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ABSTRACT
Natural Language Interfaces to Databases (NLIDB) systems elim-
inate the requirement for an end user to use complex query lan-
guages like SQL, by translating the input natural language (NL)
queries to SQL automatically. Although a significant volume of
research has focused on this space, most state-of-the-art systems
can at best handle simple select-project-join queries. There has
been little to no research on extending the capabilities of NLIDB
systems to handle complex business intelligence (BI) queries that
often involve nesting as well as aggregation. In this paper, we
present ATHENA++, an end-to-end system that can answer such
complex queries in natural language by translating them into nested
SQL queries. In particular, ATHENA++ combines linguistic pat-
terns from NL queries with deep domain reasoning using ontolo-
gies to enable nested query detection and generation. We also in-
troduce a new benchmark data set (FIBEN), which consists of 300
NL queries, corresponding to 237 distinct complex SQL queries
on a database with 152 tables, conforming to an ontology derived
from standard financial ontologies (FIBO and FRO). We conducted
extensive experiments comparing ATHENA++ with two state-of-
the-art NLIDB systems, using both FIBEN and the prominent Spi-
der benchmark. ATHENA++ consistently outperforms both sys-
tems across all benchmark data sets with a wide variety of com-
plex queries, achieving 88.33% accuracy on FIBEN benchmark,
and 78.89% accuracy on Spider benchmark, beating the best re-
ported accuracy results on the dev set by 8%.
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1. INTRODUCTION
Recent advances in natural language understanding and process-

ing have fueled a renewed interest in Natural Language Interfaces
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to Databases (NLIDB) [22, 7, 26]. By 2022, 70% of white-collar
workers are expected to interact with conversational systems on
a daily basis1. The reason behind such increasing popularity of
NLIDB systems is that they do not require the users to learn a com-
plex query language such as SQL, to understand the exact schema
of the data, or to know how the data is stored. NLIDB systems
offer an intuitive way to explore complex data sets, beyond simple
keyword-search queries.

Early NLIDB systems [6, 32] allowed only queries in the form
of a set of keywords, which have limited expressive power. Since
then, there have been works [20, 27, 31, 11, 29, 39, 34, 8] that in-
terpret the semantics of a full-blown natural language (NL) query.
Rule-based and machine learning-based approaches are commonly
used to handle NL-to-SQL query translation. ATHENA [29] and
NaLIR [20] are two representative rule-based systems that use a set
of rules in producing an interpretation of the terms identified in the
user NL query. Several machine learning-based approaches [11, 27,
31, 39, 34] have shown promising results in terms of robustness to
NL variations, but these systems require large amounts of training
data, which limits their re-usability in a new domain. Others re-
quire additional user feedback [18, 23] or query logs [8] to resolve
ambiguities, which can be detrimental to user experience or can be
noisy and hard to obtain. Most of these works generate simple SQL
queries, including selection queries on a single table, aggregation
queries on a single table involving GROUP BY and ORDER BY,
and single-block SQL queries involving multiple tables (JOIN).

In this paper, we particularly focus on business intelligence (BI)
and data warehouse (DW) queries. Enterprises rely on such analyt-
ical queries to derive crucial business insights from their databases,
which contain many tables, and complex relationships. As a re-
sult, analytical queries on these databases are also complex, and
often involve nesting and many SQL constructs. Although there
have been some attempts [20, 10, 9] to generate such analytical
queries (e.g., aggregation, join, or nested), to the best of our knowl-
edge, none of these NLIDB systems can consistently provide high-
quality results for NL queries with complex SQL constructs across
different domains [7].

There are two major challenges for nested query handling in
NLIDB: nested query detection, i.e., determining whether a nested
query is needed, and nested query building, i.e., determining the
sub-queries and join conditions that constitute the nested query.

Nested Query Detection Challenge. Detecting whether a NL
query needs to be expressed as a nested (SQL) query is non-trivial

1Gartner - https://www.gartner.com/smarterwithgartner/chatbots-
will-appeal-to-modern-workers/
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Table 1: NL Query Examples and Nested Query Type
Query NL Query Example Type
Q1 Show me the customers who are also Type-N

account managers.
Q2 Show me Amazon customers who are also Non-

from Seattle. Nested
Q3 Who has bought more IBM stocks Type-JA

than they sold?
Q4 Who has bought and sold the same stock? Type-J
Q5 Which stocks had the largest volume Type-A

of trade today?
Q6 Who has bought stocks in 2019 that have Type-J

gone up in value?
Q7 Show me all transactions with price Type-JA

more than IBM’s average in 2019.
Q8 The number of companies having average Type-JA

revenues more than 1 billion last year.

due to (i) ambiguities in linguistic patterns, and (ii) the variety in
the types of nested queries.

Ambiguities in linguistic patterns. Consider the queries Q1 and
Q2 from Table 1. Intuitively, Q1 requires a nested query to find
the intersection between customers and account managers, because
the key phrase “who are also” indicates a potential nesting, and
“account managers” and “customers” refer to two tables in the
database schema. On the other hand, the same phrase “who are
also” in Q2 does not lead to a nested query, because “Seattle”
is simply a filter for “customers”, not a table like “account man-
agers”. In other words, linguistic patterns alone are not sufficient
in detecting nested queries. Rather, we need to reason over the do-
main semantics in the context of the query to identify whether a
nested query is needed or not.

Variety in the types of nested queries. Linguistic patterns may
lead to different types of nested queries. Table 1 lists several ex-
amples of different nested query types. In this paper, we adapt
the nested query classification from [17]. These nested query types
will be further explained in Section 2.3. Query Q3 indicates a com-
parison by the phrase “more than”, although the two words in this
phrase are not contiguous in the NL query. Query Q4 does not have
an explicit comparison phrase, but still requires a nested query to
enforce the “same stock”. In this case, the set of people used in the
inner query references to the people in the outer query, creating a
correlation between inner and outer query blocks. The key phrases
to detect such nesting are “everyone” and “same stock”.

Nested Query Building Challenge. There are two challenges
for nested query building: (i) finding proper sub-queries (i.e., the
outer and inner queries), and (ii) identifying the correct join con-
ditions between the outer and inner queries.

Finding proper sub-queries. Consider the query Q6 from Ta-
ble 1. The key phrase “gone up” indicates that Q6 needs to be
interpreted into a nested SQL query. If we naı̈vely use the position
of phrase “gone up” to segregate Q6 into outer and inner query
tokens, the tokens “stocks” and “value” belong to the outer and
the inner queries, respectively. However, the token “value” is also
relevant to the outer query since it specifies the specific information
associated with the stocks. Similarly, the token “stocks” is relevant
to the inner query as well. Hence, segregating the tokens in a NL
query for different sub-queries including the implicitly shared ones
is critical to the correctness of the resulting nested query.

Deriving join conditions. Linguistic patterns in the NL queries
often contain hints about join conditions between the outer and in-
ner queries. However, deriving the correct join condition solely

based on these patterns can be challenging. Consider the query
Q6 again, in which the phrase “gone up” indicates a comparison
(>) operator. In addition, a linguistic dependency parsing identifies
that two tokens “stocks” and “value” are dependent on the phrase
“gone up”. It appears that the join condition would be a compar-
ison between “stocks” and “value”. However, reasoning over the
semantics of domain schema shows that only the token “value”
refers to a numeric type, which is applicable to “stocks”. Hence,
the correct join condition is a comparison between the “value” of
both sub-queries. Clearly, deriving a correct join condition requires
an NLIDB system to not only exploit linguistic patterns but also
understand the semantics of domain schema.

In this paper, we present ATHENA++, an end-to-end NLIDB sys-
tem that tackles the above challenges in generating complex nested
SQL queries for analytics workloads. We extend ATHENA++ on
our earlier work [29], which uses an ontology-driven two-step ap-
proach, but does not provide a comprehensive support for all nested
query types. We use domain ontologies to capture the semantics
of a domain and to provide a standard description of the domain
for applications to use. Given an NL query, ATHENA++ exploits
linguistic analysis and domain reasoning to detect that a nested
SQL query needs to be generated. The given NL query is then
partitioned into multiple evidence sets corresponding to individual
sub-queries (inner and outer). Each evidence set for a query block
is translated into queries expressed in Ontology Query Language
(OQL), introduced in [29], over the domain ontology, and these
OQL queries are connected by the proper join conditions to form
a complete OQL query. Finally, the resulting OQL query is trans-
lated into a SQL query by using mappings between the ontology
and database, and executed against the database.

Contributions. We highlight our main contributions as follows:
• We introduce ATHENA++, which extends ATHENA [29] to

translate complex analytical queries expressed in natural language
into possibly nested SQL queries.
• We propose a novel nested query detection method that com-

bines linguistic analysis with deep domain reasoning to categorize
a natural language query into four well-known nested SQL query
types [17].
•We design an effective nested query building method that forms

proper sub-queries and identifies correct join conditions between
these sub-queries to generate the final nested SQL query.
• We provide a new benchmark (FIBEN2) which emulates a fi-

nancial data warehouse with data from SEC [5] and TPoX [25]
benchmark. FIBEN contains a large number of tables per schema
compared to existing benchmarks, as well as a wide spectrum of
query pairs (NL queries with their corresponding SQL queries),
categorized into different nested query types.
•We conduct extensive experimental evaluations on four bench-

mark data sets including FIBEN, and the prominent Spider bench-
mark [37]. ATHENA++ achieves 88.33% accuracy on FIBEN, and
78.89% accuracy on Spider (evaluated on the dev set), outperform-
ing the best reported accuracy on the dev set (70.6%) by 8%.3

The rest of the paper is organized as follows. Section 2 intro-
duces the basic concepts, including the domain ontology, ontology-
driven natural language interpretation, and the nested query types.
Section 3 provides an overview of our ATHENA++ system. Sec-
tions 4 and 5 describe the nested query detection and translation,
respectively. We provide our experimental results in Section 6, re-
view related work in Section 7, and finally conclude in Section 8.

2Available at https://github.com/IBM/fiben-benchmark
3Based on the results published on https://yale-lily.
github.io/spider (last accessed: 07/15/2020).
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2. BACKGROUND
In this section, we provide a short description of domain ontolo-

gies, because we rely on them for domain reasoning. Then, we re-
cap the ontology-driven approach of ATHENA [29], and describe
four types of nested SQL queries that ATHENA++ targets.

2.1 Domain Ontology
We use domain ontologies to capture the semantics of the do-

main schema. A domain ontology provides a rich and expressive
data model combined with a powerful object-oriented paradigm
that captures a variety of real-world relationships between entities
such as inheritance, union, and functionality. We use OWL [4] for
domain ontologies, where real-world entities are captured as con-
cepts, each concept has zero or more data properties, describing the
concept, and zero or more object properties, capturing its relation-
ships with other concepts. We consider three types of relationships:
(i) isA or inheritance relationships where all child instances inherit
some or all properties of the parent concept, (ii) union relationships
where the children of the same parent are mutually exclusive and
exhaustive, i.e., every instance of the parent is an instance of one
of its children, and finally (iii) functional relationships where two
concepts are connected via some functional dependency, such as a
listed security provided by a corporation. We represent an ontol-
ogy as O = (C,R, P ), where C is a set of concepts, R is a set
of relationships, and P is a set of data properties. We use the term
ontology element to refer to a concept, relationship, or property of
an ontology. Figure 1 shows a snippet of the financial ontology
FIBEN, corresponding to our new benchmark data set.

Figure 1: Snippet of a Financial (FIBEN) Ontology

2.2 Ontology-driven NL Query Interpretation
In this paper, we extend the ontology-driven approach introduced

in [29] to handle more complex nested queries. Here, we pro-
vide a short description. The approach has two stages. In the
first stage, we interpret an NL query against a domain ontology,
and generate an intermediate query expressed in Ontology Query
Language (OQL). OQL is specifically designed to allow express-
ing queries over a domain ontology, regardless of the underlying
physical schema. In the second stage, we compile and translate
the OQL query into SQL using ontology-to-database mappings.
The ontology-to-physical-schema mappings are an essential part of
query interpretation, and can be either provided by relational store
designers or generated as part of ontology discovery [19].

Specifically, given an NL query, we parse it into tokens (i.e., sets
of words), and annotate each token with one or more ontology el-
ements, called candidates. Intuitively, each annotation provides
evidence about how these candidates are referenced in the query.
There are two types of matches. In the first case, the tokens in
the query match to the names of concepts or the data properties
directly. In the second case, we utilize a special semantic index,
called Translation Index (TI), to match tokens to instance values in
the data. For example, the token “IBM” in Q3 from Table 1 can

be mapped to the data properties Corporation.name and ListedSe-
curity.hasLegalName amongst other ontology elements in Figure 1.
Formally, an evidence vi : ti 7→ Ei is a mapping of a token ti to
a set of ontology elements Ei ⊆ {C ∪ R ∪ P}. The output of the
annotation process is a set of evidences (each corresponding to a
token in the query), which we call Evidence Set (ES).

Next, we iterate over every evidence in ES and select a single
ontology element (ei ∈ Ei) from each evidence’s candidates (Ei)
to create an interpretation of the given NL query. Since every token
may have multiple candidates, the query may have multiple inter-
pretations. Each interpretation is represented by an interpretation
tree. An interpretation tree (hereafter called ITree), correspond-
ing to one interpretation and an Ontology O = (C,R, P ), is for-
mally defined as ITree = (C′, R′, P ′) such that C′ ⊆ C, R′ ⊆ R,
and P ′ ⊆ P . In order to select the optimal interpretation(s) for
a given query, we rely on a Steiner Tree-based algorithm [29]. If
the Steiner Tree-based algorithm detects more than one optimal so-
lutions, then we end up with multiple interpretations for the same
query. A unique OQL query is produced for each interpretation.
Finally, each OQL query is translated into a SQL query by using a
given mapping between the domain ontology and database schema.

2.3 Nested Query Types
For the following discussion, we assume that a SQL query has

only one level of nesting, which consists of an outer block and an
inner block. Further, it is assumed that the WHERE clause of the
outer block contains only one nested predicate. These assumptions
cause no loss of generality, as shown in [17].

Table 2: Nested Query Types
Query Aggregation Correlation between Division
Types Inner & Outer Queries Predicate
Type-A 3 7 7

Type-N 7 7 7

Type-J 7 3 7

Type-JA 3 3 7

Type-D 7 3 3

Following the definitions in [17], we assume that a nested SQL
query can be composed of five basic types of nesting (Table 2). In
summary, Type-A queries do not contain a join predicate that ref-
erences the relation of the outer query block, but contain an aggre-
gation function in the inner block. Type-N queries contain neither
a correlated join between an inner and outer block, nor an aggre-
gation in the inner block. Type-J queries contain a join predicate
that references the relation of the outer query block but no aggrega-
tion function in the inner block, and finally Type-JA queries contain
both a correlated join as well as an aggregation. A join predicate
and a division predicate together give rise to a Type-D nesting, if
the join predicate in either inner query block (or both) references
the relation of the outer block. Since the division operator used in
Type-D queries does not have a direct implementation in relational
databases [13], we choose not to translate NL queries into Type-D
queries. Hence we focus on detecting and interpreting NL queries
corresponding to the first four nesting types [13]. Table 1 lists a
few NL queries with their associated nesting types.

3. SYSTEM OVERVIEW
Figure 2 illustrates the architecture of ATHENA++ , extended

from ATHENA [29]. Similar to ATHENA, an NL query is first
translated into OQL queries over the domain ontology, and then,
each OQL query is translated into a SQL query by using the map-
pings between the ontology and the database, and executed against
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the database. In this process, we re-use some of the components
(in grey) introduced in [29], including Translation Index, Domain
Ontology, Ontology to Database Mapping, and Query Translator.
The newly added components for nested query handling are Nested
Query Detector and Nested Query Building.

Ranked OQL Queries
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Database 
Mapping
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ue

rie
s

NL Query
Nested Query Detector

User
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Database

Evidence 
Annotator

Nested Query Classifier

Evidence Partitioner

Operation 
Annotator

Interpretation 
Tree Generator

Hierarchical Query Generation

Join Condition 
Generator

Translation
Index

Figure 2: System Architecture

We use query Q6 (show me everyone who bought stocks in 2019
that have gone up in value) from Table 1 as a running example to
illustrate the workflow of ATHENA++ in Figure 3.

Evidence Annotator exploits Translation Index (TI) and Do-
main Ontology to map tokens in the query to data instances in the
database, ontology elements, or SQL query clauses (e.g., SELECT,
FROM, and WHERE). For example, the token “stocks” is mapped to
“ListedSecurity” concept in the domain ontology. In addition, it
also annotates the tokens as certain types such as time and number.

Operation Annotator leverages Stanford CoreNLP [24] for to-
kenization and annotating dependencies between tokens in the NL
query. It also identifies linguistic patterns specific to nested queries,
such as aggregation and comparison. The output of Evidence and
Operation Annotators is an Evidence Set ES.

Nested Query Classifier takes as input the evidence set with an-
notations from Evidence and Operation Annotators, and identifies
if the NL query corresponds to one of the nested query types of Ta-
ble 2. In the example of Figure 3, it identifies that the phrase “gone
up” refers to stock value which is compared between the outer and
inner queries, and hence decides that Q6 is a Type-J nested query.

Figure 3: Example Query (Q6) and Evidence Sets

Evidence Partitioner splits a given evidence set into potentially
overlapping partitions by following a set of proposed heuristics
based on linguistic patterns and domain reasoning, to delineate the
inner and outer query blocks. As shown in Figure 3, for query Q6

this results into two evidence sets ES1 and ES2 for the inner query
and the outer query, respectively. ES1 and ES2 are connected by
the detected nested query token “gone up”.

Join Condition Generator consumes a pair of evidence sets
ES1 and ES2, and produces a join condition which can be repre-
sented by a comparison operator Op with two operands from ES1

and ES2, respectively. For example, the join condition for Q6 is
ES1.value > ES2.value.

Interpretation Tree Generator exploits the Steiner Tree-based
algorithm introduced in [29] to return a single interpretation tree
(ITree) for each evidence set produced by the Evidence Partitioner.

Hierarchical Query Generation is responsible for stitching the
interpretation trees together by using the generated join conditions.
In case of arbitrary levels of nesting, the Hierarchical Query Gener-
ation recursively builds the OQL query from the most inner query
to the last outer query.

4. NESTED QUERY DETECTION
4.1 Evidence and Operation Annotators

As motivated in Section 1, the linguistic patterns and domain se-
mantics are critical to the success of nested query detection. To
discover such salient information, we first employ the open source
Stanford CoreNLP [24] to tokenize and parse the input NL query.
Then, for each token t, we introduce Operation Annotators to ex-
tract the linguistic patterns and Evidence Annotators to identify the
domain semantics, respectively.

Evidence Annotator. The evidence annotator associates a token
t with one or more ontology elements including concepts, relation-
ships, and data properties. To identify the ontology elements, we
use Translation Index (TI) shown in Figure 2, which captures the
domain vocabulary, providing data and metadata indexing for data
values, and for concepts, properties, and relations, respectively. For
example, in Q6 the tokens “stocks” and “bought” are mapped to
the concept “ListedSecurity” and the property “Transaction.type”,
respectively, in the ontology shown in Figure 1. Alternative se-
mantic similarity-based methods such as word embedding or edit
distance can be utilized as well to increase matching recall, with a
potential loss in precision.

The Evidence Annotator also annotates tokens that indicate time
ranges (e.g., “in 2019” in Q6) and then associates them with the
ontology properties (e.g., “Transaction.time”) whose correspond-
ing data type is time-related (e.g., Date). Similarly, the Evidence
Annotator annotates tokens that mention numeric quantities, either
in the form of numbers or in text, and subsequently matches them
to ontology properties with numerical data types (e.g., Double).
Finally, the Evidence Annotator further annotates certain identi-
fied Entity tokens that are specific to the SELECT clause of the
outer SQL query, using POS tagging and dependency parsing from
Stanford CoreNLP. Such entities are referred to as Focus Entities,
as they represent what users want to see as the result of their NL
queries. Table 3 lists several examples of the Evidence and Opera-
tion Annotators (separated by double lines). We also use other an-
notators for detecting various SQL query clauses such as GROUPBY
and ORDERBY. These are orthogonal to nested query detection and
translation, and hence we do not include them in Table 3.

Operation Annotator. The Operation Annotator assigns op-
eration types to the tokens, when applicable. As shown in Ta-
ble 3, our Operation Annotator primarily targets four linguistic
patterns: count, aggregation, comparison, and negation. We dis-
tinguish count from other aggregation functions as it also applies
to non-numeric data. A few representative examples of tokens
corresponding to each annotation type are also presented in Ta-
ble 3. Additionally, the Operation Annotator also leverages Stan-
ford CoreNLP [24] for annotating dependencies between tokens in
the NL query. The produced dependent tokens are then used in the
nested query classification.

Note that each token can be associated with multiple annotations
from both Evidence and Operation Annotators. For example, “ev-
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eryone” in Q6 is associated with the ontology concepts “Person”,
“Autonomous Agent”, and “Contract Party”. The above annota-
tions capture the linguistic patterns and domain semantics embed-
ded in the given NL query and are utilized by the Nested Query
Classifier to decide if the query belongs to one of the four nested
query types described in Section 2.3.

Table 3: Evidence & Operation Annotators
Annotations Example Token t

Entity customer, stocks, etc.
Instance IBM, California, etc.
Time since 2010, in 2019, from 2010 to 2019, etc.
Numeric 16.8, sixty eight, etc.
Measure revenue, price, value, volume of trade, etc.
Count count of, number of, how many, etc.
Aggregation total/sum, max, min, average, etc.

more/less than, gone up, etc.
Comparison equal, same, also, too, etc.

not equal, different, another, etc.
Negation no, not, none, nothing, etc.

4.2 Nested Query Classifier
Nested query detection uses annotated tokens from Evidence and

Operation Annotators to detect if an input NL query is a nested
query of a specific type. For each nested query type, the detection
process uses a conjunction of rules based on (1) evidence and oper-
ation annotations, and (2) dependencies among specific annotated
tokens. Intuitively, the rules on evidence and operation annotation
check for the presence of certain linguistic patterns or specific on-
tology elements, and the rules on dependency analysis check if the
annotated tokens are related to each other in a way correspond-
ing to a specific nested query type. The nested query detection of
ATHENA++ is presented in Algorithm 1.

The nested query detection algorithm first categorizes the oper-
ation annotations into two groups, aggTokens and joinTokens, re-
spectively. The aggregation tokens indicate potential aggregation
functions involved in the NL query, and the join tokens indicate po-
tential join predicates between the inner and the outer query blocks.
Note that there could be multi-level nesting in a given NL query.
Hence, the tokens in both aggTokens and joinTokens groups are
sorted in the order of their positions in the NL query. Below, we
explain the detection rules for each nested query type in details, and
use the queries in Table 1 as examples.

• Type-N. When aggTokens is empty, we examine whether the de-
pendent tokens of each jt in joinTokens indicate any correlation
between the inner and outer queries. When the dependent tokens
of jt are a measure and a numeric value, intuitively it indicates
that jt is a numeric comparison, which does not require a join
predicate referencing the outer query. Also, when the dependent
tokens are of type Entity and the corresponding concepts in the
ontology are siblings, it indicates that two entity sets in the inner
and outer queries are directly comparable without a join.
Example. In Q1 (“show me the customers who are also account
managers”), the token “also” refers to an equality between de-
pendent entities “customers” and “account managers”. Both en-
tities are children of “Person” in the domain ontology, leading to
a set comparison between the join results from inner and outer
queries. Hence, both example queries are Type-N.

• Type-A. We consider a query as a candidate of Type-A if joinTo-
kens is empty. The reason is that a Type-A nested query does not
involve any correlation between inner and outer queries. Next,

Algorithm 1: Nested Query Detection Algorithm
Input: A natural language query Q
Output: Nested query tokens nqTokens

1 nqTokens, aggTokens, joinTokens← ∅
2 T ← tokenize(Q)
3 dep← dependencyParsing(Q,T )
4 foreach t ∈ T do
5 t.annot← annotators(t)
6 if t.annot = Count or t.annot = Aggregation then
7 aggTokens.add(t)

8 else if t.annot = Comparison or Negation then
9 joinTokens.add(t)

10 if aggTokens = ∅ and joinTokens 6= ∅ then
11 foreach jt ∈ joinTokens do
12 TE ← dep.get(jt, Entity)
13 if jt.annot ∈ {Negation, Equality, Inequality} then
14 if jt.next ∈ TE and jt.prev ∈ TE and

sibling(jt.next, jt.prev) then
15 jt.nType← Type-N

16 else if jt.next ∈ TE or jt.prev ∈ TE then
17 jt.nType← Type-J

18 if jt.annot = Comparison and jt.prev.annot = Measure
and jt.next.annot = Numeric then

19 jt.nType← Type-N

20 nqTokens.add(jt)

21 else if aggTokens 6= ∅ and joinTokens = ∅ then
22 foreach at ∈ aggTokens do
23 if at.annot = Aggregation then
24 foreach dt ∈ dep.get(at, Entity) do
25 if at.pos > dt.pos then
26 at.nType← Type-A
27 nqTokens.add(at)
28 break

29 else if aggTokens 6= ∅ and joinTokens 6= ∅ then
30 foreach jt ∈ joinTokens do
31 if jt.annot = Comparison and

jt.prev ∈ dep.get(jt,Measure) then
32 jt.nType← Type-JA
33 nqTokens.add(jt)

34 foreach at ∈ aggTokens do
35 if at.annot = Aggregation and dep.get(at, Count) 6= ∅

and dep.get(at, Entity) 6= ∅ and
dep.get(at, Comparison) 6= ∅ then

36 at.nType← Type-JA
37 nqTokens.add(at)

38 return nqTokens

we check each token (at) in aggTokens to see if a dependent
token of at is of type Entity and also appears before at. The
intuition is that an aggregation token is often applied to a previ-
ously mentioned entity in a query.
Example. The token “largest” in Q5 (“Which stocks had the
largest volume of trade today”) is of type Aggregation and is ap-
plied to the entity “stock”. Hence, Q5 is a Type-A nested query.

• Type-J. The prerequisite for Type-J is that a given NL query has
at least one token jt in joinTokens. For each jt, we find its de-
pendent tokens TE of type Entity. Then, we further examine the
operator annotation of jt. Specifically, if jt is a negation and it
appears before its dependent token in the query, then this indi-
cates that the negation is applied to the entity in the inner query,
and the outer query is correlated to the inner query by jt. If jt
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is a comparison and its dependent entity is before or after in the
query, then it is a strong signal that jt compares the entities be-
tween the inner and outer queries.
Example. The token “same” in Q4 (“Who has bought and sold
the same stock”) indicates a potential correlation between inner
and outer queries, and it depends on the entity “stock”. There-
fore, Q4 is a Type-J nested query.

• Type-JA. When neither aggTokens nor joinTokens are empty, the
corresponding NL query is a candidate of Type-JA. For every
jt in joinTokens, we check if jt is a comparison and the token
before jt is one of jt’s dependent tokens of type Measure. In-
tuitively, an aggregation is needed in the inner query so that the
result of the inner query can be compared with the measure in the
outer query. On the other hand, for every token at in aggTokens,
we check if at is of type Aggregation and its dependent tokens
are of type Count, Entity, or Comparison. Intuitively, the inner
query with an aggregation is correlated with the outer query by
a comparison, an entity reference, or another aggregation.
Example. The token “more than” in Q3 (“Who has bought more
IBM stocks than they sold”) is of type Comparison, and the to-
ken “stock” implies the volume of trade (i.e., a measure). Con-
sequently, Q3 is a Type-JA nested query.

To support multi-level nesting, the nested query detection al-
gorithm associates the detected nested query types to their corre-
sponding tokens. This way, the appropriate evidence partitioning
strategies (Section 4.3) can be applied to each nesting level depend-
ing on the associated type. If none of the tokens have a nested query
type detected, then the given NL query is not a nested query.

4.3 Evidence Partitioner
A nested SQL query can be viewed as a hierarchy of sub-queries,

where the results of the sub-queries are linked with the appropriate
nested predicates on the sub-query results. Without loss of general-
ity, we assume that an NL query is roughly split into two individual
sub-queries, which are referred to as an outer query and an inner
query. If a query requires multi-level nesting, the inner query can
be further split into outer and inner sub-queries. These sub-queries
are connected with the corresponding nested predicate as well.

The Evidence Partitioner is designed to split the evidence set ES
corresponding to the complete query Q into two subsets ES1 and
ES2, which contain evidence related to the outer query and the in-
ner query of Q, respectively. A straightforward approach would be
to partition ES based on the nested query tokens nqTokens from
Algorithm 1. The tokens that appear before (after) a nested query
token would belong to the outer (inner) query evidence set ES1

(ES2). However, such partitioning often fails to capture sufficient
information (evidence) for each sub-query, resulting in an incorrect
SQL query or even failing to produce one.

Example. The nested query token of Q6 is “gone up”. If we only
consider the tokens after the nested query token, the inner query ev-
idence set ES2 would be {“value”} that is insufficient to produce
a valid nested SQL query. In fact, from the detected linguistic pat-
terns, we know that Q6 is a nested query of Type-J, where a join
predicate exists between the outer and inner query blocks. We also
identify that the token “stocks” has a dependency with “value”.
Hence, “stocks” should be part of ES2 as well.

To overcome such shortcomings of the aforementioned straight-
forward approach, we discover a set of partitioning heuristics based
on the detected nested query types associated with the nested query
tokens, as well as the linguistic patterns and domain semantics as-
sociated with all tokens from the given query. Driven by these

heuristics, our Evidence Partitioner generates both outer (ES1) and
inner (ES2) evidence sets appropriately.

• Heuristic 1 (Co-reference). In Type-J and Type-JA queries, a join
predicate references the outer query block. Hence, any token t in
ES1, co-referenced by a token t′ in ES2, should be part of ES2.
We utilize Stanford CoreNLP [24] for co-reference resolution.
Example. In Q3 (Table 1), the token “who” in ES1 is added to
ES2, since “they” in ES2 refers to “who”.
• Heuristic 2 (Time sharing). Any token t of type Time should be

part of both ES1 and ES2 unless ES1 and ES2 contain separate
tokens of type Time of their own. The time sharing heuristic is
generic to all nested query types, since it aims to discover the
hidden time predicate of ES1 or ES2 from the NL query.
Example. The token “in 2019” in Q6 should be added to ES2

as it implicitly specifies the time range for the inner query.
• Heuristic 3 (Instance sharing). Any token t of type Instance in

either ES1 or ES2 should be part of both ES1 and ES2 for non-
aggregation queries. We introduce the instance sharing heuristic
for Type-J and Type-N nested queries since the instance is often
used as part of a predicate in a sub-query.
Example. The token “IBM” in a slight variation of Q6 (“who
has bought IBM stock in 2019 that has gone up in value”) is
a data instance, and it should be added to ES2 since the inner
query is about the value of “IBM”.
• Heuristic 4 (Focus sharing). If a non-numeric comparison is de-

tected but the inner query does not contain a Focus Entity, then
the outer query shares its Focus Entity with the inner query in
order to complete the comparison. Namely, the Focus Entity in
ES1 should be shared with ES2.
Example. In Q4 (Table 1), the Focus Entity “who” of ES1 is
shared with ES2.
• Heuristic 5 (Argument sharing). If one of the arguments of a

comparison is missing from either ES1 or ES2, then the avail-
able argument should be shared between ES1 and ES2. Similar
to the time sharing heuristic, the argument sharing heuristic is
also generic to all nested query types. The reasons are twofold:
a comparison always requires two arguments, and the arguments
can be associated with or without an aggregation.
Example. In Q4, “stocks” should be shared since both “bought”
and “sold” have the same argument. Similarly, in Q7, “price”
should be shared with the inner block “IBM’s average in 2019”.
• Heuristic 6 (Entity/Instance sharing in numeric comparison).

Every token t of Entity type in ES1 should be part of ES2, if
t has a dependent entity in ES2; or every token t of Instance
type in ES1 should be part of ES2, if t has a functional relation-
ship with the comparison argument.
Example. In Q6, the token “stocks” has a dependency with the
token “value” in ES2, so it is added to ES2. In Q3, the token
“IBM” (i.e., an instance of Corporation.name) has a functional
relationship in the domain ontology with the concept “stocks”.
In this case, “IBM” is shared with ES2 as well.

In Table 4, we summarize the applicability of each partitioning
heuristic with respect to all nested query types. Note that the above
heuristics are not mutually exclusive, as they only introduce evi-
dence to either ES1 or ES2 without removing any evidence. Con-
sequently, our evidence partitioning algorithm (Algorithm 2) re-
cursively utilizes these heuristics at each level of nesting as long as
they are applicable to the corresponding nested query type.

The design goal of the above partitioning heuristics is to dis-
cover latent linguistic information for each sub-query in the given
NL query. We observe that these heuristics work well in practice,
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Table 4: Partitioning Heuristics w.r.t Nested Query Type
Type-N Type-A Type-J Type-JA

Heuristic 1 3 3

Heuristic 2 3 3 3 3

Heuristic 3 3 3

Heuristic 4 3 3

Heuristic 5 3 3 3 3

Heuristic 6 3 3 3

Algorithm 2: Evidence Partitioning Algorithm
Input: Nested query tokens nqTokens, Evidence set ES
Output: A list of evidence sets ListES

1 ListES ← ∅
2 foreach nqt ∈ nqTokens do
3 ES1 ← ES.before(nqt)
4 ES2 ← ES.after(nqt)
5 if nqt.type = Type-N then
6 applyHeuristic(ES1, ES2, H2, H3, H4, H5)

7 else if nqt.type = Type-A then
8 applyHeuristic(ES1, ES2, H5, H6)

9 else if nqt.type = Type-J then
10 applyHeuristic(ES1, ES2, H1, H2, H3, H4, H5, H6)

11 else if nqt.type = Type-JA then
12 applyHeuristic(ES1, ES2, H1, H2, H5, H6)

13 ListES .add(ES1)
14 ES ← ES2

15 ListES .add(ES)
16 return ListES

however there are cases when these heuristics lead to erroneous in-
ferences or fail to infer critical information from the query, due to
the ambiguous nature of linguistic patterns. For example, Heuristic
2 is designed to discover the hidden time predicate from a sub-
query. However, the true intent of Q7 in Table 1 is to retrieve all
transactions in history, then applying Heuristic 2 would incorrectly
infer 2019 as the time predicate for all transactions. A more de-
tailed error analysis in Section 6.2 provides more insights into the
effectiveness of the proposed partitioning heuristics. Our heuristics
are shown to be effective and robust to different nested query types
across a variety of domain-specific data sets in our experimental
evaluation (Section 6).

5. NESTED QUERY BUILDING

5.1 Join Condition Generator
The Evidence Partitioner (Algorithm 2) splits the evidence set

ES for a given NL query into a list of potentially overlapping evi-
dence sets ES1, ES2, . . . , ESn. Intuitively, each evidence set rep-
resents a different sub-query, and two adjacent evidence sets with
nested query tokens (resulting from Algorithm 1) determine the
join conditions between those sub-queries. Formally, a join con-
dition jc = (ESi.cj , op, ESi+1.ck) refers to the evidence cj and
ck in two adjacent evidence sets ESi and ESi+1, respectively, and
to the join operator op that connects them.

Our Join Condition Generator first decides the operator to use
for the join condition between two adjacent evidence sets based
on the nested query token. In the example of Q6 (Figure 3), the
operator op between ES1 and ES2 is “greater than” (>), which is
extracted from the operation annotation of the nested query token
“gone up”. As listed in Table 3, we support a variety of commonly

used operators, including equal (=), greater than (>), less than (<),
not-equal (<>), and IN to form the join condition.

Next, the Join Condition Generator needs to identify the join
operands associated with the operator. The join operands are se-
lected among the elements of the two adjacent evidence sets to be
joined. To identify the correct evidences as join operands, the Join
Condition Generator relies on information from the annotations as-
sociated with each token. Specifically, we leverage the nested query
token dependencies to identify its dependent tokens and use them
as the join operands. In case a join operand cannot be identified
from one of the evidence sets (ES1 or ES2), we share the join
operand identified from the other evidence set. It often happens
when the nested query token is a numeric comparison.

In certain cases, there can be more than one join conditions be-
tween ES1 and ES2, derived from the nested query token de-
pendencies. We consequently leverage the evidence and operation
annotations of these tokens to choose the correct join condition.
Specifically, if the join operator is a numeric comparison, then two
join operands of this join operator have to be numeric as well. If the
join operands of a join operator are two lists, then these two lists
should be of the same entity type, or the entity types are siblings
in the domain ontology (i.e., two children of the same parent con-
cept or two members of the same union concept). This validation is
critical to exclude certain ‘bad’ queries such as “find all customers
who are corporations”, since “customers” and “corporations” are
not comparable from a semantic perspective. The overall join con-
dition generation method is presented in Algorithm 3.

Algorithm 3 takes as inputs a list of nested query tokens and a list
of evidence sets produced by Algorithm 2. For each nested query
token nqt, it first decides the join operator based on nqt, finds the
dependent tokens of nqt, and retrieves the evidence sets ES1 and
ES2 immediately before and after nqt (Lines 2-6). Then, for each
dependent token dt of nqt, the algorithm checks if its position in
the NL query is before (after) nqt and if it also belongs to ES1

(ES2). If so, the dependent token is added to the join evidence
set JE1 (JE2) accordingly (Lines 7-11). For example, the nested
query tokens “who are also” of Q1 in Table 1 have two dependent
tokens “customers” and “account managers” in the outer (ES1)
and inner (ES2) evidence sets, respectively. Hence, “customers”
and “account managers” are added to JE1 and JE2, respectively.

The algorithm then checks the join operator type. If the oper-
ator is of type numeric, the algorithm selects the tokens that are
of numeric type from JE1 and JE2. If the join evidence set does
not contain any token of numeric type, then the token introduced by
Heuristic 5 (in Section 4.3) is chosen from JE1 and JE2 (Lines 12-
14). This is because Heuristic 5 is designed to share the argument
of a comparison. For example, in Q6 (Table 1), the only dependent
token of the nested query token “gone up” (>) is “value” in JE2.
Hence, the token “value” shared by Heuristic 5 is added to JE1 to
form the join condition jc = (ES1.value, >, ES2.value), since the
comparison (>) is between the “value” of “stocks”.

If the operator is of type list, the algorithm keeps the tokens with
the same entity types in both JE1 and JE2. If multiple tokens
remain, then the token introduced by Heuristic 4 (Section 4.3) is
kept (Lines 15-16), since Heuristic 4 aims at sharing a Focus Entity
for a non-numeric comparison (i.e., list). Intuitively, the shared
token “who” of Q4 (Table 1) refers to the same entity (i.e., people)
in both inner and outer queries. Consequently, the join condition is
jc = (ES1.who, IN, ES2.who).

Thereafter, if JE1 and JE2 are not empty, then the join con-
dition between ES1 and ES2 is (JE1, op, JE2) (Lines 17-18).
Otherwise, the join operand in ES1 (or ES2) is shared with ES2

(or ES1) (Lines 19-22). Finally, the list of join conditions between
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all adjacent evidence sets is returned (Line 24). These join con-
ditions are returned in the order of their appearance in the given
query, from the outermost query to the innermost query.

Algorithm 3: Join Condition Generation Algorithm
Input: Nested query tokens nqTokens, A list of evidence sets

ListES

Output: A list of join conditions ListJC

1 ListJC , JE1, JE2 ← ∅
2 foreach nqt ∈ nqTokens do
3 op← map(nqt)
4 dTokens← dep.get(nqt)
5 ES1 ← ListES .before(nqt)
6 ES2 ← ListES .after(nqt)
7 foreach dt ∈ dTokens do
8 if dt.pos < nqt.pos and dt ∈ ES1 then
9 JE1.add(dt)

10 else if dt.pos > nqt.pos and dt ∈ ES2 then
11 JE2.add(dt)

12 if op.type = Numeric then
13 JE1 ← JE1.select(Numeric,H5)
14 JE2 ← JE2.select(Numeric,H5)

15 else if op.type = List then
16 JE1, JE2 ← intersectEntity(JE1, JE2, H4)

17 if JE1 6= ∅ and JE2 6= ∅ then
18 jc← (JE1, op, JE2)

19 else if JE1 6= ∅ then
20 jc← (JE1, op, JE1)

21 else
22 jc← (JE2, op, JE2)

23 ListJC .add(jc)

24 return ListJC

5.2 Interpretation Tree Generator
The interpretation tree generation process exploits the Steiner

Tree-based algorithm introduced in [29] to return a ranked list of
interpretations for each evidence set produced by the Evidence Par-
titioner. These interpretations are ranked based on the number of
edges (i.e., relations) contained in each interpretation (ITree). In
case there are multiple top-ranked interpretations with the same
compactness (i.e., the same number of edges present in the inter-
pretation trees) for an evidence set, all such interpretations are kept.
The top-ranked ITrees for ES1 (ITree1) and ES2 (ITree2) of
Q6 are shown in Figure 4. For simplicity, we assume that only one
ITree represents each evidence set. We refer to [29] for further
details on handling multiple ITrees.

Figure 4: Hierarchy of Interpretation Trees for Q6

5.3 Hierarchical Query Generator
The Hierarchical Query Generator is responsible for generating

a complete OQL query by connecting the individual ITrees (Sec-
tion 5.2) with the corresponding join conditions (Section 5.1). This
process is described in Algorithm 4.

As described earlier, each evidence set, generated from evidence
partitioning, is represented by an ITree. Following the order of the
evidence sets, the corresponding interpretation trees of these evi-
dence sets also form an ordered list of ITrees. Conceptually, two
adjacent ITrees can be connected through the same join condition
as their corresponding evidence sets. Their connection can be rep-
resented as an edge linking the two ITrees, labeled with the join
condition between the identified join operands.

Depending on the join condition, an ITree of an inner query can
be either used in a WHERE (Lines 14-15) or a HAVING (Lines 12-
13) clause of the outer query’s ITree. In addition to the join con-
dition identified in Section 5.1, the identical evidences between the
inner and outer evidence sets (Line 7) which are not join arguments
are asserted to be the same in the hierarchical query building. Such
evidence correlates the inner and outer queries, and hence is used
as part of a WHERE clause as well (Lines 8-10). In case of multi-
level nesting, the algorithm starts from the innermost query and
iteratively stitches the newly built outer query to the existing inner
query, until reaching the last outer query (Lines 16-17). Figure 4
depicts a complete hierarchical interpretation tree of Q6, while the
corresponding OQL query of Q6 is shown in the top of Figure 5.

Algorithm 4: Hierarchical Query Building Algorithm
Input: A list of interpretation trees ITrees, A list of join

conditions ListJC , A list of evidence sets ListES

Output: An OQL query oqlQuery
1 oqlQuery, inner ← ∅
2 for i← ListJC .size to 1 do
3 jc← ListJC .get(i)
4 WHERE, HAVING, JC′, outer← ∅
5 ES1 ← ListES .before(jc)
6 ES2 ← ListES .after(jc)
7 ES′ ← (ES1 ∩ ES2) \ jc.getArgs()
8 foreach e′ ∈ ES′ do
9 WHERE.add((e′,=, e′))

10 inner ← buildOQL(ES2, IT rees.after(jc), WHERE)
11 WHERE← ∅
12 if jc.get(op).type = Numeric and

jc.getArg1().type = Aggregation then
13 outer ← buildOQL(ES1, IT rees.before(jc),

HAVING.add(jc))
14 else
15 outer ← buildOQL(ES1, IT rees.before(jc),

WHERE.add(jc))
16 oqlQuery.addBefore(inner)
17 inner ← outer

18 return oqlQuery

Discussion. As described above, the Nested Query Builder takes
a bottom-up approach to create individual Itrees for each evidence
set, and then build a complete OQL query based on these Itrees. Be-
low, we highlight the observations that lead to this approach, which
are also confirmed by our experimental evaluation (Section 6).

Observation 1. Two connected ITrees may contain some com-
mon nodes. However, it does not necessarily mean that these com-
mon nodes refer to the same objects in the target query. For exam-
ple, both ITree1 and ITree2 contain “ListedSecurity” and “Mon-
etaryAmount” in Figure 4. Considering the natural language query
“show me everyone who bought stocks in 2019 that have gone up in
value”, it is evident the query is asking for the same “stock” across
both outer and inner queries. Thus the node “ListedSecurity” cor-
responding to the natural language token “stock” indeed means the
same object across two sub queries. However, it is not true for the
other common node “MonetaryAmount”, which corresponds to the
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natural language token “value”. In the outer query, the “value”
corresponds to the bought (transaction) value of the stock, whereas
it is the last traded value of the stock in the inner query. Therefore,
the node “MonetaryAmount” should have two different objects in
the target queries, even though it is common between two ITrees.

Observation 2. Even though two connected ITrees may contain
common nodes, they still may not share the same set of edges be-
tween those common nodes. As shown in Figure 4, even though
both ITrees contain “ListedSecurity” and “MonetaryAmount”, the
edges between them are not the same in their corresponding ITrees.
This intuitively follows Observation 1. For ITree1 (i.e., the outer
query), “ListedSecurity” is connected to “MonetaryAmount” via
“Transaction” as the outer query is about purchase value of stocks.
For ITree2 (i.e., the inner query), “ListedSecurity” is connected
to “MonetaryAmount” via “hasLastTradedValue” edge as the in-
ner query is about the current value of the stock.

Observation 3. Two connected ITrees may share nothing in com-
mon, even when there is a join condition between them. Con-
sider the query Q1 in Table 1, where ITree1={Customer} and
ITree2={Account Manager} do not share any common nodes, but
a join condition jc = (ITree1.Customer, IN, ITree2.Account
Manager) exists between them. This is due to the fact that “Cus-
tomer” and “Account Manager” are both children of the same par-
ent concept “Person” in the domain ontology.

In summary, each ITree should have its own interpretation cor-
responding to each evidence set, since two ITrees cannot assume
the same interpretation from identical nodes and edges as they may
contain different context information. Hence, we build the nested
OQL query using a bottom-up approach to ensure that each evi-
dence is used in the right context (i.e., inner and/or outer queries).

5.4 Query Translation
We now present an overview of our Query Translator adopted

from [29]. The Query Translator takes an OQL query as input, con-
sisting of either a simple non-nested query or a nested query with an
inner (or nested) query and outer query4. Since a nested OQL query
can be a union of individual OQL queries, the algorithm maintains
a set of OQL queries that need to be translated into equivalent SQL
queries. To generate the SQL query, the query translator requires
appropriate schema mappings that map concepts and relations rep-
resented in the domain ontology to appropriate schema objects in
the target database, which also includes the relations between the
concepts in the ontology and the primary and foreign key (PK-FK)
constraints between the tables that correspond to these concepts.
The PF-FK constraints and the mappings are used to construct a
join graph, which is utilized to generate the appropriate join condi-
tions for the nested SQL query.

The inner query of a nested query is supported in FROM, WHERE,
and HAVING clauses of the outer query. While processing each
of these clauses in the outer query, the Query Translator detects
the presence of an inner (nested) OQL query and recursively pro-
cesses the inner query to generate a corresponding SQL query that
is then placed in the appropriate outer query clause within braces.
In Figure 5, we show the nested SQL query generated by the Query
Translator for an OQL query corresponding to Q6 in Table 1. In
this case, the inner query computes the maximum monetary amount
for the listed security, which is then compared against the monetary
amount in the outer query using the WHERE clause.

In this process, the Query Translator also handles many-to-many
(M:N) and inheritance relationships in a special way. For each M:N

4The language grammar supports an arbitrary level of nesting
wherein each inner query can either be a simple or a nested query.

relationship detected by the translator, an intermediate table is in-
troduced as the two tables corresponding to the concepts of the M:N
relationship cannot be joined directly. We use the intermediate ta-
ble to break the original join into two inner joins through the PK-FK
constraint. For inheritance relationships, the Query Translator in-
troduces an additional join condition between the parent and child
concepts, if the given OQL query only includes a child concept and
references to a property from its parent concept. The additional join
condition ensures that the connection to the originally referenced
child concept is maintained. We refer to [29] for further details.

NL Query: Who bought stocks in 2019 that have gone up in value
OQL Query:
SELECT LS.hasLegalName, MA.hasAmount, P.Name
FROM SecuritiesTransaction ST, Person P,

ListedSecurity LS, MonetaryAmount MA
WHERE ST.hasType = ’1’ AND MA.hasAmount <

(SELECT Max(InnerMA.hasAmount)
FROM ListedSecurity InnerLS,

MonetaryAmount InnerMA
WHERE LS.id = InnerLS.id AND

InnerLS->hasLastTradedValue=InnerMA) AND
ST.hasSettlementDate >= ‘2019-01-01’ AND
ST.hasSettlementDate <= ‘2019-12-31’ AND
ST->isFacilitatedBy->isOwnedBy=oPerson AND
ST->refersTo=LS AND
ST->hasPrice=MA

SQL Query:
SELECT LS.hasLegalName, MA.hasAmount, P.hasPersonName
FROM FinancialServiceAccount FSA1
INNER JOIN SecuritiesTransaction ST
ON FSA1.financialserviceaccountId=ST.isFacilitatedBy
INNER JOIN Person P
ON FSA1.isOwnedBy=P.personId
INNER JOIN ListedSecurity LS
ON ST.refersTo=LS.listedsecurityId
INNER JOIN MonetaryAmount MA
ON ST.hasPrice=MA.monetaryamountId
WHERE ST.hasType = ‘1’ AND

MA.hasAmount < (SELECT Max(InnerMA.hasAmount)
FROM ListedSecurity InnerLS
INNER JOIN MonetaryAmount InnerMA
ON InnerLS.hasLastTradedValue=InnerMA.monetaryamountId
WHERE LS.ListedSecurityID=InnerLS.ListedSecurityID) AND
ST.hasSettlementDate >= ‘2019-01-01’ AND
ST.hasSettlementDate <= ‘2019-12-31’

Figure 5: SQL Generated for Q6

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
Infrastructure. We implemented ATHENA++ in Java with JDK

1.8.0 45. All data sets are stored in IBM Db2 R©. We ran the
ATHENA++ and two baseline systems on RedHat 7.7 with 32-core
2.0GHz CPU and 250GB of RAM.

Data Sets and Workloads. We evaluate the effectiveness of
ATHENA++ in handling complex nested queries, using four bench-
mark data sets.
• Microsoft Academic Search (MAS) data set [3] contains biblio-

graphic information for academic papers, authors, conferences,
and universities. MAS includes 250K authors and 2.5M papers,
and a set of 196 queries from [20]. We expanded the query set
with 77 additional queries, expressed in both NL and SQL.
• GEO data set [38] contains geographical data about the United

States (Geobase), as well as a collection of 250 NL queries.
These NL queries are mapped to the corresponding SQL queries
in [14]. We expanded the query set with 74 additional queries.
• Spider [37] is a state-of-the-art, large-scale data set for complex

and cross-domain text-to-SQL tasks. It has evolved as one of
the de facto benchmarks in the research community for test-
ing the accuracy of NLIDB systems. It consists of multiple
schemas, each with multiple tables. The queries in Spider cover
a wide spectrum of complex SQL queries including different
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Table 5: Data Sets, Ontologies, and Queries
Data |C| |P | |RF |

#Tables/ Total #Nested #Aggregation #Negation ORDERBY GROUPBY HAVING
Set schema #queries (in/out/both)
MAS 17 23 20 15 273 74 100 0 25 43 21
GEO 18 16 28 6 324 70 153 15 6 117 9
Spider 4.1 25.9 3.3 4.1 1,034 161 578 46 241 277 79
FIBEN 152 664 159 152 300 170 192 18 26 112 78

clauses such as joining and nested query. Unlike the end-to-end
deep-learning frameworks that rely on different training, devel-
opment, and test sets, we evaluate ATHENA++ on the develop-
ment set of Spider, which consists of 20 different schemas and
1,034 queries. The variety of domains and queries present a non-
trivial challenge to the precision and recall of the systems, in-
cluding ATHENA++ and other NLIDBs.
• FIBEN is a new benchmark built on top of a financial data set

introduced in [30]. The FIBEN data set is a combination of
two financial data sets, SEC [5] and TPoX [25]. The number
of tables per database schema is at least an order of magni-
tude greater than the other benchmarks, resembling the complex-
ity of an actual financial data warehouse. FIBEN ontology is
a combination of FIBO [1] and FRO [2] ontologies, providing
sufficient domain complexity to express real-world financial BI
queries. FIBEN contains 300 NL queries, with 237 distinct SQL
queries, corresponding to different nested query types. These
NL queries are typical analytical queries generated by BI ex-
perts. We asked these experts to create NL queries, while mak-
ing sure that the resulting SQL queries have a substantial cover-
age of all four nested query types, with a variety of SQL query
constructs. The benchmark queries are available at https:
//github.com/IBM/fiben-benchmark.

Table 5 provides the detailed statistics about these data sets and
the corresponding ontologies (in terms of the average number of
concepts |C|, properties |P | and relationships |RF |) that describe
the domain schema of these data sets. It also provides detailed
information about the query workload for each data set used in
our experimental evaluation, such as the number of nested queries
(which are included in the total count of queries), the number of
nested queries with aggregation (in the outer query or the inner
query or both), the number of negation queries, etc. Table 6 further
lists the number of queries for each nested query type in each data
set, which enable us to evaluate NLIDB systems performance on
different types of nested queries.

Table 6: Number of Queries per Nested Query Type
Data Set Type-N Type-A Type-J Type-JA
MAS 7 48 6 13
GEO 21 25 14 10
Spider 136 25 0 0
FIBEN 28 64 40 38

Compared Systems. We compare ATHENA++ to two state-of-
the-art NLIDB systems, our earlier system ATHENA [29, 19] and
NaLIR [20, 21].
• ATHENA++ and ATHENA both are rule-based NLIDB systems.

We use an identical experimental setting for both ATHENA and
ATHENA++ . Namely, we follow the same approach described
in [15] to create an ontology corresponding to the schema of all
four data sets, and instantiate the system thereafter.
• NaLIR is another state-of-the-art rule-based NLIDB. We eval-

uate the system in which the interactive communicator is dis-
abled, because its application of user interaction is orthogonal to

our approach. Hence NaLIR forms the SQL query based on the
dependency parse tree structure alone.

Metrics and Methodologies. We evaluate ATHENA++ and the
other two systems using the above described benchmark data sets
and the associated query workloads. To measure the effectiveness
of these systems, we use the following metrics.

• Accuracy. The accuracy is defined as the number of correctly
generated SQL queries over the number of NL queries asked.
These queries include both nested and non-nested queries. We
define the correctness of a generated SQL query by compar-
ing the query results generated by executing the ground truth
SQL queries, and the ones generated by the SQL queries from
the NLIDB systems. Note that accuracy may consider a gen-
erated SQL query as correct, even if it is syntactically different
from the ground truth query but returns the same results. We
report the accuracy of the evaluated methods over all queries in
each benchmark data set (Overall Accuracy), as well as the ac-
curacy when considering only the nested queries of each data set
(Nested Query Accuracy).
• Precision, Recall, and F1-score. To verify the effectiveness and

robustness of ATHENA++’s nested query detection and gener-
ation, we also measure the precision, recall and F1-score of
ATHENA++ specifically for nested queries in each data set.
Nested Query Detector Precision. The number of NL queries
correctly classified as nested queries over the number of NL
queries classified as nested queries.
Nested Query Detector Recall. The number of NL queries cor-
rectly classified as nested queries over the number of NL queries
that correspond to nested queries in the ground truth.
Nested Query Builder Precision. The number of correct nested
SQL generated over the number of nested SQL generated, among
the correctly classified NL queries.
Nested Query Builder Recall. The number of correct nested
SQL generated over the number of nested SQL provided by the
ground truth, among the correctly classified NL queries.
• Performance Evaluation. We also analyze ATHENA++’s SQL

generation time, i.e., the time spent in translating the input NL
query to the output SQL query. We run each query three times
and report the average.

6.2 Experimental Results

6.2.1 Accuracy
Table 7 shows the overall accuracy of each system on the four

benchmark data sets for their corresponding workload. In general,
ATHENA++ outperforms NaLIR and ATHENA significantly across
all data sets. In particular, ATHENA++ achieves 88.33% accuracy
on the new FIBEN data set, which is 40% and 68% higher than
ATHENA and NaLIR, respectively. This confirms that ATHENA++
is capable of handling complex analytics queries. It is also impor-
tant to point out that ATHENA++ achieves 78.89% accuracy on the
prominent Spider benchmark, outperforming the best reported ac-
curacy of 65% by 13%. Note that we do not evaluate NaLIR against
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Table 7: Overall Accuracy (%)
Data Set ATHENA++ ATHENA NaLIR
MAS 84.61 67.03 49.08
GEO 84.25 68.20 41.04
Spider 78.82 54.93 –
FIBEN 88.33 48.00 20.66

the Spider data set, since NaLIR requires non-trivial system config-
urations when switching between relational schemas.

Table 8 presents the accuracy of each NLIDB system specific to
the nested queries in each data set. We observe that the winning
margin of ATHENA++ over NaLIR and ATHENA is more substan-
tial. In fact, Table 8 further establishes that ATHENA++ is the only
NLIDB system among the three that can consistently handle nested
queries with a reasonable accuracy. ATHENA++ is able to lever-
age both linguistic features and domain reasoning, which are very
critical for nested query handling as we have outlined in Section 1.

Table 8: Nested Query Accuracy (%)
Data Set ATHENA++ ATHENA NaLIR
MAS 78.37 10.81 8.10
GEO 78.57 17.14 8.57
Spider 78.26 9.93 –
FIBEN 85.88 15.29 7.05

Although ATHENA also exploits domain semantics through an
ontology, its core interpretation algorithm is not designed to con-
sider nesting. Hence, ATHENA is limited to handling simple nested
queries that can be easily translated into non-nested SQL queries.
NaLIR heavily relies on linguistic features, which is shown to be
insufficient for complex nested queries. Moreover, NaLIR depends
on user interactions to resolve ambiguous queries. Its accuracy fur-
ther drops when the interactive communicator is disabled.

6.2.2 Precision, Recall, and F1-score
Next, we study the effectiveness of ATHENA++ nested query de-

tection and generation. We first report the precision, recall, and F1-
score of our Nested Query Detector in Table 9. The results show
that our nested query detector reliably classifies a NL query as a
nested query across all data sets (F1-score > 90% in all cases).
We observe that for Spider, which has a much wider variation of
linguistic patterns in its nested queries, recall (88.73%) is slightly
lower than the other data sets, but precision (95.30%) is still the
second best among all four data sets.

Table 9: Effectiveness of Nested Query Detector (%)
Data Set Precision Recall F1-score
MAS 95.77 91.89 93.79
GEO 94.11 91.42 92.75
Spider 95.30 88.19 91.61
FIBEN 95.23 94.11 94.67

Table 10: Effectiveness of Nested Query Builder (%)
Data Set Precision Recall F1-score
MAS 81.69 85.29 83.45
GEO 80.88 85.93 83.33
Spider 84.56 88.73 86.59
FIBEN 86.90 91.25 89.02

Next, we report the precision, recall, and F1-score of our Nested
Query Builder in Table 10. Note that we only use the nested queries

associated with each data set for this evaluation. Clearly, the high
precision (83.51% on average) across four data sets further estab-
lish that ATHENA++ is able to produce the correct nested queries
once it correctly classifies a NL query as a nested query. Moreover,
ATHENA++ recognizes a broad range of nested queries leading to
a high recall (87.8% on average). Lastly, ATHENA++ demonstrates
its consistency across different domains with a wide spectrum of
nested queries.

6.2.3 Error Analysis
Following the above results, we also provide an error analysis

on the queries that are not answered correctly by ATHENA++. Ta-
ble 11 lists the number of incorrectly answered queries among all
the queries in the workloads, with respect to three components
where the errors occurred.

Table 11: Error Analysis
Data Set Nested Query Hier. Query Join Condition

Detection Generation Generation
MAS 6 8 2
GEO 6 6 3
SPIDER 19 10 6
FIBEN 10 10 4
Nested query detection and nested query building (i.e., hierar-

chical query generation and join condition generation) contribute
to 47.5% and 52.5% of the errors, respectively. This shows that
nested query detection and building are two equally critical chal-
lenges in nested query handling. Among the errors in nested query
detection and building, we make the following observations.

Insufficient linguistic patterns. In some cases, the NL query
does not provide sufficient linguistic patterns to be used for detect-
ing a possible nesting. For example, the query “who invested in
the company they work for” from FIBEN does not explicitly men-
tion the company is the same between investment and employment.
Hence, ATHENA++ fails to detect it as a nested query.

Heuristic errors. We also observe that the heuristics introduced
in Section 4.3 can cause detection errors. For example, in the query
“which services companies reported lesser revenue in 2019 than
the average industry revenue in 2018” (FIBEN), Heuristic 1 fails
to detect that “services companies” is a shared token with the inner
query, as Stanford CoreNLP co-reference resolution does not find
any reference from the inner query. On the other hand, in the query
“find the series name and country of the tv channel that is playing
some cartoons directed by Ben Jones and Michael Chang” (Spi-
der), Heuristic 4 incorrectly marks the Focus entity (“series name
and country”) as shared with the inner query. This results in an
incorrect join condition.

Incorrect hierarchical interpretation tree. As discussed ear-
lier, the heuristics introduced in Section 4.3 do not always choose
the correct tokens to share. In some cases, this results in an incor-
rect hierarchical interpretation tree, even when the join condition
is correctly identified. For example, in the query “what is the dis-
tribution by state of the number of people selling Microsoft stock
in 2018” (FIBEN), the correct join path between “people” (re-
ferring to “Person”) and “Microsoft” (an instance of “Corpora-
tion”) should be via “FinancialServiceAccount”, “Transaction”,
and “ListedSecurity” (depicted in Figure 1). However, the Steiner
Tree algorithm used in our interpretation tree generator selects a
more compact path via “AutonomousAgent” using “isA” relation-
ships. In this case, the most compact interpretation tree actually
leads to an incorrect interpretation.

Incorrect join conditions. We find the errors in join condition
generation are mainly due to mathematical computations or im-
plicit operations. For example, in the query “who sold IBM stocks
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1 month after it had highest buying value in 2016” (FIBEN), Algo-
rithm 3 does not recognize that the tokens “1 month after” require
a mathematical computation (i.e., month + 1). In the case of im-
plicit operations, the query “which dogs have not cost their owner
more than 1000 for treatment?” (Spider) requires a summation
over the cost before comparing with 1000, which is not handled by
Algorithm 3.

A few possible approaches to address these issues would be (i)
exploiting a variety of NLP libraries to extract more and better-
quality linguistic patterns, (ii) introducing more robust domain rea-
soning heuristics, and (iii) integrating learning-based techniques
into ATHENA++ in a multi-step strategy to leverage the best of both
worlds (i.e., rule-based and machine learning-based techniques).

6.2.4 Performance Evaluation
In this section, we present an analysis of ATHENA++’s SQL gen-

eration time. In summary, for the NL queries from 4 workloads,
ATHENA++ is able to generate the final SQL query in less than 200
ms, achieving its goal of interactive execution time.

Table 12: NL-to-SQL Generation Time (ms)
Data Set Type-N Type-A Type-J Type-JA
MAS 153 158 188 198
GEO 105 118 140 192
Spider 100 91 – –
FIBEN 108 126 120 144

We have excluded the queries for which ATHENA++ is unable to
produce the correct interpretation. In Table 12, ATHENA++ gener-
ates a SQL query on average within 120 ms for Type-N and Type-A
nested query. However, for the more complex Type-J and Type-JA
nested queries, ATHENA++ takes 36% more time (163 ms on aver-
age) to translate. This is mainly due to the complexity of identify-
ing the correlation between the inner and outer queries.

7. RELATED WORK
Natural language interfaces to databases (NLIDBs) has become

an increasingly active research field during the last decade. For
comprehensive studies of NLIDB systems, we refer to [7, 26, 16].
In general, these systems fall into the following two categories.

Rule-based systems. The majority of existing NLIDBs inter-
pret NL queries based on information of the underlying database
and then, based on inference rules, the interpretations are mapped
into query fragments before finally being assembled into complete
queries. NaLIR [20] uses an off-the-shelf parser to obtain a depen-
dency parse tree for a given query. Then, it maps nodes of the parse
tree to SQL components. In case of ambiguous NL queries, NaLIR
relies on user interaction to find the correct interpretation. PRE-
CISE [28] transforms a given query to Disjunctive Normal Form
(DNF), and then consults an inverted index over the contents of a
database to look up each disjunct. The result is a logical subset
of the original database. ATHENA [29] takes an ontology-driven,
two-step approach which separates query interpretation from the
actual physical store. This separation helps to reduce the challenges
associated with query understanding and translation, as a user may
not be familiar with the schema of the underlying database. Re-
cently, TEMPLAR [8] utilizes information from SQL query logs
to improve keyword mapping and join path inference. Duoqest [9]
leverages guided partial query enumeration to efficiently explore
the space of possible queries for a given NL query.

These systems enable users to construct simple database queries
such as point queries and basic aggregation queries. In addition,
they support limited nesting in natural language queries when the

queries explicitly capture different sub-queries, such as “return all
the authors who have more papers than John Doe after 2005”.
However, nested queries are often expressed implicitly in natural
language, some originating from linguistic patterns (e.g., “same
as”, “different from”), or logically embedded in comparisons with
a sub-query result (e.g., “more than average”). To the best of our
knowledge, these NLIDBs can only handle nested queries of Type-
N and Type-A. In this work, we focus on detecting and handling
multiple common nested query types by combining linguistic pat-
tern matching and semantic reasoning over domain schemas.

Machine learning-based systems. Recently, a growing number
of NLIDBs attempt to leverage advances in deep learning to handle
NL queries. The basic idea is to apply supervised machine learning
techniques on a set of question/answer pairs where the questions
are the NL queries and the answers are the respective SQL state-
ments. These questions and answers are first transformed into a
vector by applying word embedding techniques. Then, these vec-
tors are consumed by a deep neural network [39, 34, 10, 35, 12].
Seq2SQL [39] uses deep neural networks to learn generic language
patterns in order to translate NL queries to SQL queries. SQL-
izer [34] presents a hybrid approach that first trains a semantic
parser to obtain query sketches and then uses a rule-based approach
to repair the sketches into complete SQL queries. DBPal [10, 33]
avoids manually labeling large training data sets by synthetically
generating a training set that only requires minimal annotations in
the database. TypeSQL [36, 35] proposes a different training proce-
dure utilizing types extracted from either knowledge graph or table
content to better understand entities and numbers in the query. Di-
alSQL [12] is a dialogue-based structured-query generation frame-
work that leverages human intelligence to boost the performance of
existing algorithms via user interaction.

Machine learning-based approaches have shown promising re-
sults in terms of robustness to NL variations. The learned mod-
els can detect and annotate key SQL components in a given NL
query, including select columns, aggregation functions, and where
clauses. However, these systems still have limited capability of
handling complex queries involving multiple tables with aggrega-
tions, and nested queries. In addition, they require large amounts
of training data, which makes domain adaption challenging. In this
work, we alleviate the above issues by identifying linguistic pat-
terns from NL queries and deeply understanding the domain se-
mantics. As shown in our experiments, ATHENA++ not only han-
dles these complex nested queries with high precision and recall,
but also provides a mechanism for domain adaptation without re-
quiring training data.

8. CONCLUSION
In this paper, we describe ATHENA++ which translate natural

language queries into complex BI analysis queries that often re-
quire nesting, join, and aggregation. In particular, we identify the
unique challenges for nested query detection and generation w.r.t
4 standard and commonly used nested query types. Our novel
system, ATHENA++, combines linguistic patterns from the natu-
ral language query with deep domain reasoning using ontologies
to enable nested query detection and generation. The experimen-
tal evaluation on a variety of benchmark data sets shows that our
system outperforms all other state-of-the-art NLIDB systems, and
provides consistently high accuracy, precision and recall. In par-
ticular, ATHENA++ achieves 78.89% accuracy on the Spider dev
set, beating the best-reported number (70.6%) by 8%, and achieves
88.33% accuracy on the new FIBEN benchmark, which emulates a
financial data warehouse with complex analysis queries.
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