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ABSTRACT
Systems continue to grow in complexity in response to the
need to support vast quantities of data and a wide variety of
workloads. Small changes in workloads and system configu-
ration can result in significantly different system behaviour
and performance characteristics. As a result, system admin-
istrators and developers spend many hours diagnosing and
debugging performance problems in data systems and the
applications that use them. In this paper, we present Sen-
tinel, an analysis tool that assists these users by construct-
ing fine-grained models of system behaviour and comparing
these models to pinpoint differences in system behaviour
for different workloads and system configurations. Impor-
tantly, Sentinel’s insights are derived from built-in debug
logging libraries without necessitating that their log mes-
sages be written to disk, thereby generalizing to all systems
that use debug logging without incurring its overheads. Our
experiments demonstrate Sentinel’s superiority in analyzing
the execution behaviour and performance characteristics of
database systems, client applications, and web servers com-
pared to prior approaches.
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1. INTRODUCTION
To meet the demands of many different workloads, data

systems have risen in complexity from both a configuration
and behavioural standpoint [21, 32]. Database systems in
particular are well-known to have a large number of configu-
ration knobs that play a significant role in performance [32]
and thousands of recorded metrics with which to analyze
it [36]. When a workload performs poorly, a highly-trained
administrator spends hours combing through execution logs
and fine-grained metrics to determine whether the workload
contains characteristics that cause poor performance (e.g.,
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lock contention, high I/O overhead, poorly written queries)
or the database is misconfigured (e.g., inadequately sized
buffer pool, excessive checkpointing). Similar analysis must
often be conducted on the application machines generat-
ing the workload when performance degrades to understand
what the application is doing and how it induces the be-
haviour in the database system.

Making matters worse, each data system and client appli-
cation can have its own set of debugging tools, recorded met-
rics, and performance characteristics. Methods to diagnose
a performance problem in one data system are likely to dif-
fer from those appropriate for another, and again differ from
those suitable for client applications. Therefore, administra-
tors and developers must cultivate a deep understanding of
multiple systems and their debugging tools because organi-
zations frequently use different types of data systems (e.g.,
database systems, web servers) for different workloads.

Although previous work has developed specialized anal-
ysis tools for individual systems [3, 18, 36], these tools de-
pend on characteristics and features of their targeted sys-
tem. Porting these tools to other systems is challenging
because a developer must determine which characteristics
and metrics in the new system are important and relevant,
and instrument the code as necessary to extract them. Do-
ing so requires substantial implementation and feature en-
gineering effort. While other analysis tools generalize across
systems by exploiting outputted debug logs to compare and
contrast system behaviour [13, 15, 24, 33], the overheads of
fine-grained debug logging are typically prohibitive [34, 36].
Further complicating matters, these analysis tools often re-
quire system-specific preprocessing scripts that apply do-
main knowledge to transform the logs into a specific format
suitable for analysis.

In this paper, we present Sentinel, a system behaviour
and performance analysis tool that avoids the pitfalls of
prior work by integrating with built-in application debug
logging libraries. Sentinel intercepts logging library calls,
builds models of system behaviour in memory, and pro-
vides novel types of analysis over these extracted models.
Using Sentinel’s reports, administrators and developers can
rapidly remedy performance problems and understand shifts
in client application behaviour. Sentinel’s insights are avail-
able to any system or application using debug logging li-
braries, without significant code modification. As it is the
norm to use libraries such as Log4j2 [6], Google logging [12],
spdlog [22] to help debug system software Sentinel supports
a wide array of systems and applications. Importantly, Sen-
tinel does not require that fine-grained application debug
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Figure 1: Sentinel presenting differences in PostgreSQL system and application behaviour for Scenario A and Scenario B:
(a) contains the largest differences in PostgreSQL behaviour by proportion of messages (b) presents a subset of the transition
model relating to buffer accesses (c) presents the largest differences in application behaviour by proportion of messages.

Figure 2: A CDF extracted by Sentinel that compares the
BestSellers transaction latency in Scenario A and B.

logs are emitted to disk; by intercepting the logging calls
and constructing its models in memory, Sentinel has little
overhead. As log calls correspond to system events and exe-
cution paths taken in the code [13,15,40], Sentinel’s analysis
describes differences in system behaviour.

To demonstrate Sentinel’s usefulness to administrators and
developers, we configure PostgreSQL 9.6 to use Sentinel’s
tracing and analysis library and consider two different sce-
narios. In Scenario A, we execute the TPC-W [31] ordering
mix using the standard PostgreSQL configuration. In Sce-
nario B, we execute the TPC-W browsing mix using a Post-
greSQL configuration with a much larger 8 GB buffer pool.
We also integrate the TPC-W benchmark clients’ logging
with Sentinel to provide insight into the benchmark clients.
Selected images from Sentinel’s user interface pinpointing
behavioural differences in both the database and clients are
shown in Figure 1.

System Behaviour Differences: Sentinel reports that
the largest differences in PostgreSQL execution behaviour
between the two workloads relates to disk I/O (Figure 1a).
In execution Scenario A, PostgreSQL must read far more
pages from disk than in execution Scenario B. This increase
in disk I/O is induced by the increase in cache misses (Buf-
CacheMiss in Figure 1a) in Scenario A; when a page needed
for query execution is not available in memory, it must be
read in from disk. Scenario A also blocks while acquiring
locks more often than Scenario B, which (as shown later)
is a consequence of an increase in the number of update
transactions that acquire table-level exclusive locks.

Event Transition Models: Beyond these event-level
comparisons, Sentinel enables deeper analysis by building
models of transitions between log messages. In particular,

for each log message, Sentinel reports which messages are
likely to be reached (or transitioned to) next and with what
probability. This event transition model enables developers
to evaluate the performance of more complex system func-
tionality. Consider the first event transition for a buffer page
read in PostgreSQL (Figure 1b). When a PostgreSQL pro-
cess needs to access a page, it checks to see if it is already
mapped to a page in memory (i.e., in the buffer pool). If so,
the buffer pool page can be reused; this is termed a buffer
pool (cache) hit. Otherwise, PostgreSQL finds an available
buffer and reads the page into it from disk. In cases where
the chosen buffer’s contents have been updated (i.e., the
page is dirty), the updated contents are first flushed to disk
before overwriting the buffer with the desired page’s data.
Using the transition model, users are able to verify that the
system is performing as expected and identify condition-
based behaviour differences. In this example (Figure 1b),
the buffer pool hit rate for Scenario A is only 70%, while
Scenario B’s is over 99%. These differences in hit rate man-
ifest in the disk read differences shown in Figure 1a.

Workload Behaviour: As Sentinel’s insights are avail-
able to all applications using debug logging, we now ap-
ply the same techniques we used to analyze PostgreSQL
to understand benchmark client application execution. As
these application clients generate the workload against Post-
greSQL, understanding their behaviour provides insight into
the workload and presents optimization opportunities. For
example, Sentinel reports that the largest differences in client
execution between the scenarios correspond to differences in
the mix of transaction types they execute (Figure 1c). Sce-
nario A executes far more transactions related to book or-
ders, while Scenario B executes more read-dominant trans-
actions. These differences explain the increased lock con-
tention we observed in Scenario A.

Cumulative Distribution Functions (CDFs): Sen-
tinel efficiently builds empirical CDFs of the time between
different log messages (transition times) and encodes these
CDFs into the transition model. By using CDFs, Sentinel
captures tail-latency effects that frequently dominate per-
formance but that cannot be detected using averages. For
example, consider the CDF that Sentinel extracted for Best-
Seller transaction latency from the benchmark clients (Fig-
ure 2). We observe that the transaction’s latency is consis-
tently higher for Scenario A than for Scenario B, which in-
dicates that the cause behind this performance degradation
is substantial and consistent. Further, the CDF captures
the effects of contention at the tail, which are significant. In
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Figure 3: The Sentinel system architecture.

addition to these CDFs for individual transitions, Sentinel
can combine CDFs for multiple transitions to highlight dif-
ferences in performance for system functionalities that span
multiple log messages using random walks. For example, in
Section 3, we construct and contrast CDFs for total buffer
read times in both scenarios.

Our prior demo paper [11] illustrated Sentinel’s utility
as a workload and system understanding tool for different
workloads and system configurations. This research paper
presents and evaluates the techniques it uses to provide this
utility to administrators. We present Sentinel’s lightweight
event and transition tracking techniques, as well as its meth-
ods for generating models that effectively summarize system
execution behaviour. We also highlight Sentinel’s techniques
to rank behavioural differences, which our experiments show
are highly effective and efficient. Importantly, Sentinel’s in-
sights are universally available in that its techniques can
be used on any system using debug logging — which has
become ubiquitous [7, 24, 34, 36] — without incurring the
overheads of emitting detailed debug logs to disk.

The rest of this paper is organized as follows. Sections 2
and 3 present examples that progressively reveal features of
Sentinel’s functionality followed by descriptions of the tech-
niques behind them. Section 4 describes details of the Sen-
tinel system and Section 5 presents an experimental compar-
ison of Sentinel’s techniques against targeted performance
diagnosis frameworks. We discuss the implications of Sen-
tinel’s techniques in Section 6, compare Sentinel to related
work in Section 7, and conclude in Section 8.

2. UNIVERSAL ANALYSIS
Sentinel’s model extraction and analysis techniques are

implemented as three distinct components — an in-memory
tracing module, an event aggregator, and an analysis library
(Figure 3). As all of the analysis components depend on the
ability to extract system events from a running system with
low overhead, we start by describing Sentinel’s in-memory
tracing module.

To support the workflow in Section 1 while generalizing
across systems, Sentinel’s tracing module and associated ex-
traction techniques provide the following key features:

1. Sentinel easily integrates with a wide range of systems
and applications.

2. Sentinel extracts all of its data from a running system
without significantly degrading performance.

1 pid = fork_process ();
2 if(pid >0) {
3 /* in parent , successful fork */
4 log(DEBUG2 , "forked new backend , pid=%

d socket =%d",
5 (int) pid , (int) port ->sock)));
6 }

Figure 4: A simplified PostgreSQL debug logging call is-
sued while starting a new backend process.

As one of Sentinel’s primary goals is to provide behavioural
analysis to a broad range of systems, its extraction tech-
niques must not rely on system-specific features or metrics.
Furthermore, Sentinel must minimize integration effort; re-
quiring engineers to design and build complex system-specific
scripts to integrate with Sentinel defeats its goals of general-
izability and hinders its adoption. Finally, Sentinel must not
hamper system performance. If Sentinel significantly slows
down system performance, then it will not be used regardless
of its utility in detecting and explaining system behaviour.
Next, we describe how Sentinel meets these challenges.

2.1 Low Overhead Event Extraction
Nearly all systems use debug logging [7, 24, 34, 36]; Sen-

tinel exploits this fact to provide universal behaviour anal-
ysis. We start by describing an overview of debug logging
libraries and their pitfalls before discussing how Sentinel ex-
ploits them without incurring their overheads.

Popular debug logging libraries [6,12,22] all use a similar
interface to output a debug log message to file:

1 log(LOG_LEVEL , message , format_args)

where LOG LEVEL indicates the granularity of the log mes-
sage, message is a string with placeholders for variables,
and format args contains the variables to be spliced into
the message. For example, the PostgreSQL 9.6 code shown
in Figure 4 has a logging call with LOG LEVEL DEBUG2 and
splices the variables pid and port->sock into the log mes-
sage. LOG LEVELs range from extremely fine-grained (DEBUG5,
trace) to coarse (WARNING, ERROR), and the logging library
is configured when the system starts to emit messages of
coarser granularity than a specified threshold to disk. For
example, if the logging library is configured to emit only
messages above WARNING-level, ERROR-level messages would
be written to disk, but DEBUG5-level messages would not.
This feature enables developers to output detailed informa-
tion during debugging sessions while avoiding the associated
performance overheads in live deployments.

It is well-known that detailed logging results in consid-
erable performance overheads [34, 36]. Broadly speaking,
there are two issues that lead to performance degradation
when using fine-grained logging. First, debug logging li-
braries often incur synchronization overheads in the pres-
ence of multi-processing and multi-threading. With detailed
logging enabled, this synchronization may result in consid-
erable overhead. Second, messages emitted by the debug
logging library are traditionally persisted to disk for later
analysis. Although log messages may be buffered in mem-
ory and asynchronously written out to persistent storage as
a batch, the costs of writing out detailed logs remain sub-
stantial.
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Figure 5: Sentinel’s data structures used for tracking log
messages, transitions, and empirical CDFs.

Sentinel avoids these overheads by integrating directly
with debug logging libraries to track events and event tran-
sitions in memory. In particular, when a running system
issues a log call, the debug logging library first forwards
the call to Sentinel’s tracing module by calling the module’s
record event function. Afterward, the library handles the
call as usual, discarding the message if it is lower than the
pre-configured emission threshold. Note that discarding a
message does not preclude Sentinel from including the mes-
sage’s data in its models — Sentinel uses all messages of all
granularities regardless of whether the system is configured
to write them to disk. This feature enables the system to
output coarse-grained logs for auditing purposes while ob-
taining Sentinel’s analysis over logs of all granularities.

Sentinel’s tracing module obtains the filename and line
number of the position in source code that issued the log-
ging call1. It uses this information to uniquely identify each
event type. Note that log messages originating from the
same line in source code are therefore mapped to the same
event. This is by design; log messages are often param-
eterized by variables but correspond to the same system
event [13, 15]. Consequently, prior approaches that mined
log files for behaviour and anomaly detection typically rely
on detailed system-specific preprocessing scripts to map log
messages to events [13, 15, 24]. By using the file name and
line number to identify events, we avoid the overhead of such
scripts while maintaining Sentinel’s generalizabilty.

2.2 Event Tracking
After obtaining a logging library call’s originating file name

and line number, Sentinel uses this information to look up
its corresponding event in an in-memory hash map called
the event table. For example, in Figure 5, the event corre-
sponding to the log message originating in file bufmgr.c on
line 725 hashes to the second slot. Each event in the event
table is associated with a filename, line number, event hit
counter and pointers to transition and timing information.
Each time record event() is called for a particular event e,
e’s hit count is incremented and its transition and timing in-
formation is updated (described in Section 3). Importantly,
each process and thread maintains their own event table as
a thread-local data structure. Therefore, there is no con-
tention when an event table is updated.

Periodically, or when the system shuts down, each thread
writes its event table to disk in a per-thread file. To catch
these shutdown events, developers register atexit() hooks

1For example, file names and line numbers may be obtained
via the FILE and LINE macros in C/C++.

or subclass their programming language’s thread class to
submit a dump im tracing call to Sentinel’s tracing library.
Before analysis, Sentinel’s background event aggregator sums
the counts for each event over all of these files to deter-
mine their overall frequency, and computes their propor-
tion. Along with event transition and timing information,
these event proportions are encoded into a behaviour model
for comparison against those of other workloads and system
configurations. Note that although Sentinel internally asso-
ciates events with only their file names and line numbers, the
original log message may be obtained for reports by looking
up and reading the message at that event’s location in source
code. Moreover, Sentinel enables users to “tag” events with
custom names to further improve the clarity of its reports.

Event Differences Report: Sentinel compares these
behaviour models and reports differences in events in de-
scending order of their proportional differences. Sentinel re-
ports differences in event proportions rather than raw event
counts. Comparing event counts directly leads to report-
ing differences in only the most frequently occurring events,
while differences in event proportions differentiate contribu-
tions to overall system behaviour. The insights shown in
Figures 1a and 1c are the top proportional event differences
between Scenarios A and B for PostgreSQL and the TPC-W
benchmark application clients. These insights are obtained
in a fully domain-agnostic way; neither Sentinel’s extraction
nor ranking of event differences rely on any domain knowl-
edge or system-specific characteristics.

3. EVENT FLOWS AND TIMING
Although event proportion comparisons capture aggregate

differences in behaviour, they do not describe event rela-
tionships. For example, counts of individual buffer page
accesses, buffer pool misses, and dirty buffer writes alone
do not express the control flow of operations that com-
prise PostgreSQL’s buffer page access code. By encoding
sequences of events into its event transition model, Sentinel
automatically expresses the target application’s control flow.
Moreover, Sentinel combines its event transition models with
detailed timing information to present performance break-
downs for functionality that spans multiple events.

We demonstrate these benefits using an extracted event
transition model of PostgreSQL’s buffer accesses for Scenar-
ios A and B, shown in the inset of Figure 6a. The structure
of the transition models for both scenarios is the same and
reflects the execution path in code for page accesses. Al-
though the buffer pool cache hit rate is relatively high for
both scenarios, Scenario A’s hit rate of 70% is much lower
than Scenario B’s 99% hit rate. These differences in execu-
tion control flow patterns result in significant differences in
buffer access latency.

Beyond these transition probabilities, Sentinel computes
empirical cumulative distribution functions (CDFs) of the
time to transition between pairs of events. In contrast to the
typical approach of instrumenting code to insert timers and
computing average latencies, CDFs describe the full range
of performance behaviour, including tail latencies, which are
a key performance concern [19]. Furthermore, individual
CDFs may be combined with event transition probabilities
to estimate CDFs of the time spent in functionality that
straddles multiple events and event transitions, as we de-
scribe below.
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(a) Buffer Page Access Transition Graph (b) Buffer Page Cache Hit CDF (c) Buffer Page Cache Miss CDF

Figure 6: Buffer page access transition graph and latency CDFs for Scenario A (blue) and Scenario B (orange).

The combined CDF for buffer access latencies for the Sce-
narios is shown in Figure 6a. The overall buffer access times
for both scenarios are similar until the higher percentiles,
where the differences in cache misses manifest in higher la-
tencies for Scenario A. As Figure 6b shows, the access laten-
cies for buffer pool cache hits are far lower than tail buffer
pool miss times (Figure 6c), which emphasizes the impor-
tance of maximizing cache hits. However, we see that buffer
pool miss times are not uniformly high because many cache
misses can be resolved by retrieving the page from the op-
erating system’s cache that is outside the confines of Post-
greSQL’s buffer pool. In the rare cases where this is not
possible, access latencies increase considerably, as seen in
the tail of the buffer pool miss CDF (Figure 6c). Given
these CDFs, we can conclude that the buffer pool is too
small for Scenario A, even though the operating system’s
cache can mitigate the cost of cache misses. Thus, this ex-
ample demonstrates the importance of considering tail la-
tencies and not merely averages; in the worst case, buffer
access latencies can increase by orders of magnitude.

To support the above workflow, we next describe how Sen-
tinel provides the following key features:

1. Sentinel efficiently tracks transitions and the time to
transition between pairs of events without significantly
degrading performance.

2. Sentinel estimates and combines CDFs for individual
transitions without excessively degrading their accu-
racy.

3. Sentinel intuitively and effectively ranks differences in
transition probability and CDFs of transition time, out-
putting them in a behavioural differences report.

3.1 Efficiently Tracking Event Transitions
During system execution, Sentinel stores transition count

information in event tables. In addition to the functionality
described in Section 2, record event() also looks up the
last executed event for the current thread, and increments
a transition count from that event to the current event.

Each event in the event table has its own dynamically al-
located list of counters. These lists contain one counter for
each of the event’s transitions (Figure 5). As most events
transition to only a handful of others, using a dynamically
allocated list of counters reduces memory consumption con-
siderably. These per-thread transition counters are written
to disk alongside the event counts. Sentinel’s event aggrega-
tor uses these transition counters to compute the probability

of transition from e1 to e2 by dividing the e1 → e2 transition
counter by the number of times it has observed e1. As event
transitions are stored in thread-local data structures and the
total transition counts are computed in an offline analysis
phase using the outputted files, Sentinel avoids introducing
contention among threads.

Transition Differences Report: Sentinel compares ev-
ent transition probabilities in behaviour models similarly to
how it compares event probabilities. Concretely, Sentinel
ranks differences in transition probability according to the
ratio difference between them:

max

(
P (e2|e1)

P ′(e2|e1)
,
P ′(e2|e1)

P (e2|e1)

)
where P (e2|e1) and P ′(e2|e1) represent the probability to
transition to event e2 from event e1 in the first and second
behavioural models, respectively.

3.2 Estimating Transition Time CDFs
For each transition from an event e1 to an event e2, Sen-

tinel computes an empirical CDF of the transition time.
When Sentinel handles a record event() call, it retrieves
a nanosecond-precision timestamp from the operating sys-
tem. It compares this timestamp to the timestamp of the
last event to determine the transition time between events.
Transition times are added to an array of previously recorded
times for this transition, called a reservoir, and used to com-
pute the CDF.

Sentinel uses adaptable damped reservoir sampling [1] to
store transition time data for building CDFs. Rather than
obtaining a timestamp for every event transition, Sentinel
samples a subset of the event transition times. For each
record event() call, Sentinel samples the transition time
for the current event e1 to next event e2 with probability
max (N

k
, 1), where N is the number of samples we may store

in the reservoir (reservoir size) and k is the number of times
we have observed e1 so far. Thus, as Sentinel observes more
instances of e1, k increases, which reduces the likelihood of
sampling e1 in the future. If there are already N elements
in the reservoir, then one of these elements in the reservoir
(chosen randomly) is replaced. By reducing the sampling
probability as more samples of the transition are observed,
Sentinel avoids excessive sampling overheads once it has ob-
tained enough samples. Replacing an element at random en-
ables Sentinel to keep older transition times around rather
than just the most recent samples if a least-recently-used
policy was employed instead. This strategy gives a more

2724



complete picture of the CDF over the full duration of the
experiment. The reservoirs for each thread that correspond
to the e1 → e2 transition are written to disk alongside their
respective transition counters, and are combined to produce
CDFs of transition times.

The size of the reservoirs (and thus the number of sam-
ples) determines the accuracy of the estimated CDFs, as
well as the memory used for tracking. As the reservoir size
increases, the CDF accuracy increases, as does memory con-
sumption. Therefore, we chose reservoir size by accounting
for theoretical guarantees on CDF accuracy and considering
the associated memory usage trade-off. By modelling tran-
sition time latencies as exponential distributions exp(λ) for
λ > 0 (motivated by prior work [25]) and choosing an error
bound ε > 0 and probability of failure δ > 0, we have the
following theorem:

Theorem 1. Let ε, δ > 0. After drawing 4/ε2 log( 1
δ
)

samples from an unknown exponential distribution exp(λ),
Sentinel outputs a probability distribution p̂ such that with
probability 1− δ, distTV (p̂, exp(λ)) ≤ ε, where distTV is the
total variation distance.

We omit the proof due to space constraints, but it is avail-
able in our tech report [9].

This result indicates that Sentinel’s estimated CDFs ap-
proximate the true CDFs within a total variation distance
of ε = 0.1 with more than 90% probability given a reser-
voir size of 1000. Using this reservoir size for each unique
event transition that occurs in PostgreSQL in our experi-
ments consumes a paltry 1.5 MB per thread.2 Therefore,
we use this reservoir size for all of our experiments. We also
show the effects of reservoir size on empirical CDF accuracy
in Section 5.6.

3.3 Combining Transition Time CDFs
Sentinel’s empirical CDFs provide granular timing infor-

mation about a single transition; often, system functions
comprise multiple event transitions. For example, Post-
greSQL’s buffer page access functionality spans buffer pool
cache hits, buffer pool misses, dirty page writes and disk
I/O. To obtain a complete picture of time spent in buffer
accesses, we must account for the likelihood of transitioning
between all of these events and their corresponding transi-
tion time CDFs. Sentinel supports this functionality by en-
abling developers to combine transition CDFs together (Al-
gorithm 1). Sentinel uses random walks to recreate the flow
of program execution, sampling from the empirical CDFs
and adding the sampled times together to form a sample for
the overall CDF. These samples are then used to derive the
overall empirical CDF.

We demonstrate how Sentinel combines CDFs by com-
puting the total buffer page access latency CDF for a buffer
pool miss as an example. In the buffer pool event transition
graph (Figure 1b), we specify the start node for the random
walk to be the start of a buffer page access and the termi-
nal node to be a buffer pool miss completion event. In the
first phase, Sentinel conducts a bounded depth-first search
from the start node to end nodes to find paths that lead to
the end node (Algorithm 1, line 1). As Sentinel conducts
the depth first search (Algorithm 2), it keeps track of the

2PostgreSQL emits 90 unique events and 150 unique transi-
tions.

Figure 7: Combining empirical CDFs using random walks
for Scenario A (blue) and Scenario B (orange) on a subset
of the buffer access transition model. Crossed-out paths in-
dicate those pruned from consideration. Double purple lines
indicate the random walk example in the text. Fe1,e2(x) are
CDFs for percentile x of transition times from event e1 to
event e2.

Algorithm 1 Combining CDFs in Sentinel

Require: (V ,E) are vertices/edges in the transition graph,
S is the start node, T is a set of terminal nodes, τ is the
probability cut-off threshold, n is the number of random
walks

1: E′ = bounded dfs(S,T,(V ,E),1,τ)
2: E′ = renormalize probs((V,E′))
3: t = ∅
4: for i = 0; i < n; i++ do
5: t = t ∪ random walk(S, T, (V,E′))
6: end for
7: return convert to cdf(t)

probability of arriving at each node from the start node us-
ing the transition probabilities. If the probability reaches
a lower-bound threshold (line 4), then Sentinel prunes the
path from consideration. Paths that lead to the terminal
nodes are recorded as acceptable choices during random
walks and have their probabilities renormalized to account
for the probabilities removed from pruned edges (Algorithm
1, line 2). After pruning the divergent paths from the transi-
tion graph for the buffer pool miss event, Sentinel constructs
the renormalized transition graph in Figure 7.

In the second phase, Sentinel conducts random walks from
the start node to terminal nodes (Algorithm 1, line 5). At
each step, the next transition is chosen using the renormal-
ized transition probability. For example, from the buffer
page access start node in Figure 7, Sentinel takes the tran-
sition to the read buffer I/O node in both scenarios with
nearly 100% probability. Sentinel computes the probability
of taking the path at each step, and terminates the walk
when it reaches minimum probability threshold or a termi-
nal node. Without loss of generality, assume that Sentinel
has taken the transition to the buffer read event and then to
the buffer pool miss completion event for one of the random
walks. Then at each step, Sentinel samples the CDF of each
transition taken and adds the sampled value to a running to-
tal. Thus, Sentinel will sample the Fa,r(x) distribution and
the Fr,m(x) distribution (Figure 7) and add those results
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Algorithm 2 Bounded DFS

Require: N is the current node, T is a set of terminal
nodes, (V ,E) are vertices/edges in the transition graph,
p is the probability of getting to N from the start node,
τ is the probability cut-off threshold

1: E′ = ∅
2: for (N, v2, p2) ∈ E do
3: pn = p× p2
4: if pn ≥ τ then
5: if v2 ∈ T then
6: E′ = E′ ∪ (N, v2, p2)
7: else
8: next edges = bounded dfs(v2, T, (V,E), pn, τ)
9: if next edges 6= ∅ then

10: E′ = E′ ∪ (N, v2, p2) ∪ next edges
11: end if
12: end if
13: end if
14: end for
15: return E′

together to get the cumulative transition time for the ran-
dom walk. Sentinel conducts multiple random walks, using
each of the returned cumulative times to estimate the overall
CDF of transition times from the start to terminal events.
The accuracy of the combined CDF is determined by the
number of random walks and the accuracy of the underly-
ing CDFs. Our technical report [9] shows that a constructed
CDF with maximum path length from a source node l has
total variation of at most ε from the true CDF given that
each CDF along the path has total variation of at most ε

l
.

3.4 CDF Differences Report
It is often desirable to measure how event transition la-

tencies have changed between workloads and system config-
urations. For example, a developer may wish to see how
the lock wait time CDF has changed between a workload
with low contention and a workload with high contention.
Sentinel provides this functionality by reporting the largest
CDF transition time differences.

We quantify the differences in CDFs p and q using the
earth-mover’s distance between them [27]. This distance
metric provides an intuitive measure of the differences be-
tween CDFs as it quantifies the effort to “push probability
mass” in p to make it “look like” q.

For each event transition present in both of the models
Sentinel is comparing, Sentinel computes the earth-mover’s
distance between the transition’s CDFs to obtain scores, and
ranks CDF differences in order of decreasing scores. Thus,
the transitions that differ the most will be presented first.
As with differences in event proportions and transition prob-
abilities, differences in transition time CDFs are computed
and ranked in a fully domain-agnostic way.

4. THE SENTINEL SYSTEM
We implemented the in-memory tracing module, event ag-

gregator and analysis library (Figure 3) described in Sections
2 and 3 as the Sentinel system.

The in-memory tracing module implements the event and
transition tracking algorithms. The tracing module outputs
its extracted event counts, transition counts, and timing

Figure 8: Sentinel’s user interface.

reservoirs to disk, which are then processed offline by the
event aggregator.

The event aggregator reads the per-thread files outputted
by the tracing module and combines them to form a cohesive
model of overall system behaviour. These models are then
loaded into a PostgreSQL database for later analysis.

Given two behavioural models that correspond to a base-
line configuration and a situation of interest, the analysis
library compares the models using the difference and rank-
ing computations presented in Sections 2 and 3. It outputs
the differences in event proportion, transition probability,
and transition time, sorted by difference size. These models
and differences may be consumed directly via an API, or
through a web-based user interface that plots them visually.

Sentinel’s web interface (Figure 8) presents intuitive visual
rankings of event, transition, and transition time CDF differ-
ences. As behavioural models extracted from systems are of-
ten complex, the analysis library and UI present the largest
differences in events and event transitions to highlight im-
portant subsets of the transition graph. In fact, the UI uses
brushing and linking [17] so that interactions with one visu-
alization affect what is shown in the others, thereby helping
users to effectively explore behavioural differences. For ex-
ample, when a user selects an event in the event frequency
differences pane, the transitions pane will focus on the event
and its neighbours in the transition graph. This feature en-
ables users to quickly find the largest ranked differences, and
then contextualize them within the transition graph. Users
may pan and zoom within the transition graph, and then
examine other panes in the UI that directly contrast the
selected event and its associated transitions between the be-
havioural models. Furthermore, Sentinel’s UI renders nodes
in transition graphs using the CoSE layout, which places
them near other nodes to which they are connected via a
physics simulation [5]. This rendering results in clusters of
nodes corresponding to different behavioural aspects (e.g.,
checkpointing, vacuuming, or buffer/query management).
These aspects are illustrated by example in our demonstra-
tion video [10] and paper [11] both of which present these
concepts in further detail.

5. EXPERIMENTAL EVALUATION
We now empirically demonstrate Sentinel’s superiority in

describing and differentiating system behaviour. We high-
light the cross-system effectiveness of Sentinel by integrating
with a typical 3-tiered system consisting of a database (Post-
greSQL/SQLite), TPC-W benchmark clients, and Apache
Tomcat (web server). We contrast Sentinel with state-of-
the-art approaches for system behaviour analysis in terms
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of precision, performance overheads, analysis time, and ease
of integration.

5.1 Experiment Setup
We demonstrate Sentinel’s superiority at detecting and re-

porting system behaviour differences by comparing it against
Distalyzer [24] and DBSherlock [36].

Distalyzer [24] is a log analysis tool that describes differ-
ences in log files that correspond to normal and anomalous
system executions. Distalyzer describes statistically signifi-
cant differences in log message counts, timestamps at which
messages are emitted and logged variable values. Unlike
Sentinel, Distalyzer requires that logs be written to disk
and preprocessed offline using system-specific scripts before
analysis. We needed domain knowledge of each system to
develop scripts that extract important variables and laten-
cies from the log files, which Sentinel does not require.

DBSherlock [36] is a state of the art database monitor-
ing and anomaly detection tool. It extracts metrics from
a database and the underlying OS and produces predicates
(e.g., dbCurLockWaits > 5) to describe how a period of ano-
malous performance differs from the norm. We ported DB-
Sherlock to other database systems by mapping MySQL
metrics it relies on to corresponding statistics in the other
databases (where available). As DBSherlock is designed for
database systems, we only consider its ability to locate be-
havioural differences in PostgreSQL and SQLite.

The TPC-W [31] benchmark serves as our baseline work-
load, and we vary workload and database configuration pa-
rameters to introduce behavioural differences in benchmark
clients and the database. The multiple system components
in the benchmark (benchmark clients, database, web server)
enable us to demonstrate Sentinel’s effectiveness across sys-
tem domains. By default, our experiments use PostgreSQL
9.6 as the database, though we also demonstrate Sentinel’s
generality within the database systems domain by differen-
tiating SQLite 3.31.1 behaviour in Section 5.2.4.

Our benchmark machine is configured with 32 GB of RAM,
12 CPU cores with hyperthreading enabled, and a 800 GB
HDD. Our experiments use 10 concurrent clients with no
think time between transactions.

5.2 Behaviour Difference Validation
To assess each system’s ability to surface relevant and

useful behavioural insights, we studied controlled scenarios
in which we adjust a single system characteristic (e.g., lock
contention, query execution time, transaction mix) and de-
termine whether each system reports the expected behaviour
change corresponding to this difference. The nine scenarios
we studied are shown in Table 1, along with the variations
we use to test precision.

In each scenario, Sentinel, Distalyzer, and DBSherlock
compare system behaviour between a baseline TPC-W work-
load and the same TPC-W workload but with the relevant
change induced (test workload). Distalyzer is provided with
the same level of logging information as Sentinel by config-
uring the database, benchmark clients, and Apache Tomcat
to write all log messages to disk, which comes at the cost of
significant performance degradation (Section 5.3). As Dis-
talyzer uses populations of log files to derive its insights,
each of its tests rely on log files obtained under three exe-
cutions of the test configuration. Distalyzer therefore uses
three times as much information as the other approaches and

Figure 9: Precision graphs for Sentinel, Distalyzer, and
DBSherlock’s ability to pinpoint differences in (a) Post-
greSQL, (b) TPC-W benchmark client, and (c) Apache
Tomcat execution behaviour.

takes three times as long to gather it. We used Distalyzer’s
absolute total difference to rank its reported differences, as
in [24]. For DBSherlock, we monitored metrics every second
(as in [36]) for the baseline configuration and compare it to
metrics recorded for the test configuration. We labelled the
metrics recorded during the test configuration as anomalous
and the metrics during the baseline configuration as nor-
mal. DBSherlock outputs predicates over these metrics that
hold for the test configuration but do not hold for the base-
line configuration. We rank these predicates according to
DBSherlock’s normalized difference threshold metric, which
describes how different the underlying metric’s values are in
the baseline and test configurations.

To ensure an apples-to-apples comparison, we compared
each analysis system’s output from their APIs. If a Sen-
tinel/Distalyzer log event or DBSherlock predicate is sur-
faced within the top 3 ranked differences in the relevant
report category that is indicative of the change (e.g., change
in lock wait events for lock contention), we consider the test
successful. We repeated each test three times and consider
five variations for each test case. We compute precision re-
sults for each tool by dividing the number of correct test
cases in each scenario over the number of test cases (Figure
9). Next, we discuss each result in turn.

5.2.1 PostgreSQL Behaviour
We integrated Sentinel and Distalyzer with PostgreSQL

9.6 and enhanced its logging by configuring relevant built-
in DTrace hooks to emit logging information. DBSherlock
was provided with relevant database metrics stored by Post-
greSQL, equivalent to what it obtained from its targeted
database, MySQL, where available. We induced changes
in PostgreSQL execution behaviour and evaluated Sentinel,
Distalyzer, and DBSherlock’s ability to detect these differ-
ences (Figure 9a). Unless otherwise stated, these experi-
ments (and those in Sections 5.2.2 and 5.2.3) use the de-
fault PostgreSQL configuration with appropriate values for
the buffer pool and operating system cache (8 GB and 16
GB, respectively). We used a 50 GB TPC-W database.

Lock Contention: We introduced additional lock con-
tention in the BuyConfirm transaction by holding exclu-
sive locks for longer. Sentinel reports differences in lock
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Table 1: Scenarios used to evaluate Sentinel, Distalyzer and DBSherlock’s ability to pinpoint behavioural differences.
Test Case Description Variations

Lock Contention Increase lock hold time PostgreSQL/SQLite: 10, 25, 50, 75, 100 ms
Buffer Pool Size Decrease buffer pool size PostgreSQL: 250MB, 500MB, 1GB, 2GB, 4GB

SQLite: 50KB,100KB,1MB,100MB,1GB
Aggressive Vacuuming Increase frequency of vacuuming PostgreSQL: 50, 40, 30, 20, 10 s

SQLite: 5, 10, 20, 40, 80 txns
Aggressive Checkpointing Increase frequency of checkpointing PostgreSQL: 90, 75, 60, 45, 30 s

SQLite: 500, 2.5k, 5k, 10k, 20k WAL frames
Long Running Query Decrease BestSeller transaction selectivity 5x, 10x, 15x, 20x, 25x more tuples accessed
Txn Mix Change Change likelihood of executing BestSellers after

Homepage transaction
-10%, -20%, +10%, +20%, +30% less/more

likely
Txn Mix Change (Cause) As above, but find transition probability

difference
-10%, -20%, +10%, +20%, +30% less/more

likely
Txn Mix Change (Tomcat) As above, but using only web server logging -10%, -20%, +10%, +20%, +30% less/more

likely
HTTP Flood Rapidly issue GET requests on new HTTP

connections
0, 0.001, 0.01, 0.1, 1 s think time between

requests

wait event proportion in all of the situations we considered,
demonstrating its ability to surface relevant behavioural in-
sights. Distalyzer identifies lock contention in a majority
of cases, but is susceptible to reporting differences in irrele-
vant events that happen at different times in test cases (e.g.,
checkpointing, autovacuum). DBSherlock performs poorly
at detecting lock contention on PostgreSQL because Post-
greSQL 9.6 does not keep a running tally of lock conflicts.
We approximated this statistic by polling how many queries
are blocked on locks, but this approximation is not enough
to capture all lock conflicts.

Aggressive Checkpointing: We decreased the check-
point interval from the default (5 minutes) and compared
system behaviour to the default configuration. Both Sen-
tinel and Distalyzer correctly identify differences in check-
point events in all test cases. Distalyzer performs compara-
bly with Sentinel because checkpoint occurrence rates have
changed significantly, and Distalyzer ranks changes in occur-
rence time highly. DBSherlock does not extract checkpoint
counts by default, and therefore does not capture these dif-
ferences. We accommodated an increase in page flush met-
rics as well for DBSherlock, but these predicates are also
infrequently reported compared to predicates over values of
unrelated metrics that have changed.

Aggressive Vacuuming: In this scenario, we compare
the default autovacuum interval (1 minute) with decreased
autovacuum intervals. Both Sentinel and Distalyzer are
effective at pinpointing differences in autovacuum events,
though Sentinel’s precision remains higher. Again, Dist-
alyzer’s susceptibility to event occurrence timings affects its
precision, an issue from which Sentinel does not suffer. By
contrast, DBSherlock does not report these differences as it
does not capture metrics related to vacuum behaviour.

Improperly-Sized Buffer Pool: We decreased Post-
greSQL’s allocated buffer pool size to induce buffer pool
cache misses. Sentinel accurately detects differences in buffer
cache misses for all configurations where the buffer pool size
is less than 4 GB. When comparing system behaviour with
a 4 GB buffer pool to an 8 GB buffer pool, the change
in buffer misses is not significant enough to be outputted.
Similarly, Distalyzer accurately reports cache miss effects
for small buffer pool sizes, but remains less accurate than
Sentinel. DBSherlock pinpoints differences in buffer pool
size as its top reported difference in each experiment be-
cause it extracts buffer pool size as a metric. As this metric

is constant for the baseline configuration and constant for
the test configuration, but these constant values differ, the
predicate dbTotalPagesMB < X for a configured buffer pool
size X perfectly partitions the data observed in the baseline
configuration from that of the X configuration, and is thus
highly ranked.

From these results, we observe that Sentinel is highly
accurate at pinpointing relevant behavioural changes com-
pared to the other approaches. Unlike Sentinel, Distalyzer’s
precision is hindered because its ranking scores are heav-
ily affected by when events occur. DBSherlock’s accuracy
suffers because its ranking prioritizes predicates that hold
for values of metrics in the test configuration but not in
the baseline configuration. Sentinel avoids this pitfall as it
pinpoints the largest differences in behaviour between the
configurations and not predicates that separate values of
metrics in one configuration from another.

5.2.2 Client Application Behaviour
We now consider changes in application behaviour and

evaluate Sentinel and Distalyzer’s ability to highlight these
differences (Figure 9b). We do not evaluate DBSherlock on
benchmark client or web server behaviour (Section 5.2.3)
due to its specialization for databases and reliance on a pri-
ori knowledge of which system metrics to extract. By con-
trast, both Sentinel and Distalyzer use information that is
available via logging calls.

Long Running Query: We varied the selectivity of the
BestSeller transaction to increase the transaction’s execu-
tion time. In all cases, Sentinel and Distalyzer correctly
highlight the BestSeller transaction as exhibiting a large la-
tency change. Sentinel naturally captures this difference as
part of its transition time CDF rankings. By contrast, Dist-
alyzer detects this transaction’s latency differences because
we explicitly extracted each transaction’s latency from TPC-
W client execution logs as part of the client log preprocessing
script we developed for Distalyzer. This result highlights the
need for domain knowledge when configuring Distalyzer for
each system.

Transaction Mix Change: We modified the probability
of executing the BestSeller transaction after the Home page
transaction. Decreasing this probability results in an in-
creased rate of executing NewProducts transactions, while
increasing it results in more BestSeller transactions. Sen-
tinel correctly detects these transaction mix changes in ap-
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plication behaviour in all cases, which is captured by dif-
ferences in client event logging about which web pages they
will access. Distalyzer correctly detects them in only 60%
of cases. In cases where Distalyzer is incorrect, it is due to
the importance it places on event timing differences and be-
cause it also highly ranks event differences correlated with
the changes in the transaction mix.

Transaction Mix Change (Cause): For the previous
scenario, we also assessed whether each system could find the
root cause — i.e., the change in transition probability from
the home page. Only Sentinel detects changes in transition
probabilities between log events. For the larger transition
probability modifications, Sentinel is highly accurate. When
Sentinel is incorrect, it highlights transition differences from
rarely occurring events; as their transition counts are low,
they are more susceptible to variation.

5.2.3 Web Server Behaviour
To demonstrate Sentinel’s generalizability to a wide range

of systems, we also integrated Sentinel and Distalyzer with
Apache Tomcat version 9.0.3, a popular open-source servlet
container and web server. As in the other environments, we
developed a custom preprocessing script to enable Distalyzer
to extract events and timing information from Tomcat’s log
files. Precision results are shown in Figure 9c.

Transaction Mix Change (Tomcat): For the trans-
action mix change experiment above, we further evaluated
whether we could determine this change in access patterns
using only models of the web server’s behaviour. Sentinel
is highly accurate at pinpointing the behavioural change,
which is emitted from per-transaction servlet logging. Dis-
talyzer’s precision again suffers due to its susceptibility to
event timing differences. As Tomcat emits 2.5× more event
types than PostgreSQL, this result not only demonstrates
Sentinel’s generalizability across systems but also its re-
silience to system complexity.

HTTP Flood: We simulated an HTTP flood attack [30]
by rapidly issuing HTTP GET requests to Tomcat while
running the TPC-W browsing mix. We tested the system’s
sensitivity to reporting these events by inserting varying
think times between each GET request. Sentinel captures
this behaviour by highlighting differences in request type
proportion in every variation of this test (repeated accesses
to the same page), while Distalyzer captures these differ-
ences in only 60% of cases. In cases where Distalyzer does
not pinpoint the correct behavioural difference, it highlights
differences correlated with the attack (e.g., session manage-
ment) or changes in event timing. Through these results, we
observe that Sentinel’s techniques are applicable to security-
focused behavioural exploration on data systems as well.

5.2.4 SQLite Behaviour
We further demonstrate Sentinel’s generality by integrat-

ing it with SQLite, a popular embedded SQL database (Fig-
ure 10a). To do so, we enabled its debug logging statements
by adjusting compiler flags, and configured it to use Sen-
tinel’s in-memory tracing library instead of writing logs to
the console. For Distalyzer, we configured SQLite to emit
these logs to disk and developed a preprocessing script to ex-
tract relevant features from them. We provided metrics for
DBSherlock by using SQLite’s sqlite3 (db)status func-
tions. As these metrics do not cover all the test case func-
tionality, we advantaged DBSherlock by providing extra in-

formation obtained by outputting and preprocessing only
the relevant SQLite log messages (e.g., checkpoints). We
configured SQLite to use a write ahead log and used the de-
fault configuration unless otherwise mentioned. As SQLite
is an embedded database, we used a 1 GB TPC-W database.

Lock Contention: As SQLite processes update trans-
actions serially, i.e., one at a time, we replicated the Lock
Contention PostgreSQL test by creating a connection pool
of database connections for concurrent readers and a single
database writer connection. We added logging statements
to the connection pool code and made this information avail-
able to each analysis system. Sentinel and Distalyzer obtain
high accuracy on this test as obtaining the writer connection
is the main bottleneck and is therefore highly reported in
Sentinel’s transition time CDFs and Distalyzer’s state vari-
ables. DBSherlock is not effective in this scenario because
the lock wait time metric does not separate one scenario’s
behaviour from the other.

Aggressive Checkpointing: SQLite conducts check-
points every N frames, in contrast to PostgreSQL’s method
of every N seconds, so we adjusted our test case values to
accommodate this difference (Table 1, default 1000 frames).
Sentinel obtains 100% precision on this test case because
small changes in checkpoint frequency greatly affect their
overall event count proportion, which Sentinel detects. Al-
though Distalyzer is not as accurate as Sentinel, its support
for time-based and frequency-based differences enable it to
frequently report differences in checkpointing as well. DB-
Sherlock is not effective in this scenario because, as before,
its ranking prioritizes unrelated metric differences.

Aggressive Vacuuming: Vacuuming in SQLite is trig-
gered by issuing a PRAGMA incremental vacuum command.
Therefore, we configured the write connection to submit this
command after every kth committed transaction for varying
values of k (Table 1, default every transaction, as in SQLite’s
full vacuum mode). Both Sentinel and Distalyzer obtain
perfect precision for this test for the same reasons they per-
formed well on the Aggressive Checkpointing test, reporting
differences in vacuum events. As before, DBSherlock is not
effective on this test case.

Improperly-Sized Buffer Pool: Unlike PostgreSQL,
update transactions in SQLite invalidate the cache of other
concurrent connections, making large buffer pool sizes less
effective. We accommodated this behaviour by reducing the
buffer pool sizes we used in our tests compared to the values
we used for PostgreSQL (Table 1, default 10 MB). Sentinel
reports larger numbers of cache misses and page fetches in
all cases when the buffer pool size changes, and Distalyzer
reports similar characteristics for most of the experiments
in this test case. DBSherlock is not effective on this test
case because SQLite’s memory consumption grows to meet
the buffer pool size. Other metrics are therefore prioritized
by DBSherlock’s ranking.

Distalyzer’s accuracy is improved on these test cases com-
pared to their counterparts in PostgreSQL because we dis-
abled time-based events (e.g., checkpoints or vacuuming)
if they are not the focus of the test case. Therefore, it is
less vulnerable to over-emphasizing the importance of these
events. Despite these advantages for its competitors, Sen-
tinel retains its superiority in highlighting behavioural differ-
ences on SQLite as well. Furthermore, as our subsequent re-
sults show, Sentinel has much lower overhead on both Post-
greSQL and SQLite than Distalyzer.
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5.3 Monitoring Overheads
To assess the performance overheads of Sentinel, Dist-

alyzer and DBSherlock, we executed the YCSB-C workload
against PostgreSQL and SQLite for 5 minutes using OLTP-
Bench [4] and measured the throughput. We used YCSB-C
as it is a read-only workload with simple operations, and
therefore moves the bottlenecks from transaction processing
and lock contention to debug logging and monitoring. We
computed the average throughput and their 95% confidence
intervals, which are shown in Figure 10b.

We observe that Sentinel’s monitoring reduces transac-
tion throughput of PostgreSQL and SQLite by less than
3%, while Distalyzer imposes large performance penalties of
90% and 85% respectively because it requires detailed and
costly debug logging to disk. Sentinel’s improves throughput
over DBSherlock by 60% on PostgreSQL because Sentinel
does not force logging to disk. On the SQLite database, the
throughput is similar because DBSherlock’s SQLite config-
uration does not log as heavily as its PostgreSQL configu-
ration — it relies largely on sqlite3 (db)status metrics.
These results demonstrate that Sentinel obtains the highest
precision with the lowest overhead.

To further understand Sentinel’s overheads, we conducted
an ablation study in which we measured the throughput of
the database systems while Sentinel tracked (i) only event
counts, (ii) events and transition counts, and (iii) all track-
ing enabled. We observed that event count tracking re-
sulted in only 1.5% of the overhead, enabling transition
count tracking incurred an additional scant overhead of 0.5%,
and enabling the remaining tracking functionality in Sen-
tinel added only 1% overhead.

5.4 Analysis Time
We now contrast Sentinel, Distalyzer, and DBSherlock in

terms of the time they take to analyze results from two work-
loads or system configurations. We average the time it takes
to compare PostgreSQL behaviour for the 10 ms variation
of the lock contention scenario to the baseline configuration
(Section 5.2). Results are shown in Figure 10c.

Distalyzer’s analysis time far exceeds that of DBSherlock
and Sentinel due to the large size of its preprocessed log
files for each test (≈ 4 GB). Both Sentinel’s and DBSher-
lock’s analysis phases use summaries of system execution be-
haviour to determine behavioural differences, which requires
much less I/O and computation time. However, Sentinel’s
analysis phase takes only 1/5 the time of DBSherlock’s, a
testament to Sentinel’s efficiency while yielding useful re-
sults (Section 5.2). This low analysis time enables adminis-
trators to rapidly identify and respond to system changes.

5.5 System Integration Efforts
We summarize our experience integrating Sentinel, Dist-

alyzer and DBSherlock with PostgreSQL, SQLite, TPC-W
benchmark clients, and the Apache Tomcat web server in
Table 2. Integrating Sentinel with these data systems re-
quires less effort than the other approaches, which we quan-
tify using the lines of code (LoC) changed during integration.

Both Distalyzer and DBSherlock require system-specific
preprocessing scripts, while Sentinel does not. Distalyzer’s
preprocessing scripts process log files into a format con-
taining event variables, state variables and relevant laten-
cies. Due to the complexity of parsing a large variety of log
messages and coercing them into the correct format, these

Table 2: Analysis of system integration efforts.

Sentinel Distalyzer DBSherlock

Per-System
Preprocessing

- X X

Reqd Domain
Knowledge

- X X

Integrate w/
Log Lib

X - -

PostgreSQL
LoC changed

53 156 159

SQLite LoC
changed

74 317 194

TPC-W LoC
changed

13 61 N/A

Tomcat LoC
changed

25 189 N/A

scripts often require many lines of code to implement (Table
2). Similarly, DBSherlock’s preprocessing scripts take the
form of customized dstat plugins or targeted modifications
to an SQLite JDBC driver to obtain status metrics. These
scripts rely on a priori knowledge to obtain the salient met-
rics, transforming them and combining them together for
later analysis. In contrast to these approaches, Sentinel re-
quires instrumenting only the logging library and wrapping
thread logic to output Sentinel’s data before terminating,
thus requiring fewer code changes to integrate.

Note that the architecture of a system influences the com-
plexity of integrating it with an analysis system. For exam-
ple, integrating Sentinel with PostgreSQL requires less effort
than SQLite because PostgreSQL uses a centralized logging
library (elog) while SQLite uses compiler-enabled printf

statements. Furthermore, SQLite’s embedded nature neces-
sitates modifying the JDBC driver, which is not necessary in
PostgreSQL. As these aspects also increase the complexity
of integrating with Distalyzer and DBSherlock, Sentinel’s
integration efforts remain the lowest in all cases.

5.6 Accuracy of Sampled CDFs
We assessed Sentinel’s accuracy in estimating individual

CDFs and those it generates using its random walk tech-
nique. First, we determined the CDF accuracy for a sin-
gle transition using three different reservoir sizes (Figure
10d). We measured the deviation of the estimated CDF
from the true CDF at every 5th percentile up to the 95th

percentile and averaged them. As expected, increasing the
reservoir size reduces the estimation error, but also increases
the memory consumption. With a reservoir size of 100, we
observed a high estimation error of 35%, while increasing
the size to 1000 reduces the error to below 10%. Although
increasing reservoir size further does slightly improve accu-
racy, it consumes 10× more memory.

We next considered the accuracy of CDFs constructed via
random walks by computing buffer miss latency CDFs (re-
call Figure 7) and comparing them to the true CDF (Figure
10e). As above, we consider various reservoir sizes and aver-
aged the errors at every 5th percentile after 1 million random
walks. Again, we observed that the error decreases signifi-
cantly from 60% to 20% when increasing reservoir size from
100 to 1000 and that 10000 samples further improves it fur-
ther to 8%. Given these accuracy and memory trade-offs,
Sentinel uses reservoirs of size 1000 in our experiments.
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(a) SQLite Precision Results

(b) Performance Overheads (c) Analysis times
(PostgreSQL)

(d) Single CDF Acc. (e) Combined CDF
Acc.

Figure 10: SQLite precision results, YCSB-C throughput, system analysis times, and CDF estimation errors.

These results complement our theoretical results (Section
3.2) as the theory bounds total variation in probability while
the empirical results measure differences in latency at given
percentiles. Combined, these results show that Sentinel’s
CDF estimation techniques are very effective.

6. DISCUSSION AND FUTURE WORK
Sentinel’s insights assist administrators and developers in

addressing system performance concerns and in understand-
ing system behaviour. Although Sentinel’s reports obviate
the need for users to sift through vast log files and thou-
sands of metrics to identify behavioural differences, some
open issues remain. For example, Sentinel’s reports enable
an administrator to understand and address performance
problems rather than directly remedying them. Further-
more, although past work has focused on placements of log
messages [7] and debug logging is widely used, Sentinel can-
not surface behavioural differences that are not captured by
log messages. While Sentinel has been shown to be effective
for a wide range of systems and workloads in this paper,
capturing such information and unifying it with Sentinel’s
transition model is interesting future work.

7. RELATED WORK
Growing application and system complexity has led to

increased research effort towards system analysis tools.
Distalyzer [24] compares system debug logs using sta-

tistical tests. These debug logs must be processed using
system-specific preprocessing scripts before analysis. Simi-
larly, DBSeer [23, 35] and its module DBSherlock [36] pro-
vide insight into database behaviour by relying on system
metrics and OS details. PerfXplain [18] relies on similar pa-
rameters to explain why two MapReduce jobs have different
performance characteristics, and Oracle 10g uses carefully
placed timers to diagnose performance bottlenecks in Ora-
cle’s database [3]. Apollo [16] instruments DBMS code to
locate the source code responsible for performance regres-
sions. Other work associates log messages with higher-level
system requests using static analysis [41], modeling correct
execution of requests [37], or by relying on built-in request
identifiers [2] to find failures and performance problems.
Sentinel differentiates itself from these approaches by gener-
alizing across systems, obviating the need for system-specific
preprocessing, and reducing performance overheads by inte-
grating directly with logging libraries.

Jiang et al. [14] describe how user-provided rules may be
used to abstract messages in log files to events and tran-
sitions between them. These models are used to determine
which log messages are anomalous using Z-tests [15]. Similar
ideas have been used to locate memory consumption prob-
lems by correlating system counters to log messages [29].
Sentinel differentiates itself from these works through its in-
memory tracing library, which avoids logging to disk and
the associated overheads, its difference ranking techniques,
and its CDF estimation capabilities.

Self-driving and autonomous systems model client work-
loads to adaptively process requests [8, 20, 26, 28]. These
approaches are targeted towards modeling components of
system behaviour (e.g., storage accesses) rather than con-
structing comprehensive behaviour models using log calls.

Pensieve [38] uses system logs to locate and reproduce fail-
ures in a distributed system by developing a minimal chain
of events that are responsible for the failure. By contrast,
Sentinel concisely presents how system behaviour differs un-
der varying system configurations and workloads.

Zhao et al. [39] describe where to place logging calls in sys-
tem code to obtain information without exceeding a given
performance overhead threshold. These techniques are or-
thogonal to Sentinel, but can be combined to increase the
data available to understand the workload while leveraging
Sentinel’s low-overhead tracing framework.

8. CONCLUSION
This paper presented Sentinel, an analysis tool that un-

covers behavioural differences in systems using only built-in
debug logging. Sentinel’s in-memory tracing model seam-
lessly integrates with popular logging frameworks and builds
models of system behaviour, thereby avoiding the traditional
overheads of emitting detailed debug logs to disk. By com-
paring these extracted models, Sentinel highlights important
and useful differences in system behaviour, as evidenced by
our experiments using benchmark workloads.
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