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ABSTRACT
Deep Web (e.g., Yelp, IMDb) is an invaluable external data 
source for enriching a local database with new attributes. In 
this paper, we present ActiveDeeper, a novel model-driven 
data enrichment system powered by deep web. ActiveDeeper 
treats deep web as “a labeler” and uses it to train a data en-
richment model. We show that this model-based approach 
significantly outperforms the state-of-the-art system in real-
world scenarios. We implemented ActiveDeeper as a Google 
Sheets add-on and made a demo video at http://tiny.cc/
activedeeper.
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1. INTRODUCTION
Data enrichment extends local datasets with new attribut-

es from external data sources [3, 2, 4, 5]. It is a crucial part 
of data science pipelines because it helps collect and inte-
grate extra information to better identify new insights from 
local data. As a real-world scenario, banks maintain the 
profile data of their business members (e.g., business name, 
address, phone). Enriching the business category attribute 
for each member will help the bank understand the distri-
bution of industries of its members and better target their 
financial services.

The deep web, as a popular web-based data source, pro-
vides great opportunities for data enrichment. Deep web 
(or Hidden DB) refers to the database (DB) that can only 
be accessed through a query interface (e.g., keyword search 
interface). Websites like Yelp1 and YellowPages2 maintain a 
large and rich entity collections that can be accessed through

1https://www.yelp.com
2https://www.yellowpages.ca
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Figure 1: An Illustration of ActiveDeeper.

their web APIs. The state-of-the-art data enrichment sys-
tem, Deeper [2, 3], uses these APIs to enrich the local dataset
while minimizing the number of API calls.

However, the hidden DB may not have all the data in
the user’s local data (the local DB). In our real experience,
since many small businesses do not keep registration infor-
mation online, only a very small number of business mem-
bers (around 10%) can be found at deep websites like Yel-
low Pages and Google Maps. The state-of-the-art system,
Deeper [2, 3], would fail under this low-overlap situation, as
it relies on entity matches to enrich the local DB.

Is it possible to enrich a record when it does not have a
deep web match? Figure 1 illustrates our idea. Consider
“Sakura 1024 Sushi” in the local DB. If it does not exist
in the YellowPages (yp.ca), Deeper [2] will fail to enrich it.
However, YellowPages may find four results—three Restau-
rants and one Coffee Bar—for the keyword “Sushi”. Al-
though none of them exactly match “Sakura 1024 Sushi”, we
can infer that business names containing “Sushi” are more
likely to be a Restaurant, and that “Sakura 1024 Sushi” is
likely also categorized as a Restaurant.

Based on this idea, we propose ActiveDeeper, a novel model-
based active data enrichment system powered by deep web.
Figure 2 depicts the system architecture. The key innova-
tion is to treat deep web as “a labeler” and use it to construct
a training dataset to train a multi-class classification model.
The model is then applied to enrich the local data with a
categorical attribute. Since the data stored in deep web can
only be accessed through a restrictive keyword-search inter-
face, ActiveDeeper faces two technical challenges: i) which
queries should be selected and issued to the deep web, and
ii) how to utilize the returned query results to train a model
to enrich the local data.

Challenge I. Query Selection. The query selection pro-
cess can be thought of as a type of active learning. The
goal is to interactively query a labeler to construct a train-
ing dataset. In traditional active learning [1], the labeler
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Figure 2: ActiveDeeper System Architecture.

is given an unlabeled instance (e.g, “Sakura 1024 Sushi”)
and returns its label (e.g., Restaurant). In ActiveDeeper,
the labeler is given a keyword search query (e.g., “Sushi”)
and returns a set of labeled instances that match the query
(e.g., see the four records in the training data in Figure 1).
Due to the difference, it calls for the development of a new
query selection strategy.

Challenge II. Model Training. The model training com-
ponent aims to learn a Naive Bayes model from training
data and then uses the model to enrich the data. Naive
Bayes is a probabilistic classifier, which is composed of the
prior probability P (c) and a collection of conditional prob-
abilities P (w|c). One naive approach is to directly estimate
these probabilities from the training data. For example,
if 40% of the categories in the training data are Restau-
rant, then this approach will set P (c = Restaurant) = 0.4;
if 70% of the Restaurant records in the training data con-
tain “Sushi”, then this approach will set P (w = Sushi | c =
Restaurant) = 0.7. However, this approach ignores the fact
that the training data (the union of the query results) and
the test data (the local DB) may have different distributions.
If Restaurant only appears in 10% records of the local DB,
then P (c = Restaurant) should be set to 0.1 rather than 0.4.
Thus, we need to train our model in a smarter way.

ActiveDeeper uses a frequency-based query selection ap-
proach for Challenge I and an effective model training ap-
proach for Challenge II. Both approaches are simple yet
powerful. ActiveDeeper has been deployed in a leading fi-
nancial cooperative (anonymized) in Vancouver and helped
their business analysts enrich business categories.

In our demonstration, users will be able to use Ac-
tiveDeeper to enrich their own spreadsheet data, and com-
pare its efficacy with the prior state of the art Deeper sys-
tem. Users can upload a dataset to enrich. After selecting a
web service to act as a hidden DB (we support YellowPages
and DBLP for the demo), the system will populate a new
column with enriched category information. In addition to
enriching the dataset, users can double check the results by
examining the model confidences for each enriched value. To
make the system realistic, the demo wil be integrated as an
add-on to Google spreadsheets, so users can benefit from for-
mulas, spreadsheet manipulations, and visualizations before
and after enrichment.

2. ACTIVEDEEPER DETAILS
To gain a deep understanding of ActiveDeeper internals,

we first define the novel model-based active data enrichment
problem and then present how ActiveDeeper solves the prob-
lem.

2.1 Problem Description
Let DL denote a local DB and H denote a hidden DB. We

model each local record in DL as a set of words that describe
a real-world entity. We consider that a hidden DB provides a
keyword-search interface. It takes a keyword query as input
and returns a set of entities that match the query. If the
number of matched entities is very large, it will rank them
based on an unknown ranking function and only return the
top-k entities. Let q be a keyword-search query, H(q) be the
top-k records returned by q. We assume that the category
column is missing in the local DB and the query results from
the hidden DB contain the category column. The goal is to
train a multi-class classification model to enrich the local
DB with the category column.

PROBLEM 1 (Model-based Active Data Enrichment).
Given a local database DL, a hidden database H, a query
budget N(≤ |DL|) as the maximum number of queries issued
to H, the model-based active data enrichment problem is to
construct a model mapping between a local record d and its
enriched data value v within N .

2.2 ActiveDeeper Internals
Main Idea. Given a list of business names, human could
tell the category of business names solely based on some key-
words like “sushi”, “clinic”, and “supermarket”. The intu-
ition behind is that human have the knowledge that certain
words are strongly correlated with some categories. For a
business name “sakura 1024 sushi”, consider it is generated
by randomly selecting words from a large vocabulary. As-
suming the words are independent, and we have the prob-
ability mapping from words “Sakura”, “1024”, “sushi” to
restaurant category, we can infer the probability that the
business is a restaurant. If “sushi” appears in a business ti-
tle, the probability that the business is a restaurant is 0.75,
which is very high, then a given business containing “Sushi”
is very likely to be a restaurant. Inspired by this, we pro-
pose a Naive Bayes model to learn the mapping between the
entity names and the data value to be enriched.

Formally, suppose d ∈ DL is a local entity name, W (d) =
{w1, w2, . . . , wm} are the m independent words of d. The
probability of d belonging to category ci is calculated as

P (ci|d) = P (ci|{w1, w2, . . . , wm}) =
Πm

j=1P (wj |ci) · P (ci)

P (d)
(1)

P (wj |ci) represents the category-conditional probability wh-
ere word wj appears under ci. P (ci) is the prior probability
of ci in local DB. P (d) is the probability of d which could be
seen as a constant, so that P (ci|d) ∝ Πm

j=1P (wj |ci) · P (ci).
Then the enriched category of d, denoted as c∗d is decided by

c∗d = argmax
ci∈C

Πm
j=1P (wj |ci) · P (ci) (2)

Now the key becomes learning such a mapping from words
to category. Specifically, we need to compute P (wj |ci) and
P (ci) for each word wj and each category ci. There are two
challenges we must address. One is to decide which queries
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Figure 3: A Running Example of ActiveDeeper.

to issue to the keyword interface to obtain the labeled data.
The other is after we have the query words and their corre-
sponding results, how to construct the model.

Dive Into Query Selection. For the first challenge, there
are so many distinct words in the local table. We generate a
query pool from DL and select the most informative queries
issuing to H. As the model is based on word probability,
each single word in DL is considered as a candidate query.
We propose a frequency-based query selection strategy, i.e.,
every time the most frequent word in local DB is issued as
the query. The intuition is that we want to issue a query
whose query results have an impact on as many local records
as possible. See the running example in Figure 3. “Sushi” is
the most frequent word in local DB. By issuing “Sushi” to
hidden DB, once its probabilities under each category from
the returned results are acquired (see below for how these
probabilities are computed), 75% examples in local DB get
enriched with only one query.

Dive Into Model Training. For the second challenge,
as the hidden DB and the local DB may come from dif-
ferent distributions, we manipulate the probabilities from
the training data in hidden DB to local DB to enable the
Naive Bayes model. We need a range of categories C as su-
pervised labels and P (ci) (ci ∈ C) in the local DB, which
are the priors. A small sample of DL, denoted as Dsample

(|Dsample| � N) is randomly selected to approximate the
priors. Each record r ∈ Dsample is issued as a keyword-
search query to H and get the most frequent category among
the query results H(r) as its category. The set of the cate-
gories obtained in this step is considered as an estimation of
C. For ci ∈ C, P (ci) = |S(ci, Dsample)|/|Dsample| is conse-
quently determined, where S(ci, Dsample) depicts the set of
records in Dsample with category ci. In the example (Fig-
ure 3), suppose the whole local DB contains 200 records (we
only show an example containing 4 records), by sampling
10 with the above processing we get C={Restaurant, Coffee
bar, IT}, where 3 sampled records are Restaurant, 5 and 2
belong to the other two categories, respectively, then P (ci)
(ci ∈ C) is calculated as shown in Figure 3.

Next we discuss how to compute local P (w|c) from the
training data. Initially, word probability to any ci ∈ C is
set equally by 1/|C|, such that a word equally belongs to
any category at the beginning and the predicted category
depends on the P (ci). Every time the most frequent local
word wj is issued as the query. Based on the top-k returned
hidden records H(wj), the smoothing word probability un-

der ci in local DB is updated from the hidden DB as

P (wj |ci) =

|S(ci,H(wj))|
k

· Freqwj + 1

Numci + |C| (3)

where S(ci, H(wj)) denotes the set of hidden records under
ci in the top-k returned query results, Freqwj is the fre-
quency of wj in local DB, and Numci = P (ci) ∗ |DL| is the
estimated number of records with ci in local DB. The Bayes
model is thus updated, with the probabilities of the training
data from hidden DB transferred to those of the local DB.
The iterative process repeats until the budget runs out. No-
tice that only the probability of the query word is updated
at each iteration, since the returned results are all highly
related with the query word, which is more statistically sig-
nificant than the other randomly appearing words.

Continue the running example shown in Figure 3. At the
beginning, for any word wj in local DB, P (wj |ci) = 1/3 (ci ∈
C). Suppose the currently most frequent word q1=“Sushi”
(Freqq1 = 3) is selected as the query and the hidden DB
returns 4 Sushi-related business entities. Then P (Sushi|ci)
is updated with Equation 3. Recomputing the title proba-
bility by Equation 2, we have c∗d1,d3,d4 = Restaurant, and
three in four example local records get correctly enriched.

3. THE ACTIVEDEEPER SYSTEM
We now describe the ActiveDeeper system architecture in

detail (see Figure 2). The system consists of four main com-
ponents. It can not only help users quickly enrich data with
categories but also provide insights and explanations about
enrichment results.

Prior Estimation. ActiveDeeper adopts the method descri-
bed in Section 2.2 to compute the set of candidate cate-
gories C and the prior category distribution P (ci) (ci ∈ C).
Furthermore, the system allows the user to fine-tune the
candidate categories. As shown in Figure 4, the categories
automatically obtained by our system are illustrated in an
pop-up dialog, then the user can filter out those categories
that she does not want to include in the enriched column.

Query Selection. Filtering out the stop words, we ex-
tract the remaining single words from the local DB, apply
lemmatization (e.g., lemmatize “networks”, “networking”
into “network”), and rank them as candidate queries by fre-
quency in descending order. We iteratively select the most
frequent word and issue it to the hidden DB. One implemen-
tation detail is that we add the categories as conditional fil-
ters when issuing queries so that the top-k results returned
are within the category set C and the word probability cal-
culation will thus be more accurate in model training.

Model Training. Following Section 2.2, the category-
conditional word probability (i.e., P (wj |ci)) is uniformly
initialized. Once a word q is issued as the query, P (q|ci)
(ci ∈ C) will be updated upon the top-k returned results by
Equation 3, then the Naive Bayes model will get updated as
Equation 2.

Enrichment Explanation. As a model-based enrichment
tool, ActiveDeeper opens the black box and visualizes the
model details as enrichment explanation to help the user
double check the results. Displayed in a side bar (Figure 4
right side), once data is enriched, the category distribution
will be presented by a pie chart. And for any row specified by
the user, we show in an interactive bar chart the most likely
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Figure 4: The User Interface of ActiveDeeper (see the demo video at http://tiny.cc/activedeeper).

category of each word (i.e., for word q, its most likely cate-
gory c = argmaxP (q|ci ∈ C)) together with the confidence
and support for reasonability validation when hovering over
the word. Derived from the top-k deep web query results,
the confidence represents the proportion of businesses con-
taining q labeled as c among all the businesses with q, and
the support depicts how many businesses containing q with
category c appear within top-k results.

4. DEMONSTRATION
Users will use ActiveDeeper to enrich a business listing,

investigate how ActiveDeeper makes labelling decisions, and
compare its efficacy with the prior Deeper system.

Scenario: Business Category Enrichment. We are by
a financial institution that we work with. The company
provides services to businesses and maintains a database
of business members. They wish to enrich each business
with its category in order to provide personalized service
per business category. In their case, around 60% business
names are not found in YellowPages. The workflow is shown
in Figure 4.
(1) The Dataset: The audience member will load a busi-
ness listing representative of the above company’s data into
Google Sheets. Business Name column shows a sample
of the names. The other two columns will show enrichment
data using ActiveDeeper and Deeper, respectively. Note
that the Deeper column contains empty values when the
business name cannot be found in YellowPages. In fact, the
majority of the values are empty.

(2) Using ActiveDeeper: To enrich the listings, the user
selects “Add-ons” → “ActiveDeeper” → “Get business cat-
egory”. She will specify the input data range (all rows) and
the output data column (the ActiveDeeper Result column).
Our system then suggests a set of candidate categories and
she can select the ones of interest. Clicking “Generate” will
run ActiveDeeper and populate the output column. Simi-
larly, the user can choose to use Deeper instead to populate
the Deeper Result column.
(3) Enrichment Statistics: We have integrated an In-
sights sidebar into Google Sheets. This will show statistics
about the distribution of categories found (or predicted) by
ActiveDeeper. Note that the user can also use Google Sheet’s
integrated functionality to create custom visualizations or
formulas based on the enrichment data.
(4) Enrichment Explanation: Finally, the user can se-
lect any row in the sheet—the figure shows row 6: “Sushi
Garden Bar”. If the category was predicted, she can click
the Explain button to examine why the row was categorized
as Restaurant. We show a visualization where each bar rep-
resents the conditional probability of a word given its most

likely category (the category with the biggest conditional
probability, referring to Section 3). She can also hover over
each bar to examine the Support and Confidence of the per-
word prediction. For example, When issuing “Bar”, 51 busi-
nesses containing “Bar” are returned from the YellowPages,
and 44 out of them are labeled with Restaurant, such that
we got its confidence 86% and support 44, which is quite
reliable of its Restaurant prediction.
Superiority of ActiveDeeper Over Deeper. As a com-
parison, a user can use our demo to enrich data using the
state-of-the-art system, Deeper [3, 2]. The result is shown in
the “Deeper Result” column (See Figure 4). Since Deeper
can only enrich business names which can be found in the
YellowPages, there are many missing categories. Quantita-
tive experimental comparison was also conducted. Varying
the query budget from 100 to 800, we compared the enrich-
ment accuracy between ActiveDeeper and Deeper on a local
DB containing 1599 real business names with six business
categories. Setting top-100 results returned per query, Ac-
tiveDeeper four times beats Deeper given each query budget,
and could accurately enrich 83% business names with a quite
small budget (200 queries).
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