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ABSTRACT
Information regarding the counts of attributes combination
is central to the profiling of a data set. It may reveal bias;
it can help determine fitness for use. While counts of in-
dividual attribute values may be stored in some data set
profiles, there are too many combinations of attributes for
it to be practical to store counts for each combination. To
this end, we present the notion of storing a “label” of lim-
ited size that can be used to obtain good estimates for these
counts. A label contains information regarding the count
of selected patterns–attributes values combinations–in the
data. We define an estimation function, that uses this label
to estimate the count of every pattern. Intuitively, there is a
trade-off between the label size and its estimation error. We
propose a demonstration of Countata, a system that allows
the user to examine this trade-off as well as the label’s count
information. We will demonstrate the usefulness of Coun-
tata using real-life data, and illustrate the effectiveness of
our estimation paradigm.
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1. INTRODUCTION
“Found data” is data that was not collected as part of

the development of data-driven algorithms and tools, but
was rather acquired independently, possibly assembled by
others for different purposes. Usage of existing data is very
common this days as a result of the emerging variety of pub-
licly available datasets, and their online accessibility. While
convenient, this may lead to incompatibility of the data to
the user’s desired task, which in turn can result in discrim-
inating or unfair decisions, algorithmic racism and biased
models [8].
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Data-driven methods are increasingly being used in do-
mains such as fraud and risk detection, where data-driven
algorithmic decision making may affect human life. For in-
stance, risk assessments tools, which predict the likelihood
of a defendant to re-offend, are widely used in courtrooms
across the US [4]. ProPublica, an independent, non-profit
newsroom that produces investigative journalism in the pub-
lic interest, conducted a study on the risk assessment scores
output by a software developed by Northpointe, Inc. They
found that the software discriminated based on race: blacks
were scored at greater risk of re-offending than the actual,
while whites were scores at lower risk than actual.

Information regarding the attributes’ values such as their
type, distribution statistics, common patterns, and attributes
correlations and dependencies may assist in mitigating mis-
use of data and reduce algorithmic bias and racism. This
flavor of information can be extracted in the process of data
profiling, a standard step preformed by analysts when using
“found data”. While informative and useful, data profiling
is hard to do well, is usually not automated, and requires sig-
nificant effort. To help both the data analyst and the data
user, the notion of a “nutrition label” has been suggested
[11, 9, 7, 12, 10, 13]. The basic idea of a nutrition label is to
capture, in a succinct label, data set properties of interest.
Perhaps the single most important such property is a profile
of the counts of various attribute value combinations. For
instance, an analyst may wish to ensure a (close) to real
world distribution in the attribute’s values of the data, such
as equal number of male and female. Another concern may
be the lack of adequate representation in the data for a par-
ticular group [5], such as divorced African-American female,
or contrarily, a high percentage of data that represents the
same group (data skew) [6].

To this end we propose to label datasets with information
regarding the count of different patterns (attributes values
combinations) in the data, which can be useful to determine
fitness for use. Needless to say, there is a combinatorial
number of such combinations possible. So, storing individ-
ual counts for each is likely to be impossible. Thus, we focus
on techniques to estimate these counts while storing only a
limited amount of information.

Example 1.1. COMPAS is the risk assessment commer-
cial tool made by Northpointe, Inc. The COMPAS dataset
was collected and published by ProPublica as part of their in-
vestigation [1]. The full dataset contains 60,843 tuples with
29 attributes. Figure 2 depicts a label with partial count-
ing information of a simplified version, including only six
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attributes: gender, age group, race, marital status, legal sta-
tus and supervision level. This dataset description depicts
the possible values of each attributes, and their count in the
data (Figure 2b), with the addition of some attributes values
combination count, legal status and supervision level in this
example (Figure 2a). Some immediate observations that can
be made based on this information is that female and male
are not equally represented in the data, and due to the low
number of widows in the data, there is a high possibility that
the number of Hispanic female widows is inadequate for the
development of non-biased algorithm using this data.

If we know the marginal distributions (or individual at-
tribute value counts), we can make an independence assump-
tion and estimate the joint distribution (multi-attribute in-
tersection counts); but if we are additionally given selected
intersection counts, how should we use these to estimate
other intersection counts not provided? We present a model
for this estimation in Section 2. Given the estimation pro-
cedure, each label entails an error with respect to the real
count of patterns in the data. Intuitively, a label is the count
of value combinations of a selected subset of attributes. The
problem is then to choose a label that minimizes the er-
ror, where the number of value combinations is limited by
a given space budget. We show in [3] that this problem
is NP-hard and present an efficient heuristic. We propose
to demonstrate our solution, which we have implemented
in a system called Countata (for ”COUNTing labels of
dATAset”). The system allows the user to examine datasets’
labels, counting information of selected patterns, and detec-
tion of skews and underrepresented patterns. The frame-
work is designed to assist the data-owners to determine the
desired bound over the generated data label. We will demon-
strate Countata using real world datasets, let the audience
interactively explore the datasets, and show the trade-off
between the label size and its accuracy.

Related Work. With the increasing interest in data equity
in recent years, multiple lines of work have focused on la-
beling data and models in order to improve transparency,
accountability and fairness in data science. Different data
labeling models were studied in [9, 7, 12]. Other works fo-
cused on model labeling [10, 13]. Our proposed label model
may be assimilated as a widget or a module in the above
models. While the idea of a nutritional label has been very
nicely argued for in these works, the actual content of the
label is either manually generated, or at most has an aspi-
ration towards automated generation beyond the simplest
properties. Our work establishes the first critical widget
that provides substantive information about a data set and
is constructed in a completely automated manner.

2. TECHNICAL BACKGROUND
We (informally) introduce the model underlying Coun-

tata, using examples. See [3] for a full description of the
theory and notation. We assume the data is represented
using a single relational database, and that the relation’s
attributes values are categorical. Attribute with continuous
values domain may be converted to categorical domain by
bucketizing them into ranges, as commonly done in practice
to present aggregate results.

Gender Age group Race Marital status
1 Female under 20 African-American single
2 Male 20-39 African-American divorced
3 Male under 20 Hispanic single
4 Male 20-39 Caucasian married
5 Female 20-39 African-American divorced
6 Male 20-39 Caucasian divorced
7 Female 20-39 African-American married
8 Male under 20 African-American single
9 Female 20-39 Caucasian divorced
10 Male under 20 Caucasian single
11 Male 20-39 Hispanic divorced
12 Female under 20 Hispanic single
13 Female 20-39 Hispanic married
14 Female under 20 Caucasian single
15 Female 20-39 Caucasian married
16 Male 20-39 Hispanic married
17 Male 20-39 African-American married
18 Female 20-39 Hispanic divorced

Figure 1: Sample data from a simplified version of the
COMPAS dataset

2.1 Patterns count information
Given a database D with attributes A = {A1, . . . , An},

we use Dom(Ai) to denote the active domain of Ai for i ∈
[1..n]. A pattern p is a set {Ai1 = a1, . . . , Aik = ak} where
{Ai1 , . . . , Aik} ⊆ A and aj ∈ Dom(Aij ) for each Aij in p.
We use Attr(p) to denote the set of attributes in p.

Example 2.1. Figure 1 depicts a fragment of a simplified
version of the COMPAS database containing only the at-
tributes gender, age group, race and marital status. p ={age
group= under 20, marital status = singe} is a possible pat-
tern and Attr(p) ={age group, marital status}.

We say that a tuple t ∈ D satisfies the pattern p if t.Ai =
ai for each Ai ∈ Attr(p). The count cD(p) of a pattern p is
then the number of tuples in D that satisfy p.

Example 2.2. Consider again the database given in Fig-
ure 1. The tuples 1, 3, 8, 10, 12, and 14 satisfy the pattern
p ={age group= under 20, marital status = single} and thus
the count of p is cD(p) = 6.

While full count of each pattern provides detailed and
accurate description of the data, it can be extremely large.
In fact it can have the same size as the data.

Example 2.3. As a simple example, consider a database
D with n binary attributes A1, . . . , An, where each value
combination (b1, . . . , bn), for bi ∈ {0, 1}, appears exactly
once. In this case the database, as well as the patterns count,
includes 2n tuples.

One way we could control the size of stored information
is to keep counts only for individual attribute values, and
estimate counts for attribute value combinations, assuming
independence.

Example 2.4. Continuing with Example 2.3, given the
counts cD({Ai = bi}) = 2n

2
, the count of the pattern {A1 =

0, A2 = 0, A3 = 0} may be estimated as

2n·
3∏

i=1

cD({Ai = 0})
cD({Ai = 0}) + cD({Ai = 1}) = 2n·

(1

2

)3
= 2n−3

Intuitively, under the assumption that there are no correla-
tions, the count of the pattern {A1 = 0, A2 = 0, A3 = 0} is
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the relative portion of the data (total number of 2n tuples),
that have the value 0 in the attribute A1, A2 and A3, which

is reflected in the sub-expressions cD({Ai=0})
cD({Ai=0})+cD({Ai=1}) in

the computation. In general, the count of the pattern p =
{Ai1 = bi1 , . . . , Aik = bik} can be computed as

|D| ·
k∏

j=1

cD({Aij = bij})
cD({Aij = 0}) + cD({Aij = 1})

However, when we introduce correlations, the counts of
individual attributes are no longer sufficient to provide a
good estimation, as we next demonstrate.

Example 2.5. As a simple example, consider a database
D with n binary attributes as described in Example 2.3, ex-
cept that the values in the attributes A1 are replaced such
that the value of A1 is equal to the value of A2 for every tu-
ple. The real count of the pattern {A1 = 0, A2 = 0, A3 = 0}
is now 2n−2, where using only the individual count the pat-
tern count estimation is 2n−3 with the same computation
shown in Example 2.4.

We may remedy this problem by using additional count
information. In the above example, the counts of the pat-
terns p = {A1 = b1, A2 = b2} for bi ∈ {0, 1} is sufficient to
provide an exact estimate for each pattern in the database.

Example 2.6. Given the patterns count cD({A1 = 0,
A2 = 0}) = 2n−1 we can compute the count of {A1 =

0, A2 = 0, A3 = 0} as 2n−1 · cD({A3=0})
cD({A3=0})+cD({A3=1}) =

2n−1 · 1
2

= 2n−2.
In general, the count of any pattern p = {Ai1 = bi1 , . . . ,

Aik = bik} (that contains {A1 = b1, A2 = b2} for bi ∈
{0, 1}) can be computed as

cD({A1 = b1, A2 = b2})·
k∏

j=3

cD({Aij = bij})
cD({Aij = 0}) + cD({Aij = 1})

Real world datasets are typically complex, and have cor-
relations among attributes. One possible way to tackle this
problem is to store more information about these (large)
deviations from our initial independence assumption. The
challenge is to spend wisely a limited space budget to cap-
ture exactly the deviations that induce greatest error in the
estimates, as we next explain.

2.2 Patterns count based labels
We next present our notion of data label. A label LS(D)

of D is defined with respect to a subset S of the database
attributes and contains: (1) the pattern count (PC) for each
possible pattern over S (i.e., p with Attr(p) = S), and (2)
value count (V C) of each value appearing in D.

Example 2.7. Consider the database fragment given in
Figure 1, the label resulting from use of the attributes set S

= {age group, marital status} consists of the following:

PC ={({age group = under 20, marital status = single}, 6)

({age group = 20-39, marital status = married}, 6),

({age group = 20-39, marital status = divorced}, 6)}
V C ={({gender = female}, 9), ({gender = male}, 9),

({age group = under 20}, 6),

({age group = 20-39}, 12),

({race = African-American}, 6),

({race = Hispanic}, 6), ({race = Caucasian}, 6),

({marital status = single}, 6),

({marital status = divorced}, 6),

({marital status = married}, 6)}

The label resulting from use of the attributes set S′ = {gender,
age group} consists of the same V C set and the following
PC set:

PC = {({gender = female, age group = under 20}, 3)

({gender = male, age group = under 20}, 3),

({gender = female, age group = 20-39}, 6),

({gender = male, age group = 20-39}, 6)}
Note that for a given database D, the V C set is similar

in every label of D. We next explain how the data labels
can be used to estimate the count of every pattern in the
database.

Given a databse D with attributes A and a subset of at-
tributes S ⊆ A we use PS to denote the set of all possible
patterns over S such that cD(p) > 0. Let S1 and S2 be
two subsets of attributes such that S1 ⊆ S2 ⊆ A. Given
a pattern p ∈ PS2 , we use p|S1 to denote the pattern that
results when p is restricted to include only the attributes
of S1. Given a label l = LS1(D) of D using S1, we may
estimate the count of each pattern in PS2 as follows.

Est(p, l) = cD(p|S1) ·
∏

Ai∈S2\S1

cD({Ai = p.Ai})∑
aj∈Dom(Ai)

cD({Ai = aj})

Example 2.8. Consider again the database given in Fig-
ure 1, and the label l = LS(D) generated using S ={age
group, marital status} shown in Example 2.7. The estimate
of the pattern p ={gender = female, age group = 20-39,
marital status = married} using l is

Est(p, l) =

cD(age group = 20-39, marital status = married)·
cD({gender = female})∑

aj∈Dom(gender) cD({gender = aj})
= 6 · 9

18
= 3

Using the label l′ = LS′(D) generated from S′ = {gender,
age group}, with a similar computation we obtain

Est(p, l′) = cD(gender = female, age group = 20-39)·
cD({marital status = married})∑

aj∈Dom(marital status) cD({marital status = aj})
=

6 · 6

18
= 2

We can then define the error of a label with respect to a
pattern and a set of patterns.

Err(l, p) = |cD(p)− Est(p, l)|
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(a) Pattern Counts (b) Value Counts (partial)

Figure 2: Dataset Label

Example 2.9. Reconsider the estimates Est(p, l) and
Est(p, l′) of the pattern p ={gender = female, age group
= 20-39, marital status = married} shown in Example 2.8.
The count of the pattern p in the database is 3, thus the error
of l with respect to p is 0 and the error of l′ is 1.

Abusing notation, we use Err(l,P), for a set of patterns
P, to denote the maximum error in the estimate for any in-
dividual pattern in P. We choose to focus on the maximum
error (rather than mean for instance), as this definition of
error is stiffer and gives us a sense of the error “bound” over
a large number of patterns in the database. In [3] we show
that the problem of finding the optimal label (i.e., the label
with minimal error) with a bounded size in NP-hard, and
present a heuristic for it. Due to space limitation we omit
the discussions of size and estimation accuracy trade-off and
the algorithm’s performance, see [3] for full details.

3. SYSTEM OVERVIEW
Countata’s back-end side is implemented in Python 3

and runs on macOS Catalina. The user interacts with the
system using a dedicated user interface (shown in Figures 2),
implemented in React with Material-UI framework. The
dataset’s label view includes the set of data attributes, and
their values distribution (i.e., the set V C described in Sec-
tion 2.2), as shown in Figure 2b. For each attribute Coun-
tata presents the count of every possible value, and a visual
display using a pie chart. The presentation may be manu-
ally refined and attributes can be filtered-out in order to
adjust the information to the user’s interest. Figure 2a de-
picts the PC set of the label (the counts of the patterns in
PS for S ={legal status, supervision level} in the example
presented in the figure). The system also provides informa-
tion regarding the label’s maximal error, mean error and the
standard deviation (on the table’s header).

The user can define a pattern by specifying (some of the)
attribute’s values. Once the pattern is fed to the system,
Countata presents the user with estimated count of the
requested pattern and the range of values estimation with
the average error. The user may also specify a threshold
for skew or underrepresented patterns detection. Given a
threshold T , Countata present the set of patterns with
count above/below T , where each pattern is associated with
it’s count estimation and the average error range.

4. DEMONSTRATION SCENARIO
We will demonstrate the usefulness of Countata in as-

sessing the count of pattern using real world datasets. In
particular we will use:
• The Blue Nile dataset collected and used in [5] of dia-

monds catalog of the online jewelry retailer Blue Nile.
• The COMPAS dataset that was collected and pub-

lished by ProPublica [1]
• The Default of Credit Card Clients Dataset [2], which

contains information on default payments, demographic
factors, credit data, history of payment, and bill state-
ments of credit card clients in Taiwan from April 2005
to September 2005.

The audience will be asked to play the role of data scientist,
examining the benefits of Countata in estimating the pat-
terns count, detecting underrepresented groups and skews.

The users will first select a dataset and load the label
(generated using the algorithm in [3]) to Countata. We
will then browse through the label and ask the participants
to insert a pattern whose count they wish to estimate. For
demonstration purposes, we will present the real count of the
selected pattern along with the system’s estimation count.
We will then ask the users to set thresholds for the skew and
underrepresented pattern detection mood. We will observe
the results and compare the estimated counts to the real
patterns counts.

Finally, we will let the audience “look under the hood”.
In particular, we will show the trade-off between label size
and accuracy by considering labels with varying sizes for the
selected dataset, highlighting the difference in the number
of tuples presented to the user in the label information and
the error in the patterns count.
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