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1 INTRODUCTION
In response to physical limitations, hardware has changed signif-
icantly during the past two decades. As the database community,
we have no chance but adapt to those changes in order to benefit
from these and further hardware advances.

Two strategies to deal with the change have proven particularly
successful. To avoid hitting the memory wall, modern engines com-
pile queries into native machine code [? ]; this way, data can be
kept longer in registers and performance-limiting memory I/Os
can be avoided. To escape the power wall, the use of heterogeneous
and massively parallel architectures has been proposed; graphics
processors (GPUs) in particular can deliver spectacular compute per-
formance at a very attractive power footprint. But while both these
strategies are very successful and well understood, it is surprisingly
difficult to bring both together without losing much of their benefit.

In this demo, we showcase DogQC, the query compiler that we
develop at TU Dortmund University. DogQC includes the Lane
Refill and Push-Down Parallelism techniques to combat divergence
effects that are the root cause for the above mentioned difficulty. The
two techniques very effectively avoid resource under-utilization on
graphics processors, while leveraging the bandwidth efficiency of
compiled code. In practice, DogQC’s anti-divergence measures can
improve query performance by several factors.
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1.1 Divergence in GPU-Based Execution
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Figure 1: Plan ex-
cerpt.

The root cause for the discrepancy be-
tween query compilation and (hetero-
geneous) parallelism is divergence. To
understand the effect, consider the plan
excerpt from TPC-H Q10 shown here as
Fig. 1 on the right. A query compiler will
attempt to compile the plan region
into a straight-line sequence of code, a
pipeline. The motivation to do so is to
propagate tuples within registers, rather
than spilling data to (slow) memory.
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Figure 2: GPU under-utilization due to filter divergence.

During execution, not all lineitem tuples will actually traverse the
full pipeline. Some tuples might instead be eliminated by operators
such as filter 𝜎 or join Z. If this happens, a sequential processor
will immediately abort the pipeline, continue with the next input
item, and hence keep CPU efficiency at peak.

Data-parallel execution back-ends, by contrast, do not have the
option of aborting a pipeline early, unless all tuples in the same
batch of work are eliminated.

Figure 2 illustrates this effect for a GPU-based back-end (assum-
ing a batch—or “warp”—size of eight for illustration purposes). In
some warp iteration, only warp lanes 1, 5, and 7 might have passed
the filter 𝜎 , leaving the five remaining warp lanes inactive (indicated
as dashed arrows ). The following join de-activates another two
warp lanes, bringing GPU efficiency down to 1/8 in this example.

The resulting GPU under-utilization is even worse in real set-
tings. To scan a lineitem table with 150 million rows, actual GPUs
will require 5 million warp iterations, each consisting of 32 warp
lanes. Although 𝜎 filters out about 2/3 of all rows, it is extremely
unlikely that all lanes within a warp become inactive. Therefore,
(almost) all 5 million warp iterations proceed into the join operator
Z. Only 1 % of the remaining rows find a match during the join. In
an actual data set, 2.9 million rows remain after the join, but they
are spread across 1.1 million warp iterations. Ideally, the projec-
tion 𝜋 and aggregation aggr operators could have been processed
by only 2.9M/32 = 90K warp iterations. In other words, state-of-
the-art query compilation techniques will leave 92 % of the GPU’s
processing capacity unused.
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Figure 3: Lane activity profile with filter divergence.

1.2 GPU Query Compiler DogQC
GPU code generated by our query compiler DogQC1 leverages Lane
Refill and Push-Down Parallelism techniques to counter divergence
effects like the ones we described. In the rest of this demonstra-
tion proposal, we will give a high-level idea of the Lane Refill and
Push-Down Parallelism techniques (Sections 2 and 3), then report
on experimental results for DogQC (Section 4). In Section 5, we
describe how we intend to demonstrate the internals of the DogQC
engine at VLDB before we wrap up in Section 6. More details on the
Lane Refill and Push-Down Parallelism mechanisms can be found in
the respective full paper [? ].

2 LANE REFILL TECHNIQUE
Divergence effects (here: filter divergence) are a consequence of the
SIMT, “single instruction, multiple threads,” execution paradigm
embodied in all modern graphics processors. A number of threads
(or lanes, typically 32 of them) is grouped into a warp. During exe-
cution, all lanes within a warp execute the same GPU instruction.

The SIMT model encounters a problem whenever some lanes
or data elements need a different amount or kind of processing
than others. In such situations, control flows will diverge. Since all
lanes within a warp still execute the same instruction, lanes will be
turned inactive and their computation result will be discarded. As
illustrated above, this can result in resource under-utilization.

To illustrate the severity of this effect, we instrumented the query
plan shown earlier (Figure 2) to monitor warp utilization at the
plan point marked with a magnifying glass ü. Figure 3 shows a
histogram on the number of warps that have passed this plan stage
with a warp utilization of 1, . . . , 32 active lanes. It is easy to see
that only a fraction of the available compute capacity is used; in
most warps, only one or two out of 32 warp lanes performed actual
work.

2.1 Balance Operators and Refill Buffers
To combat the situation, DogQC injects balance operators into the
relational query plan. Code generated for these operators detects
warp under-utilization at runtime. Whenever utilization drops be-
low a configured threshold, the state of all remaining active lanes
is suspended to a refill buffer and the pipeline starts over with a
fresh set of input tuples.

Figure 4 illustrates this for three successive warp iterations 1○
through 3○. Since only 2, 1, and 3 lanes remained active in these
iterations (respectively), their state is flushed to the refill buffer.

1https://github.com/Henning1/dogqc
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Figure 4: Lane Refill: tuples from three low-activity itera-
tions are suspended to the refill buffer and resumed for full
lane activity in the fourth iteration.

After flushing, each of those warp iterations is terminated and
processing starts over with the next set of input tuples.

2.2 Refilling
As soon as a sufficient number of lane states has been stored to
the refill buffer, the buffer can be used to refill lanes that have
become inactive. This time, the under-utilized warp iteration is
not terminated but continues processing with full utilization after
refilling. This is visualized in Step 4○ of Figure 4. Here, only two
out of eight warp lanes remained active after the downstream join
operator. Using the refill buffer, the remaining six warp lanes can be
filled with useful work, resulting in full warp utilization upstream.

Implementation-wise, flushing and refilling are backed up in
DogQC by CUDA’s __ballot_sync, __popc (“population count”),
and shuffling primitives. These primitives are highly efficient; bal-
ance operators will cause little overhead even when only few warps
go below the utilization threshold.

2.3 Effect of Lane Refill
Lane Refill brings warp utilization back to a high compute efficiency.
Following the balancing operator, all executed warps (except for
the last warp in each grid block) are guaranteed to have a warp
utilization above the configured threshold.

In Figure 5, this is illustrated with a histogram for the same plan
point that we profiled earlier (Figure 3), but this time with a balance
operator applied. The histogram confirms that (a) (almost) no warps
exist with a utilization below 26 lanes (the threshold we configured);
and (b) the total number of executed warps has dropped by a factor
of about ten. In terms of overall execution performance, lane refill
will improve execution times by about 2–3x for the example plan
shown in Figure 2.
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Figure 5: Lane activity profile with lane refill buffer to con-
solidate filter divergence.

3 PUSH-DOWN PARALLELISM
DogQC’s Push-Down Parallelism technique addresses another flavor
of divergence that may arise orthogonally to the aforementioned
filter divergence. Expansion divergence is the effect when a different
amount of work is needed to process each of the items within a
warp. Database join operations are a common situation where this
effect arises.
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Figure 6: Expansion divergence.

Figure 6 here on the
right illustrates the ef-
fect. Probe side tuples
coming from the right
may find a different num-
ber of join partners each.
Specifically, in the exam-
ple, lane 6 will have sig-
nificantly more tuples to
process than the remain-
ing warp lanes. In such a
situation, existing query
compilers will process
all matches of a single
probe-side tuple within
the same warp lane. In the example, execution times would be
dominated by the sequential processing of all matches for lane 6.

Push-Down Parallelism—detailed in [? ]—mitigates the situation
by parallelizing the processing the matches of a single probe-side
tuple across the available warp lanes. To this end, the execution state
of probe-side lanes is broadcast over lanes, while build-side matches
are partitioned across. Again, we leverage efficient CUDA primitives,
such as __ballot_sync and __shfl_sync (“shuffle sync”).

As illustrated in Figures 7 and 8, Push-Down Parallelism improves
lane utilization and reduces the overall number of iterations needed
to complete the query.

Lane Refill and Push-Down Parallelism complement one another,
and Figure 6 shows an example where both flavors of divergence
co-exist. Another typical occurrence of expansion divergence is the
processing of variable-length data, strings in particular. If possible,
DogQC will parallelize the processing of strings across warp lanes
to improve resource utilization.

4 EVALUATION
With DogQC, we provide a query compiler with a wide range of
SQL functionality; sufficient to support all queries from the TPC-H
benchmark set.
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Figure 7: Lane activity with expansion divergence.
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Figure 8: Lane activity profile with push-down parallelism
to consolidate expansion divergence.

4.1 TPC-H Performance
To assess the benefits of measures to contain divergence, we per-
formed a series of measurements with the TPC-H benchmark set.
Our measurements were based on an NVIDIA RTX2080 GPU with
46 Streaming Multiprocessors and 8GB GPU memory, installed in a
host system with an Intel i7-9800X GPU and 32GB of main memory.
As a reference, we compared DogQC with the hybrid CPU/GPU
system OmniSci [? ].

Our benchmark results are depicted in Figure 9. For each of the
22 TPC-H queries, the bars indicate query execution time assuming
that the data set is resident in GPU memory.

For OmniSci, we report the total wall clock time needed to ex-
ecute the query as well as the amount of time spent on GPU pro-
cessing. OmniSci is a hybrid execution engine, meaning that both,
CPU and GPU, will be used to jointly answer the query. As can be
seen in the figure, several queries can, in fact, not benefit much
from GPU acceleration in OmniSci. Also mind that OmniSci could
successfully execute only 13 of the 22 TPC-H benchmark queries.

The focus of this demonstration is on avoiding divergence effects.
To this end, we prepared a version of DogQC where the divergence-
related optimizations can be turned off (if appropriate, see below).
In the graph, this is reported as “naive.” As can be seen in the figure,
the mitigation of divergence will result in a significant performance
improvement for some queries, while never having any negative
impact on any query. DogQC can run all 22 TPC-H queries entirely
on the GPU (benefits from hybrid CPU/GPU processing would be
orthogonal to divergence mitigation).

A secondary benefit of divergence handling in DogQC cannot
directly be observed in the figure. An important flavor of divergence
stems from the processing of (variable-length) strings. Existing
systems, including OmniSci, circumvent the problem and apply
dictionary encoding on all string data. The resulting overhead on
ingestion speed and memory requirement cannot be inferred from

2851



Henning Funke and Jens Teubner

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

3.0

6.0

9.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0.0

0.2

0.4

0.6

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

TPC-H query

ex
ec
ut
io
n
tim

e
s

OmniSci

total time

GPU part

DogQC naive

processing

DogQC opt

processing

Figure 9: Execution times of DogQC for TPC-H benchmark queries (scale factor 25). The divergence optimizations improve
query performance.

Figure 9. DogQC, by contrast, can naturally handle variable-length
data, including strings (also in its “naive” configuration). See [? ]
for details.

5 DEMO SETUP
Our demonstration at VLDB will enable visitors to look under
the hoods of the DogQC query compiler, with a focus on anti-
divergence techniques.

DogQC provides mechanisms to visualize generated query plans
(we leverage the dot2 utility for this purpose), which demo specta-
tors can use for inspection. An example of an actual query plan is
shown in Figure 10(a) for the TPC-H Q10 plan sketched in Figure 2.
As part of the demo, visitors will be able to freely place balance
operators into DogQC-generated query plans and observe their
effects (in Figure 10(b), a balance operator—highlighted in red—has
been injected, corresponding to theü marker in Figure 2).

Balance operators (if placed properly) will have an immediate
effect on query execution speeds, which demo visitors will be able
to verify with TPC-H and other data sets.

To inspect the inner workings of anti-divergence techniques,
DogQC is equipped with profiling mechanisms that visualize GPU
lane utilization. At the demo, visitors will be able to generate his-
togram graphs like those in Figures 3 and 5 for their own queries
and at arbitrary points in the query plan.

Finally, demo visitors will be able to verify the utilization of
further GPU resources, such as registers, memories, or caches.

6 SUMMARY
Divergence effects can seriously impair the performance potential
of modern, data-parallel execution platforms such as GPUs. With
help of the Lane Refill and Push-Down Parallelism techniques, our
query compiler DogQC can combat divergence effects and restore
processing efficiency.

DogQC supports the full TPC-H benchmark set. In the demo,
visitors will be able to experiment with DogQC, state their own
queries, and watch the inner workings of DogQC.

2https://www.graphviz.org/
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Figure 10: DogQC query plans corresponding to the TPC-H
Q10 plan sketched in Figure 2. Left: query plan without bal-
ance operators; right: plan with balance operator injected
after the join operator (corresponding toü in Figure 2).
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