
Demonstrating the Voice-Based Exploration
of Large Data Sets with CiceroDB-Zero

Immanuel Trummer
Cornell University
Ithaca, NY (USA)

it224@cornell.edu

ABSTRACT
This demonstration enables participants to explore large
data sets via voice interfaces. The focus of the demonstra-
tion is on methods generating concise speech descriptions of
query results, specified by users via voice input. The techni-
cal novelty of the demonstrated system lies in the fact that
processing overheads are mostly moved into a pre-processing
phase, generating speeches for batches of queries defined via
templates. Visitors can access the demo via smart speakers
on-site or via their own smart phones. They will be able to
customize the generated voice descriptions and to tune voice
output methods.

PVLDB Reference Format:
Immanuel Trummer. Demonstrating the Voice-Based Exploration
of Large Data Sets via CiceroDB-Zero. PVLDB, 13(12): 2869-
2872, 2020.
DOI: https://doi.org/10.14778/3415478.3415496

1. INTRODUCTION
Voice interfaces are becoming more and more popular.

This is evidenced by the rise of devices and services (e.g.,
Google Home, Amazon Alexa, or Siri) that rely on voice
as the primary medium of communication. Voice interfaces
are most natural for many users. They are convenient in
situations where hands or the visual attention are bound [1]
and benefit user groups (e.g., visually impaired users) who
cannot use traditional interfaces.

This demonstration will enable participants to explore
large data sets via voice interfaces. Also, participants will
be able to compare different methods for generating voice
descriptions of query results in terms of efficiency and qual-
ity of the generated description. The demonstration setup
will feature a smart speaker via which participants can issue
voice queries and hear data summaries. Also, participants
will have access via their phones to a publicly available on-
line version of the demo.

Example 1. An early demo version is already publicly
available. Say “OK Google, talk to Developer Facts” to your

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415496

Google Assistant to explore the results of the 2019 Stack
Overflow Developer Survey. Ask for instance “What’s the
job satisfaction in the US?”. The system answers with “73
percent of employees are satisfied. For novice coders, even
76 percent of employees are satisfied. For a salary above
100K, 75 percent of employees are satisfied.”.

The focus of the demonstration differs from prior demon-
strations on voice-based data access. Systems such as Echo-
Query [1] demonstrate that voice input can be translated
into SQL queries. However, they read out query results row
by row (up to a certain row threshold) which works best for
queries returning single rows or (non-grouped) aggregates.
The focus of the demonstration is on exploratory analysis of
large data sets instead. Here, we assume that user queries
return potentially large result sets. The key problem is then
to summarize the result via voice output.

Voice output needs to be very concise to avoid overwhelm-
ing the listener [6]. This means that only few facts can be
transmitted. Hence, one must carefully select which pieces
of information to share. The demonstrated system formal-
izes the generation of data summaries as an optimization
problem. Given limits on the number of facts to describe,
the goal is to select the combination of facts that gives users
the best approximation of the associated data. I.e., when
asking users to estimate values in specific rows and columns
after listening to a speech description, the goal is to mini-
mize their expected estimation error.

Of course, the number of facts that can be formed about
a data set is large. The number of possible speeches grows
exponentially in the speech length. Naively exploring all
possible speeches to identify the optimal one is therefore
prohibitive. Sampling has been proposed as a method to
select speech descriptions [6]. However, sampling does not
guarantee optimal speeches nor that those speeches use ac-
curate facts. Incremental approaches [7], overlapping voice
output with processing, reduce latency but not overall pro-
cessing overheads. The goal of the demonstrated system
is to reduce per-query overheads at run time to near zero,
hence the name “CiceroDB-Zero”. This is achieved by an
(expensive) one-time pre-processing step, calculating near-
optimal speech descriptions for results of queries that instan-
tiate given templates. Low per-query overheads are partic-
ularly important in scenarios in which data is served to a
large number of users via voice interfaces. Our current ver-
sion runs as application in the Cloud and can be accessed
via smart phones or smart speakers. Having negligible per-
query overheads translates into negligible monetary fees for
Cloud-based processing.

2869

Raw Data

Speeches

User

Speech Recogn.

Run Time Processor

Template Detector

Value Extractor

Query Mapper

Fact Selector

Pre-processor

Planner

Relational DBMS

Speech Generator

Before
Run
Time

At
Run
Time

User Preferences

Speech Templates

Figure 1: CiceroDB-Zero prepares speeches summarizing results for query templates in a pre-processing step.
At run time, user queries are mapped to speeches of the closest available query.

2. PROBLEM MODEL
Our goal is to summarize (relational) query results via

speech output. We consider results with one numerical col-
umn (the Value Column) and multiple (categorical) Di-
mension Columns. Such results are typical for queries in
OLAP sessions.

Definition 1. We model a Speech as a collection of facts.
Each Fact describes an aggregate (i.e., average, maximum,
or minimum) of the value column for a data subset, defined
by equality predicates on a subset of dimension columns.
The Speech Length is the number of contained facts. User
Preferences constrain generated speeches. We support con-
straints on maximal speech length and on dimensions that
must be mentioned in facts. Furthermore, we can restrict
the complexity of generated facts (measured by the number
of restricted dimension columns).

Our goal is to find the best speech summary, given con-
straints on speech length. We judge speeches in terms of
how closely they approximate the actual data.

Definition 2. Given a result set R, we can model the
effect of a speech S ∈ S (where S is the space of possible
speeches) by a function B(S) : πdims(R) 7→ R. This func-
tion models the Belief of users after listening to S about
the value column for specific rows, based on their dimension
values (extracted via function πdims). Our belief function
is based on a simple user model following prior work [7].
We also assume a domain-specific prior that users apply
in the absence of more specific information. We can mea-
sure Error as the distance between belief and actual result:
E(S,R) =

∑
r∈R |πvalue(r)−B(S)[r]|. Finally, we can quan-

tify the Utility of a speech as U(S,R) = E(∅, R)− E(S,R).

Our goal is to find speeches with maximal utility within
the entire search space.

Example 2. Imagine the following query result. Rows
represent software developers and specify company size, level
of experience, and the yearly salary: (large, novice, 70K),
(small, novice, 60K), (small, expert, 100K), and (large, ex-
pert, 110K). Assume that at most two facts are allowed.
Summarizing average salary as “Large companies pay 90K.
Small companies pay 80K.” would make listeners estimate
a salary of 90 K for first and last row and a salary of 80K
for second and third row. This means an accumulated error

of four times 20K, i.e. 80K. Summarizing as “Novice coders
earn 65K. Expert coders earn 105K.” leads to per-row errors
of 5K, therefore 20K in total. Hence, the second speech is
preferable.

3. APPROACH OVERVIEW
Figure 1 shows a high-level overview of CiceroDB-Zero. It

features two primary components: a pre-processing compo-
nent and a run time component. The goal of pre-processing
is to generate text summaries for queries following given
templates. At run time, user speech input is mapped to
the closest query for which a summary is available. This
summary is transmitted via voice output.

The input for pre-processing is a (potentially large) data
set, stored as relational database, a set of query templates
with associated text templates for generating summaries,
and preferences determining for instance the length of the
generated summaries. During pre-processing, we consider
each query instantiating one of the given query templates.
The output of pre-processing is a concise speech summariz-
ing the result of each query on the input data. Each speech
is a collection of facts. The Fact Selector selects for each
query an optimal combination of facts, given constraints on
speech length. To generate facts and to evaluate quality
for fact sets, it issues SQL queries to a Relational DBMS
in which the input data is stored. It exploits a cost-based
Planner to choose the most efficient evaluation strategy. The
Speech Generator generates text summaries, given fact com-
binations and text templates.

At run time, we map user speech input to one of the sum-
maries generated during pre-processing. This summary is
transmitted via voice output to the user. The run time
component uses a Speech Recognition component to trans-
form speech input into text. It uses a Template Detector to
map input to one of the pre-defined query templates and a
Value Extractor to substitute template placeholders by con-
crete values. The Query Mapper maps the user query to
the closest query that was considered during pre-processing.
The summary of that query’s result is spoken out to the
user. The following subsections provide more details.

3.1 Pre-Processing
During pre-processing, we process batches of queries effi-

ciently, generating near-optimal speech summaries of query

2870

1: // Expand speeches St for query template t on data D
2: // by best fact according to user preferences U .
3: function Expand(D, t, St, U)
4: // Plan expansion via cost-based optimization
5: 〈F1, P1〉, . . . , 〈Fn, Pn〉 ←Planner(D, t, St, U)
6: // Initialize remaining fact groups
7: R← ∪1≤i≤nFi

8: // Iterate over expansion plan steps
9: for i← 1, . . . , n do

10: // Update speeches with new fact group
11: St ←UpdateSpeeches(D, t, St, U, Fi ∩R)
12: // Prune out dominated fact groups
13: R← R\Prune(D, t, St, U, Pi ∩R)
14: end for
15: return St

16: end function

17: // Generate near-optimal speeches for templates T
18: // on data D with user preferences U .
19: function PreProcessing(D,T, U)
20: R← ∅
21: // Iterate over query templates
22: for t ∈ T do
23: St ←EmptySpeeches
24: // Add facts until speech length limit
25: for i← 1, . . . , U.length do
26: // Expand speeches by optimal facts
27: St ←Expand(D, t, St, U)
28: end for
29: R← R ∪ {St}
30: end for
31: return R
32: end function

Algorithm 1: Generate near-optimal speeches summarizing
results for all queries following query templates.

results. Algorithm 1 is the pre-processing algorithm, rep-
resented at a high level of abstraction. The input to pre-
processing is a database, a set of query templates, and user
preferences with regards to speech generation, including a
bound on speech length.

We iterate over all given query templates. For each tem-
plate, optimal speeches are generated in a batch operation
for all associated queries. Speeches are defined as collections
of facts. A naive approach iterates over all possible combina-
tion of facts (up to the given size limit) and evaluates quality.
This guarantees an optimal speech, according to the quality
model presented in Section 2, but is prohibitively expen-
sive. Instead, we construct optimal speeches by repeatedly
adding the most informative facts (loop starting in Line 25).
This approach guarantees speeches whose utility is within a
factor of 66% of the optimum (a consequence of the sub-
modularity property of our speech utility function [2], i.e.
adding more facts becomes less and less informative).

The Expand function expands each speech for the cur-
rent query template by the most informative fact. A naive
approach iterates over all facts and compares their utility.
The number of available facts can however be large, render-
ing this approach inefficient. To increase efficiency, we try to
prune fact groups early, without iterating over all contained
facts. This becomes possible if we can establish that no
fact in the corresponding group can optimally expand any
speech. We establish upper bounds on the utility that can

be achieved by adding facts from certain groups. We prune
by comparing those upper bounds against utility achieved
by the best facts considered so far.

Calculating bounds and trying to prune out fact groups
creates overheads as well. Neither using no pruning nor us-
ing pruning whenever possible yields optimal performance.
Hence, we use a cost-based optimizer that determines the
most promising expansion strategy. It generates expansion
plans that are characterized by a sequence of pruning steps.
Each step is characterized by a pair 〈Fi, Pi〉 with the fol-
lowing semantics. Parameter Fi is a group of facts that is
considered for speech expansions. Parameter Pi is a group
of facts that is used as target for pruning. This means that
we invest time to calculate upper utility bounds for Pi, po-
tentially enabling us to prune out fact subsets. To maximize
the effect of pruning, we also exploit relationships between
different fact groups. E.g., an upper bound on the utility of a
fact group also yields bounds for facts referring to more spe-
cific data subsets. Once Function Expand terminates, each
fact has been either considered for expansion or pruned as
part of a dominated fact group. Finally (not shown in Algo-
rithm 1), we generate text summaries, based on the selected
fact groups (by filling in given text templates).

3.2 Run Time
At run time, speech input by users is translated into cor-

responding queries on data. CiceroDB-Zero is based on
the Google Assistant framework1 which offers functions for
speech recognition and natural language processing. The
Google Assistant framework models interactions with users
via so called “Intents”, characterized by input examples and
associated processing logic. In our scenario, each query tem-
plate corresponds to an intent. We provide a few tens of ex-
ample queries for each intent. Based on those samples and
using machine learning, the Google Assistant framework is
able to extract concrete values for placeholders in the query
template.

Queries (templates with values for each parameter) are
forwarded to our processing backend. This backend ac-
cesses speech summaries generated during pre-processing. If
the input query matches one of the queries, treated during
pre-processing, the associated speech summary is returned.
Otherwise, the input query is mapped to the most similar
query considered during pre-processing. For instance, for
queries with equality predicates, we consider query general-
izations obtained by removing equality predicates. Having
the choice between multiple generalizations, we prefer the
ones that require removing the smallest number of predi-
cates.

Having selected one of the speech summaries generated
during pre-processing, we forward the selected speech to the
frontend where it is translated into speech output. In addi-
tion to the speech summary, we generate a short preamble
informing users of the query that is summarized. Doing so is
important due to the inherent challenges in speech recogni-
tion and allows users to verify whether the answer matches
their query intent. Also, it addresses cases in which the
given answer is more general than the user query.

1https://assistant.google.com/

2871

4. DEMONSTRATION
The following subsections describe the demonstration setup

and all the ways in which visitors may participate.

4.1 Demonstration Setup
In terms of hardware, the demonstration stand will fea-

ture a Google Nest Mini smart speaker, at least one An-
droid tablet or smart phone with head phones, and a laptop
(running the pre-processing software). Visitors may interact
with the Google Nest smart speaker on which the voice in-
terface is accessible. Voice interactions with that device typ-
ically work from a distance of a few meters. This means that
the smart speaker can serve small groups of users gathering
around it, answering questions from different visitors while
the others are listening. If specific visitors want to have
an uninterrupted dialog with the interface, they may bor-
row the Android device with headphones. Additionally, the
stand will advertise instructions for users on how to access
the publicly available Google Assistant service from their
smart phones.

4.2 Modes of Interaction
Visitors can explore three data sets with a default con-

figuration: results of the Stack Overflow Developer Sur-
vey 20192, a data set on flight cancellations and delays3,
and polling data provided by Fivethirtyeight4. During pre-
processing, we consider query templates that restrict up to
two dimension columns via equality predicates. Voice access
to data is available via the smart speaker at the conference
stand as well as via the smart phones of visitors.

Visitors will also be able to influence the generated voice
descriptions. Interested visitors have access to a laptop run-
ning the pre-processing software. Pre-processing time for
the three aforementioned data sets ranges from a few sec-
onds (polling) to a few minutes (developer survey). Visitors
may vary the following parameters. First, visitors may de-
fine priors as SQL expressions (describing assumed values
for target rows), modeling a-priori assumptions of listeners
about data. Changing prior leads to different voice descrip-
tions as the system focuses on aspects that are assumed to
be unknown. Second, visitors may change the set of dimen-
sion columns that are prioritized when formulating voice de-
scriptions. This will highlight different trends in the data.
Third, visitors may change per-row weights used to calculate
approximation error when comparing speech descriptions.
This will change the focus of voice output. Finally, visitors
may change parameters related to the size and complexity
of speech descriptions, as well as to the templates used for
generating speeches (e.g., enabling or disabling addition of
adjectives to highlight particularly remarkable trends).

Depending on the network conditions at the conference
venue, participants will also be able to download their own
data sets (preferably in .csv format) to make them accessible
for voice output. According to the experiences of the author,
preparing new data sets for voice interactions typically takes
a few minutes only. This should be possible with interested
visitors outside of periods of peak attendance.

Users who are interested in the internal details will also
be able to change flags, determining how pre-processing is

2https://insights.stackoverflow.com/survey/2019
3https://www.bts.gov/topics/
airlines-and-airports-0
4https://fivethirtyeight.com/

executed. For instance, visitors will be able to switch off
fact pruning or select naive speech generation approaches
(evaluating all possible speeches). Varying those parame-
ters leads to significantly worse performance. For instance,
disabling fact pruning increases pre-processing time by up
to factor three for the aforementioned data sets on a Mac-
Book Air with 8 GB of RAM and 1.8 GHz CPU. Switching
to naive speech enumeration increases pre-processing time
by up to factor 20 for the same platform. Visitors will be
able to see the sequence of SQL queries generated during
pre-processing for all variants.

5. RELATED WORK
CiceroDB-Zero continues a sequence of recent publica-

tions [5–8], focused on the problem of “data vocalization”
(i.e., how to summarize data best via speech descriptions).
A technical report describing the demonstrated approach in
more detail is available online5. None of the aforementioned
predecessor systems has been demonstrated at any confer-
ence. The main technical novelty lies in the fact that expen-
sive data processing is moved to a pre-processing step. This
differs from prior work which either uses standard query
processing [8], scenario-specific sampling methods [6], or
sampling and incremental processing [5, 7]. CiceroDB-Zero
avoids inaccurate results due to sampling. Also, it reduces
run time overheads to close to zero (including monetary
costs in a Cloud scenario). In contrast, overlapping speak-
ing with processing [5,7] only reduces latency. Other recent
work on voice interfaces for data access [1,3,4] is complemen-
tary to CiceroDB-Zero as it does not focus on summarizing
large data sets via voice output.

6. CONCLUSION
The proposed demonstration allows visitors to explore

large data sets via voice interfaces on a multitude of de-
vices. Also, visitors will be able to influence the methods by
which voice output is generated, thereby gaining a better
understanding of the internals.

7. REFERENCES
[1] G. Lyons, V. Tran, C. Binnig, U. Cetintemel, and T. Kraska.

Making the case for Query-by-Voice with EchoQuery. In
SIGMOD, pages 2129–2132, 2016.

[2] G. Nemhauser and L. Wolsey. Best algorithms for
approximating the maximum of a submodular set function.
Mathematics of Operations Research, 3(3):177–188, 1978.

[3] V. Shah, S. Li, A. Kumar, and L. Saul. SpeakQL: towards
speech-driven multimodal querying of structured data.
Technical report, 2019.

[4] V. Shah, S. Li, K. Yang, A. Kumar, and L. Saul.
Demonstration of SpeakQL: speech-driven multimodal
querying of structured data. In SIGMOD Demo Track,
pages 2001–2004, 2019.

[5] I. Trummer. Data Vocalization with CiceroDB. In CIDR,
2019.

[6] I. Trummer, M. Bryan, and R. Narasimha. Vocalizing large
time series efficiently. PVLDB, 11(11):1563–1575, 2018.

[7] I. Trummer, Y. Wang, and S. Mahankali. A holistic
approach for query evaluation and result vocalization in
voice-based OLAP. In SIGMOD, pages 936–953, 2019.

[8] I. Trummer, J. Zhu, and M. Bryan. Data vocalization:
optimizing voice output of relational data. PVLDB,
10(11):1574–1585, 2017.

5http://www.itrummer.org/drafts/cicerodbzero.pdf

2872

