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ABSTRACT
We investigate the problem of building a suffix array sub-
string index for inputs significantly larger than main mem-
ory. This problem is especially important in the context of
biological sequence analysis, where biological polymers can
be thought of as very large contiguous strings. The objective
is to index every substring of these long strings to facilitate
efficient queries. We propose a new simple, scalable, and
inherently parallelizable algorithm for building a suffix ar-
ray for out-of-core strings. Our new algorithm, Suffix Rank,
scales to arbitrarily large inputs, using disk as a memory ex-
tension. It solves the problem in just O(logn) scans over the
disk-resident data. We evaluate the practical performance
of our new algorithm, and show that for inputs significantly
larger than the available amount of RAM, it scales better
than other state-of-the-art solutions, such as eSAIS, SAscan,
and eGSA.
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1. INTRODUCTION
The size of data collections increases with unprecedented

speed. A large proportion of these data is sequential and
can be modeled as strings. Some string collections are ex-
tremely large. For example, sequence datasets collected by
the 1000 genomes project have reached 4.2TB in total size
and are growing [33]. The International Cancer Genome
Consortium has collected about 150, 000 DNA sequences of
at least 100GB each [35]. To perform efficient data analysis
at this scale, we need to build a special-type index, a full-
text substring index. Major full-text indexes include Suf-
fix Trees [31], Suffix Arrays [21], and FM-indexes [8]. These
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indexes expose the internal structure of monolithic strings
and provide dramatic performance improvements for mul-
tiple complex string problems. Although full-text indexes
are already widely used for biological sequence analysis [30],
they do not typically scale to larger inputs.

Of all different index types, in this paper we concentrate
on suffix arrays. The Suffix Array data structure was co-
introduced in [21, 11] as a space-efficient alternative to the
Suffix Tree [31]. The suffix array SA for a string X of length
N is defined to be an array of N integers corresponding to
the starting positions of suffixes of X in lexicographical order
(see Figure 1).

The main query type supported by the suffix array is pat-
tern search: given a query string Q (pattern) and a large
string X (text), find all the occurrences of Q in X. Every
substring of X is a prefix of some suffix, so if the suffixes are
sorted, any pattern can be located in time O(logN) using bi-
nary search. This is a significant improvement over a naive
O(N) search, especially when N is very large. Moreover,
sorted suffixes can be used to build an FM-index [8]. FM
index can be compressed to occupy less space than the orig-
inal string. Thus, the FM-index of a very large string could
fit into RAM, even if the original string could not, and this
facilitates even more efficient pattern search queries. The
efficiency of the pattern search is crucial because it is used
in many bioinformatics tasks, such as short-read mapping
[12, 19], sequence alignment [16, 18], repeat detection [1], or
genome assembly [6, 27].

Formally, in this paper we tackle the following problem:

Problem 1. External-memory suffix sorting
Input: String X of length N where N >> M , and M is
the (limited/constant) amount of internal memory.
Output: A suffix array SAX on disk.

We propose a new external-memory algorithm for solv-
ing this specific problem. Our new algorithm, Suffix Rank,
works in a constant amount of RAM and uses disk as a
memory extension. The input string resides on disk and is
never accessed at random positions. The input can be arbi-
trarily large, limited only by the disk space required to store
intermediate data structures.

Our new algorithm has the following properties:

• For an input string N characters in length, the algo-
rithm runs in time O(N logN). At most logN scans
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Figure 1: Suffix array SA for string X. Note that the SA
contains only start positions, not the suffixes themselves.
The last row contains the values of LCP - the length of the
longest prefix shared by a suffix with the suffix preceding it
in the suffix array.

of the input are required to produce the index. In prac-
tice, the number of scans is equal to log(max|LCP |),
where LCP is the value of the longest common prefix
shared by any two suffixes.

• The algorithm completely avoids random access to
disk-resident data structures. It efficiently exploits the
properties of real disks, including prefetching of large
amount of data from a single local point of the input.

• The space complexity of the algorithm is linear in N .

• The algorithm is inherently parallelizable: it requires
access to at most two small chunks of the input at a
time, and performs shared-nothing computations for
each chunk.

• The algorithm is unique in its simplicity; it can be
easily implemented and used in production environ-
ment for indexing massive string collections.

Before presenting our solution, we review the existing meth-
ods for suffix array construction.

2. RELATED WORK
SUFFIX ARRAY FROM SUFFIX TREE
In general, the suffix array can be obtained by traversing

an already built suffix tree. However, suffix tree construc-
tion involves significant overhead in terms of space, which
makes it too expensive when only sorted suffixes are re-
quired. Linear-time suffix tree construction algorithms are
limited to the main-memory settings [31, 29]. They exhibit
poor locality of references and their performance degrades
even when run in RAM due to multiple cache misses; this
can be improved but not eliminated [28]. Suffix tree con-
struction for strings which are much larger than RAM re-
mains a challenge. Existing algorithms for out-of-core inputs
are limited to Wavefront (O(N3) running time) [10], BBST
(O(N2))[2], and ERA (O(N2logN)) [22]. These algorithms
scale moderately with respect to the input-to-memory ratio.
In this paper, we do not discuss the problem of constructing
a suffix tree from which to derive a suffix array, but rather
the problem of constructing a suffix array directly from the
input string.

IN-MEMORY SUFFIX SORTING
A naive approach to the suffix array construction would be

to sort suffixes as though they were separate strings. Such
sorting would require comparison of N substrings of size

O(N) each, and would run in time O(N2 logN). Much more
efficient algorithms take advantage of the fact that suffixes
are overlapping substrings of the same string. Already in
[21], the authors proposed the first algorithm which runs in
time O(N logN). The suffix array construction algorithms
can be categorized into three groups [26]: Prefix Doubling
algorithms such as qsufsort [17], Recursive Sorting such as
DC-3 [15], and Induced Sorting such as SAIS [24].

As noted in [26], a problem with all these sophisticated
suffix sorting algorithms is that they are memory-latency
bound – they access data at seemingly random positions
and incur multiple cache misses even when run in RAM.
Memory-latency is the reason why the linear-time DC-3 al-
gorithm can perform worse than the O(N logN) qsufsort,
and both can be slower than O(N2 logN) naive suffix sort-
ing on some inputs [25]. This applies to all cases when the
data needs to be transferred up the memory hierarchy: from
slower to faster memory. When the data structures used in
these algorithms outgrow the main memory and must be
kept on disk, the computation becomes practically infeasi-
ble, because we constantly need to read new values from
random disk locations discarding the values that are cur-
rently buffered in RAM. Furthermore, if the input is also
kept on disk, brute-force comparison of substrings from ran-
dom positions is not an option either. To work with such
strings, algorithms must be redesigned to avoid random ac-
cess to disk-resident data.

EXTERNAL-MEMORY CONSTRUCTION
To design a suffix sorting algorithm fully optimized for

modern hardware and the properties of real disks, one might
think of using the disk-friendly 2-Phase Multi-way Merge
Sort (2PMMS): partition the input into small chunks, sort
suffixes in each chunk in RAM, and write these chunk suffix
arrays to disk. The second phase would be to merge sorted
suffixes from different partitions. However, directly applying
the merge step of 2PMMS to suffixes is not possible: recall
that sorted suffixes of each chunk are represented by their
starting positions only, so there is not enough information
to determine the relative order of suffixes from two different
partitions. The only way to compare two such suffixes is
to consult the input string itself, and when the input string
is on disk, it cannot be read efficiently at random positions
guided by the order in chunk suffix arrays.

Random access to the input string can be reduced by at-
taching a certain number of initial characters from each suf-
fix to its position in the partitioned suffix arrays and com-
paring these prefixes during the merge. This technique of
prefix buffering was employed by the DiGeST algorithm [3].
Prefix buffering was shown to eliminate about 90% of ran-
dom accesses to the input string in experiments with ge-
nomic sequences [3]. However, the remaining 10% of random
disk I/Os severely degrade the performance of the algorithm
when the input string resides on disk. More sophisticated
prefix buffering was proposed in [20]. The eGSA algorithm
uses three techniques to accelerate the merge: prefix assem-
bly, LCP comparison, and suffix induction. Despite these
techniques, eGSA does not guarantee sequential disk I/Os
for inputs containing long repetitive strings, such as a set of
multiple human genomes [20]. In addition, there is a signif-
icant disk space overhead to store the prefix buffers.

Instead of prefix buffering, information about the relative
order of suffixes from different partitions could be precom-
puted and used during merge. This technique was first used

2788



in BBST [2]. The BBST algorithm runs in time O(KN),
where K = N/M is the input-to-memory ratio, and M rep-
resents available amount of main memory. In essence, the
algorithm scales quadratically in N , and is practical only for
cases where K is small. The disk space required for tempo-
rary data structures is also O(KN).

A more sophisticated partition-and-merge strategy was
proposed in the SAscan algorithm [13]. As in BBST, SAs-
can breaks the input string X into K chunks (K = N/M).
Then, it computes the Suffix Array and BWT for each chunk,
and writes them to disk. Next, for each chunk, it constructs
a gap array. The gap array of chunk k indicates how suf-
fixes of X starting after chunk k are interleaved with suffixes
starting in chunk k. After the gap arrays for each chunk are
computed, the algorithm has enough information about the
relative order of suffixes from different partitions to merge
them into a single global suffix array. While computing the
gap array for each chunk k, the SAscan algorithm needs to
scan disk–resident information from all chunks following it
– from k + 1 to K. Thus, disk data of order N is scanned
K times. Since the number of chunks K depends on N/M ,
the algorithm is again quadratic in N , like BBST. However,
unlike in BBST, the temporary disk space is linear in N .
The SAscan algorithm is extremely fast when K is small.
In addition, the algorithm is lightweight: it uses sophisti-
cated compressed data structures, and thus its temporary
disk footprint is quite small.

The algorithms that do not rely on multi-way merge sort
extend in-memory techniques to external memory settings.
In [7] the authors investigate the external-memory poten-
tial of the algorithms based on prefix doubling (the Manber-
Myers algorithm) and based on recursive sorting (DC-3).
They propose pipelined versions of both algorithms. The ex-
periments in [7] show that proposed solutions do not scale to
large inputs due to significant amount of random disk I/Os
and multiple recursive steps.

An algorithm based on induced sorting was proposed in
[5]. The authors modify the in-memory SAIS algorithm [24]
for the external-memory settings. Their redesigned eSAIS
algorithm has running time proportional to that of sorting
in the Disk Access Model (DAM), an idealized model of
computation. In this model, complexity is measured by the
number of disk block transfers. However, in practice, trans-
ferring blocks from random disk locations is several orders
of magnitude slower than when these blocks are read and
written sequentially. This is due to the prefetching of large
amounts of data in modern disk buffers: the need to move
to a different disk location to read another block instead of
using the prefetched data makes random-access algorithms
infeasible for large inputs. The first step of eSAIS requires
sorting a subset of suffixes as though they were separate
substrings. For some inputs, these substrings can be quite
large, and sorting them requires random access to more than
one block of input. To sort such long substrings, the algo-
rithm uses the doubling technique and an EM priority queue,
which is not designed to hold variable-length substrings and
does not guarantee that the required strings will be in mem-
ory when the algorithm needs it. The authors use heuristics
in order to predict which part of the input will be accessed
next, and pre-load this part into the main memory buffer.
eSAIS does not perform exclusively sequential I/Os to the
disk-based data structures.

Attempts to improve the performance of eSAIS were un-
dertaken in [23, 32]. The new implementations called DSA-
IS and DSA-IS+ improve upon the substring sorting step,
reducing peak disk usage by 30% and 50% respectively. De-
spite these disk space improvements, the experiments in [32]
show that both enhanced algorithms are still outperformed
by the original e-SAIS as the input grows. A new external-
memory implementation of the SAIS algorithm called fSAIS
was proposed in [14] and is under active development. It
must be noted, however, that all the algorithms based on
induced sorting are not easily parallelizable: they rely on
the order of substrings which cross boundaries of the dif-
ferent input partitions. This separates them from our new
algorithm which can process a single independent chunk of
input at a time.

Next, we show how the suffixes of an out-of-core string can
be sorted in total time O(N logN), using constant amount
of RAM, linear temporary disk space, and performing ex-
clusively sequential disk I/Os.

The rest of the paper is organized as follows. We begin
with useful definitions in the Section 3. The new algorithm
is described in Section 4. In Subsection 4.1 we prove the cor-
rectness of our approach. We discuss input partitioning in
Subsection 4.2 and initialization in Subsection 4.3. Subsec-
tions 4.4 - 4.6 are dedicated to a detailed description of the
Suffix Rank steps. We analyze the upper bounds for time
and space complexity in 4.7, and conclude with Section 5,
which presents an experimental evaluation of our new al-
gorithm and its comparison with the state-of-the-art in the
field.

3. PRELIMINARIES
Let the string X = [x1 . . . xN ] be a sequence of N charac-

ters over the finite alphabet Σ. The sequence of characters
X[i, j], where i ≤ j, is called a substring of X. A suffix is
defined to be a substring that starts at some position i and
ends at position N . Each suffix is uniquely identified by its
starting position. For example, the suffix S4 of the string
banana is ana, and S1 is banana, the string itself. Similarly,
the prefix Pj is a substring starting at position 1 and ending
at some position j. Each prefix is uniquely identified by its
ending position.

The goal is to sort the suffixes of X lexicographically and
store their starting positions in an array – the Suffix Array
of X. Formally, the Suffix Array of X SAX is a permutation
of the integers [1 . . . N ] such that SSAX [i] < SSAX [i+1] for
all i < N . Because every substring of X is a prefix of some
suffix, it can be efficiently located in the array of sorted
suffixes: the Suffix Array facilitates substring queries over
input string X, and constitutes an index of X.

Note that each suffix of X occupies a unique position in
the suffix array, since no two suffixes can be identical. We
say that each suffix has its own unique final rank. For exam-
ple, for input string X = banana, rank R(S6) = 1, because
this suffix - the substring ’a’- is the smallest of all suffixes of
X. Similarly, ranks R(S4) = 2, and R(S2) = 3. Computing
the final unique rank of each suffix is equivalent to finding
its position in the suffix array.

The input is often a set of strings rather than a single
string. Let Ω be a set of k strings with total length N .
The Generalized Suffix Array of Ω is a permutation of the
integers [1, . . . N ] that represents the lexicographic order of
the suffixes of all the strings in the set. As with a single
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string, the generalized suffix array can be efficiently searched
for any query string using binary search in O(logN) time.

When the input contains multiple strings, it is possible for
two different suffixes to be identical. However, if we append
a unique character to the end of each string in Ω, then all
the suffixes are guaranteed to be distinct. These characters,
called sentinels, are not part of the input alphabet Σ and are
considered to be lexicographically smaller than any symbol
in Σ. When the number of strings in Ω is extremely large,
it is difficult to represent numerous distinct sentinels. In
practice, instead of using a unique character at the end of
each string, we use a unique rank. During the initialization
step, we add an additional position to the end of each string,
and set the suffix rank at this position to the next available
integer. Because we use 8-byte integers to store ranks, we
practically cannot run out of unique sentinels. The smallest
rank of the actual input characters then becomes the total
number of sentinels+1. After appending a unique marker to
the end of each string, we can reduce the construction of the
generalized suffix array to the construction of a regular suffix
array by concatenating all of the strings in Ω. Note that
concatenating without this preprocessing would introduce
some artificial suffixes which were not present in the original
input. The unique sentinel at the end of each string prevents
the characters past its position from being considered in
sorting the suffixes of the corresponding string.

From now on, we only discuss suffix array construction for
a single input string X of size N , keeping in mind that the
same algorithm can be applied to a construction of a gener-
alized suffix array after the above-mentioned preprocessing.

4. NEW ALGORITHM
Our algorithm combines ideas from the in-memory qsuf-

sort [17] and disk-friendly 2PMMS. The original qsufsort
algorithm at each iteration i refines the order of suffix at po-
sition j by looking at the order at position j+2i. It assumes
constant-time access to each position of the partially built
suffix array, and this only works if the array fits into RAM.
As discussed in Section 2, we cannot apply the 2PMMS di-
rectly either: if we completely sort the suffixes in each parti-
tion, we would not have enough information to merge them.
We propose a different strategy. Instead of completely sort-
ing all suffixes in each partition, our algorithm proceeds in
iterations. At each iteration, it doubles the length of the
prefixes under consideration, produces tentative counts, and
merges them using efficient buffered merge. After it employs
at most logN disk-friendly merges, the suffixes of the entire
input string are fully sorted.

Since the size of X significantly exceeds the amount of
available main memory, we break it into separate partitions
and work with one partition at a time. Each iteration of
the algorithm consists of three steps: refine, resolve and
update. In the refine and update steps, only a small part of
the input is processed in main memory at a time. In the
resolve step, we handle memory efficiently using buffering
techniques from 2PMMS.

We begin by proving the correctness of the doubling prin-
ciple used for computing suffix ranks.

4.1 The doubling principle
Let the final rank of a suffix be its position in the suffix

array. We start by assigning a very coarse rank to each suffix
based on its first character. At this point, many suffixes will

have the same rank. In the subsequent iterations, we refine
these ranks using the doubling technique described below.

Let P (i, h) be the prefix of length 2h of suffix Si, i.e.
X[i,min(i + 2h − 1, N)]. Let h-rank(i) be the number of
integers j such that P (j, h) < P (i, h). Figure 2 shows the
1-ranks, i.e. ranks based on prefixes of length 21, for each
position in a sample string.

The following theorem allows us to, given the h-rank of
each suffix in a string, calculate their (h + 1)-ranks.

Theorem 1. Let j-count(i, h) be the number of positions
j such that h-rank(i) = h-rank(j) and h-rank(j + 2h) < h-
rank(i + 2h).1

(h + 1)-rank(i) = h-rank(i) + j-count(i, h)

Proof. Note that P (j, h + 1) < P (i, h + 1) if and only if
one of the following conditions is true:

• P (j, h) < P (i, h)

• P (j, h) = P (i, h) and P (j + 2h, h) < P (i + 2h, h)

There are h-rank(i) values of j such that P (j, h) < P (i, h).
Thus, all that’s left to prove is that P (j, h) < P (i, h) if and
only if h-rank(j) < h-rank(i), and P (j, h) = P (i, h) if and
only if h-rank(j) = h-rank(i). We will prove the only if
direction of each case; together these imply the if directions
via contrapositives.

If P (j, h) = P (i, h), then P (k, h) < P (j, h) if and only if
P (k, h) < P (i, h). Therefore, h-rank(j) = h-rank(i).

Next, consider the case where P (j, h) < P (i, h). Let Li =
{k|P (k, h) < P (i, h)}. Note that Lj ⊂ Li, since if P (k, h) <
P (j, h), P (k, h) < P (i, h). Furthermore, i ∈ Lj, but i 6∈ Li.
Therefore, |Lj | < |Li|, so h-rank(j) < h-rank(i).

Figure 2: Illustration of Theorem 1: Refining ranks based
on the doubling principle.

An example is given in Figure 2, in which the 1-ranks of
certain suffixes are used to compute 2-ranks. The 1-ranks
are obtained after iteration 1 and are based on 21 = 2 first
characters of each suffix. In order to calculate 2-rank(0), for
example, we need to consider 1-ranks at three positions j:
0, 2 and 6, which are all equal to 1-rank(0). Of these values,
1-rank(j + 21) is equal to 2, 0, and 8 respectively. Only
one of these values, 0, is less than 1-rank(0 + 2)=2. Thus,
j-count(0) = 1. Therefore, 2-rank(0) = 2 + 1 = 3.

This theorem is at the heart of prefix doubling algorithms
[21, 17]. We have adopted it to the concept of h-ranks. It
follows that if the 0-rank of each suffix is known, we can
find the 1-rank of each suffix after one iteration, the 2-rank
of each suffix after two iterations, and the i-rank of each

1An astute reader may note that j + 2h or i + 2h may be
greater than N , making the second condition undefined.
However, this is unimportant, as the first condition, h-
rank(i)=h-rank(j), will always be false in such cases.
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Figure 3: Suffix Rank: limiting working memory of the
algorithm to at most two small chunks of the input.

suffix after i iterations. Because the i-rank corresponds to
a prefix of length 2i, the algorithm will find the final rank
of each suffix in at most logN iterations.

From now on, for a suffix Si on iteration h, we will refer
to h-rank(i) as its coarse rank, h-rank(i + 2h) as its fine
rank, and (h + 1)-rank(i) as its updated rank. The tuple
consisting of the coarse and fine ranks of suffix Si is called
a refined rank pair. From Theorem 1, we can deduce the
updated rank of Si, which is the sum of its coarse rank and
the number of refined rank pairs with the same coarse rank
and a smaller fine rank.

This simple technique of summing up the counts of refined
rank pairs in order to go from h-ranks to (h+1)-ranks allows
one to determine the final rank of each suffix in O(logN)
iterations. However the summation of refined rank pairs
has to be performed over all coarse ranks of the entire input
of size N – and in our problem setting, N is several times
larger than the available main memory, so the summation
cannot be performed in RAM. Next, we describe the steps
of the disk-based Suffix Rank algorithm, which accomplishes
this task effectively using disk as a memory extension.

4.2 Input partitioning
The input is divided into K chunks small enough for any

two of them to be processed entirely in RAM. The chunk
size must be a power of 2. The reason for that will become
apparent shortly. For each chunk k, we maintain two arrays:
h-Rk and h-SAk. In h-Rk, we record the coarse h-rank of
each suffix starting in chunk k. The second array, h-SAk,
stores the start positions of suffixes sorted by their coarse
rank. Thus, suffixes with the same coarse rank will be ad-
jacent to each other in h-SAk.

To produce refined rank pairs in iteration h, we need to
have access to both the coarse and fine rank of a suffix at
the same time. These ranks are 2h positions apart and may
reside in different chunks. We load at most two contiguous
pieces of data into main memory: one containing the coarse
ranks and another containing the fine ranks. Because of
the doubling nature of the prefix, and as long as the chunk
length is set to a power of 2, the fine ranks 2h positions away
will always be located inside exactly one additional chunk.
At each iteration h, we look at position i to collect the coarse
rank of Si, and at position i+2h to collect its corresponding
fine rank. If we denote the length of each chunk by x, then
all the fine ranks for chunk k which are not in chunk k itself
are located in chunk k + 1 + b 2h

x+1
c.

An illustration is given in Figure 3. Each chunk has length
x = 4. Consider chunk 1. In iterations 0, 1, 2, we only need
chunk 1 and chunk 2. In iteration 3, we need chunk 1 and
chunk 3. And in iteration 4, the additional chunk of interest
is chunk 5. Thus, access to only two small chunks at a time is
required to generate the refined rank pairs in each iteration,
and we make each chunk small enough for any two of them
to fit entirely in main memory.

Since we collect refined rank pairs for each separate chunk
of input in turn, it is impossible to immediately produce up-
dated ranks by the method described in Theorem 1. While
the refined rank pairs for the current chunk k are in main
memory, we can compare any two of them; we know if their
updated ranks will be less than, greater than, or equal to
each other. However, we cannot know what those updated
values will be without information from other chunks. Thus,
while SAk can be updated using only local information, up-
dating Rk requires global information from all chunks. We
get this information in the resolve step, and use it to calcu-
late updated ranks. In the update step, these updated ranks
are communicated back to their corresponding chunks.

After partitioning, the algorithm performs an Initializa-
tion of 0-ranks followed by at most logN iterations. Each
iteration h consists of the same three steps:

1. Refine. We collect unique refined rank pairs and their
counts from the corresponding pairs of chunks and generate
refined rank pairs for each chunk. We sort the pairs, and
write them to disk.

2. Resolve. We merge sorted pairs from all chunks using
buffering techniques of the merge step of 2PMMS. During
the merge, we compute the total count of each unique refined
pair across the entire input, and from these counts we deduce
the updated rank of each suffix across the entire input string.

3. Update. We update ranks in each chunk.

From the memory point of view, the algorithm consists
of sequential loads of constant-size chunks of input into the
main memory, and a series of buffered merges.

Next, we explain each step in detail. Our explanation is
accompanied by the running example of ranking suffixes in
the input string X = abbaababaab with chunk size x = 4.

4.3 Initialization
In this step, we set the initial 0-rank of each suffix. It

can be computed efficiently by scanning the input string
and counting the number of times each distinct character
appears. The initial rank of suffix Si is deduced from the
total number of characters lexicographically preceding X[i].
After the character counting is completed, we never access
the input string again – we work with the ranks in each
chunk instead. Thus, the input string does not need to be
randomly accessed and can reside on disk.

Before we continue, we introduce the concept of a resolved
rank. Note that when a rank is unique across the entire in-
put, it will not be updated again. We mark such ranks as
resolved 2. In the initialization step, only suffixes starting
with a unique character are marked as resolved. Other suf-
fixes are resolved during the resolve step, when we can tell
whether an updated rank is unique across the entire input.
In subsequent iterations, we skip over resolved ranks. The
algorithm stops when all the ranks are resolved.

2We mark resolved suffixes with a ? in our figures, and using
a sign bit for each rank in our implementation.
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(a) Counting total occurrences of each character to
assign initial (coarse) ranks. Sentinel $ is unique and
thus suffix S12 is marked as resolved (*).

(b) For each chunk k of the input we produce 0-Rk rank array
and 0-SAk suffix array.

Figure 4: Suffix Rank: initialization.

An example of the initialization step is presented in Fig-
ure 4a. Character $ is the smallest, so the corresponding
suffix S12 gets its final rank 0. There are 6 suffixes starting
with a. Thus, these suffixes will have final ranks 1− 6, but
at this point (based on the first character) we assign a coarse
rank of 1 to each of them. Suffixes starting with b will have
ranks 7− 11, so their initial coarse rank becomes 7.

Based on the initial ranks, we create two arrays for each
chunk k: rank array 0-Rk, and the suffix array 0-SAk. The
suffix array reflects the current order of suffixes within chunk
k based on their first character. Guided by the order in
h-SAk, at each subsequent step h, the algorithm produces
refined rank pairs and their counts for each chunk.

We show an example of these two initial arrays for each
chunk in Figure 4b. Consider 0-SA for chunk 2. Two suffixes
S5 and S7 occupy consecutive positions in this suffix array,
and their coarse ranks are the same. In order to produce
the refined rank pairs we only need to sort the fine ranks at
positions 5 + 20 = 6 and 7 + 20 = 8 in the rank array 0-R.
Using local suffix arrays eliminates the need to sort refined
rank pairs across the entire chunk.

We can now perform O(logN) iterations, each consisting
of refine, resolve, and update steps.

4.4 Step 1. Refine
This step collects refined rank pairs by reading coarse and

fine ranks from at most two chunks. It generates triples
(coarse, fine, count), where count refers to the total local
number of suffixes within the chunk k such that h-rank(i) =
coarse and h-rank(i + 2h)=fine. The values of coarse rank
are collected in the order specified by the current h-SA.
Resolved ranks are ignored. When a new unresolved coarse
rank is reached at position i, we collect all suffixes with
this rank along with the corresponding fine ranks. This
collecting continues until the coarse rank changes. Then,
using ternary quicksort [4], we rearrange the corresponding
part of the chunk suffix array, using fine ranks as the key.
This part of SA now reflects the order based on the first

2h+1 characters of each suffix: at the end of refine, h-SAk

becomes (h + 1)-SAk. Any suffixes with the same refined
rank pair will be next to each other in this updated SA.
Triples (coarse, fine, count) can be created easily, because
the refined rank pairs are now sorted. After each triple is
created, it is added to an output buffer. Note that all the
triples in this buffer are sorted by (coarse, fine). Also note
that the suffix array now contains the order of updated ranks
for chunk k, even though the values of those updated ranks
across the entire input are currently unknown.

The sorting of triples is performed largely like in qsufsort
[17]. The difference is that instead of updating ranks, the
sorted triples are written to disk. At the end of this step,
we have on disk sorted runs of such triples for each chunk.

Figure 5 [1] demonstrates this step for iteration 0. After
initialization, the ranks were based on a single character.
The goal is to find a refined rank based on the two first
characters of each suffix. For this, we look at the fine ranks
20 characters apart from the original rank. For example, in
chunk 1 there is only one refined rank pair (7, 7) for suffix
S2, so the triple (7, 7, 1) is generated and added to the disk
run 1. Note that even though this refined rank pair is unique
for chunk 1, we cannot conclude that the 1-rank of S2 is
resolved, before we aggregate the counts from all different
chunks. In chunk 2, there are two identical refined rank
pairs (1, 7) which correspond to suffixes S5 and S7. Thus
the triple (1, 7, 2) is generated and added to the disk run 2.

4.5 Step 2. Resolve
This step is the core of the Suffix Rank algorithm. We

must determine which new rank each refined rank pair up-
dates to. We calculate this using a buffered merge of sorted
triples reminiscent to that of 2PMMS.

For each chunk, an input and output buffer is created.
From the previous step, we have a file of sorted triples
(coarse, fine, count) from each chunk. Each input buffer
is filled with the smallest triples from that chunk. A binary
heap is initialized with the smallest triple from each buffer.
The triple at the head of the heap is the smallest (or tied for
the smallest) refined rank pair overall. We then process the
triple at the head of the heap. After a triple is processed, the
next triple from the same buffer is inserted into the heap.
When we reach the end of any buffer, that buffer is refilled
with the next smallest triples from the corresponding chunk.
This way, we collect the total count for a given refined rank
pair across the entire input.

We now describe how to deduce the updated rank of a
given triple from this count. Recall that by Theorem 1, the
updated rank of a suffix is equal to the sum of its coarse rank
and the number of suffixes with the same coarse rank but
lesser fine rank. There are the following cases to consider:

(1). If the coarse rank in a given triple is encountered for
the first time, then the updated rank remains the same as
the coarse rank for all identical refined pairs.

(2). If the coarse rank remains the same but the fine
rank changes, then the updated rank is equal the sum of the
coarse rank and the total count of refined rank pairs with
the same coarse rank and lesser fine rank.

(3). If in any case, the overall count for a given refined pair
is equal to 1, then the updated rank determined as described
above becomes the final resolved rank of the suffix.

After an updated rank is computed, it is written to the
output buffer of the corresponding chunk. When an output
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Figure 5: Suffix Rank: sample iteration. [1] Refined pairs for each chunk are generated in memory. Sorted pairs with their
counts are written to disk. [2] The counts of unique pairs are summed up during the global merge. New ranks are deduced
from these counts. Updates for each chunk are written to disk. [3] The updated ranks are delivered to each chunk.

buffer is full, its content is appended to the update file for
this chunk. At the end of this step, we have the updated
ranks for each chunk as a set of disk files.

Figure 5 [2] demonstrates the resolve step for iteration 0.
We merge sorted pairs from the three chunks, and determine
their global counts. Since there are two suffixes with refined
rank pair (1, 1), the final rank for these suffixes cannot yet be
determined. Because for the coarse rank 1, there are no fine
ranks smaller than 1, the updated rank remains 1. The rank
of suffixes with refined rank pair (1, 7) updates to 3, because
from the count of (1, 1) we deduce that there are precisely
two suffixes with rank 1 which are smaller than (1, 7). The
global count for refined rank pair (7, 0) is 1, meaning this
rank is unique and is marked as resolved. The same is true
for the pair (7, 7). The updated ranks are reported back to
their respective chunks in the form of small update files used
in the next step.

4.6 Step 3. Update
For each chunk, we have a file containing its updated ranks

in sorted order. Recall that in Step 1, SA was modified so
that it reflects the order of suffixes in this chunk according to
their updated rank. We scan the refined rank pairs in chunk
k in the order specified by SA. We replace each previously
unresolved rank with an updated rank. Once all ranks have
been updated, we write the h-Rk array back to disk. If, at
the end of this step, all ranks in all chunks are resolved, we
are done. Otherwise, we perform another iteration of the
algorithm, starting with the refine step.

The result of the update step for iteration 0 is shown in
Figure 5 [3]. The ranks are now based on the two first
characters of each suffix. In the remaining iterations, the
order will be refined based on 4, 8, . . . 2logN characters until
all the ranks are resolved. Because at each new iteration
h, the rank precision is based on a prefix twice the size of
the previous iteration h-1, the algorithm is guaranteed to
terminate in at most logN iterations.

After each suffix receives its final rank, we can construct
the Suffix Array of string X by inverting the ranks array in
a single sequential scan using buffered bucketing techniques.

4.7 Analysis
Suffix Rank performs at most logN iterations, and each

iteration includes three steps described above.

Algorithm 1 Suffix rank: main loop. READ and WRITE
refer to disk I/Os

1: procedure SuffixRank(input string X of size N , M)
2: READ X using buffer of size M
3: count all distinct letters
4: produce initial letter ranks
5: break X into K chunks of size N/2M each

6: for j ← 1,K do
7: READ chunk k
8: create array 0-Rk

9: fill 0-Rk with initial ranks
10: compute suffix array 0-SAk

11: WRITE 0-Rk to rank file Rk

12: WRITE 0-SAk to SA file SAk

13: end for
14: h← 0
15: all resolved← False

16: while all resolved 6= True do
17: all resolved← True

Algorithms 1, 2, 3, and 4 show the pseudocode for the
entire Suffix rank algorithm from the point of view of disk
I/Os. The pseudocode uses notations in accordance with
the definitions in Sections 4.1 and 4.2. Thus, h refers to the
iteration number, which works with prefixes of size 2h. The
chunks are numbered 1, . . . ,K. Notation i-Rk refers to the
in-memory rank array for chunk k in iteration i, and Rk to
the file of ranks stored on disk. Similarly, a suffix array for
chunk k is represented by i-SAk, and the suffix array file by
SAk. READ and WRITE commands represent disk I/Os.

The procedure SuffixRank on line 1 takes as an input
string X and the size of the main memory M . The output
is the final rank array of string X on disk. Lines 2–13 cor-
respond to the initialization step. After initialization, the
algorithm performs a single while loop (lines 16–47). The
while loop continues as long as there is at least one unre-
solved rank.

Inside the while loop, three steps are repeated: refine, re-
solve, and update. The refine step is presented on lines 18–32
in Algorithm 2. In this step, for each chunk k of the input,
we load into memory two rank arrays, Rk and Rnext, and the
suffix array SAk (lines 19–22). Then, we use these three ar-
rays to generate refined rank pairs and their counts for each
chunk in turn. A more detailed view of this in-memory algo-
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Algorithm 2 Suffix rank: refine

18: for i← 1, k do
19: READ file Rk into h-Rk

20: next← k + 1 + b 2h

x+1
c

21: READ file Rnext into h-Rnext

22: READ file SAk into h-SAk

23: T ← RefineFunc(h, h-Rk, h-Rnext, h-SAk)
24: WRITE updated (h + 1)-SAk to file SAk

25: if len(T ) > 0 then
26: all resolved← False
27: end if
28: WRITE triples to sorted run k
29: end for
30: if all resolved = True then
31: return
32: end if

Algorithm 3 Suffix rank: resolve

33: do buffered multi-way merge of sorted runs
34: during the merge:
35: count totals for each (coarse, fine) pair
36: deduce updated rank from these counts
37: mark any rank with count total 1 as resolved
38: WRITE updated to update files using buffers

rithm is presented in function RefineFunc (Algorithm 5).
The function generates sorted triples (coarse, fine, count)
for a given chunk k.

The resolve step is described on lines 33–38 in Algorithm
3. This step is essentially a merge step of the well-known
disk-friendly 2PMMS. During the merge, we obtain the
total count for each distinct refined rank pair and deduce the
new updated rank of each suffix from these counts,following
the logic described in Section 4.5. The updated ranks in
sorted order are written to the update file for chunk k.

Finally, the update step is shown on lines 39–45 of Algo-
rithm 4. For each chunk k, the contents of its current rank
file, the current SA file, and the update file are loaded in
main memory. The i-ranks are updated into (i + 1)-ranks,
guided by the order in the corresponding suffix array, and
written back to disk to be consumed in the next iteration.

The loop terminates when all the ranks are resolved. This
is guaranteed to happen after at most logN iterations of the
loop.

In Algorithm 5, we present a more detailed pseudocode of
the RefineFunc which is performed exclusively in RAM.
It produces refined rank pairs for a given chunk. At each
iteration, for a given chunk k, the order recorded in the
suffix array SA is based on the current coarse rank of each
suffix. We iterate over all the positions recorded in the suffix
array, and find an interval (start : end) corresponding to
the same coarse rank. We then sort the refined rank pairs
corresponding to this interval by fine rank found in Rnext.
Next, the order in the corresponding section of the SA is
updated accordingly. The h-SA becomes (h + 1)-SA and is
now ready for the next iteration. The list of sorted triples is
returned to line 23 of Algorithm 4.4 and both the updated
suffix array and the sorted triples are written to disk.

Based on the pseudocode in Algorithms 1 – 4 we can an-
alyze the worst-case performance of Suffix Rank in the Disk
Access Model of computation (DAM). In this model, B
refers to the block size, and the complexity of the algorithm
is expressed in the number of disk block I/Os.

Algorithm 4 Suffix rank: update

39: for i← 1, k do
40: READ file Rk into h-Rk

41: READ update file for chunk k
42: READ file SAk into (h + 1)-SAk

43: update h-Rk to (h + 1)-Rk

44: WRITE (h + 1)-Rk to rank file Rk

45: end for
46: h← h + 1
47: end while
48: end procedure

Algorithm 5 RefineFunc: refines ranks in a separate
chunk (In RAM).

1: function RefineFunc(h,R, Rnext, SA)
2: triples← empty buffer
3: SA position j ← 1
4: start← j
5: while j <= length(h-SA) do
6: if R[SA[j]] 6= resolved then
7: while R[SA[j]] stays the same do
8: end← j
9: j ← j + 1

10: end while
11: using R and Rnext:
12: find fine ranks for SA[start : end]
13: sort by fine ranks
14: update order in SA[start : end]
15: produce count for each (coarse, fine)
16: append (coarse, fine, count) to triples
17: start← j
18: else
19: SA position j ← j + 1
20: end if
21: end while
22: return triples
23: end function

In the initialization step, the entire input string of size N
is read in one sequential scan (line 2), and the initial rank
arrays for each chunk of total size O(N) are written to disk
(lines 11–12). That accounts to O(N/B) block disk I/Os.
Next, we count I/O operations inside the while loop. We
have in total K = O( N

M
) chunks. In the refine step, for each

chunk k, three large files of total size O(N
K

) are read from
disk in a sequential scan and processed in memory. Then the
local (coarse, fine, count) triples are written to disk. The
total number of such triples in the current chunk is at most
N
K

(size of the chunk). All the reads and writes are sequential

and this gives an upper bound of O( N
KB

) disk block transfers
for each chunk. Multiplying by the total number of chunks,
K, gives O(N

B
) total disk block I/Os. By the same logic, the

total amount of work in the update step is also O(N
B

) blocks.
The resolve step has the same I/O complexity as 2-Phase

Multi-way Merge Sort, which is O(N
B

): the inputs are read
in blocks, and the outputs are written in blocks using an
in-memory input and output buffer for each chunk. This

complexity is guaranteed as long as N < M2

RB
, where R is

the size of a triple. As an example, the size of the triple in
our implementation is 20 bytes (two 8-byte integers to rep-
resent a pair of ranks, and a 4-byte integer for local counts).
With a block size B = 4 KB and memory as low as 1 GB,
the assumption holds for input sizes of up to about 12 TB.
Thus, with the above assumption, the total complexity of
the algorithm in the DAM model is O(N

B
) block I/Os per
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iteration. With O(logN) iterations, this gives a total of
O(N

B
∗ logN) block I/Os.

Rather than just big-O analysis, let us now discuss the
constants. From the pseudocode in Algorithms 2 – 4 it is
easy to compute the total number of disk reads/writes per
iteration. The algorithm requires us to read 3(N

B
) blocks in

the refine step, and to write 2N
B

blocks once. In the update

step we read 3(N
B

) and write N
B

blocks. In the resolve step –
which corresponds to the merge phase of 2PMMS – we have
at most one read and one write of N

B
blocks, assuming that

the input-to-memory ratio allows us to do it in a single pass
(see e.g. [9]). This results in 7 full scans (reads) of N/B disk
blocks, and 4 writes per iteration. The 11(N/B) logN total
I/O operations represent just an upper bound: the number
of remaining unresolved ranks decreases in each iteration,
and most of the reads and writes work with significantly
less than N

B
blocks.

We now analyze the space complexity of our algorithm.
The algorithm runs in a constant amount of memory M ,
and uses an overall linear disk space. The disk is used to
store several intermediate data structures: rank arrays, suf-
fix arrays, sorted triples runs, and the update files. The total
size of rank arrays is always N , and the size of the rest is
O(N). The elements of a rank array are 8-byte integers, the
elements of a suffix array are 4-byte integers, the elements
of a sorted run are triples of size 20 bytes each (two longs
and one int), and the update file contains updated ranks of
size 8 bytes each. Thus, the upper bound on the temporary
disk space is 40N bytes. In our settings, we treat cheap disk
space as an unbounded memory extension. In practice, this
upper bound on peak disk usage is never achieved, as per
the experimental results presented in Figure 9b.

To summarize, our algorithm runs in linearithmic time
in DAM model, and uses linear disk space. Suffix Rank
is a truly external-memory algorithm because it reads and
writes disk data sequentially. It must be noted that the
actual number of iterations is bounded by the logarithm of
the length of the maximum |LCP |. If the prefix shared by
any two suffixes is smaller or equal than max|LCP |, then all
the suffixes become resolved after logmax|LCP | iterations.

Table 1: Datasets used in the experiments.

Dataset Size Alph. # of Max.
N Σ strings string

WIKI [43] 76 GB 96 1 7.5 ∗ 1010

PROT [42] 59 GB 25 1 5.9 ∗ 109

SKY [5] 30 GB logN 1 3.0 ∗ 109

GUT [34] 20 GB 105 55, 000 1.5 ∗ 108

DNA [39] 20 GB 5 6 7.5 ∗ 109

5. EXPERIMENTS
To assess the performance of Suffix Rank for solving Prob-

lem 1, we present experiments that compare it to alternative
solutions (SAscan [13], eSAIS [5], and eGSA [20]) on a va-
riety of datasets and across a range of hardware.

The prototype3 of Suffix Rank is implemented as a suit
of small modular C-subprograms. Each subprogram is re-

3The current version is available at https://github.com/
mgbarsky/SUFFIX_RANK.

sponsible for a single step: refine, resolve, or update. The
subprograms are invoked in turn during each iteration. Since
the input does not fit into the RAM, each subprogram pro-
cesses a single independent chunk of the input at a time.
Once the current subprogram is done with the chunk as-
signed to it, it writes the output to disk. The next subpro-
gram will consume the file on disk as its input. The subpro-
grams are invoked in the main iteration loop implemented in
a bash script. This simple modular program design is chosen
with the future parallel version in mind: we want each sin-
gle small subprogram to be able to process an independent
chunk of input on a separate cluster node.

Setup. We use the following three hardware platforms to
run the tests:

Platform D. Desktop computer equipped with a 4-core
3.40 GHz Intel i7-2600 CPU with 1 MiB L2 cache and 8 GiB
of DDR3 RAM. The machine uses a single SATA hard drive
with a total capacity of 5, 589 GiB, 256 MB of on-board
cache, and 7, 200 RPM speed. The OS is Linux (Ubuntu
20.04).

Platform C. Cloud platform with 3.5 GHz Intel Xeon-
Haswell Quadcore processor, 8 GB of DDR3 RAM, and a
hard drive with a total capacity of 6 GB, speed of 7200RPM,
and 256MB on-board cache. The OS is Linux (Ubuntu
18.04).

Platform S. Scientific platform which includes dedicated
Lenovo SD530 servers with 40 Intel “Skylake” at 2.4 GHz
processors and 188 GiB of RAM, with access to 10 TB of
fast, high performance shared file system made of
SDDs, running CentOS Linux 7.

Input datasets. The main characteristics of the datasets
used in the experiments are given in Table 1.

WIKI. Single XML file containing a snapshot of all En-
glish wikipedia articles from 02/02/2020. Data type: natu-
ral language text.

PROT. Single file generated from the entire TrEMBL
database of protein sequences after cleaning it from all ad-
ditional entries, leaving only sequences of actual proteins.
Data type: aminoacid sequences.

SKY. Artificially generated string (SKYLINE) which was
introduced in [5] as an adversarial input for the eSAIS algo-
rithm. SKYLINE string is recursively defined by the gram-
mar {Tk → Tk−1”k”Tk−1, T1 → 1}. For example, T1 = ”1”,
T2 = T1”2”T1 = ”121”, and T3 = T2”3”T2 = ”1213121”. If
you plot the numbers, it resembles a skyline. Sorting suf-
fixes of a SKYLINE string is not a trivial task: there are
identical prefixes at each level of recursion.

DNA. Short DNA raw reads from sequencing of six Hu-
man genomes. Data type: DNA sequences.

GUT. English book texts harvested from the Gutenberg
project website. This natural language dataset is anoma-
lous, because it contains several versions of certain books,
and each file is prefixed with a long identical copyright no-
tice.

Programs. We used the following implementations of
competing algorithms:

SAscan. The current version SAscan 0.1.1 [38] requires
the installation of the libdivsufsort library [40].
eSAIS. The implementation [37] uses the Standard Tem-

plate Library for Extra Large Data Sets (STXXL) [41]. The
program performs asynchronous I/Os in parallel threads,
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Figure 6: Comparative performance of Suffix Rank vs. SAscan and SAIS algorithms. Main memory used: 1 GB.

(a) DNA-L (b) PROT-L

Figure 7: Comparative performance of Suffix Rank vs.
eGSA for building a Generalized Suffix Array.

implemented in STXXL. In addition, eSAIS uses a com-
pressed representation of suffix start positions - 40 bits vs.
64 bits used by Suffix Rank. We run eSAIS in a mode which
only generates a suffix array.

eGSA. The implementation [36] treats each line in the
input file as a single string and builds a generalized suffix
array for all such strings.

Note that our program is written in bare C, and as such it
does not require any installation or setup. In contrast, both
SAscan and eSAIS implementations rely on sophisticated
external libraries.

Next we present the experimental results. We compare
the performance and scalability of the Suffix Rank to other
algorithms in Section 5.1, present large-scale experiments
in Section 5.2, and conclude with the investigation of some
properties of our algorithm in Section 5.3.

5.1 Comparative performance
In this section we show the performance results of our

algorithm vs. all the other algorithms listed above. We run
these experiments on Platform D.

From datasets in Table 2 we generate inputs of 5, 10, 15,
and 20 GB in length by taking a prefix of the corresponding
input string or a subset of the multi-file input. We constrain
the memory available to each program to 1 GB. This corre-
sponds to the increase in the input-to-memory ratios K= N

M
from 5 to 20. This technique of simulating out-of-core in-
puts is commonly used (see e.g. [22, 32, 13, 20]), and allows
to explore much larger values of K than it would be pos-
sible would we use 16-32 GB of RAM limit. We are most
interested in exploring the scalability of the algorithms for
inputs much larger than the available main memory.

Suffix Arrays for a single string. Here we test the scal-
ability of our algorithm against SAscan and eSAIS, which
both treat the input as a single string. Note that in these ex-
periments we constrained eSAIS to a single-thread, to make

it comparable with SAscan and Suffix Rank which both run
in a single thread.

The results are presented in Figure 6. When K is less than
10, SAscan algorithm shows an outstanding performance. It
is also very lightweight, and uses the least temporary disk
space. As K grows, however, the performance of SAscan sig-
nificantly degrades, because the algorithm scales quadrati-
cally when both N and K are increasing. When K reaches
20, SAscan is significantly outperformed by eSAIS (even in
its slower single-threaded version). Thus, for even larger K,
eSAIS is the most promising out of the two.

Generalized Suffix Array. Neither SAscan nor eSAIS
can build a generalized suffix array for a large set of small
input strings. Out of three algorithms used in our experi-
ments, the eGSA [20] is the only one which is designed to
handle this task. Next, we compare the performance of our
algorithm to eGSA.

The eGSA takes a single file as an input, but processes
each line in this file as if it was a separate string. Thus, it
is not applicable for the WIKI dataset, which we treat as
a single input string. The eGSA also cannot handle cases
when a single string in the collection is very large. We mod-
ified the GUT dataset, converting each file into a separate
line, but we were unable to produce the results for eGSA: it
took more than 18 hours on a 5 GB input, and at this point
consumed twice the amount of the allocated memory.

By default, our implementation of Suffix Rank takes as an
input a folder name, and each file in this folder is treated
as a separate string. For this experiment, we wrote a spe-
cial input handling module in which we treat each line in
a file as a separate string. As described in 4.1, we assign
initial unique resolved ranks in place of sentinel characters
appended to the end of each line.

For this experiment, we treat the inputs from Table 1
differently:

DNA. Each file of this dataset contains multiple lines,
and each line corresponds to a separate raw read obtained
from a sequencing machine. In DNA-L we treat each such
line as a separate input string.

PROT. Each line of this dataset contains a separate pro-
tein sequence. In PROT-L we treat each line as a separate
input string.

The results in Figure 7 show that Suffix Rank builds a
generalized suffix array faster than eGSA for all input sizes
generated from these two multi-string collections. The dif-
ference in time is increasing with larger values of K. We
therefore do not consider this algorithm for experiments on
larger inputs.

From the results presented in this section we conclude
that the only viable competitor to Suffix Rank for large-scale
experiments is the eSAIS algorithm.
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Figure 8: Large-scale experiments performed on Platform S (with fast SSD storage).

(a)
(b)

Figure 9: (a) Runtime (hours) of Suffix Rank vs. eSAIS on
Platform C for two large inputs. (b) Peak disk usage mea-
sured in large-scale experiments compared to a theoretical
upper bound 40N .

5.2 Large-scale experiments
In this section, we present results of a performance evalu-

ation for Suffix Rank vs. eSAIS (the most-scalable competi-
tor identified in the previous section). We use three large
datasets from Table 1: the full protein sequence database
PROT (59 GB), snapshot of WIKI articles (75 GB), and
the adversarial SKY dataset (30 GB). All the experiments
are conducted using main memory constrained to 1 GB, with
the largest input-to-memory ratio K being 75.

In Figure 9a we show the running time of our algorithm vs.
the multi-threaded version of eSAIS on Platform C (which
uses HDD, similarly to Platform D). Our algorithm has per-
formance superior to eSAIS in these settings. It runs faster
than eSAIS by more than 30% for the WIKI, and by 42%
for the PROT dataset.

In Figure 8 we present the results of large-scale experi-
ments on Platform S (equipped with high-performance SSD
disks). We run two versions of eSAIS, using a single thread
(eSAIS-1T), and using 4 threads (eSAIS-4T). Note that the
experiments on this platform have a timeout of 24 hours. A
missing point in a graph for a larger input size is an indica-
tion that the timeout was reached (it happens for eSAIS-1T
and eSAIS-4T, never for Suffix Rank). Comparing the re-
sults for the same datasets on two different platforms, we see
that Suffix Rank performance improves with faster memory
type, where it completes indexing of a 59 GB string (PROT)
in just 17 hours vs. 80 hours on platform C, and indexing
of a 70 GB string (WIKI) in 23 hours vs. 100 hours on
Platform C.

On Platform S, our algorithm performs significantly bet-
ter than both eSAIS-1T and eSAIS-4T - even for smaller
values of K. This can be explained by the fact that our al-
gorithm has a higher I/O volume comparing to eSAIS, and
benefits from fast secondary memory more than the latter.

Suffix Rank is about 40% faster than eSAIS-4T for both
30 GB of PROT string and for 45 GB of WIKI string, and
the gap between the running time of the two algorithms is
increasing as we scale the input further.

The results in Figure 8(c) show that SKY dataset – de-
signed as an adversarial input for eSAIS – is also adversarial
for Suffix Rank. For SKY string of length 5 GB our algo-
rithm runs slower than eSAIS. To process 15 GB SKY string
it takes Suffix Rank 11 hours as compared to 6 hours with
PROT string and 5 hours with WIKI string of the same
length.

Figure 10: Suffix Rank performance profiles for SKY and
PROT. X-axis: iteration number. Y-axis: time taken by
different steps on this iteration (min). Input sizes: 20 GB.
Platform: D.

In [5] the adversarial nature of SKY for eSAIS is explained
by the need to perform multiple recursive steps. Our algo-
rithm exhibits different dynamics on SKY inputs. To inves-
tigate this dynamics, we present the performance profiles for
a real-life dataset PROT and the adversarial SKY dataset
in Figure 10. PROT exemplifies a normal distribution of
processing time for all real-life datasets used in the experi-
ments. In early iterations, the number of distinct pairs to be
merged is relatively small. This number grows exponentially
in terms of alphabet size, so within a few iterations, there
are many distinct pairs. However, most suffixes are resolved
after iteration 7. Thus, later iterations only involve a hand-
ful of unresolved pairs. The SKY input completely changes
this normal dynamics. For SKY string, there are very few
unique distinct pairs at the low level of the recursion, none
of them are resolved, and the number of distinct pairs grows
until the very last iterations. All unresolved pairs are car-
ried over to the next iteration, and this increases the amount
of work in all three steps, especially during the resolve step.
This explains the adversarial nature of SKY for Suffix rank.

The performance experiments presented in this section
clearly show that for large out-of-core strings our algorithm
outperforms eSAIS – the only one algorithm among all the
alternatives considered in this paper for solving Problem 1
that continues to scale with input size.

Finally, in Figure 9b we present the values of peak disk
usage during the experiments on Platform S. As analyzed
in Section 4.7, the upper bound of temporary disk space
required by the algorithm is 40N . The results in Figure
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Figure 11: (a). [Top]. Running time on randomly gener-
ated strings (of length 2GB each) with increasing alphabet
sizes. [Bottom]. Illustration of work per each iteration for
Σ = 5 and Σ = 625. (b). Percentage of time spent by each
subprogram for different datasets. The most expensive are
refine and update steps.

9b show that in practice we never reach this upper bound,
exhibiting factors ranging from 10N to 27N .

5.3 Suffix Rank properties
Finally, we run several experiments to better understand

the nature of our algorithm.
Alphabet size. First, we study how the performance

depends on the alphabet size |Σ| of the input. One might
expect that the larger the alphabet, the lower the length and
frequency of repetitive substrings, and this should decrease
the running time. However, as the results in Figure 11a
show, |Σ| plays little role in determining the performance of
our algorithm. For randomly generated strings, the running
time marginally decreases as Σ increases. While the total
number of iterations decreases as the alphabet size grows,
the amount of work per iteration increases: even in the first
iteration, when prefixes of length 2 are compared, the total
number of different prefixes will be |Σ|2, and for large |Σ| this
requires more rank pairs to be generated during the refine
step and merged during the resolve step of the algorithm
(See performance profiles in Figure 11a [Bottom]).

For real-life strings, there is no clear dependence on alpha-
bet size. The algorithm runs slower on the WIKI dataset
with alphabet size 96, than on the DNA dataset with alpha-
bet size 5.

Table 2: Datasets and their statistics. Datasets are ar-
ranged in order of increasing processing time (measured on
inputs of 3GB in length).

Dataset Max. (a) (b) p = a ∗ b log p time,
|LCP | log Avg. sec/MB

Max. |LCP |
|LCP |

DNA 5.1 ∗ 102 9 3.7 ∗ 101 3.3 ∗ 102 2.52 2.15
WIKI 1.6 ∗ 104 14 3.4 ∗ 101 4.8 ∗ 102 2.67 3.68
PROT 4.0 ∗ 103 12 4.7 ∗ 101 5.7 ∗ 102 2.76 3.98
GUT 4.2 ∗ 106 22 3.5 ∗ 103 1.9 ∗ 103 5.30 5.23
SKY 1.1 ∗ 109 30 1.4 ∗ 104 3.6 ∗ 108 10.02 7.45

Longest Common Prefix. We now examine which
properties of the input (apart from the alphabet) influence
the performance of Suffix Rank. We present some poten-
tially relevant statistics for our datasets in Table 2.

The max|LCP | is defined as the length of the longest
prefix shared by a pair of suffixes. The total number of

iterations equals logmax|LCP |. The average|LCP |, intro-
duced in [13], is the sum of the lengths of all longest common
prefixes between each pair of consecutive sorted suffixes, di-
vided by the total number of suffixes (N). It represents a
rough measure of the difficulty of sorting the suffixes: if the
average|LCP | is large, then we need – in principle – to ex-
amine more characters in order to resolve the relative order
of two suffixes. For our algorithm, it means that such suffixes
are carried over from one iteration to another, increasing the
amount of work per iteration.

The datasets in Table 2 are arranged in the increasing
order of time which we need to process them (sec/MB of
input). Neither the max|LCP | nor avg|LCP | alone aligns
with the increase in the running time. However, if we mul-
tiply the total number of iterations (log max |LCP |) by the
approximate average work required at each iteration (aver-
age |LCP |), we obtain a combined statistic – we informally
call is a predictor of the performance of Suffix Rank.

Subprograms. Finally, we study which of the three steps
(subprograms) is most critical for the performance of Suffix
Rank. The total time per subprogram on various datasets is
presented in Figure 11b. The most time is spent in the refine
and update steps. The least time is spent during the resolve
step, since at this step we work with aggregated counts of
refined rank pairs, not with all the ranks of each chunk.
This makes the disk-resident inputs much smaller than in
the refine and update steps. Thus, these two steps should
be optimized first. Due to the independent nature of these
two steps (each works with at most two small chunks of the
input at a time), they are trivially parallelizable.

6. CONCLUSIONS AND FUTURE WORK
We presented a new method for suffix sorting, which scales

to arbitrarily large inputs. Our Suffix Rank is a simple,
fast, and inherently parallelizable algorithm which can be
used to build Suffix Arrays and FM-indexes to structure and
efficiently search large string collections. Our algorithm is
designed for real disks and takes an advantage of prefetching
by performing sequential I/Os of large chunks of the input.
The algorithm is highly practical in its simplicity and can be
used to create off-line indexes in the background of database
systems intended for storing sequential data.

To improve the performance of the Suffix Rank we plan to
parallelize the chunk processing. Our algorithm makes this
parallelization straightforward because both refine and up-
date steps work independently with at most 2 small chunks
of the input at a time. The resolve step can also be par-
allelized, because the refining of ranks is performed inde-
pendently for each coarse rank. We envision a fully par-
allelized algorithm on a Hadoop-like shared-nothing archi-
tecture, where short chunks of input and output are sent
and processed in parallel by separate subprograms delivered
directly to the cluster nodes.
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