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ABSTRACT

Weak isolation levels, such as Read Committed and Snap-
shot Isolation, are widely used by databases for their
higher concurrency, but may introduce subtle correctness
errors in applications that only experts can identify.

This paper proposes IsoDi�, a tool to help a developer
debug the anomalies caused by weak isolation for an appli-
cation. To address the challenge that the number of anoma-
lies can be non-polynomial with respect to the number of
types of transactions, IsoDi� finds a representative subset of
anomalies involving di�erent transactions, operations, and
problematic patterns. To reduce false positives, IsoDi� pro-
poses two novel methods (correlation detection and timing
relationship check) to eliminate as many false positives as
possible and further provides a mechanism to incorporate
the developer’s feedback to eliminate the remaining ones.

The evaluation of IsoDi� on TPC-C and seven real appli-
cations under Snapshot Isolation and Read Committed
isolation shows that IsoDi� can balance computation time
and the coverage of anomalies; it can automatically elimi-
nate a significant portion of false positives; and its feedback
mechanism allows a developer to express the root cause of
false positives, which can eliminate many false positives with
only a small number of developer hints.
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1. INTRODUCTION

In database systems, isolation defines how concurrent
transactions can interleave, serving as a contract between
the applications and the database system. Database sys-
tems support multiple isolation levels to o�er applications
a trade-o� between correctness and performance. Because
of higher concurrency, and thus better performance, “almost
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all SQL databases use Read Committed as the default iso-
lation level, with some only supporting Read Committed
or Snapshot Isolation” [17] and 86% of all responses to
a 2017 survey of DBAs say that “most” or “all” of their
transactions run under Read Committed [30].

However, comparing to Serializable, such weak isolation
levels are hard to understand and thus can introduce anoma-
lous executions a developer may not be aware of. To address
this problem, there is substantial work in formally defining
isolation levels weaker than Serializable [10–13,17,21,35].
Based on these theories, existing works model the execution
of transactions as a dependency graph and identify anoma-
lies by searching for certain types of cycles in this graph
(called � cycles in this paper) [20,23,39].

However, even with the help of these theories and tools,
correctly identifying and repairing isolation anomalies is not
easy even for experts because existing methods may produce
many false negatives and false positives:

First, since the number of cycles in a graph can be non
polynomial with respect to the number of vertices and edges,
it is infeasible to identify all � cycles. As a result, existing
tools usually just determine the existence of � cycles by re-
porting one or a few cycles among many other real problems,
which will introduce false negatives [12, 20, 23, 39]. This is
not ideal for debugging purposes, since a developer will nat-
urally focus on the simplest fix for one anomaly, instead of
thinking of fundamental changes to the application to tackle
multiple anomalies at once.

Second, existing methods can introduce a large number of
false positives mainly due to two reasons. First, because of
various kinds of constraints in the application, the execution
corresponding to a � cycle may never happen in practice.
Second, some applications can tolerate certain unserializable
executions, which means that even if a � cycle occurs, it is
not a real problem to the application.

To address these challenges, this work proposes IsoDi�, a
tool to help debug anomalies caused by using weaker isola-
tion levels, with an emphasis on Snapshot Isolation and
Read Committed.

To solve the dilemma that identifying all � cycles is infea-
sible and identifying a few may miss fundamental solutions,
IsoDi� introduces an algorithm to identify a representative
subset of � cycles. It searches for � cycles involving di�er-
ent transactions, operations, and problematic patterns, and
tries to identify the simplest way to eliminate these � cycles.

To reduce false positives, IsoDi� takes two complementary
approaches. On the one hand, it introduces new algorithms
to identify false positives automatically: IsoDi� (1) identi-
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1 purchase(customer_id,item_price)

2 BEGIN
3 SELECT @t = total FROM Order WHERE id =

@customer_id;

4 UPDATE Order SET total = @t + @item_price

WHERE id = @customer_id;

5 COMMIT

Figure 1: Logic of a purchase transaction.
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Figure 2: Identifying anomalies using the DSG.

fies co-occurring dependencies (correlations) that reflect re-
lationships between di�erent operations from the SQL trace
of an application, and checks whether such correlations will
invalidate a � cycle; (2) performs a timing relationship check
that is rooted in the observation that, for operations op1 and
op2, it is impossible for op1 to happen before op2 and op2 to
happen before op1 simultaneously.

Eliminating all false positives automatically is extremely
hard, if not impossible. Therefore, IsoDi� introduces a
mechanism to incorporate a developer’s knowledge. Ask-
ing a developer to analyze each � cycle is infeasible because
of the large number of � cycles, but our observation is that
many false � cycles share the same root cause. Following
this observation, IsoDi� defines a developer’s knowledge as
certain properties on the dependency graph. Such presen-
tation is flexible to describe various root causes and can be
seamlessly integrated into the previous algorithms.

We have applied IsoDi� to TPC-C and seven open-source
applications to measure their anomalies with Snapshot
Isolation and Read Committed isolation. We find that:

• IsoDi� successfully reduces the computation overhead
and thus makes analysis tractable even for complex
applications: the longest experiment produces a de-
pendency graph with around 0.1K vertices and 130K
edges, and it takes 46 minutes to identify and validate
40K � cycles on a single machine.

• The timing relationship check of IsoDi� invalidates up
to 85% of the found � cycles; the correlation check of
IsoDi� invalidates up to 55% of the found � cycles.

• By manually analyzing the reports for two applica-
tions, we find the false positives are caused by a few
root causes, which allows developers to remove false
positives by analyzing a small number of � cycles and
providing feedback.

2. BACKGROUND AND MOTIVATION

To motivate the problem, we show a concrete example
about how a weaker isolation level can introduce prob-
lems. Suppose an online shopping application has provided a
transaction (Figure 1) to purchase an item and suppose mul-
tiple purchase transactions can be executed concurrently.

Among all isolation levels, Serializable, which means
the concurrent execution of multiple transactions is equiv-
alent to a serial execution, frees the developers from the
frustrating task of reasoning about concurrent interleavings.
When using weaker isolation levels, however, the situation
is less ideal. For example, Read Committed only guaran-
tees a read operation will retrieve a committed value, which
may cause problems for the example in Figure 1: if a user
executes two purchases concurrently, both transactions may
execute the “select” statement at the same time and then
both add the price of the item to the original value of total,
which means the final total value will only include one item.
Such anomaly is allowed by Read Committed since both
select statements indeed read committed values.

To identify anomalous executions—executions that can
happen under a weaker isolation level but cannot happen
under Serializable—the theoretical foundation is Adya et.
al’s definition [12] of isolation levels, which models the ex-
ecution of concurrent transactions as a dependency serial-
ization graph (DSG) and defines di�erent isolation levels as
preventing di�erent types of cycles in the DSG.

To be concrete, this work models a transaction as a list of
operations (e.g. read, write, etc) and defines di�erent types
of dependencies across operations: a read dependency (wr)
occurs if one operation reads an object created by another
operation; a write dependency (ww) occurs if one opera-
tion overwrites an object created by another operation; an
anti-dependency (rw) occurs if one operation overwrites an
object read by another operation. For an execution, it builds
the DSG, in which vertices represent transactions and edges
represents dependencies between transactions. Then it de-
fines isolation levels as certain properties on the DSG. For
example, the Serializable isolation level disallows a cycle
consisting of any type of edge; the Read Committed iso-
lation level disallows a cycle consisting of wr and ww edges
(in other words, it allows cycles with at least one rw edge).

Consider the example in Figure 1: Figure 2.a presents
the problematic execution mentioned above, which can be
converted to the DSG in Figure 2.b. We can find two cycles
in the DSG, both with one rw edge. Therefore, we can
know this execution is not allowed by Serializable, which
disallows any cycles, but is allowed by Read Committed,
which allows cycles with at least one rw edge.

Following these definitions, existing works try to identify
anomalies by searching cycles that are allowed in weaker iso-
lation levels but not allowed in Serializable. They usually
first build a static dependency graph (SDG), which is essen-
tially a DSG with all the possible (anti-)dependency edges,
and then search for certain types of cycles inside the static
dependency graph. For example, for Read Committed we
should identify cycles with at least one rw edge; for Snap-
shot Isolation prior work shows that we should search for
cycles with two consecutive rw edges [20].

Although prior work provides a solid theoretical founda-
tion for identifying anomalies caused by using weaker isola-
tion levels, for the purpose of debugging prior work su�ers
from a high number of false negatives and false positives.
Since they aim to determine the existence of � cycles, they
only need to identify one � cycle [20, 23, 39] and thus miss
opportunities to tackle multiple anomalies at once; because
they do not take other constraints, such as application se-
mantics, into consideration, they may report anomalies that
never happen or do not matter to the application.
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3. DESIGN

Formally, this paper has the following goal: Given a set
of transactions T and a specific database isolation level I,
find a representative subset of concurrent executions allowed
under I but not allowed under isolation level Serializable.
Before describing the details of our solution, we first present
definitions that are used throughout this paper.

Definition 3.1. Transaction Class. A transaction class
T consists of a list of operations [op1, op2, ..., opn] inter-
acting with the database. Each operation is a tuple with two
elements, in which the first is the action (i.e. read or write),
and the second is the designated table and column.

Similar as previous works [23, 39], we use the concept of
transaction class to group “similar” transactions instances,
which have the same list of operations, but may have dif-
ferent values for these operations at runtime. Section 3.2
describes how we summarize transaction classes from the
traces of transaction instances.

Definition 3.2. Operation Dependency. opi æ opj …
(opi.t.c = opj .t.c) · (opi.action = write ‚ opj .action =
write)· (opj reads/writes a value read/installed by opi).

An operation can be either a read or a write and a de-
pendency requires at least one operation in the pair to be
a write. Hence, dependencies have three types: ww de-
pendency (write dependency), wr dependency (read depen-
dency), and rw dependency (anti-dependency) [12].

Definition 3.3. Transaction Dependency. Two transac-
tion classes Ti æ Tj … ÷opm œ Ti, ÷opn œ Tj , opm æ opn.

When there are multiple operation dependencies between
two transaction classes, we merge such dependencies at the
transaction level, and record the mapping from the trans-
action dependency to its operation dependencies. The type
of a transaction dependency is the union of all the types of
dependencies of its corresponding operations.

Definition 3.4. Dependency Graph. We define two
types of dependency graphs. A transaction dependency graph
is GT := (VT , ET ), where VT = {T : T is a transaction
class}, ET = {(Ti, Tj) : Ti æ Tj}; an operation depen-
dency graph is Gop := (Vop, Eop), where Vop = {op : op œ
T }, Eop = {(opi, opj) : opi æ opj} fi {(opi, opj) : opi and
opj are consecutive operations in a transaction class}.

As discussed in Section 2, to identify anomalies which
might happen under a certain isolation level, IsoDi� builds
a static dependency graph with all the possible dependency
edges that might happen. Therefore, between a pair of oper-
ations opi and opj which might have dependencies, since ei-
ther can happen first, IsoDi� will draw two edges opi æ opj

and opj æ opi in Gop and between the corresponding trans-
action classes in GT . Section 3.3 presents the details.

Definition 3.5. � cycle. A � cycle is a cycle that can
happen in the transaction dependency graph under I but can-
not happen under Serializable. When I is Read Com-
mitted, a � cycle should contain at least one rw edge; when
I is Snapshot Isolation, a � cycle should contain at least
two consecutive vulnerable rw edges (i.e. an rw edge with
no ww edge between the same pair of transactions).

Algorithm 1: Overview of IsoDi�
input : Database traces L
input : Database isolation level I
input : Parameters to balance computation time

and accuracy ¸ and k

output: Ways to remove all anomalies
1 T Ω get_txn(L)
2 GT , Gop Ω gen_graph(T)
3 Correlation Ω get_corr(T, L);
4 while true do
5 �cycles Ω search_cycle(k, ¸, Correlation,

GT , Gop, I)
6 if �cycles = ÿ then
7 break
8 solution Ω set_cover(�cycles)
9 remove edges related to solution in Gop and GT

10 report Ω report fi solution
11 return report

The definition of � cycle for Read Committed is de-
rived from [12], and the definition of � cycle for Snapshot
Isolation is derived from [20]. At a high level, the major
goal of IsoDi� is to search � cycles in the transaction de-
pendency graph, because they represent anomalies that can
happen under I but cannot happen under Serializable.

3.1 Overview of IsoDiff

Algorithm 1 presents an overview of IsoDi�: IsoDi� first
generates all the transaction classes of the target application
by parsing the trace of the application (line 1); then it builds
both the transaction dependency graph (GT ) and the oper-
ation dependency graph (Gop) from the transaction classes
(line 2); then it searches for correlation among di�erent de-
pendency edges, which can be used to refine the following
search (line 3); the core of IsoDi� is a multi-iteration al-
gorithm, each iteration of which tries to find a subset of
problems (line 5), find the simplest way to repair them (line
8), and remove the corresponding edges by simulating the
solution (line 9). Finally IsoDi� will report all solutions to
the developer (line 11) for feedback, and the developer may
re-run IsoDi� with new feedback till no problem is left.

The following sections will present each step in detail,
using the code in Figure 1 as an example.

3.2 Generating transaction classes (get_txn)

There are two ways to generate transaction classes for a
database application: one is to record and parse the SQL
trace from the application (dynamic analysis) and the other
is to analyze the source code of the application to extract
possible SQL transactions (static analysis). Dynamic anal-
ysis is easy to implement but may miss rare transactions;
static analysis in theory can capture all transactions but
whether it can scale to large applications is questionable.
Similar as prior work [23,39], IsoDi� uses dynamic analysis.

In the first step, we run the application and configure
the database to record all the transactions in SQL format.
Note that we don’t record the exact read and write sets of
each transaction, since they depend on the values of the pa-
rameters of each transaction: analyzing transactions with
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specific parameter values would increase the chance of miss-
ing dependencies. Instead, IsoDi� assumes two statements
accessing the same column may have a dependency.

In the second step, IsoDi� uses the open-source SQL
parser pglast [6] to parse each SQL statement into an Ab-
stract Syntax Tree (AST). The content of the AST depends
on the statement. For example, for a select statement “select
name from Users where id=1”, the root of the AST is a node
indicating this AST is for a select statement; it has three
children: a “target list” node identifies the result column(s)
of the statement (name in this example); a “fromClause”
node describes the content of the from clause (Users in this
example); and a “whereClause” node describes the content
of the where clause. Both fromClause and whereClause may
link to other ASTs if they include subqueries.

In the third step, IsoDi� converts each AST into a se-
quence of read and/or write operations. To achieve this,
IsoDi� first walks through each AST and converts the AST
into a set of operations: the root node is an operation,
whose type is determined by itself (i.e. select, update, etc)
and whose target is the combination of the fromClause node
and the target list node; the whereClause is another opera-
tion, whose type is “read” and whose target is determined
by its content; if the AST link to other ASTs, IsoDi� will
recursively walk through them and generate more opera-
tions. IsoDi� then connects these operations based on their
order of execution. To be specific, for each statement, IsoD-
i� orders operations in the where clause ahead of the main
operations; for complicated where clauses, IsoDi� orders op-
erations of JOIN ahead of others and orders operations of
a subquery ahead of the operations of its outer statements;
when there exist multiple similar operations, IsoDi� orders
them as they appear in the statement.

Finally, IsoDi� identifies all distinct sequence of oper-
ations and marks each distinct sequence as a transaction
class. Note that this approach is di�erent from some pre-
vious works that define transaction classes based on appli-
cation semantics (i.e. transactions generated by one appli-
cation function belongs to one transaction class) [20]: on
the one hand, if an application function has internal if

branches or loops, it may generate di�erent sequences of
operations at runtime and they are considered as di�erent
transaction classes in IsoDi�; on the other hand, if multiple
application functions generate the same sequence of oper-
ations, they are considered as the same transaction class
in IsoDi�. We choose this approach because the operation
sequence is critical for the purpose of identifying anoma-
lies. Previous works [20] manually “split” the corresponding
transaction class if an application function has internal if

branches, which is what IsoDi� achieves automatically.
Example. Using Figure 1 as the example, IsoDi� will
see one transaction class: T1 = [r1(id), r2(total), r3(id),
w4(total)], in which r1 and r2 are from the SELECT state-
ment and r3 and w4 are from the UPDATE statement.

3.3 Building dependency graphs (gen_graph)

Algorithm 2 shows how IsoDi� generates both the trans-
action dependency graph GT and the operation dependency
graph Gop.

IsoDi� examines all the operation pairs between di�erent
transaction classes (lines 2–3) and if they may be involved
in a dependency, IsoDi� adds corresponding edges in Gop

and GT (lines 5–6); since the dependency may happen in ei-

Algorithm 2: Generating dependency graphs
input : Transaction set T
output: Transaction dependency graph GT (VT , ET )

Operation dependency graph Gop(Vop, Eop)
1 pre-processing(T)
2 for T1 œ T, T2 œ T and T1 ”= T2 do
3 for op1 œ T1 and op2 œ T2 do
4 if op1 and op2 access the same column and

one is a write then
5 add op1 æ op2 and op2 æ op1 to Gop

6 add T1 æ T2 and T2 æ T1 to GT (merge
if the same edge exists)

7 add_mapping(T1 æ T2, op1 æ op2) and
(T2 æ T1, op2 æ op1)

8 for T œ T do
9 for consecutive op1 œ T and op2 œ T do

10 add op1 æ op2 to Gop

11 return ÈGT , GopÍ

ther direction, IsoDi� adds edges in both directions (line 7);
furthermore, IsoDi� adds edges for consecutive operations
in Gop (lines 8–10).

Before starting, IsoDi� pre-processes the transaction
classes to facilitate the following cycle search (line 1), which
includes the following functions.
Replicating transaction classes. At runtime, there
might be multiple instances of the same type of transac-
tion class, and they may have dependencies as well. There
are two ways to capture such dependencies among the same
transaction class: the first is to add a self-loop to the node
representing the corresponding transaction class in GT ; the
second is to replicate the corresponding transaction class so
that GT can contain multiple nodes for the same transac-
tion class. IsoDi� uses the second approach, because the cy-
cle search algorithm it uses assumes no self-loops. However,
the replication approach creates a question about how many
times we should replicate a transaction class. We answer this
question with the following definition and theorems.

Definition 3.6. A � cycle C1 is redundant to C2 if
breaking C2 always leads to the breaking of C1.

For the purpose of debugging, IsoDi� only needs to report
one of these � cycles, preferably the shorter one, because
fixing one will fix the other one automatically. Based on this
definition, we have proved the following theorems.

Theorem 3.1. For Read Committed, a � cycle where
instances of one transaction class T appear more than twice
must be redundant to a shorter � cycle.

Proof. Without losing generality, suppose there is a �
cycle C1 in which three instances T1, T2, T3 of class T appear:
C1 = A æ T1 æ ... æ T2 æ ... æ T3 æ B æ ... æ A. Since
T1 and T2 are of the same type and there exists an edge
A æ T1, there must exist a similar edge A æ T2. Similarly,
since T2 and T3 are of the same type and there exists an edge
T3 æ B, there must exist a similar edge T2 æ B. Therefore,
we can construct two cycles C2 = A æ T2 æ ... æ T3 æ
B æ ... æ A and C3 = A æ T1 æ ... æ T2 æ B æ ... æ A,
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and we can prove that 1) one of them must be a � cycle and
2) C1 is redundant to that one. Obviously, both C2 and C3
are shorter than C1.

To prove 1), recall that a � cycle for Read Committed
must contain at least one rw edge. In C1, if the rw edge
appears in T1 æ ... æ T2, then C3 must contain the rw
edge; if the rw edge appears in T2 æ ... æ T3, then C2 must
contain the rw edge; if the rw edge appears in other places,
then both C2 and C3 must contain the rw edge.

To prove 2), without losing generality, suppose C2 is a �
cycle. For C2, all its edges exist in C1 except A æ T2: if we
break C2 by removing an edge which is not A æ T2, then
of course we break C1 as well since this edge exists in C1; if
we break C2 by removing A æ T2, since A æ T2 is similar
to A æ T1, doing so will remove A æ T1 as well, breaking
C1. Therefore, breaking C2 will always lead to the breaking
of C1, which means C1 is redundant to C2.

Theorem 3.2. For Snapshot Isolation, a � cycle in
which instances of a transaction class T appear more than
three times must be redundant to a shorter � cycle.

Proof. The proof is similar to that of Theorem 3.1. The
di�erence is that, for Snapshot Isolation, the � cycle
must contain two consecutive rw edges, which may span
two segments of Ti æ ... æ Ti+1, and that is why we need
one more copy to preserve the two consecutive rw edges.

Simplifying loops. The second task the pre-processing
achieves is to simplify the transaction classes caused by
loops: if a transaction has an internal loop and at runtime,
di�erent transaction instances execute the loop with di�er-
ent number of iterations, IsoDi� will classify these instances
into di�erent transaction classes. This phenomenon would
not hurt the accuracy of IsoDi�, but would certainly increase
its computation complexity. IsoDi� addresses this problem
with the following theorem.

Theorem 3.3. In a transaction class, if a sequence of op-
erations is repeated continuously, then repeating it for more
than twice will not generate new � cycles in GT .

Proof. IsoDi� only searches simple cycles (i.e. cycles in
which each vertex appears once) in GT , because other cycles
can always be decoupled into simple cycles. In a simple
cycle in GT , each vertex (i.e. transaction class) has exactly
one incoming edge and one outgoing edge. Therefore, even
if we repeat a sequence of operations more than twice in a
transaction class, at most two of them will be involved in
any simple cycle in GT .

This theorem indicates that, assuming a transaction has
an internal loop and each iteration generates the same se-
quence of operations, then IsoDi� only needs to mark the
one with two iterations as a transaction class and can ignore
all others. Of course, if di�erent iterations executes di�erent
sequence of operations, then this theorem does not apply.
Tagging unique IDs. A common solution developers use
to avoid dependencies is to make transaction operations
commutative, by using a unique ID (e.g. customer_ID) with
each transaction. Such unique IDs can be inferred from dy-
namic analysis: if the values of a certain variable are always
di�erent between any pair of concurrent transactions, IsoD-
i� can infer that this variable is a unique ID. However, this

T1 T2

wr, ww, rw

wr, ww, rw

Figure 3: Transaction Dependency Graph

T1

T2

r1(id) r2(total) r3(id) w4(total)

r1(id) r2(total) r3(id) w4(total)

wwww
wr

rw rw

wr

Figure 4: Operation Dependency Graph

approach requires a SQL trace from a real concurrent execu-
tion. For most of our applications, however, since we trigger
their functions manually, we don’t have access to such a real
execution and thus have to manually tag unique IDs based
on our best understanding about the application. In prac-
tice, when the trace about a real concurrent execution can
be collected, automatic dynamic analysis should be feasible.
Example. Taking Figure 1 as the example, for Read Com-
mitted, IsoDi� generates GT as shown in Figure 3 and Gop

as shown in Figure 4. Note that for Read Committed,
IsoDi� replicates transaction classes twice, and this exam-
ple assumes id is not unique: assuming uniqueness would
eliminate all dependency edges.

3.4 Finding correlations (get_corr)

Definition 3.7. Dependency correlation. opi ¡ opj is
correlated with opk ¡ opm if opk ¡ opm ∆ opi ¡ opj

(opi ¡ opj means opi æ opj or opi Ω opj)

We are interested in finding such dependency correlations
for two reasons: first, both previous works and this work
show such correlations are helpful to remove false positives.
For example, a prior work [20] shows that to find anomalies
for Snapshot Isolation, we should try to search for cy-
cles with two consecutive vulnerable rw edges, i.e. rw edges
not correlated with ww edges. Furthermore, our work shows
how to extend such ideas to general cases (Section 3.6). Sec-
ond, in the applications we investigated, such correlations
are quite common: a transaction often has multiple state-
ments using the same ID (e.g. customer ID, shopping cart
ID, etc), and thus if one of them has a dependency edge to
another transaction, all others will have similar edges.

IsoDi� searches for such correlations in two steps: first,
it checks, for each transaction class T , whether there exists
any pair of operations opi and opj , which always access the
same row. Once again, such relationship can be found by ei-
ther static or dynamic analysis and IsoDi� uses the dynamic
approach: as long as for all transaction instances of T in the
trace, opi and opj access the same row, IsoDi� marks opi and
opj as correlated. Algorithm 3 lines 2-5 present the pseudo
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Algorithm 3: Analyze correlations in transactions
input : Transaction set T, Database traces L
output: Correlated edges

1 C Ω ÿ; Correlation Ω ÿ
2 for transaction class T œ T do
3 for operation opi, opj œ T do
4 if for any instance of T , opi and opj access

the same row then
5 Add pairs (opi, opj) and (opj , opi) to C;

6 for each dependency edge opk ¡ opm do
7 for opx: (opx, opk) œ C do
8 for opy: (opy, opm) œ C do
9 Add (opx ¡ opy, opk ¡ opm) to

Correlation

10 return Correlation

code to perform such search. Note that i could be equal to j

since an operation always correlates with itself. A limitation
of our current implementation is that it only searches for op-
erations accessing a single row and ignores those accessing
a range of rows: the latter is our future work.

In the second step, IsoDi� checks each dependency edge
opk ¡ opm: if the previous search shows that opk (or opm)
always access the same row as opx (or opy), we can conclude
that if opk ¡ opm actually happens, then opx ¡ opy must
happen as well. In other words, opx ¡ opy is correlated
with opk ¡ opm. Algorithm 3 lines 6-9 present the pseudo
code to perform such checking. Note that, once again, x and
y could be equal to k and m.

As a special case of utilizing such correlation, IsoDi� looks
for vulnerable rw edges (i.e., rw edges not correlated with
ww edges) when isolation level is Snapshot Isolation [23].
Such edges are later used for searching � cycles for Snap-
shot Isolation, which should contain two consecutive vul-
nerable rw edges. Section 3.6 further shows how to utilize
such correlation in general cases.

Compared to previous solutions, which try to find cor-
relation by searching “a transaction modifies the rows it
select” [20, 23], IsoDi�’s solution is more general and can
detect correlations through more patterns like accessing dif-
ferent tables with the same key.
Example. Taking Figure 1 as the example, it only has one
transaction class [r1(id), r2(total), r3(id), w4(total)], and
IsoDi� can find that in all instances, all four operations al-
ways access the same row, so IsoDi� will mark all pairs as
correlated. Then if targeting Snapshot Isolation, IsoD-
i� can find theres exist an rw edge between duplicates of
this transaction class T1.r2(total) æ T2.w4(total), but since
T1.r2(total) always accesses the same row as T1.w4(total),
which means T1.r2(total) æ T2.w4(total) ∆ T1.w4(total) æ
T2.w4(total), IsoDi� can conclude that this rw edge is not
vulnerable since it is always correlated with a ww edge.

3.5 Searching for � cycles (search_cycle)

Since the number of cycles in a graph can be non polyno-
mial, it is infeasible to find all of them. Therefore, IsoDi�
introduces a multi-iteration algorithm to find a representa-
tive subset of � cycles.

Algorithm 4: Search � cycles
input : k, ¸, C, GT , Gop, I
output: �cycle: set of valid cycles on operation level

1 �cycle Ω ÿ
2 for each dangerous path dp in (Gop, C) do
3 Tsrc = dp.src in GT

4 Tdst = dp.dst in GT

5 PT Ω k-shortest-path(k, [Tdst, Tsrc], GT )
6 if PT = ÿ then
7 continue
8 for each pathT in PT do
9 for each pathop in MapP athT æop(pathT , l)

do
10 cycleop Ω pathop fi dp

11 for each pair of opi and opj in cycleop do
12 if opi is ordered before opj in the

same transaction class then
13 add opi æ opj to cycleop

14 if cycleop is valid then
15 �cycle Ω �cycle fi cycleop

16 return �cycle

For representativeness, IsoDi� follows a few principles in
each iteration: first, for each dangerous path, which is es-
sentially a pattern a � cycle must have, IsoDi� should find
at least one � cycle involving it.

Definition 3.8. Dangerous path. When I is Read
Committed, a dangerous path is one rw edge. When I is
Snapshot Isolation, a dangerous path is two consecutive
vulnerable rw edges.

Both definitions are derived from the definitions of � cy-
cles. One can easily prove that in a graph, the number of
dangerous paths is polynomial to the number of edges.

Second, if one dangerous path is involved in multiple �
cycles, IsoDi� should first try to find shorter ones, because
shorter ones are easier to analyze and breaking them can
often break longer ones as well.

Third, if for the same dangerous path and for the same
length, there are still many � cycles, IsoDi� should try to
select � cycles that involve di�erent transaction classes.

Algorithm 4 presents the details of IsoDi�’s cycle search
algorithm: in the first phase, for each dangerous path, IsoD-
i� uses the k-shortest-path algorithm [43] to search for paths
between the two ends of the dangerous path in the trans-
action dependency graph GT (lines 2-5). This idea serves
several purposes: first, by performing the search for each
dangerous path, IsoDi� will not miss any dangerous paths,
satisfying our first principle; second, by searching for paths
between the two ends of the dangerous path, we can even-
tually connect the found path and the dangerous path to
form a � cycle (line 10); third, by using the k-shortest-path
algorithm, we focus on shorter cycles, satisfying our second
principle, while limiting the overhead of the algorithm to
polynomial; finally, by searching in GT first instead of Gop,
IsoDi� tries to diversify the types of transaction classes in-
volved in these � cycles, satisfying our third principle.
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Figure 5: Example of timing violation.

In the second phase, IsoDi� converts � cycles in GT to
paths in Gop (lines 8-13) to check their validity (line 14).
However, a � cycle in GT can be mapped to many paths in
Gop, because one dependency edge in GT could be mapped
to various dependency edges in Gop (see Definition 3.3).
To limit the overhead, IsoDi� randomly samples l of them
(MapP athT æop(pathT , l)) to balance the overhead and the
accuracy of this algorithm.

Algorithm 5: MapP athT æop

input : pathT , ¸

output: Lpathop : List of pathop

1 Lpathop Ω ÿ
2 count Ω 0
3 while count Æ ¸ do
4 path Ω ÿ
5 for each edge ET œ pathT do
6 SetEop Ω map ET to operation dependencies
7 randomly pick Eop from SetEop

8 path Ω path fiEop

9 if path not in Lpathop then
10 Lpathop Ω Lpathop fi path
11 ¸ Ω ¸ + 1

12 return Lpathop

Algorithm 5 shows the detail of MapP athT æop: for each
edge in GT , this function maps it to edges in Gop and ran-
domly chooses one of them (lines 5-8); after generating a
path, this function checks whether it has already been gen-
erated (lines 9-11); it repeats this procedure to get l paths.
Example. In Figure 3, IsoDi� can find two rw edges and
thus two dangerous paths for Read Committed. Corre-
spondingly, it will find two � cycles in GT : T1

rw≠≠æ T2 æ T1
and T1 æ T2

rw≠≠æ T1. For each of them, IsoDi� can map
it to two paths in Gop. For example, T1

rw≠≠æ T2 æ T1
can be mapped to {T1.r2

rw≠≠æ T2.w4, T2.w4
ww≠≠æ T1.w4,

T1.r2 æ T1.w4}, and {T1.r2
rw≠≠æ T2.w4, T2.r2

wr≠≠æ T1.w4,
T1.r2 æ T1.w4, T2.r2 æ T2.w4}. Note that some of these
paths are equivalent so IsoDi� will skip them (see Section 4).

3.6 Validating � cycles

Unlike the Adya et. al’s work [12], which generates a
dependency graph from a real execution, our work inher-
its [20]’s idea to build a dependency graph with all possible
dependency edges. In this approach, however, there is a
chance that a � cycle we find would never happen in prac-
tice. Furthermore, it is also possible that a � cycle can
happen but it is tolerable by the application. (For example,
an application may take a compensating action to reverse
the real-world e�ect of the violation, such as cancelling a

T1

T2

w1(a) r2(b) w3(c)

w4(b) w5(a) w6(c)

rw

ww

ww?

Figure 6: Example of a � cycle invalidated by correlation.

duplicate order). Both cases will introduce false positives
to IsoDi�. In this section, we present two techniques to de-
tect invalid � cycles automatically, and one technique to
incorporate the developer’s knowledge into the analysis.
Timing violation. It is possible that a � cycle found
in the previous step has an internal cyclic happened-before
relationship, which will never happen. For example, con-
sider the transactions in Figure 5: for Read Committed,
IsoDi� can find the following � cycle: T1.r2

rw≠≠æ T2.w3 and
T2.w4

ww≠≠æ T1.w1. However, this execution should never
happen: it is impossible for r2 to happen before w3 and for
w4 to happen before w1 simultaneously.

To exclude such invalid � cycles, IsoDi� performs a va-
lidity check in Gop: for each � cycle mapped to Gop, IsoDi�
will check whether it has any internal cycles since a cycle in
Gop indicates a cyclic happened-before relationship, which
violates timing constraint. In Figure 5, one can see that
after adding transaction internal edges T1.w1

rw≠≠æ T1.r2 and
T2.r3

rw≠≠æ T2.w4, the graph will contain a cycle.
To summarize and to avoid confusion, a � cycle in GT

means a violation of Serializable, which is the target of
IsoDi�. When mapping a � cycle to Gop, the resulting graph
may or may not contain a cycle: a cycle in Gop indicates
violation of timing constraint, which invalidates the � cycle.
Correlation. As discussed in Section 3.4, dependency
edges may be correlated. This means that for a found �
cycle, there may exist some other edges correlated with the
� cycle. Such correlated edges may form new cycles that are
not allowed by the target isolation level and thus invalidate
the original � cycle.

Consider the example in Figure 6. For Read Committed,
our algorithm can find the following � cycle: T1.r2

rw≠≠æ
T2.w4 and T2.w6

ww≠≠æ T1.w3. However, if T1.w1
rwΩ≠æ T2.w5

is correlated with any of these two edges, we have no way
to place this edge: choosing w5(a) æ w1(a) will cause a
timing violation, and choosing w1(a) æ w5(a) will generate
a new cycle T1.w1

ww≠≠æ T2.w5 and T2.w6
ww≠≠æ T1.w3, which

consists of no rw edges and thus is not allowed by Read
Committed. Therefore, we can conclude that the original
� cycle is invalid.

Interestingly, the concept of a “vulnerable rw” edge [20,23]
is a special case of such correlation in Snapshot Isolation.
Suppose an rw edge is correlated with a ww edge of the same
direction: if the rw edge is involved in a cycle, the ww edge
must be involved in another cycle, which replaces the rw

edge with the ww edge; the latter cycle is harder to satisfy
by Snapshot Isolation than the former, and thus we only
need to check the latter. In other words, if an rw edge is
correlated with a ww edge, we can treat it as a ww edge.
IsoDi� generalizes this idea to general cases.
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To check whether such correlation will invalidate a � cy-
cle, IsoDi� first finds all edges that are correlated with the
� cycle, then enumerates all the possible combinations of
their directions: if one combination is valid under the target
isolation level, then the original � cycle is valid; otherwise,
the original � cycle is invalid.

To find edges that are correlated with the � cycle, IsoD-
i� first relies on correlated edges found in Section 3.4. In
addition, IsoDi� searches for the following correlation: if
op1 æ op2 and op2 æ op3 and all operations access one row,
IsoDi� adds op1 æ op3 as a correlated edge.

The enumeration procedure has a complexity of O(2n),
where n is the number of correlated edges. To reduce compu-
tation overhead, first, IsoDi� checks the validity after adding
each correlated edge, instead of checking it after enumerat-
ing all, so as to prune invalid correlated edges earlier. Sec-
ond, IsoDi� sets a limit on the enumeration time, i.e., it
reports a � cycle whose correlated edges cannot be enumer-
ated within a given amount of time as valid. In Section 5.3
we show that a limit of 15s allows IsoDi� to fully enumerate
a high percentage of � cycles in many applications.
Developer knowledge. IsoDi� provides a mechanism to
incorporate the developer’s knowledge about certain prop-
erties of the dependency graph. This is useful for false posi-
tives that can not be automatically captured by IsoDi� (see
examples in Section 5.1), and cases where unserializable ex-
ecutions do not violate the isolation semantics of the appli-
cation, and it’s hard, if not impossible, to infer such applica-
tion semantics automatically. Because of the large number
of � cycles, it is infeasible to ask a developer to validate
every � cycle. However, during our case studies, we observe
that many false positives share the same root cause, which
allows IsoDi� to eliminate many false positives with from
a single developer hint. For example, the TPC-C specifi-
cation suggests that the stock-level transaction can tolerate
inconsistent results. In this case, incorporating developer
knowledge—stock-level should be excluded from analysis—
into IsoDi� eliminates many false � cycles altogether.

Following this idea, IsoDi� allows a developer to express
his/her knowledge as certain properties on the dependency
graph. For flexibility, IsoDi� allows an expert to submit
code to preprocess the dependency graph or check a � cy-
cle; for simplicity, IsoDi� has included some common proper-
ties for a non-expert to customize: 1. remove a transaction
class; 2. remove a dependency edge; 3. mark two depen-
dency edges as correlated; 4. mark two dependency edges
as exclusive (i.e., they should not happen together).

3.7 Eliminate found � cycles (set_cover)

In this step IsoDi� simulates the simplest way to reduce
the � cycles found in each iteration (i.e. remove some
edges). The most common way is to remove dependency
edges around a certain column, either by making the cor-
responding transactions commutative (e.g., always access
di�erent rows), or using stronger protection for statements
accessing the column. The typical examples include using
unique customer IDs or shopping cart IDs to identify rows
or marking “select” statement with “for update”, which es-
sentially changes an rw or wr edge into a ww edge. There-
fore, we formalize our problem as follows: find the minimal
number of columns so that every � cycle includes at least
one edge related to these columns. We call such columns
T argetColumns in the rest of this paper.

This problem can be converted to the Set Cover Problem:
“Given a set of elements {1, 2, . . . , n} (called the uni-
verse) and a collection S of m sets whose union equals the
universe, the set cover problem is to identify the smallest
sub-collection of S whose union equals the universe” [7]. To
make the conversion, we can define each � cycle as an el-
ement and define each column as a set, which includes all
the � cycles that involve any dependencies related to this
column. In this way, we will try to find the minimal num-
ber of columns that can cover all � cycles. Although the
Set Cover Problem is NP hard, it has a well-known approx-
imate solution, which identifies the set that can cover the
most number of uncovered elements in each iteration [15].
IsoDi� uses this solution.

Of course, the di�culty of making transactions commuta-
tive highly varies, and indiscriminately marking select state-
ments with “for update” clauses will hurt performance. If a
developer finds a column to be irreparable, he/she can re-
port it to IsoDi�, and IsoDi� can remove this column from
the candidate set and retry.
Example. For the example in Figure 1, IsoDi� can find
that the “total” column is a T argetColumn. The developer
may implement this suggestion by enforcing that concurrent
transactions will never have the same customer_id.

3.8 Limitations

False negatives: IsoDi� relies on the dynamic analysis
of SQL traces, which means that the analysis is complete
only with respect to the SQL trace that is provided as in-
put. IsoDi� will thus miss rare events (transaction code
paths) that have never occurred during the trace collection
period. Furthermore, IsoDi� only captures anomalies caused
by using weaker isolation levels, and will miss any errors not
within this scope, like writing wrong transactions or any im-
plementation bugs in the connector, middleware or database
system. IsoDi� shares such limitation with prior work that
also relies on trace analysis [23,24,39,46].
False positives: As discussed in Section 3.6, IsoDi� makes
best e�ort to detect false positives automatically and relies
on the developer’s feedback to eliminate the remaining ones.
Though IsoDi� cannot eliminate all false positives automat-
ically, its novel detection algorithms can significantly reduce
false positives compared to previous works.
Inaccuracies due to approximation: IsoDi� uses ap-
proximation in the multi-iteration cycle search and to find
solutions to the Set Cover Problem. This means that, like
other approximate solutions to NP-hard problems, the re-
sult may not be the optimal. We believe this is a necessary
trade-o� between the computation overhead and the accu-
racy of the analysis.

4. IMPLEMENTATION

Transforming AST to operation lists. IsoDi� uses
pglast [6] to parse SQL traces into Abstract Syntax Tree
(AST). We implement the transformation from the AST to
the operation list with about 1100 lines of Python code.

Given the complexity of AST, we set our goal to imple-
ment only necessary functions to cover our target applica-
tions. Despite such limited scope, we find it’s still a challeng-
ing task: our applications are all online transaction process-
ing (OLTP) applications, but unlike the traditional believe
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that OLTP transactions are relatively simple [37], we find
many real OLTP applications actually include complicated
statements like JOIN statement, subqueries, and function
calls. For a JOIN operation, we model it as two read oper-
ations with the involved columns; for a subquery, we imple-
ment a recursive function to retrieve all its operations; for
a function call, we model it as read operations on columns
that are passed in as arguments, since we do not observe
any functions to modify columns in our applications.
Main part of IsoDi�. The main part of IsoDi�, which
includes building dependency graphs, finding correlations,
searching � cycles, and the approximate set cover algorithm,
is implemented in C++ with around 2000 lines of code. To
optimize the performance of IsoDi�, we use multi-threading
to parallelize the task of cycle search, which dominates most
of running time. To be specific, in Algorithm 4, we spawn
one worker thread per core, assign each dangerous path as a
task, and dispatch them to di�erent worker threads through
a shared bu�er. Once all tasks are finished in one round, the
main thread retrieves all � cycles for set cover analysis, and
then updates the dependency graphs accordingly. To avoid
searching redundant cycles involving di�erent copies of the
same transaction class, we compute a hash for each cycle, by
mapping duplicates of a transaction class to the same one,
and compare newly found cycles with ones already searched.
Using IsoDi�. To analyze a database application with
IsoDi�, a user needs to first run the database application and
collect the SQL traces. In our experiments, we use MySQL
and configure the “general_log” option to 1 to enable trace
collection. Then the user can run IsoDi� over the collected
trace. IsoDi� will output suggested T argetColumns and
the found � cycles, represented by the specific sequences
of operations that lead to anomalies. IsoDi� has two key
parameters k and l (see Section 3.5) to balance accuracy
and overhead. We suggest the user to gradually increase
these two parameters till the result (i.e. the number of
T argetColumns) becomes stable.

5. EVALUATION

Our evaluation tries to answer the following questions:

• How e�ectively can IsoDi� find anomalies in real applica-
tions (Section 5.1)?

• What is the overhead of IsoDi� (Section 5.2)?

• What is the e�ect of each individual technique of IsoDi�
(Section 5.3)?

Applications. To answer these questions, we have ap-
plied IsoDi� to TPC-C and seven real applications: TPC-
C [37] is a popular OLTP benchmark, which is a simpli-
fied version of real OLTP applications. Lightning Fast Shop
(LFS) [3] is an online shop and ecommerce solution based
on Python, Django and jQuery. OpenCart [4] is an open-
source e-commerce platform for online merchants based on
PHP. PrestaShop [5] is another PHP-based open-source e-
commerce web platform providing shopping cart experience
for both merchants and customers. Shoppe [8] is a Rails-
based platform providing e-commerce functionality for Rails
applications. WooCommerce [9] (wc) is an open-source e-
commerce plugin for WordPress on a new or existing Word-
Press site. Attendize [1] is a ticket selling and event man-
agement platform to help users run and manage events.

FrontAccounting (fa) [2] is an open-source web-based ac-
counting system covering the Enterprise Resource Planning
(ERP) chain for small enterprises. They were selected from
GitHub based on their popularity (almost all of them have
more than 500 stars) and the number of contributors (most
of them have more than 200 contributors).

To retrieve SQL traces for these applications, 1) for TPC-
C, we use its default workload generator; 2) for shoppe, lfs,
opencart, prestashop, and wc, we use the traces provided
by [39]; 3) for attendize and fa, we manually trigger di�erent
functions of these applications.

Table 1 presents the statistics of the dependency graphs of
these applications. Note that since Read Committed needs
to duplicate transaction classes once and Snapshot Isola-
tion needs to duplicate twice, they have di�erent statistics.

We run the automatic algorithms of IsoDi� on all cases.
We manually analyze the reports of IsoDi� on TPC-C under
Read Committed and FrontAccounting under Snapshot
Isolation to check false positives.
Testbed. We run all experiments on CloudLab [16]. Each
machine is equipped with two Intel Xeon Silver 4114 10-core
CPUs at 2.20 GHz, 192GB ECC DDR4-2666 memory and
one Intel DC S3500 480GB 6G SATA SSD. We use multiple
machines to run di�erent experiments in parallel, though
each experiment runs on one machine.

5.1 Anomalies in real applications

Table 2 presents the number of anomalies IsoDi� finds
for each application, which is quantified as the number of
T argetColumns. Unsurprisingly, Snapshot Isolation in-
troduces much fewer anomalies than Read Committed,
since Snapshot Isolation is known to be stronger than
Read Committed.

We further manually analyze the reports of TPC-C under
Read Committed and FrontAccounting under Snapshot
Isolation. We try to fix true problems with simple solu-
tions, though such solutions may hurt the performance, and
an e�cient solution may require a significant re-design of
the application, which is out of the scope of this paper.

5.1.1 TPC-C under Read Committed
Our analysis reveals both true problems and false posi-

tives. The true problems can be summarized as follows:

• Select followed by update. Similar as in Figure 1, if two
concurrent transactions read the same value and update
it, the final value may just include one update. In TPC-
C, such pattern happens for the new-order transaction,
which reads and updates the district-d_next_o_id and
stock-s_quantity values, and for the payment transaction,
which reads and updates the customer-c_balance value.

• Multiple selects interleaved with multiple updates. When
one transaction updates multiple values and another
transaction reads multiple values, the reads may get an
unserializable result. In TPC-C, this happens between
order-status transaction, which reads customer-c_balance
and orders-o_carrier_id, and delivery transaction, which
updates these values.

The first problem is particularly troublesome since it may
introduce incorrect balance or stock values. The second
problem may cause a customer to see a confusing order sta-
tus (e.g. balance is changed but order is not shown). To
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Table 1: Dependency graph statistic for Read Committed and Snapshot Isolation (dp = dangerous path).

Application

Read Committed Snapshot Isolation
GT Gop #dp GT Gop #dp

#V #E #V #E #V #E #V #E
tpcc 20 182 906 1,490 646 30 420 1,359 3,414 0
shoppe 56 124 1,096 736 328 84 282 1,644 1,728 2,280
lfs 154 526 2,730 8,986 3,496 231 1,200 4,095 20,484 128,304
opencart 150 242 1,780 2,670 1,212 225 552 2,670 6,048 0
prestashop 420 854 5,668 9,770 4,580 630 1,938 8,502 22,086 162
wc 110 642 1,998 46,838 23,048 165 1,452 2,997 131,412 481,896
attendize 48 230 2,212 5120 2,398 72 522 3,318 12,264 21,540
fa 156 142 1982 506 252 234 324 2,973 1,188 1,944

Table 2: Number of T argetColumns IsoDi� finds for each
application (RC=Read Committed; SI=Snapshot Isola-
tion).

Application RC SI Total Columns
tpcc 11 0 86
shoppe 12 2 159
lfs 162 10 419
opencart 19 0 407
prestashop 112 1 834
wc 31 8 106
attendize 33 7 251
fa 11 6 371

solve these problems, we mark the select statements that
touch the corresponding columns with “for update”.

The false positives are summarized below:

• Transaction can tolerate unserializable result. The stock-
level and new-order transactions su�er from the same
problem of “multiple reads interleaved with multiple up-
dates” as described above. However, the TPC-C specifi-
cation mentions “full serializability and repeatable reads
are not required for the Stock-Level business transaction”,
which indicates stock-level can tolerate unserializable re-
sults. Therefore, we provide a devleoper hint that stock-
level transactions should not be considered in the analysis.

• Transaction is not executed concurrently. The delivery
transaction will get the oldest order and deliver it, so if
two delivery transactions execute in parallel, they may try
to deliver the same order. However, the TPC-C specifi-
cation mentions “the Delivery transaction is intended to
be executed in deferred mode through a queuing mecha-
nism”, which suggests the delivery transaction is not ex-
ecuted concurrently. Therefore, we provide a developer
hint to remove a replica of delivery.

• Commutative updates. Two concurrent payment trans-
actions executing statements “update .. SET d_ytd =
d_ytd + value ...” are considered as ww conflict by IsoD-
i�, but because they are commutative, we can re-order
them to break the cycle. Therefore, we provide a devel-
oper hint to remove such dependency edges.

• False rw dependency from single-row select to insert. This
means the select statement is querying a row added by a

later insert statement. In other words, the select is query-
ing a non-existent row. Though in theory this could hap-
pen, in TPC-C, the select usually uses an ID in the where
clause, which is retrieved from a previous statement, so
it should never query a non-existent row. Therefore, we
provide a developer hint to remove the rw edge.

• Application logic. This happens between an order-status
transaction and a new-order transaction: order-status will
first retrieve the latest order and then retrieve its cor-
responding order lines; new-order will insert a new or-
der and the corresponding order lines. IsoDi� finds that
they can create a similar problem as “multiple selects in-
terleaved with multiple updates”: order-status’s “select
latest” has an rw edge to new-order ’s first insert, and
then new-order ’s second insert has an wr edge to order-
status’s second select. However, if order-status’s “select
latest” happens before new-order ’s insert, these two trans-
actions should work on di�erent orders and thus the wr

edge should not happen. Therefore, we provide a feedback
that if there is an rw from order-status’s “select latest”
to a new-order ’s insert, there should be no dependency
between their following operations.

Some of these false positives, like “commutative updates”,
may be captured automatically by more accurate analysis;
some of them, like “transaction can tolerate unserializable
result”, is hard to capture without the developer’s feedback.

5.1.2 FrontAccounting under Snapshot Isolation
Similarly, our analysis reveals both true problems and

false positives. We summarize the true problems below:

• Write skew. We observe the classic write skew pattern
[13]: a transaction computes the sum of a range of val-
ues, and then inserts a new row, which can a�ect the
sum value; under Snapshot Isolation, two concurrent
transactions may get the same sum, which should never
happen under Serializable. We solve this problem by
marking the select statement as “for update”, which forces
the second transaction to block or abort if it tries to read
the same range.

• Unserializable range read. We observe this problem in-
volving three transactions: two concurrent transactions
T1 and T2 insert new rows and a third transaction T3
performs a “select max” statement, which only includes
the row from T1 but not from T2. However, T2 has a rw
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Table 3: Min/Max number of T argetColumns with di�er-
ent k and l (RC=Read Committed; SI=Snapshot Isola-
tion).

Application
RC SI

Min Max Min Max
tpcc 11 19 0 0
shoppe 12 21 2 5
lfs 62 103 10 57
opencart 19 29 0 0
prestashop 112 162 1 12
wc 31 43 8 17
attendize 33 46 7 24
fa 11 19 6 13

dependency to T1, which means T2 must be serialized be-
fore T1. Therefore, if the row inserted by T2 has a larger
value than T1, there is no way to serialize them. In other
words, T3 may return a value that is not the max at any
moment in any serial execution. In order for this anomaly
to happen, T1, T2, and T3 must come from the same user,
so we solve this problem by using application-level locking
(on the user ID) to never issue T1 and T2 concurrently
for the same user (i.e., make T1 and T2 commutative).

The false positives are summarized below:

• False rw dependency from single-row select to insert: this
is the same as described above. We provide a developer
hint to remove the dependency.

• False dependency between select count(*) and update:
IsoDi� marks this as a dependency since the statement
select count(*) and the update may access the same rows,
but the count of the corresponding rows is not a�ected
by the update, so we provide a developer hint to remove
this dependency. This false positive may be automatically
captured by improving the accuracy of our analysis.

5.2 Overhead

IsoDi� has two parameters k and l to balance overhead
and accuracy: k is used by the k-shortest-path algorithm
and l determines the number of samples to get when map-
ping a � cycle to operation level. This section studies how
of these parameters a�ect the overhead and result of IsoDi�.

For all experiments, we try k=1,5,10 and l from 1 to 10.
Table 3 summarizes how they a�ect the result of IsoDi�.
As one can see, for some applications the results vary sig-
nificantly across di�erent settings. This result confirms that
arbitrarily repairing a few anomalies misses opportunities to
tackle multiple anomalies at once.

To measure the impact of the k and l parameters on
overhead, we measure the running time of IsoDi� on
woocommerce (wc) under Snapshot Isolation. This set-
ting is the most time consuming one because woocommerce

has the most dangerous paths of all applications.
Figure 7 presents the result. In general, the running time

grows with k, which is as expected. The fluctuation with
di�erent l values is due to the following reasons: first, IsoD-
i� maps a � cycle to l random operation level paths, and
some of them may have more correlated edges than the oth-
ers, which requires more time to perform correlation check;

Figure 7: Running time of IsoDi� on woocommerce (wc)
with di�erent settings.

second, the running time is a�ected by the iteration in which
IsoDi� prunes critical columns or edges, which incurs some
randomness as well. The slowest setting (k = 10, l = 6),
which finds about 20K valid � cycles and 19K invalid ones,
takes about 46 minutes.

We further profile the time spent in di�erent functions
in this setting and find that 99.4% of the time is spent in
search_cycle. Note that search_cycle has already been par-
allelized while other parts have not.

We also measure the memory consumption of di�erent
settings and find that the memory consumption is around
3GB and is stable across di�erent applications and di�erent
settings. Of course this number may increase with a much
larger application, which requires more space to store both
the dependency graph and the found cycles.

To handle larger applications or reach a larger k and l,
which require more running time, one can consider running
IsoDi� in a distributed setting, which should not be hard
since the time consuming part of IsoDi� is highly paral-
lelizable (Section 4). To reduce memory consumption, an-
other possibility is to use disk-based graph processing en-
gines [14, 22, 25, 31, 32, 40, 47, 48], which makes a trade-o�
between memory consumption and running time.

5.3 Effects of individual techniques

In this section, we evaluate the e�ects of two individual
techniques in IsoDi�: checking timing constraint and check-
ing correlation. Note that correlation are used in two ways:
to check whether a found � cycle is valid and to identify
non-vulnerable rw edges for Snapshot Isolation.

Table 4 presents the results. As one can see, the e�ects of
these techniques are significant for some applications: check-
ing time constraint can invalidate up to 85% of the found
� cycles; checking correlation can invalidate up to 55% of
the found � cycles; and up to 94% of the rw edges are non-
vulnerable. The real impact of identifying non-vulnerable
rw edges may be larger than the numbers shown in the ta-
ble, because for Snapshot Isolation, the dangerous path
should include two consecutive vulnerable rw edges, and
thus one rw edge marked as non-vulnerable may make a
few other vulnerable rw edges harmless. Such results have
confirmed the necessity of automatic checking.

For correlation checking, we further record the percentage
of � cycles whose correlated edges can be enumerated under
the time limit (i.e., 15s). As shown in Table 5, the coverage
is at least 96% with some of them reaching 100%.
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Table 4: E�ects of individual techniques: Timing = (#
cycles invalidated by timing check) / (# all found cycles);
Corr = (# cycles invalidated by correlation check) / (# all
found cycles); NV = (# non-vulnerable rw edges) / (# all
rw edges); N/A means IsoDi� does not find any � cycles.

Application
Read Committed Snapshot Isolation
Timing Corr Timing Corr NV

tpcc 76% 7.8% N/A N/A 93%
shoppe 85% 2.3% 52% 9.6% 69%
lfs 26% 21% 10% 35% 19%
opencart 85% 1.6% N/A N/A 91%
prestashop 17% 11% 0 0 37%
wc 67% 10% 29% 16% 94%
attendize 53% 10% 0 55% 88%
fa 63% 4.0% 0 2.6% 57%

Table 5: The coverage of � cycles with correlated edges.

App RC SI
tpcc 100% N/A
shoppe 100% 100%
lfs 96.8% 100%
opencart 99.9% N/A

App RC SI
prestashop 99.0% 100%
wc 96.4% 100%
attendize 99.4% 100%
fa 100% 100%

6. RELATED WORK

Isolation levels in practice. To balance performance
and ease of programming, the database community has in-
troduced a number of isolation levels, including Serializ-
able [29], strict Serializable, Snapshot Isolation [13],
Read Committed [13], Repeatable Read [13], Read
Committed Snapshot [26], Parallel Snapshot Isola-
tion [33], and others.

Though (strict) Serializable is usually preferred by de-
velopers and is used in many research works (including but
not limited to [27, 28, 34, 36, 38, 41, 42, 44, 45]), a number of
studies have shown that Read Committed and Snapshot
Isolation are the most widely used isolation levels in prac-
tice [17,30]. This is the first major motivation of our work.

Defining isolation levels. Given so many di�erent isola-
tion levels, how to precisely define them has become a chal-
lenging and critical problem in the database community.

The early ANSI standard [10] defines di�erent isolation
levels as preventing di�erent phenomenon. For example,
it defines Read Committed as preventing “dirty read”,
defines Repeatable Read as preventing “non-repeatable
read” upon Read Committed, and defines Serializable
as preventing “phantom read” upon Repeatable Read.

This definition is criticized by the following work for its
inaccuracy [13]. Instead, the following work [13] defines iso-
lation levels as di�erent locking strategies. For example,
Read Committed should hold write lock to the end of the
transaction and hold read lock to the end of the operation;
Serializable should hold both write and read locks to the
end of the transaction.

However, this definition is criticized by following works
as well because it does not work with databases that do
not use lock implementation. To achieve both precision and

generality, Adya et. al. define di�erent isolation levels as
preventing di�erent types of cycles in the dependency se-
rialization graph [12]. For example, Serializable should
prevent any cycles and Read Committed should prevent
cycles consisting of ww and wr edges. Feketa et. al. ex-
tend this definition to Snapshot Isolation, showing that
Snapshot Isolation should only allow cycles with at least
two consecutive rw edges [20]. Such graph-based definition
has become today’s standard in the database community.

A number of recent works [17, 35] attempt to make such
definition more developer friendly by defining isolation from
the external view. For example, Crooks et. al. [17] define
Snapshot Isolation as a transaction T ’s operations must
read from the same state s, which is the state that T tran-
sitions from.

Given the long history of finding the right definition of
isolation levels, precisely understanding di�erent isolation
levels is not an easy task, especially for non-experts, which
creates the concern that developers may not be able to use
them properly. This is the second motivation of our work.

Finding anomalies of using weaker isolation levels.
To find potential anomalies, previous works first build a
dependency graph with all possible dependency edges and
then search for certain types of cycles in the dependency
graph. Fekete et.al. apply this idea to study the anomalies
for Snapshot Isolation [18], and its following work [23]
tries to automate the whole procedure. ACIDRain [39] ap-
plies this idea to find security vulnerabilities in database
applications. For example, it shows that, by exploiting the
anomaly, a malicious user may be able to spend his/her
money twice, causing the classic “double spending” prob-
lem. To understand how frequently anomalies actually hap-
pen, Fekete et.al. build a microbenchmark to quantitatively
predict the frequency of anomalies at runtime [19].

IsoDi� is built upon many ideas in this line of work, but
tries to reduce both false negatives and false positives for
the purpose of debugging.

7. CONCLUSION AND FUTURE WORK

This paper proposes IsoDi�, a tool to help developers de-
bug anomalies caused by weaker isolation levels. Our anal-
ysis on TPC-C and real applications has demonstrated the
e�ectiveness of IsoDi� and revealed potential directions to
further improve such tools. In the future, we plan to utilize
static analysis to automatically extract transactions and cor-
relations, and to further improve the accuracy of false pos-
itive detection. Furthermore, our analysis shows anomalies
are common in applications that use weaker isolation levels,
which confirms the suspicion that developers find it di�cult
to translate abstract examples of anomalies to their e�ects
on the application logic. Developing usable tools to support
application development under weaker isolation levels is a
promising avenue for future work.
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