IMO: A Toolbox for Simulating and Querying
“Infected” Moving Objects

Jianqiu Xu!

Hua Lu?

Zhifeng Bao?

!Nanjing University of Aeronautics and Astronautics, China
2Roskilde University, Denmark
3SRMIT University, Australia

jlanqiu@nuaa.edu.cn

ABSTRACT

Due to the widespread use of GPS-enabled devices such as
smartphones, the research field of moving objects databases
has been quite active in the past decade. Human move-
ments are recorded, managed and analyzed for a plethora of
applications. In this demo, we introduce a toolbox named
IMO to simulate and query infected moving objects. This is
primarily motivated by COVID-19 virus pandemic recently.
We model the spreading behavior to demonstrate when and
where people are infected. The protection policy is simu-
lated such that one can see the isolation and self protection
effects such as human movement restriction and the wearing
of masks. Optimization techniques are developed to enhance
the performance, including data storage, data partition and
index structures. This is not a standalone software but a
toolbox embedded in SECONDO, an open source and ex-
tensible database system. To the best of our knowledge,
simulating and querying infected objects are not supported
in existing moving objects prototype systems. Demo atten-
dees can conveniently pose their queries and adjust parame-
ters in the interface and the system will visualize the result
after only a short delay.

PVLDB Reference Format:

Jiangiu Xu, Hua Lu, Zhifeng Bao. IMO: A Toolbox for Simulat-
ing and Querying “Infected” Moving Objects. PVLDB, 13(12):
2825-2828, 2020.

DOI: https://doi.org/10.14778/3415478.3415485

INTRODUCTION

Moving objects databases [4] (MODs) are used to man-
age spatial objects that continuously change their locations
over time. MODs have a wide range of applications, such
as vehicle management and human behavior analysis. In
the literature, a great deal of efforts have been made in this
area to support a range of query processing and data ana-
Iytics on interesting issues such as nearest neighbor query,
similarity search and movement pattern analysis. An impor-
tant feature of such data is that objects are moving around

1.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 12

ISSN 2150-8097.

DOI: https://do1.org/10.14778/3415478.34 15485

luhua@ruce.dk

2825

zhifeng.bao@rmit.edu.au

such that the relationship is modeled by a time-dependent
function. The COVID-19 virus has spread over many coun-
tries and people will likely to be infected if they are ever
close to each other. This motivates us to develop a toolbox
IMO (infected moving objects) to: (i) efficiently look for in-
fected objects from their movement data and (ii) simulate
the spreading event with and without immediate protection
policy. IMO can be used by authorities to look for people
being infected or likely being infected. The simulation helps
people understand how fast the virus is spreading.

Consider the example in Figure . oy is an infected object
and is close to 01 for a while, leading to 01 being infected.
Although o2 is never close to oy, it is infected by o1. Later,
{oy, 01, 02} will infect more objects. o3 is close to o1 for
a while but o; is not infected at that time. Therefore, o3
should not be considered as an infected object.

T 1

ty -

t3

t

t,

of

Figure 1: An example of infected moving objects

The infecting event occurs when two moving objects are
close to each other for a while. Although time-dependent
closeness can be determined by spatio-temporal operators
such as nearest neighbor and range queries, the result is not
complete because when an object is infected, it will move
around and keep infecting others. One needs to repeat the
searching procedure for each infected object, and the evalua-
tion time is different for each case. This is the characteristic
of the spreading behavior. An alternative solution is to per-
form the self-join operation to report all pairs of objects
which have been close to each other for a while. However,
this will result in a large number of candidates, most of
which may not contribute to the result. A pair should not
be reported if none of them is infected, although they are
close to each other. The time order relationship has to be
carefully handled because the infecting event only occurs

https://doi.org/10.14778/3415478.3415485.
https://doi.org/10.14778/3415478.3415485.

when an object is infected. Before that, objects are safe
even though they are close.

In this demo, we model the infecting event and perform
different queries in a database system to look for infected ob-
jects with or without protection policy (e.g., isolation and
people wearing masks). This is a new task in the domain
of moving objects databases. Results are animated in the
interface such that users can clearly see when and where the
infecting event occurs. Our approach has two novelties: (i)
moving objects can be stored by a number of fixed-length
records. They are configured in different sizes such that an
optimal setting is made for the current workload. This re-
duces I/O cost in comparison with accessing variable-length
records. (ii) An optimal partition method is provided to
split the movement into pieces for data locality. A range
of index structures (global and local) are maintained to en-
hance the efficiency. The demonstration allows the audience
to send infecting queries, experience the effect of protection
policy and observe the animation of the spreading behavior.

Recently, a number of prototype systems have been built
to manage spatio-temporal trajectories such as ST-Hadoop
[2] and DITA [@]. Ratel [6] provides interactive analytics
and trip planning for large scale trajectories in which range,
join and sampling operators are supported. A tool for in-
door mobility data is developed in [G]. However, the infect-
ing event and spreading behavior among moving objects are
novel issues and have not been investigated before.

In addition to processing infected moving targets, IMO
can benefit several real-world applications such as the anal-
ysis of public transportation scheduling and indoor move-
ment, and discovering distance-related spatio-temporal re-
lationships (e.g., tracking). The method of providing differ-
ent storage models (a number of fixed-length records with
different sizes) can be utilized in other systems as well.

In this demo, we make the following contributions: (i) We
formalize the problem of detecting infected moving objects
and model the protection policy. Both outdoor and indoor
movements are supported. (ii) We develop the toolbox in-
side a database system in order to effectively simulate and
visualize moving objects, and efficiently process and perform
analytics over large datasets. (iii) We demonstrate how an
infected object can infect a large number of objects and how
protection policies can effectively control the infected area
and reduce the number of infected objects. The proposed
temporal function can also be used to process continuous
range and distance join queries over moving objects.

The rest of the paper is organized as follows: We formalize
the problem in Section B and present our approach in Section
B. The demonstration is described in Section H.

2. PROBLEM FORMALIZATION

Each moving object is represented by a moving point, de-
noted by mo [d]. Essentially, this is a sequence of so-called
temporal units, each of which consists of a time interval and
a description of a linear movement during this time interval.
The movement is defined by recording the positions at start
and end time points, respectively. Given a moving object,
time intervals of distinct units are disjoint.

DEFINITION 2.1. Mowving objects

O = {olo=(u,..., un)} such that :

(i) wi = (t1,t2,p1,p2), t1, t2 € Instant and p1, p2 € R?
(i) uit1 < uip1.ta

(153) Yui, uj: [ui.ty, ui.ta] is disjoint with [uj.t1, u;.t2].

The infecting occurs when two objects are close to each
other. That is, the time-dependent distance is smaller than
a threshold for a while. Let dist(o1, 02, T) be a time-
dependent function returning the distance between two ob-
jects o1 and o2 (01, 02€ O) during a time interval 7. Two
moving objects are mapped into pieces at the same time in-
terval, each of which follows a linear motion model. The dis-
tance changes over time, which is represented by the square
root of a quadratic polynomial. The coefficients depend on
locations and velocities.

DEFINITION 2.2. Infecting event

An object o' € O is infected by another object o (infected
already) if 3T > AT - m, IAd such that ¥t € T': dist(o1,
02, T) < Ad. The parameter m (m € int A m > 1) is a
variable that we use to model the effect of wearing a mask.

Figure B exemplifies the condition of the infecting event.
AT and Ad are two thresholds that trigger the infecting
behavior, e.g., AT = 10 minutes and Ad = 1 meter. By
default, we set m = 1, meaning that the two objects are not
protected by a mask. One can increase the value if one or
both objects wear masks for protection.

dist

N/

|
f— AT——

Figure 2: Distance curve

T

DEerINITION 2.3. Infected queries

Given an infected object o, the infected query will report
all infected objects O' C O such that Vo' € O': 30" € O', o
is infected by o”.

The query will report all infected objects, which may be
infected by different objects and later in turn infect others.
This is the spreading behavior.

3. THE FRAMEWORK

We provide an overview in Section BT, present key param-
eters for simulation in Section B=2 and introduce the query
procedure in Section B33.

3.1 Overview

IMO is embedded into a database system such that we
can perform query processing and data analytics over large
datasets in addition to moving objects animation. Figure B
depicts the framework consisting of six layers.

Storage layer. The current storage provides variable-
length records for moving objects. The system maintains
two files. One is for pointers/offsets and the other is for val-
ues. In order to reduce the I/O cost of accessing the under-
lying data, we propose using a range of fixed-length records
with different sizes to replace variable-length records, as il-
lustrated in Figure fI(a]. The system automatically selects
an optimal setting based on a cost model for the current
workload. In addition to the data type for moving objects,
a range of data types are defined to represent spatial objects
such as roads, bus routes, walking areas, rooms and doors.

2826

Animation

mfeumL, event, spreading

behavior, protection polic;]

Query processing layer

[Global and local structures]

Data partition layer (

similar shapes

[
[
(Index layer
(

picces of movements with]]

Real GPS data
Taxi, Bus, Truck, Bike
ride-hailing

[Synthetic data 1
T
)

Movement rules] (_Outdoor/Indoor

{
(

variable-length record
System data storage layer Tixed-Tongth records with

dllTercm sizes

Figure 3: IMO architecture

I .
1
1
1
1
1
1
1

filel

file2 | rel rec2

size3

arange of fixed-length records

variable-length records

(a) fixed-length records b) locality and storage overhead

Figure 4: Data storage and partition

Data retrieval. If real datasets are processed, a data
cleaning procedure is involved. There are two steps: error
detection and data repairing. This is because mobile sensors
usually contain a number of errors which significantly inhibit
the query processing and data analytics. Synthetic data is
produced based on trip planning in which both outdoor and
indoor scenarios are supported.

Data partition. We combine space partitioning and
data partitioning to minimize the I/O cost during query pro-
cessing. There are several options to perform the partition,
as demonstrated in Figure f{b)]. One can use a big box or a
number of small boxes to approximately represent the move-
ment. The former does not preserve the data locality while
the latter increases the index overhead. The system pro-
vides a method to balance the locality and the storage cost
by splitting moving objects into pieces with similar shapes.

Index and query processing. A list of index structures
are maintained to improve the query performance. We have
a global structure which is a combination of grid-index and
3D R-tree, created on partitioned objects [§]. Both his-
torical data and online updating are supported. The query
processing evaluates the infecting event and reports infected
objects with or without protection policy. Auxiliary struc-
tures are created on the target and candidate objects such
as bounding box array and candidate tree. The bounding
box array is built on the target and is able to report the tra-
jectory approximation for the query time at constant time,
speeding up the distance computation.

User interface. This part performs the animation such
that users can clearly see when and where objects are in-
fected. Operators are defined to transform 3D indoor struc-
tures (e.g., rooms and doors) to 2D space.

3.2 Key Parameters

Movement rules. A number of movement rules are de-
fined to generate human trips such as visiting POI, visiting

nearest neighbors, and commuting. For an outdoor trip,
a person starts from one place (e.g., residential/work area),
uses the public transportation system (bus or metro) and ar-
rives at another place with some walking distances. Within
a building, the trip starts from one location (e.g., an office
room), follows the time or distance shortest path to the des-
tination (e.g., a meeting room) during which elevators or
staircases may be used. We use public floor plans to con-
struct the building.

Protection policy. One effective solution is to perform
the isolation by restricting the area where objects move. We
partition the space into a set of disjoint areas and each object
only moves in one area. The partition rule is arbitrary, e.g., a
set of equal-size rectangles, Voronoi diagram, triangulation.
The mask effect is modeled by a time interval m representing
the time span during which two objects stay. If both objects
wear masks, m? is the result.

Incubation period. If a safe object meets an infected
object, there will be no symptom for a few days before ill-
ness. Such a stage is called incubation period. We model
the value by a time interval and configure different settings
as humans may have long or short incubation period.

3.3 Query Processing

We outline the query procedure of looking for infected
objects in Figure B. There are three steps. Step 1 takes
the first infected object and performs the data partition to
define an approximate spatio-temporal search region during
which objects will be infected. Step 2 accesses the spatio-
temporal index structure to do the filtering. That is, objects
that cannot be infected will be pruned. Step 3 processes
each candidate through the infecting evaluation to report
infected objects. Such objects will be put into the result
set and also be considered as targets infecting others later.
The spread evaluation performs two tasks: (i) restrict the
time interval of the infected object because its start time is
not the original time but after the infecting event; (ii) if the
object has been considered as the target infecting others, we
will not process it again. Otherwise, the searching procedure
continues as the objects infect each other. A priority queue
is maintained for targets which are increasingly ordered by
time. For each object from the queue, we repeat steps 1-3.
The procedure terminates when there is no infected object
in the queue. For each infected object, when and where the
infecting occurs can also be reported.

—
Op.evnnn 0; <«—— | spread evaluation
-—

Infected evaluation

partition spatio-) .. didates
structure temporal

index

Figure 5: Query procedure

When protection rules are triggered, we follow the same
query procedure by changing the condition of determining
the infecting event. The method is straightforward for mask
as one can adjust the parameter m. If the isolation occurs,
we only report the result when two evaluated objects are
located in the same partition area. Suppose that we have a
relation MO(Id: int, Trip: mpoint) that embeds mpoint as
a relational attribute. The infected query is executed by the
following two statements in the system syntax. The first

2827

statement defines the first infected object. Operators are
used to do the filtering and extract a particular object from a
relation. The second statement performs the query in which
users can vary parameters to simulate different scenarios.
Let Qmo = MO feed filter[.Id = 12] extract[Trip];
query infected(Qmo, MO, Index,AT,Ad,m) consume;

4. DEMONSTRATION

We implement the toolbox in an open source and extensi-
ble database system SECONDO [8] using C/C++. A desk-
top PC (Intel(R) Xeon(R) E5-2620 v4 , 2.1GHz x 14, 64GB
memory, 2TB hard disk) running Ubuntu 14.04 (62 bits,
kernel version 4.4.0) is used for the demonstration.

The system supports processing both real datasets (e.g.,
taxi and ride-hailing trajectories [l]) and synthetic datasets.
Raw GPS data are uploaded into the system and then trans-
formed into moving objects after data cleaning. One can set
the number of objects to simulate the effect of population
density. Intuitively, people inside a building have a higher
probability being infected than people in an open area. We
have a range of open floor plans to simulate indoor scenar-
ios including office buildings, universities, hotels, and train
stations. Indoor trips contain movement involving elevators
and staircases in which people are likely to be infected. After
preparing the datasets, we perform the data partition and
build index structures. These tasks are executed by calling
a list of operators in a running script file. Users do not have
to type the commands one by one.

Scenario 1: Infecting and spreading behavior. We
choose one object from the dataset as the first infected tar-
get. This is selected randomly or intentionally with long
life time and long moving distance. Users can configure AT
and Ad to demonstrate time and distance effects. The query
procedure is executed to progressively report all infected ob-
jects. The terminal returns a list of moving objects and the
graphical interface displays their movement such that one
can clearly see how the event occurs. In particular, when
and where an object is infected. We demonstrate the indoor
scenario in Figure B by using an university floor plan (the
2D area is [0, 80] meter x [0, 35] meter). For visualizing
purpose, we extend the life time of an infected object to the
ending time among all objects. Otherwise, the object will
disappear when its life time is over.

A

[

(LT

Al

Figure 6: Infected moving objects inside a building

Scenario 2: Protection policy. If the protection pol-
icy is executed, the number of infected objects decreases.
Furthermore, the range of infected objects is limited. We
demonstrate the isolation effect that restricts the movement

2828

in a certain area, as shown in Figure @. Among the infected
areas, we can report top-k regions with the largest number
of infected objects. The mask effect is demonstrated such
that objects stay close to each other for a longer time to be
infected. Table O reports the simulation statistics including
the overall time costs of determining all infected objects with
and without protection policy. Since the protection policy
restricts the movement area, the processing time is reduced.

Figure 7: The effect of isolation

Table 1: Statistics
Xrange [Y range [# objects | without protection | protection
[0, 100000] | [0, 100000] | 32000 | 8.2s [31s

Scenario 3: Time-dependent distance. The infect-
ing event is based on processing time-dependent distances
among moving objects. The function also can be used to
answer continuous range queries and distance join queries
which report objects keeping within a certain distance to
the target for some time and pairs of nearby objects, re-
spectively. Continuous range queries can be used to find
out the tracking behavior and distance join queries can be
used to find out travelers with similar routes.

Acknowledgment. This work is supported by NSFC un-
der grants 61972198, Natural Science Foundation of Jiangsu
Province of China under grants BK20191273. Hua Lu is
partly supported by the Independent Research Fund Den-
mark (No. 8022-00366B). Zhifeng Bao is supported in part
by ARC DP200102611 and Google.

é REFERENCES

https://www.datatang.ai/ (2020).
[2] L. Alarabi and M. F. Mokbel. A demonstration of st-hadoop: A
mapreduce framework for big spatio-temporal data. PVLDB,
10(12):1961-1964, 2017.
R. H. Giiting, T. Behr, and C. Diintgen. Secondo: A platform
for moving objects database research and for publishing and
integrating research implementations. IEEE Data Eng. Bull.,
33(2):56-63, 2010.
R.H. Giiting and M. Schneider. Moving Objects Databases.
Morgan Kaufmann, 2005.
H. Li, G. Li, J. Liu, H. Yuan, and H. Wang. Ratel: Interactive
analytics for large scale trajectories. In SIGMOD, pages
1949-1952, 2019.
H. Li, H. Lu, F. Shi, G. Chen, K. Chen, and L. Shou. TRIPS: A
system for translating raw indoor positioning data into visual
mobility semantics. PVLDB, 11(12):1918-1921, 2018.
Z. Shang, G. Li, and Z. Bao. DITA: A distributed in-memory
trajectory analytics system. In SIGMOD, pages 1681-1684,
2018.
J. Xu, Z. Bao, and H. Lu. Continuous range queries over
multi-attribute trajectories. In IEEE ICDE, pages 1610-1613,
2019.

!
]

(3]

	Introduction
	Problem formalization
	The framework
	Overview
	Key Parameters
	Query Processing

	Demonstration
	References

