbpp:birthPlace ?country
FILTER (? country = dbpr:UnitedStates)

}
}

}
}

}
}

Listing 2: SPARQL query corresponding to Listing 1.

these are known to be expensive. Finally, RDFFrames han-
dles the mechanics of query processing such as connecting
to the RDF engine (or SPARQL endpoint) and pagination
(i.e., retrieving the results in chunks) to avoid timeouts.

3. DEMONSTRATION SCENARIOS
Our demonstration scenarios provide an interactive ex-

perience showcasing the usability, flexibility, and efficiency
of using RDFFrames to process knowledge graphs and the
advantage of integrating RDFFrames in the PyData ecosys-
tem. Demonstration participants interact with RDFFrames
through a Jupyter notebook interface. The demonstration
uses multiple knowledge graphs, such as DBpedia, YAGO3,
and DBLP, stored on a local instance of the Virtuoso RDF
engine. Several machine learning applications that use RDF-
Frames are provided as part of the demonstration. These ap-
plications allow demonstration participants to interactively
explore the steps involved in building a pandas dataframe
from a knowledge graph using RDFFrames. We describe the
interactive elements of our demonstration next, followed by
an overview of three of the applications used.

Initially, a demonstration participant chooses a knowledge
graph and an application. The participant can visualize the
knowledge graph and focus on the part of it that will be
processed by RDFFrames. An example of this is shown in
Figure 2. In a real usage of RDFFrames, this visualization
would help the user write her RDFFrames code. We do
not expect demonstration participants to write RDFFrames
code or SPARQL queries (although they can do that if they
want). Still, the visualization helps the participant better
understand the code that we provide.

2891



Figure 2: Visualization of part of the DBpedia graph.

The demonstration participant can interactively edit and
execute the provided RDFFrames code. Similarly, the par-
ticipant can edit the generated SPARQL queries and execute
them directly on the RDF engine. The ability to see the ef-
fect of edits to code and queries can provide insights into
the operation of RDFFrames.

After the RDFFrames code is executed, the participant
can explore the dataframe returned by RDFFrames and run
standard machine learning tasks on it using off-the-shelf
tools from the PyData ecosystem (e.g., scikit-learn). The
demonstration provides visualizations for the inputs and
outputs of the applications. For example, Figure 3 shows
a visualization of the most occurring movie genres in the
dataframe returned by the code in Listing 1. Note that
RDFFrames is concerned with data access and preparation,
so the specific machine learning task and its visualization
are tangential to its operation. However, running and vi-
sualizing these tasks helps the user better understand how
RDFFrames fits in the end-to-end machine learning pipeline.

3.1 Demonstration Applications
Movie Genre Classification: Classification is a basic su-
pervised machine learning task. Many knowledge graphs,
such as DBpedia and YAGO3, are heterogeneous and con-
tain diverse general information about different topics, so ex-
tracting a topic-focused dataframe for a classification task is
challenging. In this application, we use RDFFrames to build
a dataframe of movies from a knowledge graph, along with
a set of movie attributes that can be used for movie genre
classification. An expanded version of the RDFFrames code
shown in Listing 1 is used in this application. The code per-
forms the following steps to extract a movies dataset from
DBpedia: We identify movies that star American actors,
since they are assumed to have a global reach. We also iden-
tify movies that star prolific actors, defined as those with 20
or more movies. We then build a dataset of movies starring
an American or prolific actor and return, for each movie, the
genre whenever it is available (it is an optional RDF predi-
cate) and a set of attributes that can be used to predict the
genre. This final dataframe is considered a good represen-
tative of the global movie industry and can be used to train
a classifier to predict the genre for movies that do not have
one, using any standard PyData classification algorithm.

Topic Modeling: Topic modeling is a statistical technique
commonly used to identify hidden contextual topics in text.
In this application, we show the usage of RDFFrames to
query the DBLP bibliography dataset in RDF format for
conducting topic modeling to identify the active areas of

Figure 3: Most occurring genres in the dataframe of movies
in DBpedia returned by Listing 1.

database research. The dataframe required for this task is
extracted from the DBLP knowledge graph through a se-
quence of RDFFrames operators as follows: First, we iden-
tify the authors who have published more than 20 papers
in SIGMOD and VLDB since the year 2000, which requires
using the RDFFrames grouping, aggregation, and filtering
capabilities. For the purpose of this application, these are
considered the thought leaders in databases. Next, we find
the titles of all papers published by these authors since 2010.
We then run topic modeling on these titles to identify ac-
tive areas of research. This application shows the benefit
of RDFFrames producing its output as a pandas dataframe,
since it utilizes the rich PyData ecosystem (NLP libraries
for stop-word removal and scikit-learn for topic modeling).

Knowledge Graph Exploration: One of the main chal-
lenges of exposing knowledge graphs to machine learning
tools is the complex, heterogeneous structure of the graphs.
Thus, the first step for a data scientist working with any un-
familiar knowledge graph is exploring this graph to identify
the classes, instances, features of instances in each class,
data distributions, and other statistical properties of the
graph. RDFFrames provides several convenience functions
to support this exploration, and this application showcases
these functions. For example, the demonstration partici-
pants can get all the classes in the graph and the number of
instances of each class. They can sort the classes by their
frequency to see the main classes. For each class, they can
get the features of instances of this class and the distribution
of the features, and a table of the instances of the class with
all features or with a subset of the features. This exploration
is helpful in understanding the underlying structure of the
graph and is the starting point of most processing tasks.

4. REFERENCES
[1] A. Mohamed, G. Abuoda, Z. Kaoudi, A. Ghanem, and

A. Aboulnaga. RDFFrames: Knowledge graph access
for machine learning tools. arXiv, 2002.03614, 2020.

[2] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
Extensible/rule based query rewrite optimization in
Starburst. In SIGMOD, 1992.

[3] Y. Wang, R. Gemulla, and H. Li. On multi-relational
link prediction with bilinear models. In AAAI, 2018.

[4] H. Wickham. The split-apply-combine strategy for data
analysis. Journal of Statistical Software, 40:1–29, 2011.

2892


