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ABSTRACT
The problem of finding an item-set of maximal aggregated
utility that satisfies a set of constraints is at the corner-
stone of many e-commerce applications. Its classical def-
inition assumes that all the information needed to verify
the constraints is explicitly given. In practice, however, the
data available in e-commerce databases on the items is of-
ten partial. Hence, adequately answering constrained search
queries requires the completion of this missing information.
A common approach to complete missing data is to employ
Machine Learning (ML) algorithms. However, ML is natu-
rally error-prone. More accurate data can be obtained by
asking the items’ sellers to complete missing data. But as
the number of items in the repository is huge, asking sellers
about all items is prohibitively expensive. CONCIERGE,
our presented system, assists the e-commerce platform in
identifying a bounded-size set of items whose data should
be manually completed, as these items are expected to con-
tribute the most to the constrained search queries in ques-
tion. We demonstrate the effectiveness of our system on
real-world data and scenarios taken from a large e-commerce
system by interacting with the VLDB’20 participants who
act as both analysts and the sellers.

PVLDB Reference Format:
Ido Guy, Tova Milo, Slava Novgorodov, and Brit Youngmann.
CONCIERGE: Improving Constrained Search Results by Data
Melioration. PVLDB, 13(12): 2865-2868, 2020.
DOI: https://doi.org/10.14778/3415478.3415495

1. INTRODUCTION
The selection of a k-size item-set with the maximal ag-

gregated utility that satisfies a set of constraints is a funda-
mental problem to many e-commerce applications. As an ex-
ample, consider a user searching an e-commerce website for
shirts. Rather than simply returning the top-k items match-
ing the user’s request (according to their utility scores), the
platform often takes into account additional requirements.
For instance, it might have signed a contract with a partic-
ular brand, requiring that the query’s result set contains at
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least one item of this brand. It may also wish to diversify
the result set, including at least two other brand names, as
well as shirts having different sleeve length or colors [7, 3].

The problem of finding an item-set of maximal aggregated
utility that satisfies a set of constraints is often referred to
as Constrained Search (CS) [3]. Its classical definition in the
literature assumes that all the data needed to verify the con-
straints is explicitly given. In practice, however, the data in
e-commerce databases on the items is often lacking. Sell-
ers frequently upload goods in batches and tend to focus, in
their provided information, only on the most important at-
tributes (e.g., product name and cost), with additional infor-
mation given through natural language description and/or
an image. Hence adequately answering constrained search
queries requires the completion of this missing data.

A common approach to complete missing data is by em-
ploying Machine Learning (ML) algorithms [8, 10, 5]. How-
ever, ML is naturally error-prone, and previously-reported
results indicate that it is hard to achieve 85% precision for a
reasonable recall [6]. More accurate and authoritative data
can be obtained by asking the sellers to complete missing
information. But as the number of items in the database is
typically huge, limiting human effort is crucial. To tackle
this challenge, we propose a hybrid approach that harnesses
the information derived by common ML modules to reduce
the manual effort, focusing on the potentially most “ben-
eficial” items. Given a set of constrained search queries of
interest and a bound on the number of requests from the sell-
ers, CONCIERGE, the system that we present in this work,
assists the e-commerce platform in identifying a bounded-
size set of items whose data should be manually completed.
To this end, it considers the probabilities derived by the
ML modules for the missing attribute values. It identifies a
candidate set of items that are expected to contribute the
most to the constrained search queries (in terms of both con-
straint satisfaction and utility). This is achieved by employ-
ing a dedicated algorithm that we experimentally show to
be effective, despite the inherent complexity hardness of the
corresponding optimization problem. CONCIERGE then
generates data verification questions to the relevant sellers,
updating the repository accordingly.

Before presenting CONCIERGE, let us illustrate the prob-
lem that we address in this work through a simple example.

Example 1.1. Consider an e-commerce platform where sell-
ers upload women shirts. The items database is depicted in
Figure 1. It includes information about the shirts’ brand
names and sleeve lengths. Some of the values were provided
by the sellers. Missing values were derived using ML algo-
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rithms. Next to each given/derived value, we also show (in
the parenthesis) the alternative possible values, along with
their corresponding probabilities, as determined by the ML
module. W.l.o.g. assume that the e-commerce platform
chooses the value with highest probability as the attribute
value. This may, or may not, match the actual ground truth
value (marked here in red). We examine two search queries:
“women shirts” (q1), and “women sport shirts” (q2). Let k,
the number of items to be returned, be 3. The utility scores
of the items w.r.t the queries are also depicted in Figure 1.
During a season change, the platform imposes a constraint
requiring the queries’ results to include items having dif-
ferent sleeve lengths. Also, assume that the platform has
signed a contract with Versace, requiring all result sets to
include at least one Versace item. To ensure coverage of
the brands, another constraint was imposed, demanding to
include items having different brands.

The platform’s result for q1 is the set S1={1, 7, 8} (with
utility of 1.8), and its result for q2 is S2={4, 5, 8} (with util-
ity of 1.8). Note, however, that S1, in fact, does not satisfy
the constraints w.r.t the ground truth, and the result for q2
could be improved in terms of utility, if the ground truth was
known. Turning to the seller of item 7 to complete missing
data would improve both queries’ results: For q1 the result
becomes S′1={1, 2, 7} (with utility of 2.6), and for q2 the
result alters to S′2={4, 5, 7} (with utility of 2.7). Moreover,
both S′1 and S′2 also satisfy the constraints w.r.t. the ground
truth. Turning to the seller of item 2, on the other hand,
would improve the result only for q1, altering it to S′1. In
contrast, completing missing values on items 8 or 9 is redun-
dant: Item 8 is irrelevant to the queries (it has low utility
scores), and item 9 has alternative items with higher proba-
bilities which can meet the constraints’ requirements (item
7 is more likely to have the brand Versace).
CONCIERGE uses the probabilities derived by the ML

modules to choose a bounded-size set of items that is ex-
pected to improve both the utility and the probability of
satisfying the constraints, for both queries. In our exam-
ple, assume that we wish to bound the number of informa-
tion requests to 3. CONCIERGE would turn to the sellers
of items 2, 6, and 7, resulting with the optimal (w.r.t the
ground truth) solutions for both queries: S′1 and S′2 (see
formal definition and further details in Section 2).

CONCIERGE handles multiple queries simultaneously
by supporting two commonly used aggregation strategies:
Average and Least Misery (LM). With the average aggre-
gation function, the system selects a bounded-size item-set
that is expected to maximize the average contribution to
the examined queries. Using the LM function, it selects an
item-set that maximizes the minimum contribution for each
of the queries. Via CONCIERGE’s dedicated UI, the user
can: (1) select the search queries of interest and their im-
posed constraints; (2) limit the overall number of requests
from sellers, and (3) define the aggregation strategy.

While our exposition on the features of our system focuses
on an e-commerce use case, we note that CONCIERGE is
a general-purpose system applicable to data melioration in
general search applications, including search engines (e.g.,
Google) and online media sites (e.g., Netflix).

We demonstrate the operation of CONCIERGE over real-
world e-commerce data. Our demonstration illustrates a
real-life scenario where a data analyst attempts to improve
the results of the most popular (constrained) search queries

Brn: g {g: 0.6, v: 0.4, n: 0}
Slv:  l  {l: 0.8, s: 0.2}

3 4

Brn: g {g: 0.6, v: 0.4, n: 0}
Slv:  l  {l: 0.8, s: 0.2}

Brn: g {g: 0.6, v: 0.4, n: 0}
Slv:  l   {l: 1, s: 0}

21

Brn: n {g: 0.15, v: 0.15, n: 0.7}
Slv:  l   {l:1 ,s: 0}

9

Brn: g {g: 0.6, v: 0.2, n: 0.2}
Slv:  s {l: 0.3, s: 0.7}

10

Brn: v {g: 0.5, v: 0.5, n: 0}
Slv:  l  {l: 0.5, s: 0.5}

6 7 8

Brn: g {g: 0.6, v: 0.4, n: 0}
Slv:  s {l: 0.3, s: 0.7}

Brn: n {g: 0, v: 0.1, n: 0.9}
Slv:  s {l: 0, s: 1}

Brn: v {g: 0.3, v: 0.7, n: 0}
Slv:  l  {l: 0.7, s: 0.3}

5

Brn: n {g: 0, v: 0, n: 1}
Slv:  s  {l:0 ,s: 1}

Item Utility(q1) Utility(q2)
1 0.9 0.001
2 0.8 0.001
3 0.7 0.001
4 0.001 0.9
5 0.001 0.9
6 0.001 0.9
7 0.9 0.9
8 0.001 0.001
9 0.6 0.8
10 0.4 0.001

Figure 1: Example database which include information

about the items brand name (where the values are Gucci

(g), Versace (v) and Nike (n)), and sleeve lengths (where

the values are long (l) and short (s)). On the bottom are

the items’ utility scores w.r.t. two queries.

on the website. The audience will play the role of data
analysts, selecting the queries of interest. Then, the partici-
pants will explore the items chosen by CONCIERGE to be
cleaned and, also, playing the role of the sellers, will com-
plete missing values (by examining the items’ descriptions
and pictures). Last, the audience will examine the improve-
ment in the affected search queries.

Related work. Our work is closely related to a line of work
studying different variants of the CS problem, proposing ef-
ficient algorithms for solving them [7, 9, 3]. While we estab-
lish the connection between CS and the optimization prob-
lem that we study in this work (showing our problem to be
harder), we emphasize that our goal is different. Instead of
finding the optimal solution for the search queries, we aim
to improve their results, via data melioration.

Multiple data cleansing tools combine both human and
ML [8], typically using domain experts to generate ade-
quate labeled data for supervised learning, while minimizing
human effort [10, 5]. Our work complements these previ-
ous efforts by leveraging the probabilities obtained by the
ML algorithms, to identify which items should be manu-
ally cleaned. CONCIERGE can be used to optimize the
cleaning process of a database, as well as to assist in its
ongoing maintenance - whenever a new constraint is im-
posed, CONCIERGE can take over to efficiently identify
what missing information may improve the queries’ results.

Query evaluation over probabilistic databases is a well-
studied problem [4, 2]. In this work, we adapt tools devel-
oped for this task (e.g., the possible worlds semantics of [4]),
showing they are useful for data cleansing as well.

2. TECHNICAL BACKGROUND
We first present our data model, then formally define the

Probabilistic Constrained Search (PCS) problem, and pro-
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vide two extensions for handling multiple queries. Last, we
briefly present our algorithms. Further details can be found
in our online appendix [1].

2.1 Data Model
We are given with a set I of n items, each associated

with a set of attributes, and for each attribute a set of
value-probability pairs, capturing the probability of the at-
tribute to have each value. Given a search query q, each item
i∈I is also associated with a utility score, denoted as uq(i),
which measures the expected satisfaction of a consumer to
i w.r.t. q. This score is a function of the relevance score of
an item to q, and some static scores associated with it (e.g.,
based on customers’ reviews). Following [7], the utility of
an item-set I w.r.t. q denoted as uq(I), is defined as the
sum of utility scores of the items in I.

A constraint is defined over an attribute a, and an item-
set of size k. We consider two simple types of constraints,
which can capture a large range of constraints previously
studied [7, 9, 3]: count and coverage constraints. A count
constraint defines upper and lower bounds on the number of
items having a specific value for the attribute a. A coverage
constraint defines upper and lower bounds on the number
of different values for the attribute a. Given a set of items I
and a set C of constraints, let PrC [I] denote the probability
that I satisfies all constraint in C. We compute PrC [I] using
the chain-rule, addressing the constraints dependencies.

Example 2.1. Continuing with Example 1.1, c1 is a cov-
erage constraint requiring the result sets to include items
having at least two different sleeve lengths; c2 is a count con-
straint requiring the results to include at least one Versace

item; c3 is a coverage constraint requiring the result sets to
include items having at least two different brands.

2.2 Problem Formulation
We can improve the result of a constrained search query

q in two manners: increase the overall utility or satisfy the
constraints with higher probability (possibly at the cost of
reducing utility). The optimal result for q is a k-size item-set
that is most likely to satisfy the constraints while maximizing
utility. This set may be different than the one currently
returned by the platform, which may have a lower utility or
a lower probability of satisfying the constraints than this set.
Intuitively, we would like to make sure that the information
on the items in the optimal set is clean and complete, so
that it will be possible to include them in the result set of
q (as these items have the highest potential to improve it).
For that, we define PCS as follows: Find a set I s.t:

I = argmax|I′|≤k,I′⊆IPrC [I] · uq(I) (1)

In our problem definition, we set the size of the selected
item-set to be k - the number of items in a query result
set. In case the bound on the number of requests from the
sellers, denoted as k′, is <k, we will approach only to the
sellers of the top k′ items with the highest utility scores. In

case k′>k, we may repeat the cleaning process d k
′

k
e times.

Example 2.2. Recall that the result of q1 (based on the pre-
dicted values) is S1={1, 7, 8}, with uq1(S1)=1.8 and PrC [S1]
=0.55. According to Equation 1, the item-set that should
be manually cleaned is S′1={1, 2, 7} with uq1(S1)=2.6 and
PrC [S′1]=0.44. S′1 includes the top 3 items with the highest
utility scores w.r.t. q1. Completing missing data on these
items assists the platform to include them in the result set

of q1 (after the cleaning process, the result of q1 becomes
S′1), improving it in terms of both utility and probability of
satisfying the constraints (as S1 does not satisfy c1).

Next, we extend PCS to handle multiple queries. One
approach to do so is to handle each query separately. How-
ever, to limit the overall number of requests from sellers,
CONCIERGE handles all examined queries simultaneously.
We consider two aggregation strategies: Average and Least
Misery (LM). Let Q={q1, ..., qm} be a set of m constrained
search queries. For simplicity, we assume that the same con-
straints are imposed over all queries. In our first problem
definition, called AVG-PCS, the goal is to find a k-size set
of items that maximizes the average contribution across all
queries. Formally, find a set I s.t:

I = argmax|I′|≤k,I′⊆I

∑
qi∈Q PrC [I ′] · uqi(I

′)

m
(2)

In our second problem definition, called LM-PCS, the goal
is to maximize the minimum contribution for each query.
Formally, find a set I s.t:

I = argmax|I′|≤k,I′⊆I min
i∈[1,...,m]

PrC [I ′] · uqi(I
′) (3)

Example 2.3. Following the average policy the selected item-
set is SAV G={2, 6, 7}. Informally, item 7 is relevant for both
queries, and items 2 and 6 are relevant only for q1 and q2,
resp. Hence, completing missing data on these items may
improve the results of both queries. Following the LM policy
the selected set is SLM={6, 7, 9}. Intuitively, as there are
fewer items that are relevant for q2 than for q1, optimizing
the result of q2 is more challenging. Thus, this set includes
more items that are relevant for q2 (all items in SLM ) than
items that are relevant for q1 (only items 7 and 9).

Hardness Results. We note that computing the probabil-
ity a k-size item-set satisfies a constraint is exponential in
k. We, therefore, estimate this probability using the possible
worlds semantics of [4], showing that it can be estimated up
to a constant factor in O(k). As both AVG-PCS and LM-
PCS naturally generalize PCS, we provide our hardness re-
sults w.r.t. PCS. We also discuss the hardness of CS, which
is a restricted variant of PCS, assuming all probabilities are
0 or 1. While in the simple setting where all constraints are
defined on a single attribute, there exists an optimal PTIME
algorithm for CS [7], we show PCS to be NP -hard, even for
this restricted case. For the general case, we show that both
PCS and CS are NP -hard, and cannot be approximated to
a constant factor in PTIME. We prove this bound to hold
for PCS, even if we know which k-size item-set satisfies the
constraints with the highest probability, has maximal utility.

2.3 Algorithms
Since PCS cannot be approximated to a constant factor in

PTIME, we provide an efficient best-effort algorithm, which
we experimentally show to be highly effective. Our algo-
rithm employs two procedures (described below). We first
describe how our algorithm operates over a single query,
then explain how to extend it to handle multiple queries.

Greedy initialization. This procedure iterates over the
constraints. While count constraints require to select items
having a specific value for a given attribute a, coverage con-
straints require to select items with no particular values for
a. We, therefore, first iterate over the count constraints. In
each iteration, we select new items to satisfy the currently-
examined constraint, while also considering the items se-
lected so far. The main challenge here is to carefully account
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(a) Results of a single constrained search queries (b) Statistics for all examined constrained search queries

Figure 2: CONCIERGE UI.

for the items selected so far, ensuring that the solution still
satisfies previously-examined constraints (i.e., does not ex-
ceed their upper bounds), while also satisfying the current
constraint with as highest probability as possible.

Improvement via local search. This procedure starts
with the solution returned by the previous step. It itera-
tively moves to a neighbor solution by replacing some item(s)
with different item(s) having higher utility scores. The main
challenge here is to define sufficient conditions on the new
item(s) to be added, ensuring improvement. Namely, to
ensure that if the probability of satisfying the constraints
decreases, the utility will be high enough.

Supporting multiple queries. For AVG-PCS, we em-
ploy our algorithms while considering the average utility
scores of the items. For LM-PCS, we compute a solution
by running our algorithms for each query qi∈Q. Let Sqi de-
note the solution for the i-th query. We then estimate, for
each qj∈Q, the value of PrC [Sqi ] · uqj (Sqi), and return the
set in which its minimum value w.r.t. all queries is maximal.

3. SYSTEM AND DEMONSTRATION
We have implemented CONCIERGE using Python and

Flask. The user interacts with the system using a dedicated
UI, depicted in Figure 2 and detailed below.

We demonstrate the operation of CONCIERGE over real-
world e-commerce data. The audience will play the role of
both data analysts, attempting to improve the results of
constrained search queries, as well as of the items’ sellers,
requested to complete missing attribute values.

We begin by asking the audience to select (using the sys-
tem Input Builder, which is omitted from presentation for
space constraints): (1) the search queries of interest, and
their corresponding constraints (by examining the query log
of a popular e-commerce company); (2) a bound on the num-
ber of requests from sellers, and (3) the aggregation policy.
After receiving the input, CONCIERGE executes the main
algorithm. The output of this algorithm is then used to gen-
erate data cleaning tasks that are sent to the relevant sellers.
The cleaning tasks can be performed in the dedicated UI,
or exported as JSON files and loaded to various crowd plat-
forms. The audience will then be asked to play the role of
the corresponding sellers and to complete missing values by
examining the items’ descriptions and pictures.

Once the cleaning process is complete, the audience can
inspect the improvement of the queries, analyzing the effect

by comparing their result-sets before and after the cleaning
(using the underlying search engine to retrieve the results).
For example, Figure 2a depicts the results before and af-
ter the cleaning process for the query “women sport shirt”.
One can see that two items were replaced, and consequently,
the overall utility was increased. Note that the last item in
the original result set is a long-sleeved button-up shirt. It
was replaced with a long-sleeved sport shirt that appears
folded in its picture and hence was not detected by the ML
module. In addition, the audience can examine statistics
describing the results for all affected queries (as presented
in Figure 2b). These statistics include the number of per-
formed fixes, distributions of the affected attributes, average
utility gain per query, and other useful details.

Last, the audience will be allowed to look “under the
hood”, examining the effectiveness and efficiency of our algo-
rithms, compared with the näıve approach, that computes
the optimal solution using an exhaustive search. For this
part of the demonstration, we will use growing fragments
of the underlying database, showing the limitations of the
näıve approach to scale.
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