
Optimizing DNN Computation Graph using Graph
Substitutions

Jingzhi Fang∗ Yanyan Shen† Yue Wang‡ Lei Chen∗
∗
The Hong Kong University of Science and Technology

†
Shanghai Jiao Tong University

‡
Shenzhen Institute of Computing Sciences, Shenzhen University

jfangak@connect.ust.hk, shenyy@sjtu.edu.cn, yuewang@sics.ac.cn, leichen@cse.ust.hk

ABSTRACT
Deep learning has achieved great success in various real-
world applications. As deep neural networks (DNNs) are
getting larger, the inference and training cost of DNNs in-
creases significantly. Since one round of inference or one it-
eration in the training phase of a DNN is typically modeled
as a computation graph, existing works propose to optimize
computation graphs by performing a sequence of function-
ally equivalent graph substitutions, leading to higher infer-
ence and training efficiency. In this work, we formally de-
fine the Optimizing Computation Graph using Graph Sub-
stitutions (OCGGS) problem, and prove it to be NP-hard
and Poly-APX-complete. We develop two exact and effi-
cient methods to the OCGGS problem. The pruning-based
algorithm eliminates the examination of redundant graph
substitution sequences, and the dynamic programming with
pruning algorithm makes use of the explored graph substi-
tutions. To further speed up the search process, we propose
a sampling heuristic which is effective to optimize complex
computation graphs with polynomial time and space com-
plexity. Extensive experiments on various DNN architec-
tures and sizes are conducted to verify the effectiveness and
efficiency of our proposed solutions compared with existing
techniques.

PVLDB Reference Format:
Jingzhi Fang, Yanyan Shen, Yue Wang, Lei Chen. Optimizing
DNN computation graph using graph substitutions. PVLDB,
13(11): 2734-2746, 2020.
DOI: https://doi.org/10.14778/3407790.3407857

1. INTRODUCTION
Deep learning has revolutionized many practical applica-

tions including video analytics, natural language processing,
etc. For example, practitioners use DNNs to identify objects
in videos or images [8, 14, 17], translate one language to an-
other [6, 11, 19], and recommend commodities to customers
[7, 16, 18]. With the increasing availability of data and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407857

computing power, modern DNNs are getting larger in or-
der to deliver high performance for complex problems. The
ILSVRC 2015 classification challenge winner ResNet [8] in-
volves up to 152 layers, and BERT-large [6] has 340 million
parameters. As a result, the inference and training of such
DNNs become time-consuming. Since one round of inference
or one iteration in the training phase of a DNN is typically
modeled as a computation graph consisting of inputs, out-
puts, and parametric operations, there exists an opportunity
to optimize the computation graph towards higher inference
and training efficiency.

A common practice to optimize a DNN computation graph
is to perform graph substitutions following a set of predefined
rules, where each rule describes how to replace a computa-
tion subgraph with another functionally equivalent one. For
example, one rule used by TensorRT [3] is to replace the con-
volution, bias and ReLU operations in a computation graph
with a new equivalent operation which fuses them all, and
the fused operation can take less time to be executed. By
conducting a sequence of graph substitutions over the orig-
inal computation graph, it is possible that the optimized
computation graph consumes less time in training and in-
ference compared with the original one. In this paper, we
would like to investigate how to optimize DNN computation
graphs effectively based on a given set of substitution rules.

In fact, it is a non-trivial task to optimize DNN com-
putation graphs with graph substitutions. The challenge
originates from the huge search space of all possible graph
substitution sequences. A graph substitution, which does
not contribute the biggest efficiency improvement or even
degrades the efficiency of a computation graph, may allow
the subsequent substitutions to be performed and achieve
the optimal efficiency improvement in the end. For example,
in Figure 1a, the computation graph contains two convolu-
tion operations (one has 256 kernels of size (3× 3) and the
other has 256 kernels of size (1× 1)) followed by a concate-
nation operation. One possible graph substitution sequence
is to first enlarge the kernel size of the convolution in v3 to
(3×3) and then merge the two convolutions in v2 and v3 into
one. The inference time of the graph with an input tensor of
size (1×256×14×14) on an NVIDIA Tesla P100 GPU would
first increase by 0.04 ms due to the kernel enlarging and then
decrease by 0.07 ms thanks to the convolution merging, lead-
ing to an overall 0.03 ms runtime reduction per iteration of
the graph. Many of the existing systems such as TVM [5]
and TensorRT [3] only select the rules that can continuously
improve the efficiency, which may get stuck at local optima.
While some methods [9, 10] take efficiency-degrading rules

2734

Table 1: Notation table.

Variable Description
G = (V,E) a computation graph

φ = (Gs, Gt, f) a substitution rule
τ = (φ, g : Vs → Vm) a graph substitution
P = (τ1, ..., τk) a graph substitution sequence

K a length constraint in OCGGS
Γv = (τ, j) a label of node v

∆ a set of graph substitutions
P graph substitutions sequence set
Q sample size
η further exploration parameter

into account and adopt cost-based backtracking search al-
gorithms, they fall short in providing guarantee on search
time and space complexity (in the worst case, they would
explore the whole search space), and the search efficiency
can be unacceptable when optimizing complex DNNs (e.g.,
taking tens of hours or more to optimize NasNet-A [20]).

In order to study the problem of finding the optimal graph
substitution sequence, we formulate it as the Optimizing
Computation Graph using Graph Substitutions (OCGGS)
problem. Specifically, given the original computation graph
G and a set of substitution rules Φ, the OCGGS problem
aims to find the optimal graph substitution sequence within
a maximum length K. We theoretically prove the OCGGS
problem is NP-hard by reducing from the maximum flow
problem with conflict graph [12] and further prove it is
Poly-APX-complete. To avoid enumerating all the possi-
ble sequences, we design an efficient pruning-based method
by eliminating the examination of redundant graph substi-
tution sequences. We also develop a dynamic programming
algorithm, which makes use of the explored graph substitu-
tions to speed up the search process. The above two algo-
rithms are exact solutions. To further improve the search ef-
ficiency for complex models, we introduce a sampling-based
heuristic with polynomial time complexity and a good opti-
mization effect. To summarize, we have made the following
contributions in this paper:

(1) We formally define the OCGGS problem that aims to
reduce the computation cost of any DNN computation graph
by performing a sequence of graph substitutions based on a
set of substitution rules. We prove that the problem is NP-
hard and even Poly-APX-complete.

(2) We develop two exact and efficient methods for the
OCGGS problem: a pruning-based algorithm and a dynamic
programming with pruning algorithm. We provide analysis
on the time and space complexity of the two methods.

(3) We propose an effective sampling algorithm with poly-
nomial time complexity to accelerate the search process es-
pecially for complex models.

(4) We conduct extensive experiments to verify the effec-
tiveness and efficiency of our proposed methods on optimiz-
ing DNNs, compared with various baselines.

The remainder of this paper is organized as follows. We
define the OCGGS problem and provide its hardness results
in Section 2. Section 3 and 4 present two exact algorithms.
Section 5 introduces an efficient sampling heuristic. Ex-
periment results are provided in Section 6. We review the
related works in Section 7 and conclude this paper in Sec-
tion 8. Section 9 is the acknowledgments.

2. PRELIMINARIES
In this section, we first introduce some basic concepts and

then formally define the OCGGS problem. Table 1 summa-
rizes all the symbols used throughput this paper.

2.1 Computation Graph and Cost Function
We model one round of inference process or one iteration

in the training phase of a DNN by a directed acyclic com-
putation graph G = (V,E), where V is the set of nodes and
E is the set of edges. A node v ∈ V represents a constant
value or a parametric operation (e.g., convolution), and an
edge e(vs, vt) ∈ E describes the data dependence between
two nodes, i.e., the output of vs is an input of vt.

There are two special types of nodes in G, input and out-
put nodes. The input and output nodes only have outgoing
and incoming edges, respectively. The result of an output
node is an output of G. For the nodes in G that are neither
input nor output nodes, we refer to them as the inner nodes
of G. There is no constraint on the number of input and
output nodes in a computation graph.

Example 1. Consider the computation graph G = (V,E)
in Figure 1b. The node set V is {v1, ···, v5}, and the edge set
E is {(v1, v2), (v1, v3), (v2, v4), (v3, v4), (v4, v5)}. v1 and v5

are the input and output node respectively (the output of G is
the output of v5, which is the same as the output of v4), and
v2-v4 are the inner nodes. v2, v3 represent two convolution
operations, each of which has 256 kernels of size (3× 3). v4

is an inner node denoting the concatenation operation.

A computation graph is associated with a cost to measure
its runtime efficiency. The cost function is cost : G → R+,
where G is the set of all computation graphs and R+ is the
positive real number set. We assume that the cost of a com-
putation graph G can be calculated in O(|G|) time, where
|G| = |V |+ |E|. In this paper, we define the cost of a node
to be the time of computing its outputs, and the cost of a
computation graph is measured by the total cost of all the
nodes in it. The cost function can also be defined using other
metrics, e.g., the total number of FLOPs of computing the
outputs of all nodes, which are all feasible in our solutions.

2.2 Definitions and Problem
We first define the substitution rules which specify how

to optimize a computation graph by replacing its subgraph
with a functionally equivalent one.

Definition 1 (Substitution Rule φ). A substitution
rule is denoted by φ = (Gs, Gt, f). Gs and Gt are both com-
putation graphs, where Gs is the source graph and Gt is the
target graph. f is a bijective function from the input and out-
put nodes of Gs to the input and output nodes of Gt. Gs and
Gt should always compute the same outputs given the same
inputs w.r.t f , which is known as functionally equivalent.

In this paper, we assume the rules are correct (i.e., the
source graph and target graph of a rule are functionally
equivalent) and given in advance. How to discover useful
and correct rules has been studied in [9].

Example 2. Figure 2 shows an example of substitution
rule φ, which fuses two convolution nodes into one, with-
out changing the outputs. The left computation graph is
the source graph Gs of φ, while the right one is the tar-
get graph Gt. v1 is the input node of Gs, and v4, v5 are

2735

(a) Original computation graph. (b) Intermediate computation graph (c) Final computation graph.

Figure 1: An example of optimizing computation graphs using a sequence of graph substitutions from [10].

Figure 2: An example substitution rule.

the output nodes of Gs. v6 is the input node of Gt, and
v9, v10 are the output nodes of Gt. The bijection f satisfies:
f (v1) = v6, f (v4) = v9, f (v5) = v10. Given the same value
of v1 and v6, the output of v4 is the same as that of v9, and
the outputs of v5 and v10 are equivalent.

The source and target graph of a substitution rule φ are
functionally equivalent. If we find a subgraph of the compu-
tation graph G that is isomorphic to the source graph in φ
and replace it with a new one according to the target graph
in φ, the outputs of G will not be changed. Following this
intuition, we formally define the graph substitution below.

Definition 2 (Graph Substitution τ). Given a co-
mputation graph G = (V,E) and a substitution rule φ =
(Gs, Gt, f), graph substitution τ is denoted by (φ, g , h), where
g : Vs → Vm is a bijection from the inner node set Vs of Gs
to the node set Vm ⊆ V satisfying:

(1) for v ∈ Vs and v′ = g(v), the node types (e.g., convo-
lution operation) and parameters of v and v′ are the same;

(2) the subgraph Gs[Vs] of Gs induced by Vs, and the sub-
graph G[Vm] of G induced by Vm are isomorphic;

(3) for each input node vin of Gs, G has a node v′in s.t.
for any edge in Gs from vin to an inner node v, G contains
an edge from v′in to g(v); for any edge in G from a node
v′ ∈ Vm to another node u /∈ Vm, Gs involves an edge from
g−1(v′) to an output node vout.
h : Vt → V ′m is a bijection from the inner node set Vt of Gt
to a new node set V ′m that replaces nodes in Vm following f .

Example 3. We use the substitution rule φ in Figure 2
to optimize the computation graph G in Figure 1b. We find
that v2 and v3 in G can match v2 and v3 in Gs of φ respec-
tively. For the input node v1 in Gs, we can find v1 in G
such that for the edges (v1, v2) and (v1, v3) in Gs, G con-
tains edges (v1, v2) and (v1, v3) to match them respectively.

For edges (v2, v4), (v3, v4) in G, Gs has the corresponding
edges (v2, v4), (v3, v5) ended at output nodes. Therefore, by
replacing two convolution nodes (v2 and v3) in G with a
convolution node with 512 kernels of size (3× 3) (v6) and a
split node (v7), we get the optimized computation graph G′

in Figure 1c. Edge (v6, v7) is generated according to (v7, v8)
in the target graph Gt of φ. The dotted rectangle in G′ con-
tains the new subgraph. According to f in φ, the external
edges (v1, v2) and (v1, v3) in G are replaced by the new edge
(v1, v6) in G′, while (v2, v4) and (v3, v4) are replaced by two
new edges from v7 to v4 in G′. Hence, this graph substitu-
tion is denoted by τ = (φ, g , h), where g maps v2 in Gs to
v2 in G, and v3 in Gs to v3 in G, and h maps v7 in Gt to
v6 in G′, and v8 in Gt to v7 in G′.

We can optimize a computation graph by performing a
sequence of graph substitutions, which is defined as follows.

Definition 3 (Graph Substitution Sequence P).
Given a computation graph G, a graph substitution sequence
with length k is denoted by P = (τ1, ..., τk), where τi is the
i-th graph substitution, and the graph substitutions in P are
applied to G sequentially.

Different from the prior work [9, 10], we set a length con-
straint for graph substitution sequences in this paper, in
order to limit the search space of all possible graph substi-
tution sequences. Now we formally define our problem.

Definition 4 (OCGGS Problem Statement). Giv-
en an initial computation graph G, a set of substitution rules
Φ, an integer K, and a cost function cost : G → R+, the
problem of Optimizing Computation Graph using Graph Sub-
stitutions (OCGGS) is to find a graph substitution sequence
P with length no more than K such that the cost of the op-
timized graph G′ after applying P is minimized.

Next we give the theorem to show the NP-hardness of the
OCGGS problem.

Theorem 1. The OCGGS problem is NP-hard.

Proof. The maximum flow problem with conflict graph
(MFCG) [12] is NP-hard on networks consisting of disjoint
paths between two nodes vb and ve, even if the conflict graph
is a 2-ladder (a 2-ladder is an undirected graph whose com-
ponents are paths of length one). An instance of the MFCG
problem is defined as follows. Given a directed graph H
with a source node vb and a sink node ve, there are several
disjoint paths from vb to ve. Each edge in the graph has a
positive integer capacity. There are some conflicting edge
pairs, denoted by the set Ψ, such that at most one edge

2736

in the pair can carry flow at the same time. The decision
problem of MFCG is to decide whether the total flow from
vb to ve can be at least Θ. We construct an instance of the
OCGGS problem from the above MFCG instance as follows.
• Nodes in H correspond to inner nodes in the computation
graph G. Each inner node has a unique type without param-
eters and always outputs 1 regardless of its input. All the
edges in H correspond to all the edges between inner nodes
in G. We additionally create an input node vin and an out-
put node vout for G, adding two edges: (vin, vb), (ve, vout).
• For every conflicting pair (a = (v1, v2), ā = (v3, v4)) ∈
Ψ, we construct 2 rules, φ and φ̄. Gs of φ contains nodes
{v1, v2, v3, v4, vin1 , vin2 , vout1 , vout2}, where vin1 , vin2 are t-
wo input nodes and vout1 , vout2 are two output nodes. Gs
has edges a, ā, and four additional edges, (vin1 , v1),(vin2 , v3),
(v2, vout1), (v4, vout2). Gt of φ is the same as Gs of it, except
that it deletes edge a and then replaces v2 with a node v′2 of
constant value 1 (i.e., edge (v2, vout1) becomes (v′2, vout1)).
f of φ maps vin1 , vin2 of Gs to vin1 , vin2 of Gt respectively,
and vout1 , vout2 of Gs to vout1 , vout2 of Gt respectively. For
φ̄, Gs and f of it are the same as those of φ. Gt of φ̄ is
the same as Gs of it, except that it deletes edge ā and then
replaces v4 with a node v′4 of constant value 1 (i.e., edge
(v4, vout2) becomes (v′4, vout2)).
• The length constraint K is set to |Ψ|.
• The cost function cost : G → R+ is the following. The
cost of a computation graph is positive infinity if two edges
corresponding to a pair in Ψ both exist in it. Otherwise, the
cost is 1

F
, where F is the maximum flow on the computation

graph. To compute the maximum flow, the cost function
specifies the capacity of each edge as the capacity of the
corresponding edge in H (for a node v′ which replaces an
original inner node v, the capacity of edge (v′, u) is the same
as that of (v, u) in H), and the capacity of (vin, vb), (ve, vout)
as positive infinity. The cost can be calculated in polynomial
time by checking conflicting edge pairs and summing over
the maximum flows of all paths.

The above construction can be done in O(|H|+ |Ψ|) time.
The decision problem of the OCGGS problem is to decide
whether there is a graph substitution sequence no longer
than K such that the cost of the optimized computation
graph is no more than 1

Θ
. It is easy to see that the OCGGS

instance is YES if and only if the MFCG instance is YES,
and the decision problem of OCGGS is in NP. Therefore,
the OCGGS problem is NP-hard.

Further, no polynomial time approximation algorithm ex-
ists for the OCGGS problem due to the following theorem.

Theorem 2. OCGGS is Poly-APX-complete.

Proof. MFCG on networks consisting of disjoint paths
between vb and ve with conflict graph being a 2-ladder is
Poly-APX-complete. If there is an α-approximation algo-
rithm to the OCGGS problem, we can find a 1

α
-approxima-

tion algorithm to the MFCG problem, which contradicts the
fact that it is Poly-APX-complete. Therefore, the OCGGS
problem is also Poly-APX-complete.

3. PRUNING-BASED ALGORITHM
In this section, we introduce our pruning-based algorithm.

The main idea is to find equivalent substitution sequences
and eliminate examining the redundant ones. We define two
substitution sequences are equivalent as follows:

Definition 5 (Equivalent Sequences). Given a co-
mputation graph G, and two substitution sequences P, P ′, we
call P and P ′ are equivalent, if the final optimized compu-
tation graphs by applying P and P ′ are the same.

To find equivalent substitution sequences, we define a par-
tial order over graph substitutions in a sequence. This or-
der ensures that all graph substitution sequences can be re-
ordered (sorted) without changing their optimization effect
on the computation graph G. Therefore, for any unordered
graph substitution sequence, there always exists an equiva-
lent ordered graph substitution sequence. To this end, we
can prune the graph substitution sequences which are out
of order and only check the ordered ones.

(a) Original computation graph.

(b) Optimized computation graph.

Figure 3: An illustration of equivalent substitution se-
quences.

Example 4. The computation graph G in Figure 3a has 6
convolution operations (each with 256 kernels of size (3×3)),
2 concatenation operations, an input and an output. Sup-
pose we are given only the rule in Figure 2, which fuses two
convolutions into one. Then there are two graph substitution
sequences of length 2, denoted by P1 and P2. P1 first fuses
v2 and v3, and then fuses v6 and v7, while P2 first fuses v6

and v7, and then fuses v2 and v3. The final optimized com-
putation graphs by applying by P1 and P2 respectively are
the same (as shown in Figure 3b). Therefore, we only need
to check P1 or P2, instead of both.

Since DNNs are generally large, there can be a number of
equivalent substitution sequences. This calls for a pruning
rule to avoid examining equivalent substitution sequences.

3.1 Partial Order
In the following, we first introduce the label for a node in

any computation graph. Then we discuss how to order two
graph substitutions in a graph substitution sequence using
the node labels, and prove the order is a partial order, and
finally present the pruning rule.

The node label is defined in the substitution sequence con-
text, which consists of two parts: (1) the node is generated

2737

by which graph substitution in the sequence; and (2) the
node is generated by which node in the target graph of the
substitution rule. Since the source and target graphs of
a substitution rule are both computation graphs, we label
nodes in them as well. For convenience, we define a dummy
substitution N . The nodes in source/target graphs of sub-
stitution rules, or in the initial computation graph can be
regarded as being generated by the dummy substitution N .

For ease of understanding, we define the labels of nodes
(1) in source/target graphs of substitution rules and (2) in
initial/optimized computation graphs separately.

Definition 6 (Node Label). (1) Given a source/tar-
get graph G of a substitution rule, the label of a node v in G
is Γv = (N , j). N is the dummy substitution, and j is any
integer s.t. every two nodes in G have different values of j.

(2) Given a computation graph G0 and a graph substi-
tution sequence P = (τ1, ..., τk), let Gi be the intermediate
computation graph optimized by applying substitutions from
τ1 to τi. The label of a node v in G0 is Γv = (N , j), as de-
fined in (1). For a node v in Gi (i = 1, ..., k), if v is also in
Gi−1, the label of v is the same as that in Gi−1. Otherwise,
v is generated by τi = (φi, gi, hi). Supposing h−1

i (v) = vt
and label of vt is Γvt = (N , l), the label of v is Γv = (τi, l).

To order substitutions in a sequence, we first define the
dependence between substitutions as follows:

Definition 7 (Substitution Dependence). Given a
substitution sequence P = (τ1, ..., τk) and an initial compu-
tation graph G0, we define that τi in P depends on τl (τl is
N or is in P), if τi replaces a node v and the label of v is
Γv = (τl, j) (i.e., v is generated by τl).

Since the label of a node contains the information of which
substitution generates it, for a substitution, we know all the
substitutions it depends on from the labels of the nodes it
replaces. Therefore, we can compare two substitutions in
the same sequence by the respective latest substitutions they
depend on. The comparison is done recursively. Following
this intuition, we formally define the order over substitutions
in a sequence as follows.

Definition 8 (Order over Graph Substitutions).
Given a computation graph G and a graph substitution se-
quence P = (τ1, ..., τk), the order between two graph substi-
tutions in P is defined in a recursive way:

(1) For any substitution τi in P , we have N � τi.
(2) For any two substitutions τi and τj in P (τi, τj 6= N),

let Vi, Vj be the respective set of nodes τi and τj replace, ∆i

and ∆j be the respective sets of substitutions they depend
on, and the latest substitutions of ∆i and ∆j be τm and τn.
That is, for ∀τl ∈ ∆i, τl � τm, and for ∀τl ∈ ∆j, τl � τn.
Let αi = maxv∈Vi,Γv=(τm,jv) jv, αj = maxv∈Vj ,Γv=(τn,jv) jv.

We have τi � τj iff (a) τm � τn, but τn � τm; or (b)
τm = τn, and αi ≤ αj.

Below we use an example to explain the node label and
the substitution order.

Example 5. Consider the example in Figure 3. φ de-
notes the substitution rule in Figure 2. The label of node
vi(i = 1, ..., 10) in the original computation graph (denoted
by G) can be initialized as Γvi = (N , i), and the label of node

vj(j = 6, ..., 10) in Gt of φ can be initialized as Γ′vj = (N , j).
Suppose we fuse v2 and v3 in G first, and then v6 and v7. Let
τ1, τ2 denote the two graph substitutions, so the substitution
sequence is P = (τ1, τ2). Then the label of v11, v12, v13, v14 in
the optimized computation graph are Γv11 = (τ1, 7),Γv12 =
(τ1, 8),Γv13 = (τ2, 7),Γv14 = (τ2, 8) respectively. To com-
pare τ1 and τ2, we first find the substitutions they depend
on. Since τ1 replaces v2 and v3, which are “generated” by
N , τ1 only depends on N . Similarly, since τ2 replaces v6

and v7, it only depends on N as well. Therefore, we need
to check the second condition in Definition 8 to compare τ1
and τ2. The respective α values in Definition 8 for τ1 and
τ2 are 3 and 7, and 3 ≤ 7, therefore, τ1 � τ2.

Theorem 3. The order over graph substitutions defined
in Definition 8 is a partial order.

Proof. By mathematical induction, we can prove the or-
der is a partial order. Appendix A shows more details.

Based on the substitution order, we say a graph substitu-
tion sequence P = (τ1, ..., τk) is ordered if τ1 � ... � τk.

3.2 Pruning Rule
Given the property that a graph substitution sequence can

be sorted using the partial order over graph substitutions,
we prove that sorting a graph substitution sequence will not
change its optimization effect. For convenience, we define
the child-father relationship of graph substitution sequences,
the child substitution of a substitution sequence and the
substitution sequence descendant below.

Definition 9 (child-father relationship). Given a
computation graph G and graph substitution sequences, P =
(τ1, ..., τk), P ′ = (τ1, ..., τk, τ

′
k+1), we dub P ′ as a child graph

substitution sequence of P and P as a father graph substi-
tution sequence of P ′. If P is empty and P ′ = (τ ′1), the
child-father relationship still holds for P and P ′.

Definition 10 (child substitution). Given two sub-
stitution sequences P and P ′, if P ′ is a child graph substi-
tution sequence of P , we say the last substitution in P ′ is a
child graph substitution of P .

Definition 11 (sequence descendant). Given a co-
mputation graph G and a graph substitution sequence P =
(τ1, ..., τk), any graph substitution sequence P ′ for G satis-
fying that P ′ = (τ1, ..., τk, τ

′
k+1, ..., τ

′
k′) (k′ > k) is a descen-

dant of P .

Theorem 4. Given a computation graph G and a graph
substitution sequence P1, let P2 be the substitution sequence
after we sort P1 according to the order over graph substi-
tutions (P2 is ordered and unique), then the computation
graphs optimized by P1 and P2 respectively are the same.

Proof. To prove Theorem 4, we first define the swapping
operation for graph substitutions: for two adjacent graph
substitutions τ1, τ2 in a graph substitution sequence P sat-
isfying that τ1 is ahead of τ2 but τ2 � τ1, the swapping
operation exchanges τ1 and τ2 in P . Then we can prove
Theorem 4 easily by showing (1) the swapping operation
will not change the optimization effect of a graph substi-
tution sequence, and (2) we can sort a graph substitution
sequence by doing swapping operations sequencially.

2738

Theorem 4 shows the effect-preserving property of sorting.
We now provide the pruning rule as follows.

Corollary 1 (Pruning Rule). Given a computation
graph G and a graph substitution sequence P , if P is not or-
dered, by Theorem 4, there exists an ordered P ′ equivalent to
P , and therefore, we only need to check P ′ and its descen-
dants, instead of checking P and descendants of P , when
searching the solution to the OCGGS problem.

The algorithm using the pruning rule to solve the OCGGS
problem is described in Algorithm 1. When we first invoke
Algorithm 1, the input substitution sequence P is an empty
sequence. For a substitution sequence P , if its length is K,
we do not search its descendants (line 2). Otherwise, the
descendant set of P is the union of the descendant sets of
all its child substitution sequences (line 9). For each child
substitution τ of P , we check whether the last substitution
of P (if any) � τ (line 6). If so, we append τ to P (line 7);
otherwise we ignore τ . As such, we only keep ordered graph
substitution sequences and prune unordered ones.

Algorithm 1: Pruning

Input: A computation graph G = (V,E), a set of rules Φ,
an integer K, a cost function cost : G → R+, an initial
substitution sequence P .

Output: An optimal graph substitution sequence, the cost
of the graph optimized by the sequence.

1: Pbest ← P , Cbest ← cost(G)
2: if K = 0 then
3: return Pbest, Cbest
4: for φj ∈ Φ do
5: for every graph substitution τ using φj on G do
6: if P is empty or the last substitution τ∗ of P � τ

then
7: P ′ ← a new substitution sequence by adding τ

after P
8: G′ ← apply τ to G
9: P ′best, C

′
best ← Pruning(G′,Φ,K − 1, cost, P ′)

10: if C′best < Cbest then
11: Pbest ← P ′best, Cbest ← C′best
12: return Pbest, Cbest

Time Complexity. Suppose there are T ordered graph
substitution sequences checked by Algorithm 1. Assume the
degree of each node in the computation graphs (including
the source/target graphs of rules) is O(D), and the number
of nodes in the source/target graph of a rule is O(S). If we
regardD and S as small constants (like 10 forD in NasNet-A
and 4 for S in our experiments), then afterK graph substitu-
tions, there are O(|V |+K) nodes in the computation graph,
where |V | is the number of nodes in the original computation
graph. There can be O(|V |+ K) graph substitutions to be
checked in line 5 of Algorithm 1 (if the source graph of any
rule is weakly connected), and we need O(|V |+K) time to
find them all. Line 6 costs O(1) time to get the comparison
result. Applying P ′ to G (line 8) and calculating the cost
of a computation graph (line 1) require O(|E| + K) time.
In total, Algorithm 1 takes O(T |Φ|(|V |+K) + T (|E|+K))
time, where |Φ| is the number of rules. If the node number
and the edge number in the computation graph are bounded
by O(|V |) and O(|E|) respectively due to the given rules
in the substituting process, the overall time complexity is

O(T (|Φ||V |+ |E|)). If the source graphs in the rules are not
weakly connected graphs, the time complexity based on the
aforementioned assumptions is O(T (|Φ||V |S + |E|)).

Space Complexity. Algorithm 1 needs to store O(K)
substitution sequences (each needs O(K) space) and O(K)
computation graphs in the search process at the same time.
Similar to the analysis of time complexity, if the node num-
ber and the edge number are bounded by O(|V |) and O(|E|),
the space complexity of Pruning is O(|Φ|+K(|V |+|E|+K)),
which is polynomial in terms of the input size and K.

4. DYNAMIC PROGRAMMING
While the pruning-based algorithm can avoid examining

redundant graph substitution sequences effectively, perform-
ing subgraph matching during the search of graph substitu-
tions is still costly. The main idea of the dynamic program-
ming algorithm is to store the already explored substitutions
and reuse them when we are looking for the child substitu-
tions of a substitution sequence. In this way, we can avoid
the subgraph matching cost of the reused substitutions.

To find reusable substitutions, we observe that, given a
computation graph G and the set ∆ of all the possible
graph substitutions on G, there may exist two substitutions
τ1, τ2 ∈ ∆ that replace different nodes in G without inter-
fering with each other. Suppose we apply τ1 on G, i.e., the
substitution sequence is P = (τ1). We are sure that τ2 is one
child substitution of P , and hence the sequence P ′ = (τ1, τ2)
can be applied on G sequentially. In the following, we pro-
vide a concrete example to illustrate the above observation.

Example 6. Recall the example in Figure 3. Given the
rule of fusing two convolutions, we can find two graph substi-
tutions τ1 and τ2 at first (τ1: fusing v2, v3; τ2: fusing v6, v7),
and each forms a substitution sequence of length 1, denoted
by P1 = (τ1) and P2 = (τ2). After applying P1, τ2 can still
be applied, leading to a substitution sequence P3 = (τ1, τ2)
of length 2. Since P2 and P3 both have τ2, we can make use
of the matching result of τ2 in P2 when trying to find P3.

4.1 Dynamic Programming Algorithm
To search all possible graph substitution sequences for a

computation graph, the dynamic programming algorithm
iteratively appends substitutions to the existing substitution
sequences. Before we present the state transition rules, for
convenience, we first define some variables.

Given a computation graph G, a graph substitution se-
quence P1 and its father graph substitution sequence P2, let
∆1,∆2 be the respective child substitution sets in P1 and P2.
τ∗ denotes the last substitution of P1, and hence τ∗ ∈ ∆2.
Let ∆3 ⊆ ∆2 be the set of all the child substitutions of P2

which replace nodes different from the ones replaced by τ∗.
Let ∆4 ⊆ ∆1 be the set of all the child substitutions of P1

which depend on τ∗. B : (P,∆) → ∆ is a function which
takes a substitution sequence P and a set of substitutions ∆
as input, and outputs the substitutions such that appending
each of them to P leads to an ordered sequence.

We define the state of a substitution sequence as its child
substitution set. Theorem 5 shows the state transition rules.

Theorem 5 (State Transition rules). Given an i-
nitial computation graph G, for a substitution sequence P1:

(1) if P1 is empty, its child substitutions are searched di-
rectly on G;

2739

(2) if P1 is not empty, whose father substitution sequence
is P2, then its child substitution set ∆1 = ∆3 ∪ ∆4 (the
variables have the same meaning as aforementioned).

It is easy to prove Theorem 5. After we find the child sub-
stitutions of a substitution sequence, we can append them
to the sequence to get new substitution sequences. There-
fore, we can use dynamic programming based on Theorem 5
to find all possible graph substitution sequences for a com-
putation graph. Furthermore, the following theorem shows
the pruning rule in Corollary 1 can be combined with the
dynamic programming method. The correctness of Theo-
rem 6 is guaranteed by the transitivity of the partial order
over graph substitutions.

Theorem 6. Given an initial computation graph G, for
a substitution sequence P1:

(1) if P1 is empty, its child substitutions are searched di-
rectly on G;

(2) if P1 is not empty, whose father substitution sequence
is P2, then the set of its child substitutions τ ′ such that τ∗ �
τ ′ is B(P1,∆1) = B(P1,B(P2,∆3))∪∆4 (the variables have
the same meaning as aforementioned).

Algorithm 2 provides the pseudocode of DP with pruning
according to Theorem 6. For the first time of invoking Al-
gorithm 2, the input substitution sequence P is an empty
sequence and the input substitution set ∆ is ∅. If a substi-
tution sequence P is of length K, we do not search its child
substitution sequences (line 2). Otherwise, we search the
two parts of its child substitutions according to Theorem 6
and store them in ∆′ (line 6, 11). By appending the child
substitutions to P , we get its child substitutions sequences
(line 13). The descendant set of P is the union of the de-
scendant sets of all its child substitution sequences (line 15).

Time Complexity. Suppose there are T ordered graph
substitution sequences being checked. Let T ′ be

∑
∆∈S |∆|

2,
where S is the set of child substitution sets ∆ of all ordered
substitution sequences (T ′ > T). Other variables used in
this analysis are the same as those in the analysis of Al-
gorithm 1. We also regard D and S as constants. Line 6
takes O(T ′) time in total, There can be O(1) (if τ∗ exists)
or O(|V |) (otherwise) graph substitutions in line 10 (if the
source graph of any rule is weakly connected), each taking
O(1) time to be checked whether it can be matched. Line 1
and line 14 take O(|E| + K) time, where |E| is the num-
ber of edges in the original computation graph. Therefore,
the total time complexity of Algorithm 2 is O(T ′+ |Φ||V |+
T (|Φ|+ |E|+K)). If the edge number is bounded by O(|E|)
during the substituting process, the overall time complexity
is O(T ′ + |Φ||V | + T (|Φ| + |E|)), and the time complexity
is O(T ′ + |Φ||V |S + T (|Φ||V |S−1 + |E|)) when the source
graphs of rules are not weakly connected graphs.

Space Complexity. Algorithm 2 needs to store O(KU)
substitutions (each needs O(1) space), O(K) substitution
sequences and O(K) computation graphs in the process at
the same time, where U is the maximum size of a child
substitution set of a sequence and is polynomial in terms
of the input size according to the time complexity analysis.
If the node number and the edge number are bounded by
O(|V |) and O(|E|) in the substituting process, the space
complexity of DPP is O(|Φ|+K(U +K+ |V |+ |E|)), which
is polynomial in terms of the input size and K.

Algorithm 2: DP with pruning (DPP)

Input: A computation graph G = (V,E), a set of rules Φ,
an integer K, a cost function cost : G → R+, an initial
substitution sequence P , the child substitution set ∆ of
the father substitution sequence of P .

Output: An optimal graph substitution sequence, the cost
of the graph optimized by the sequence.

1: Pbest ← P , Cbest ← cost(G)
2: if K = 0 then
3: return Pbest, Cbest
4: if P is not empty then
5: τ∗ denotes the last graph substitution of P
6: ∆′ ← reusable substitutions τ from ∆ according to

Section 4.1 s.t. τ∗ � τ
7: else
8: ∆′ ← ∅, τ∗ ← None
9: for φj ∈ Φ do

10: for every graph substitution τ using φj on G and
depending on τ∗ (if τ∗ 6= None) do

11: ∆′ = ∆′ ∪ {τ}
12: for τ ∈ ∆′ do
13: P ′ ← a new sequence by adding τ after P
14: G′ ← apply τ to G
15: P ′best, C

′
best ← DPP(G′,Φ,K − 1, cost : G →

R+, P ′,∆′)
16: if C′best < Cbest then
17: Pbest ← P ′best, Cbest ← C′best
18: return Pbest, Cbest

5. SAMPLING-BASED APPROXIMATION
ALGORITHM

Algorithm 1 and 2 provide exact solutions. They fully
explore the search space of all possible graph substitution
sequences, and their time complexity is determined by the
total number of ordered graph substitution sequences, which
can be exponential in terms of the input size. To improve
the search efficiency by sacrificing little accuracy, we develop
a sampling-based approximation algorithm to the OCGGS
problem with polynomial time and space complexity.

The pseudocode is illustrated in Algorithm 3. Overall, it
starts with an empty graph substitution sequence and tries
to find the best substitution sequence iteratively until we
cannot find any feasible substitution sequences (Pk−1 = ∅)
due to the length constraint or the sampling rule described
below (line 3). During the k-th iteration, we take no more
than Q already sampled substitution sequences in set Pk−1

as input, where Q is the given sample size. We search all
the child substitution sequences with length no longer than
K for the sequences in Pk−1 and keep them in Ptmp (line 4).
This step is accomplished using the dynamic programming
technique (line 4-11 of Algorithm 2 but without order check-
ing). We then evaluate the sequences in Ptmp and some of
their descendants to obtain Pk via sampling (line 5-14). For
all the iterations, we use Pbest to maintain the best graph
substitution sequence being searched so far that has the low-
est cost Cbest of the optimized computation graph.

The challenge for the sampling-based approximation algo-
rithm is how to effectively sample possibly good substitution
sequences without enumerating all the sequences. A simple
heuristic is to append one graph substitution each time to
the sequence that leads to maximal reduction in the cost.

2740

However, while an optimal sequence can derive a computa-
tion graph with lowest cost, the involved graph substitutions
may not always decrease the cost. Recall the example in Fig-
ure 1. By first enlarging the kernel size of one convolution
node and then merging two convolution nodes into one, the
cost of the computation graph increases before eventually
decreases. The search and sampling heuristic should grant
credits to such sequences rather than greedily pursue the se-
quences that reduce the cost continuously. Since the source
graph of any substitution rule typically has a small num-
ber of nodes, a reasonable assumption is that for any graph
substitution in a sequence, the number of the graph substi-
tutions it depends on in the sequence that increase the cost
cannot be very large (like 1 in the example of Figure 1).

To introduce the sampling rule, we first define further ex-
ploration sequences as a graph substitution sequence that
needs further exploration, and the potential of a further ex-
ploration substitution sequence. For a graph substitution
sequence P = (τ1, ..., τk), we dub P as a further exploration
substitution sequence if (1) τk increases the computation
graph cost, and (2) P does not have more than η succes-
sive cost-increasing substitutions, where η is a given con-
stant (the value of η is selected based on the assumption
mentioned above).

Definition 12 (potential). Given a further explora-
tion substitution sequence P = (τ1, ..., τk), we find all its
descendants P ′ = (τ1, ..., τk, τ

′
k+1, ..., τ

′
k′) such that:

(1) τi depends on τi−1, for i = k + 1, ..., k′;
(2) τ ′k′ decreases the computation graph cost;
(3) P ′′ = (τ1, ..., τk, τ

′
k+1, ..., τ

′
k′−1) is a further exploration

substitution sequence.
The potential of P is the lowest cost of the optimized com-
putation graphs by applying the above descendants.

We propose to perform search and sampling in the follow-
ing way. In the k-th iteration of Algorithm 3, we divide Ptmp
into two parts, Pdes and Pinc. Pinc contains further explo-
ration sequences (line 6), and Pdes is Ptmp − Pinc (line 7).
For Pdes, we select Q/2 sequences with the best optimized
computation graph costs and add them into Pk to be eval-
uated in the next iteration (line 14), because their descen-
dants are very likely to include the optimal graph substi-
tution sequence. For all the sequences in Pinc, we do not
sample them directly but search their descendants and sam-
ple the descendants (line 8-12). Specifically, we first assign
Pinc to P (line 6), which contains further exploration se-
quences. We then run in iterations until there is no further
exploration sequences left (line 8). In each iteration, we se-
lect Q/2 sequences from P with the best potentials (line 9),
search the child substitution sequences of the sampled ones
and store them in P (line 10, using line 9-11 of Algorithm 2),
add P to Pinc (line 11), and then only keep the further ex-
ploration sequences in P (line 12). For the new Pinc, we
delete sequences in it ending with a cost-increasing substi-
tution and sample Q/2 of them with the best optimized
computation graph costs to add to Pk.

Time Complexity. Similar to the analysis of Algo-
rithm 2, we regard D and S as constants. For the simplicity
of expression, letH denote (Q|Φ||V |), H′ denote (Q|Φ||V |S),
and M denote (QK|Φ|). If the source graph of any rule is
weakly connected, line 4-5 in Algorithm 3 take O(M(|V |+
K)(|E|+K)) time in total. Line 8-12 take O(K|P| log |P|+
M(|E| + K)) time, and line 14 takes O(K|P| log |P|) time,

Algorithm 3: Sampling

Input: A computation graph G = (V,E), a set of rules Φ,
an integer K, a cost function cost : G → R+, a sample
size Q, a constant η for further exploration need check.

Output: An optimal graph substitution sequence.
1: Pbest ← None, Cbest ← cost(G)
2: P0 ← {Pbest}, k ← 1
3: while Pk−1 6= ∅ do
4: Ptmp ← all child substitution sequences of Pk−1 no

longer than K
5: update Pbest, Cbest.
6: P,Pinc ← further exploration sequences ∈ Pl
7: Pdes ← Ptmp − Pinc
8: while P 6= ∅ do
9: P ← sample Q/2 from P according to their poten-

tials
10: P ← child substitution sequences of P no longer

than K (line 9-11 of Algorithm 2)
11: Pinc ← Pinc ∪ P, update Pbest, Cbest.
12: P ← further exploration sequences in P
13: delete sequences ending with cost-increasing substitu-

tions from Pinc
14: Pk ← sample Q/2 graph substitution sequences from

Pdes and Pinc respectively
15: K ← K + 1
16: return Pbest

Table 2: The details of the DNNs.

Model Details
Inception-v3 11 blocks of 5 types, 138 operators

ResNet 8 blocks of 1 type, 40 operators
ResNext-50 16 blocks of 2 types, 86 operators
NasNet-A 18 blocks of 2 types, 293 operators

SRU 1 block of 1 type, 11 operators
NasRNN 5 blocks of 1 type, 230 operators

BERT 8 blocks of 1 type, 113 operators

where |P| = O(Q|Φ|(|V |+K)). So the total time complex-
ity is O(M(|V | + K)(|E| + K + log(Q|Φ|(|V | + K)))). If
the numbers of nodes and edges are bounded by O(|V |) and
O(|E|) respectively due to the given rules in the substituting
process, the time complexity is O(KH(|E|+logH)), and the
time complexity is O(KH′(|E| + logH′)) when the source
graphs of rules are not weakly connected graphs.

Space Complexity. Similar to the analysis of time com-
plexity, if the node number and the edge number are bounded
by O(|V |) and O(|E|), the space complexity of Sampling is
O(|Φ|+QU(K + |V |+ |E|)), where U is the maximum size
of a child substitution set of a sequence and is polynomial
in terms of the input size.

6. EXPERIMENTS

6.1 Experimental Setting
DNNs. We use 7 DNNs in the experiments, and the de-

tails of the models are provided in Table 2. Inception-v3
[14] is a deep convolutional neural network (CNN) proposed
for image classification. ResNet [8] is also a CNN and it can
be very deep thanks to the residual connections. ResNeXt-
50 [17] explores the split-transform-merge strategy of Incep-

2741

tion models and introduces a new grouped convolution oper-
ator to the original structure of ResNet. NasNet-A [20] is
a state-of-the-art CNN model discovered by neural architec-
ture search. SRU [11] is a recurrent neural network (RNN)
architecture which simplifies the computation and exploits
more parallelism compared with the conventional RNN ar-
chitectures. NasRNN [19] is also an RNN discovered by
neural architecture search and outperforms the widely-used
LSTM. BERT [6] is a powerful language model which ob-
tains the state-of-the-art results on many natural language
processing tasks.

Substitution rules. We use the 157 substitution rules
identified by TASO [9], whose correctness has been verified
by TASO. Applying the rules may either increase or decrease
the cost of a computation graph.

Comparison methods. We compare six algorithms in
the experiments: (1) Pruning (Algorithm 1), (2) DPP (Al-
gorithm 2), (3) Sampling (Algorithm 3), and three base-
lines, (4) the brute-force enumeration algorithm Enumera-
tion (ENU), (5) MetaFlow (MF) [10], a cost-based back-
tracking search algorithm accelerated by using a graph split-
ting strategy, and (6) TASO (TS) [9], using the same cost-
based backtracking search algorithm as MF without graph
splitting. For Sampling, we set Q = 20 and η = 1. For MF
and TS, the hyperparameter α is set to 1.05, which is the
same as in [9, 10]. The threshold used in graph splitting of
MF is 30, following the same setting as in [10]. For some
complex models, the two exact algorithms and three base-
lines would run for more than hours or even days, which
are much slower than Sampling that finishes in seconds. In
the experiments, if an algorithm does not terminate within
1 hour, we kill the corresponding process. To provide base-
line results in spite of the process kill, we report the opti-
mized graph costs by the best substitution sequences MF
and TS find, the search time, and the memory consump-
tion when they are stopped. For Pruning, DPP and ENU
we report their result as “-” if they cannot finish within 1
hour, because they are exact algorithms and only the results
obtained when they terminate normally are meaningful.
Measurements. We measure the performance of differ-

ent algorithms using three metrics: (1) the optimized cost,
i.e., the cost of the computation graphs after optimization
as mentioned in Section 2 (the cost of each operator is es-
timated by its execution time on a machine, which is also
used in [10]); (2) the search time (algorithm running time);
and (3) the memory consumption. All the experiments were
repeated for 100 times, and we report the average results.

We implemented the algorithms in C++1 on top of the
code provided by Jia et al. [9], and conducted experiments
on a Ubuntu 16.04.6 machine with a 12-core Intel E5-2690
CPU, 2 NVIDIA Tesla P100 GPUs and 220 GB of RAM.

6.2 Evaluation on Different DNNs
We evaluate the performance of all the algorithms over (1)

different DNN architectures in Section 6.2.1 and (2) different
DNN sizes in Section 6.2.2.

6.2.1 Different DNN Architectures
We consider 7 different DNN architectures listed in Ta-

ble 2. The length constraint K is set to 10. Table 3 shows
the results. Specifically, Table 3a shows the costs of the

1The code is available on https://github.com/Experiment-
code/OCGGS.

Table 3: Results on different DNN architectures.

(a) Optimized cost.

DNN
Optimized cost (ms)

ENU Pruning DPP MF TS Sampling
Inception-v3 - - - 9.48 8.80 8.80

ResNet - 1.73 1.73 1.73 1.73 1.73
ResNeXt-50 - - - 8.54 7.80 7.80
NasNet-A - - - 20.97 18.31 18.31

BERT - - - 1.21 1.21 1.21
SRU - 0.15 0.15 0.15 0.15 0.15

NasRNN - - - 1.82 1.80 1.80

(b) Search time.

DNN
Search time (s)

ENU Pruning DPP MF TS Sampling
Inception-v3 - - - 11.39 > 3600 4.38

ResNet - 20.39 7.89 1.35 2.82 0.26
ResNeXt-50 - - - 5.25 108.83 1.14
NasNet-A - - - > 3600 > 3600 233.34

BERT - - - 11.69 790.28 2.02
SRU - 21.96 33.12 0.03 0.02 0.28

NasRNN - - - > 3600 > 3600 20.59

(c) Memory.

DNN
Memory (GB)

ENU Pruning DPP MF TS Sampling
Inception-v3 - - - 1.10 > 1.30 1.15

ResNet - 1.05 1.05 1.05 1.05 1.05
ResNeXt-50 - - - 1.13 1.13 1.13
NasNet-A - - - > 34.08 > 12.67 5.03

BERT - - - 1.07 1.09 1.09
SRU - 1.07 1.07 1.07 1.07 1.07

NasRNN - - - 1.07 1.38 1.70

computation graphs optimized by the algorithms, Table 3b
shows the search time for each algorithm, and Table 3c
shows the memory consumption results of the algorithms.

From Table 3, we can see that ENU cannot finish within
1 hour for all models. Pruning and DPP have results for
ResNet and SRU, because the search space of these two
models are the smallest among all 7 models.

According to Table 3a, Sampling finds the optimal solu-
tion on ResNet and SRU. On other models, Sampling also
always finds the best graph substitution sequence compared
with MF and TS. Compared with MF, On NasNet-A, the
optimized graph cost by Sampling is 1.15 times better, and
on Inception-v3 and ResNeXt-50, Sampling can also achieve
about 8% improvement. On NasRNN, the optimized cost by
Sampling is 1% smaller than MF. Compared with TS, Sam-
pling has the same optimization effect.

For search efficiency, according to Table 3b, DPP is about
3 times faster than Pruning on ResNet. This is because
Pruning spends about 18 seconds on finding substitutions,
while DPP only spends 1.69 seconds on it, due to the reusing
technique. However, on SRU, DPP is slower than Pruning,
because SRU is a rather small model and there are not many
substitutions to reuse. In this case, DPP only saves 5 sec-
onds on finding substitutions, but spends about 20 seconds
on additional computation for the reusing technique. Sam-
pling shows great advantage over other algorithms in terms
of the search time. It can finish within seconds for most
models. For the two most complex models, NasNet-A and
NasRNN, the respective search time of it is about 233 and
20 seconds. No any other algorithm in Table 3b can finish
in 1 hour for all models. Although on SRU, the search time
of Sampling is longer than MF and TS, the absolute value of

2742

2 4 6 8
#Block of ResNet

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Op
tim

ize
d

co
st

 (m
s)

MF
TS
Sampling
DPP
Pruning
ENU

(a) Optimized cost, ResNet blocks

2 4 6 8
#Block of ResNet

0

50

100

150

200

Se
ar

ch
 ti

m
e

(s
)

MF
TS
Sampling
DPP
Pruning
ENU

(b) Search time, ResNet blocks

2 4 6 8
#Block of ResNet

1.030

1.035

1.040

1.045

1.050

1.055

1.060

M
em

or
y

(G
B)

MF
TS
Sampling
DPP
Pruning
ENU

(c) Memory, ResNet blocks

1 2 3 4
#Block of InceptionE

1

2

3

4

5

6

Op
tim

ize
d

co
st

 (m
s)

MF
TS
Sampling
DPP
Pruning
ENU

(d) Optimized cost, InceptionE blocks

1 2 3 4
#Block of InceptionE

0
5

10
15
20
25
30
35

Se
ar

ch
 ti

m
e

(s
)

MF
TS
Sampling
DPP
Pruning
ENU

(e) Search time, InceptionE blocks

1 2 3 4
#Block of InceptionE

1.090

1.095

1.100

1.105

1.110

1.115

1.120

M
em

or
y

(G
B)

MF
TS
Sampling
DPP
Pruning
ENU

(f) Memory, InceptionE blocks

Figure 4: Results on ResNet blocks and InceptionE blocks, varying the block number.

the search time is less than 0.3 seconds, which is very small.
On other models, Sampling is the fastest.

As for memory consumption, all algorithms on most mod-
els cost less than 2 GB. On ResNet and SRU, Pruning,
DPP and Sampling perform similarly compared with MF
and TS. On Inception-v3, Sampling costs 0.05 GB memory
more than MF, but saves at least 12% of the memory TS
costs. On BERT, Sampling performs the same as TS, and
costs 0.02 GB more than MF. On NasRNN, Sampling re-
spectively costs 0.63 GB and 0.32 GB more memory than
MF and TS. The extreme case is on NasNet-A, where MF
and TS consume tens of GBs memory, and Sampling saves
85% and 60% of the memory MF and TS cost respectively.

In a nutshell, we get the following observations: (1) Prun-
ing and DPP are much more efficient than ENU in search
time. DPP can save the time for finding substitutions com-
pared with Pruning, but for small models where there are
not many substitution reusing opportunities (like SRU), the
addition computation may make DPP run slower. (2) MF
uses graph split strategy to accelerate searching, but its ef-
fectiveness is harmed on some models (like Inception-v3).
(3) MF and TS are able to find optimal graph substitution
sequences efficiently on DNNs with relatively simpler archi-
tectures. Their performance suffer in face of larger or more
complex computation graphs. (3) Sampling is effective and
efficient to deal with different types of computation graphs.
Summary. From Table 3, we can find that the search

time of algorithms in general is influenced by two factors:
the input substitution rules and the DNN structures. For
example, Sampling runs slowest on NasNet-A. This is be-
cause: (1) NasNet-A is a CNN and many input substitution
rules deal with convolution operators; (2) NasNet-A has a
complex architecture. Hence, many substitution sequences
can be found for NasNet-A (the number of substitution se-
quences with only one substitution for NasNet-A is already
346), and there can be causality among substitutions in a
substitution sequence as well, i.e., different substitutions can

lead to different substitution sequences following them. As
a result, the search space of all the possible substitution se-
quences is much larger than other DNNs. While ResNet
and ResNeXt-50 are also CNNs, their structures are simpler
than NasNet-A, and therefore Sampling runs faster on them.
Among models other than CNNs, compared with BERT and
SRU, NasRNN has more substitution possibilities due to the
complex structure and the substitution rules as well (the
number of substitution sequences of length 1 is already 371
for NasRNN) and Sampling reports longer search time on
it. But the causality among substitutions does not affect
the search space as significantly as for NasNat-A, so Sam-
pling runs faster on NasRNN than on NasNet-A.

6.2.2 Different DNN Sizes
Since DNNs usually consist of repetitive blocks, in order

to analyse the effect of DNN sizes, we fix the block structure
and vary the number of blocks in the DNNs. We present the
evaluation results on DNNs consisting of 2, 4, 6, 8 ResNet
blocks (each consists of 5 nodes) and DNNs with 1, 2, 3, 4
InceptionE blocks [14] (each consists of 13 nodes). K is set
to 10. Figure 4a-4c show the results on ResNet blocks, while
Figure 4d- 4f provide the results on InceptionE blocks.

On ResNet blocks, by referring to the optimized cost of
our two exact algorithms, we can see that Sampling finds
the optimal substitution sequences for all the block num-
bers, while TS and MF report slightly higher optimized costs
when the number of blocks is 2 and 4. The optimized graph
by Sampling is 1.0-1.13 times faster than that by TS and
MF. In terms of the search time, DPP and Pruning are
much more efficient than ENU, they are about 1515 and
1681 times faster than ENU respectively on the model of 4
ResNet blocks. ENU cannot finish within 1 hour on mod-
els of 6, 8 ResNet blocks. DPP achieves superior perfor-
mance than Pruning on large computation graphs thanks
to the reusing substitution technique. The exceptions are
the models with 2, 4 ResNet blocks, where DPP runs slower

2743

5 10 15 20 25
K

1.24

1.26

1.28

1.30

1.32

1.34

Op
tim

ize
d

co
st

 (m
s)

MF
TS
Sampling
DPP
Pruning
ENU

(a) Optimized cost, ResNet blocks

5 10 15 20 25
K

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Se
ar

ch
 ti

m
e

(s
)

MF
TS
Sampling
DPP
Pruning
ENU

(b) Search time, ResNet blocks

5 10 15 20 25
K

1.030
1.035
1.040
1.045
1.050
1.055
1.060
1.065
1.070

M
em

or
y

(G
B)

MF
TS
Sampling
DPP
Pruning
ENU

(c) Memory, ResNet blocks

5 10 15 20 25
K

3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

Op
tim

ize
d

co
st

 (m
s)

MF
TS
Sampling
DPP
Pruning
ENU

(d) Optimized cost, InceptionE blocks

5 10 15 20 25
K

0
10
20
30
40
50
60

Se
ar

ch
 ti

m
e

(s
) MF

TS
Sampling
DPP
Pruning
ENU

(e) Search time, InceptionE blocks

5 10 15 20 25
K

1.12

1.14

1.16

1.18

1.20

M
em

or
y

(G
B)

MF
TS
Sampling
DPP
Pruning
ENU

(f) Memory, InceptionE blocks

Figure 5: Results on ResNet blocks and InceptionE blocks, varying K.

than Pruning. This is because DPP needs additional compu-
tation cost for the reusing part, and this overhead becomes
insignificant on larger models involving 6, 8 blocks where
DPP runs 1.60-2.58 times faster than Pruning. The dif-
ference between DPP and TS, MF in search time becomes
larger as the block number increases. On the model with
8 ResNet blocks, the search time ratio of DPP against TS
and MF is 2.79 and 5.84 respectively. Sampling can be up
to 30.56, 10.94, 5.24 times faster than DPP, TS and MF
respectively. In terms of the memory consumption, there is
not many differences among our algorithms and the base-
lines, ENU, TS and MF. The memory consumption of all
the algorithms is quite stable as the block number varies.

On InceptionE blocks, we exclude the results of the three
exact algorithms due to long search time (tens of hours).
This is because InceptionE blocks are much more complex
than ResNet blocks, resulting in a huge search space. For the
remaining algorithms, in terms of the optimized cost, Sam-
pling performs similar to TS, but is up to 1.23 times better
than MF. As for the search time, Sampling runs up to 19.26
and 9.47 times faster than TS and MF, respectively. The
memory consumption of Sampling, TS, and MF is similar,
and the trends are stable as the number of blocks increases.

Summary. Figure 4 shows for the same block type, all
the algorithms takes longer search time with the increasing
block number in a model. This is reasonable because more
blocks means more substitutions to be explored, resulting
in a larger search space. Furthermore, there can be substi-
tutions across blocks rather than within a single block, and
hence the number of substitutions that can be performed on
a computation graph does not simply increase linearly with
the block number. It is worth mentioning that the search
time of Sampling is consistently small over all the block num-
bers. We also notice that the memory consumption does not
change a lot according to the experiments. This observation
is consistent with the space complexity of our algorithms,
and the fact that the absolute increase in substitutions with

the block number on an original or intermediate graph is
typically small and cannot affect the memory consumption
significantly for ResNet and InceptionE blocks.

6.3 Evaluation on Length Constraint
To evaluate the effect of length constraint, we consider

two DNNs: one consisting of 6 ResNet blocks and the other
with 3 InceptionE blocks. K is chosen from the set {5, 10,
15, 20, 25}. Figure 5a- 5c and Figure 5d- 5f show the results
on the ResNet and InceptionE models, respectively.

On the ResNet model, we only report the results of ENU
when K = 5 because of the long search time. All the other
algorithms report the optimal substitution sequence as K
varies. The search time of our proposed algorithms do not
increase too much when K ≥ 10, because the optimal sub-
stitution sequence is of length 11. DPP runs 64.65 times
faster than ENU (when K = 5), 1.60-1.78 times faster than
Pruning, and only up to 2.56 and 1.87 times slower than TS
and MF (but DPP has accuracy guarantee), respectively.
Sampling runs up to 5.78, 3.22, 3.14 times faster than DPP,
TS and MF, respectively. The memory consumption among
algorithms are close and stable with different values of K.

On the InceptionE model, we only report the results of
Pruning and DPP for K = 5 as they take tens of hours for
larger K. We exclude the results of ENU also because of
its long search time. When K = 5, DPP is 2 times faster
than Pruning and 30.44 times slower than Sampling. For
the remaining algorithms, in terms of the optimized cost,
Sampling performs similar to TS, but is 1.05 times better
than TS when K = 25. Compared with MF, Sampling al-
ways finds a much better substitution sequence. The opti-
mized cost reported by Sampling is 1.04-1.24 times better
than that by MF. For the search time, the growth rate of
Sampling is significantly slower than that of TS and MF,
and Sampling can be 32.52 and 8.09 times faster than TS
and MF, respectively. Sampling also outperforms TS on the
memory consumption, which saves upto 8% memory space.

2744

Summary. As the length constraint increases, the search
space involving all the possible substitution sequences be-
comes larger. For complex models and large length con-
straints, our exact algorithms are inefficient to produce re-
sults in reasonable time (they would last for days or longer).
Thanks to the time and space complexity guarantee, the
search time and memory consumption of Sampling increase
sublinearly as the length constraint becomes larger.

7. RELATED WORK
Optimizing DNN efficiency has attracted great attention.

Our study is closely related to two categories of research:
graph-level and operator-level optimization for DNNs.

Graph-level optimization. This kind of optimization
tries to optimize computation graphs by applying rule-based
transformations. A number of works leverage manually de-
signed rules. TVM [5] recognizes four categories of graph
operators, and provides generic rules to fuse these operators
so that the intermediate results do not need to be maintained
in memory, thus reducing the execution time. TensorRT [3]
uses predefined rules to combine layers (operators) and elim-
inate unnecessary operatiors, e.g., fusing convolution, bias
and ReLU operations together. MetaFlow [10] considers
rules with increasing cost in the intermediate computation
graphs to seek more optimization opportunities. Different
from the above works, TASO [9] introduces a method to
automatically generate rules (not limited to performance-
improving ones) for a given set of operators, and then ver-
ify their correctness. It also jointly optimizes data lay-
out when applying rules to computation graphs based on
MetaFlow. All the existing works focus on the design of
substitution rules and adopt heuristic algorithms to search
substitution sequences for optimizing computation graphs.
However, none of them have paid attention to the theoreti-
cal analysis of the computation graph optimization problem.
The effectiveness or efficiency of existing heuristics may suf-
fer in face of complex models due to the large search space.
In contrast, our work formally provides the hardness results
of the computation graph optimization problem via graph
substitution sequences, and introduces two exact algorithms
and an efficient sampling-based approximation method with
polynomial time complexity.

Operator-level optimization. This kind of optimiza-
tion aims to make operators run faster. There are libraries
for basic operations like GEMM (General matrix multipli-
cation), including cuBLAS, Neon, and OpenAI [1, 2, 4]. Be-
sides these libraries, TVM [5] optimizes low-level programs
according to hardware characteristics via a learning-based
cost modeling method. While Tensor Comprehensions [15]
uses black-box auto-tuning and polyhedral optimizations.
Astra [13] is a compilation and execution framework, and
performs an amplified variant of multi-version compilation.
TensorRT [3] runs operators on dummy data to select the
fastest from its kernel catalog to make adaptive optimization
for different environments. Our work focuses on accelerating
the process of graph-level optimization and hence the above
approaches are orthogonal to our problem.

8. CONCLUSIONS
In this paper, we formally define the OCGGS problem and

prove it to be NP-hard and Poly-APX-complete. We intro-
duce a partial order among graph substitutions to identify

redundant substitution sequences. We develop the pruning-
based search algorithm and the dynamic programming me-
thod that reuses the information of explored graph substi-
tutions, with detailed analysis on the time and space com-
plexity of the two exact algorithms. To deal with complex
computation graphs with large search space, we propose
an efficient sampling-based approximation algorithm with
polynomial time and space complexity. Extensive experi-
ments demonstrate that our Sampling algorithm is effective
and efficient to find good substitution sequences, compared
with existing techniques. Recently, Huawei has made its
deep learning framework, Mindspore, open sourced2. Mind-
spore has achieved great performance on training DNNs. We
would like to investigate applying our proposed methods on
Mindspore IR to further reduce the training cost.

9. ACKNOWLEDGEMENTS
This work is partially supported by the Hong Kong RGC

GRF Project 16202218, CRF Project C6030-18G, C10 31-
18G, C5026-18G, AOE Project AoE/E-603/18, China NSFC
No. 61729201, Guangdong Basic and Applied Basic Research
Foundation 2019B151530001 and 2019A1515110473, Hong
Kong ITC ITF grants ITS/044/18FX and ITS/470/18FX,
Microsoft Research Asia Collaborative Research Grant, Didi-
HKUST joint research lab project, and Wechat and Webank
Research Grants. Yanyan Shen is the corresponding author.

APPENDIX
A. PROOF OF THEOREM 3

Proof. Before showing that the order defined in Defi-
nition 8 is a partial order, we introduce a concept called
“depth” for graph substitutions. Specifically, the depth of
the dummy substitution N is 0. For a graph substitution
τ = (φ, g : Vs → Vm, h) 6= N , its depth is the maximum
depth of all the substitutions it depends on plus 1.

In order to prove the order in Definition 8 is a partial or-
der, we need to prove three properties of it: reflexivity, anti-
symmetry and transitivity. By definition, for graph substi-
tutions of depth 0, these three properties hold. Suppose the
above three properties hold for graph substitutions of depth
≤ n (n ≥ 0). Consider substitutions of depth ≤ n + 1. let
τ1, τ2, τ3 be any three graph substitutions of depth ≤ n+ 1
in a graph substitution sequence (τ1, τ2, τ3 6= N), and the re-
spective biggest substitutions they depend on are τ∗1 , τ

∗
2 , τ
∗
3 ,

whose depths are ≤ n. τ∗1 , τ
∗
2 , τ
∗
3 must exist because the

order over substitutions of depth ≤ n is a partial order.
• Reflexivity. Suppose τ1 is of depth n + 1. By definition,
τ1 � τ1.
• Antisymmetry. For any substitution τ , (N � τ, τ � N)⇒
N = τ . Further, if τ1 � τ2, τ2 � τ1, then τ∗1 = τ∗2 , and τ1, τ2
replace some common nodes. Therefore, τ1 = τ2.
• Transitivity. For any three substitutions either being N or
in the same sequence, it is easy to see this property holds.
Further, (τ1 � τ2, τ2 � τ3) ⇒ (τ∗1 � τ∗2 , τ

∗
2 � τ∗3) ⇒ τ∗1 �

τ∗3 . If τ∗1 = τ∗3 , then τ∗1 = τ∗2 = τ∗3 ; otherwise, τ∗1 6= τ∗3 . In
both cases, by Definition 8, τ1 � τ3.

By mathematical induction, we prove that the order in
Definition 8 is a partial order.

2https://github.com/mindspore-ai/

2745

10. REFERENCES
[1] Cuda basic linear algebra subroutine library.

https://developer.nvidia.com/cuda-toolkit.

[2] Neon. https://github.com/NervanaSystems/neon.

[3] Nvidia tensorrt: Programmable inference accelerator.
https://developer.nvidia.com/tensorrt.

[4] Open single and half precision gemm implementations.
https://github.com/openai/openai-gemm.

[5] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan,
H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze,
C. Guestrin, and A. Krishnamurthy. TVM: an
automated end-to-end optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation, pages 578–594,
2018.

[6] J. Devlin, M. Chang, K. Lee, and K. Toutanova.
BERT: pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4171–4186, 2019.

[7] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: A
factorization-machine based neural network for CTR
prediction. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial
Intelligence, pages 1725–1731, 2017.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[9] Z. Jia, O. Padon, J. Thomas, T. Warszawski,
M. Zaharia, and A. Aiken. Taso: optimizing deep
learning computation with automatic generation of
graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages
47–62, 2019.

[10] Z. Jia, J. Thomas, T. Warszawski, M. Gao,
M. Zaharia, and A. Aiken. Optimizing dnn
computation with relaxed graph substitutions. In
Proceedings of the 2nd Conference on Systems and
Machine Learning, 2019.

[11] T. Lei, Y. Zhang, and Y. Artzi. Training rnns as fast
as cnns. CoRR, abs/1709.02755, 2017.

[12] U. Pferschy and J. Schauer. The maximum flow
problem with disjunctive constraints. Journal of
Combinatorial Optimization, 26(1):109–119, 2013.

[13] M. Sivathanu, T. Chugh, S. S. Singapuram, and
L. Zhou. Astra: Exploiting predictability to optimize
deep learning. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 909–923, 2019.

[14] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 2818–2826, 2016.

[15] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal,
Z. DeVito, W. S. Moses, S. Verdoolaege, A. Adams,
and A. Cohen. Tensor comprehensions:
Framework-agnostic high-performance machine
learning abstractions. arXiv preprint
arXiv:1802.04730, 2018.

[16] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan.
Session-based recommendation with graph neural
networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 346–353, 2019.

[17] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He.
Aggregated residual transformations for deep neural
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages
1492–1500, 2017.

[18] L. Zheng, V. Noroozi, and P. S. Yu. Joint deep
modeling of users and items using reviews for
recommendation. In Proceedings of the Tenth ACM
International Conference on Web Search and Data
Mining, pages 425–434, 2017.

[19] B. Zoph and Q. V. Le. Neural architecture search with
reinforcement learning. In 5th International
Conference on Learning Representations, 2017.

[20] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le.
Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages
8697–8710, 2018.

2746

https://developer.nvidia.com/cuda-toolkit
https://github.com/NervanaSystems/neon
https://developer.nvidia.com/tensorrt
https://github.com/openai/openai-gemm

	Introduction
	Preliminaries
	Computation Graph and Cost Function
	Definitions and Problem

	pruning-based Algorithm
	Partial Order
	Pruning Rule

	Dynamic Programming
	Dynamic Programming Algorithm

	Sampling-based approximation algorithm
	Experiments
	Experimental Setting
	Evaluation on Different DNNs
	Different DNN Architectures
	Different DNN Sizes

	Evaluation on Length Constraint

	Related Work
	Conclusions
	Acknowledgements
	Proof of Theorem 3
	References

