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ABSTRACT
Listing all maximal cliques of a given graph has important
applications in the analysis of social and biological networks.
Parallelisation of maximal clique enumeration (MCE) algo-
rithms on modern manycore processors is challenging due to
the task-level parallelism that unfolds dynamically. More-
over, the execution time of such algorithms is known to
be dominated by intersections between dynamically-created
vertex sets. In this paper, we prove that the use of hash-
join-based set-intersection algorithms within MCE leads to
Pareto-optimal implementations in terms of runtime and
memory space compared to those based on merge joins.
Building on this theoretical result, we develop a scalable
parallel implementation of MCE that exploits both data par-
allelism, by using SIMD-accelerated hash-join-based set in-
tersections, and task parallelism, by using a shared-memory
parallel processing framework that supports dynamic load
balancing. Overall, our implementation is an order of mag-
nitude faster than a state-of-the-art manycore MCE algo-
rithm. We also show that a careful scheduling of the execu-
tion of the tasks leads to a two orders of magnitude reduction
of the peak dynamic memory usage. In practice, we can exe-
cute MCE on graphs with tens of millions of vertices and up
to two billion edges in just a few minutes on a single CPU.
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1. INTRODUCTION
Subgraph patterns in graph datasets, such as communi-

ties, clusters, and motifs, are fundamental concepts used in
a wide range of graph mining applications [2]. However, ex-
tracting such patterns often requires executing costly recur-
sive algorithms that lead to exploration of an exponentially-
large search space and long execution times. In this paper,
we focus on maximal clique enumeration (MCE), the graph
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Figure 1: Illustration of our manycore setup: each core can
execute several concurrent threads and has a private cache
in which the sets it creates can reside. The input graph is
stored in external memory in the form of hash tables.

mining problem of identifying all maximal cliques (i.e., max-
imal complete subgraphs) of a graph. MCE serves as a
building block of many graph mining applications, such as
detection of communities in social networks [41], prediction
of protein functions in protein interaction networks [62,63],
and prediction of how epidemics spread [20]. In addition,
MCE is similar, in terms of its computational patterns—
e.g., vertex-set intersections [30] and task parallelism that
unfolds dynamically, to other important graph mining al-
gorithms, such as subgraph isomorphism [19, 31], frequent
pattern discovery [25,60], and maximum clique finding [47].

We focus on the Bron-Kerbosch (BK) algorithm with de-
generacy ordering [15, 26, 55], which is one of the most effi-
cient and widely-used algorithms for MCE [16,18]. It is a re-
cursive algorithm that explores an exponentially-large solu-
tion space. In order to enable solutions to real-life problems,
it is necessary to develop scalable implementations of this
algorithm. A large amount of task-parallelism is available
in the BK algorithm because different regions of the search
space can be traversed independently. However, paralleli-
sation of the algorithm on modern computer architectures,
such as manycore CPUs (see Figure 1), is not straightfor-
ward. Because a recursion tree is constructed dynamically
and its shape is not known in advance, distributing the work
evenly across processing resources poses challenges.

Prior work by Han et al. [30] showed that set intersections
dominate the execution time of the BK algorithm. Set in-
tersections are special cases of join operations because sets
store only keys and no payloads. When implementing set
intersections, one can rely on the two main classes of join
algorithms: merge joins and hash joins. Merge joins require
both sets to be sorted while hash joins require at least one
of the sets to be hashed. In this paper, we analyze how in-
tersections based on merge joins and hash joins affect the
overall time and space complexity of the BK algorithm.
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Figure 2: Effect of different set-intersection methods on
the time and space complexity of the BK algorithm.

Intersections in the BK algorithm are performed between
the adjacency lists of the input graph and some dynamically-
created sets. Because the adjacency lists are static, they can
be hashed or sorted in advance. As a result, the complex-
ity of set intersections based on hash joins does not depend
on the size of the adjacency lists, which is not the case for
set intersections based on merge joins. Considering that
the adjacency lists are asymptotically larger than the dy-
namically created sets, using hash-join-based intersections
leads to faster BK implementations. We show this result to
be valid both in theory and in practice. Yet, performance
of merge-join-based approaches can be improved using the
modified BK algorithm of Eppstein et al. [26]. We show that
creating subgraphs at each recursive call, as proposed by
Eppstein et al. [26], shrinks the adjacency lists used in the
intersections, leading to faster merge-join-based solutions,
but at the cost of an increased space complexity. Our the-
oretical analysis results given in Figure 2 show that merge-
join-based solutions require either more space or more time
compared to hash-join-based solution. The results given in
Figure 2 motivate us to focus on BK implementations that
use hash-join-based set intersections.

Our manycore implementation exploits both data- and
task-level parallelism of the BK algorithm. We scale the al-
gorithm across multiple hardware threads using a framework
that utilizes dynamic load-balancing and we exploit data-
level parallelism using SIMD-accelerated hash-join-based set
intersections. In our manycore setup, the input graph re-
sides in external memory and the adjacency list of each ver-
tex is stored as a read-only hash table (Figure 1). Hardware
threads perform intersections between adjacency lists and
local sets, dynamically creating other sets as results. Our in-
telligent recursion tree exploration approach guarantees that
the dynamic memory usage increases only linearly with the
number of threads, independently of the number of graph
vertices. Thus, it is possible to fit the dynamically-created
data structures in the cache space of the CPUs. Lastly,
we minimise the task and memory management overheads,
which can also constitute a significant part of the execution
time. As a result, we are able to run the BK algorithm on
a graph with more than 60 million vertices and 1.8 billion
edges on a single manycore CPU in only a few minutes.

The remainder of the text is organised as follows. Sec-
tion 2 introduces the BK algorithm. Section 3 offers a
broad complexity analysis of the improved BK algorithm
of Eppstein et al. [26], mainly focusing on the impact of
the set-intersection algorithms. Section 4 describes a prac-
tical SIMD-accelerated hash-join-based set-intersection im-

Algorithm 1: Bron-Kerbosch w. pivoting

1 Function BKPivot (Sets R, P, X, graph G)
2 if P = ∅ then
3 if X = ∅ then Report R as a maximal clique;
4 return;

5 pivot = getPivot(P,X,G);
6 foreach vertex v : P/NG(pivot) do
7 P ′ = P ∩NG(v); X ′ = X ∩NG(v);
8 BKPivot(R+ {v}, P ′, X ′,G);
9 P = P − {v}; X = X + {v};

10 Function getPivot (Set P, Set X, graph G)
11 foreach vertex v : P ∪ X do
12 tv = |P ∩NG(v)|;
13 return arg maxv(tv);

plementation. Section 5 describes our scalable manycore
implementation of the BK algorithm. Finally, Section 6
shows our experimental results which culminate in an or-
der of magnitude performance improvement with respect to
a state-of-the-art manycore MCE implementation.

2. BRON-KERBOSCH ALGORITHM
One of the most successful algorithms for listing all max-

imal cliques of a graph is the Bron-Kerbosch (BK) algo-
rithm [15]. It is a recursive algorithm that operates on three
sets of vertices during each recursive call: set R stores the
vertices that form the currently largest clique; set P the can-
didate vertices that may form a clique with the ones from
R; and set X the vertices that have already been considered
and, therefore, cannot take part in new cliques. The vertices
of P and X have to be adjacent to the vertices of R at each
step, which is ensured by set intersection. At each recursive
call, a vertex v from the set of possible vertices P is added
to R, such that R still forms a clique. We then recursively
determine whether the extended set R is part of a larger
clique or not. After all the cliques that contain vertex v
have been enumerated, the vertex is moved to the set X. If
sets P and X are both empty, R is reported as a maximal
clique. At the beginning, sets R and X are empty and set
P contains all the vertices of the input graph.

To reduce the number of unnecessary recursive calls, Bron
and Kerbosch introduced a pivoting strategy. When expand-
ing R, instead of considering all vertices of set P, a pivot
vertex from P is chosen, and vertices neighboring the pivot
vertex NG(pivot) are not considered for expansion. This ap-
proach was improved by Tomita et al. [55] by choosing the
pivot vertex from P∪X in a way that maximizes the number
of vertices from NG(pivot) that are excluded from expansion
(i.e., |P ∩NG(pivot)| is maximized). The BK algorithm with
the pivoting strategy is shown in Algorithm 1.

Algorithm 2: Bron-Kerbosch w. degeneracy order

1 Function BKDegeneracy (Graph G(V, E)) is
2 Order vertices in G using degeneracy ordering;
3 foreach vertex vi : V do
4 P = NG(vi) ∩ {vi+1, vi+2, ..., vn−1};
5 X = NG(vi) ∩ {v0, v1, ..., vi−1};
6 BKPivot({vi}, P , X, G);
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Table 1: Worst-case time complexity when using different
vertex ordering strategies. SFG stands for scale-free graphs.

Vertex ordering Time complexity

Arbitrary [55] O(3n/3)

Degree [61] O(hn3h/3)

Degeneracy [26] O(dn3d/3)

Arbitrary (this work) O(n3∆max/3)

Arbitrary - SFG (this work) O(3∆max/3)

Degeneracy (this work) O(∆avgn3d/3)

Eppstein et al. [26] improved the original BK algorithm
using the degeneracy ordering. The degeneracy represents
the smallest value d, such that each nonempty subgraph
of a graph has a vertex with at most d edges. If a graph
has degeneracy d, its largest clique can have at most d+1
vertices, and the vertices of the graph can be ordered in such
a way that each vertex has d or less neighboring vertices
that come later in the ordering. The main idea used in the
improved algorithm is to compute a degeneracy ordering of
the vertices before invoking the original BK algorithm with
pivoting, as shown in Algorithm 2. For each vertex vi, sets
P and X represent its neighbors that come later and before
in the ordering, respectively. The vertex itself is assigned
to set R and, for the sets created as described, the original
algorithm with pivoting is invoked. Every set P is going to
have at most d vertices due to degeneracy ordering, so the
recursion tree depth is bounded by d. This property can be
used to reduce the exponential worst-case time complexity.

In summary, Tomita et al. [55] assumed an arbitrary or-
dering of vertices when building the recursion tree and ob-
tained a worst-case complexity of O(3n/3), where n is the
number of graph nodes. On the other hand, Eppstein et
al. [26] proved a worst-case complexity bound of O(dn3d/3),
where d is the degeneracy of the input graph. Similarly,
Xu et al. [61] focused on the degree-ordering of the vertices,

and derived a worst-case complexity bound of O(hn3d/3),
where h is the h-index of the input graph. However, none
of these approaches explicitly evaluated the impact of set-
intersections on the complexity of the BK algorithm. In
addition, despite the well-established complexity bounds for
degeneracy- and degree-based orderings of vertices, a bound
lower than O(3n/3) has not been reported for arbitrary or-
derings.

3. A BROAD COMPLEXITY ANALYSIS
This section contributes a broad time and space com-

plexity analysis of the BK algorithm, taking into account
both vertex ordering strategies and set intersection algo-
rithms. In particular, we show that whereas hash-join-based
set-intersection algorithms lead to ideal complexity bounds,
merge-join-based set intersections can lead to a ∆max times
higher worst-case time complexity, where ∆max is the max-
imum node degree of the input graph. We also show that
the recursive subgraph-creation scheme given by Eppstein
et al. [26] enables the ideal worst-case time complexity to be
achieved even when using merge-join-based set intersection
algorithms, but the cost of doing so is a d-times higher peak
space complexity. These results are summarized in Figure 2.

The order in which the vertices are processed when build-
ing the recursion tree has a significant impact on the expo-
nential factors of the worst-case complexity. These results

are presented in Table 1. Note that in the case of the ar-
bitrary ordering we contribute improved complexity bounds
for general and scale free graphs. In the case of the degen-
eracy ordering, our result are slightly different from those
of Eppstein et al. [26] because we introduce the additional
term ∆avg, which is the average node degree of the input
graph.

Examples of some real-world graph datasets with their
parameters affecting the complexity are given in Table 2.
These graphs come from the Network Data Repository [46]
and SNAP [39]. In all of these cases ∆avg < d < h <
∆max, which means that the algorithms using the degener-
acy ordering lead to significantly lower theoretical complex-
ity bounds than the ones with arbitrary and degree ordering.
Therefore, we focus on the degeneracy ordering in this work.

3.1 Effect of set-intersection algorithms
Because set intersections are heavily used in the Bron-

Kerbosch algorithm, it is important to determine the effect
of specific set-intersection algorithms on the overall com-
plexity. In this work, we focus on the two most commonly
used methods: merge-join- and hash-join-based algorithms.

In this section, we call p = |P | and x = |X| the sizes of the
sets P and X in one recursive call of BKPivot subroutine
of Algorithm 1. Lets assume that a graph has n vertices, m
edges, and degeneracy d. The maximum degree of a vertex
is ∆max, and the average degree of the vertices is ∆avg. The
following properties hold for p, x, and d [52]:

p ≤ d, p+ x ≤ ∆max,
∆avg

2
≤ d < ∆max.

The relationship between the intersection time and the
execution time of the BKPivot function is given as follows:

Lemma 1. The complexity of the BKPivot function with-
out its child recursive calls is

O ((p+ x) I (p,∆) + p (I (p,∆) + I (x,∆))) , (1)

where ∆ is size of the largest adjacency list accessed, and
I(a, b) is the time to intersect a set with a elements and an
adjacency list with b elements.

Proof. To determine the pivot vertex, we perform p+ x
intersections between the set P and the adjacency list of
a vertex from P ∪ X (see getPivot function), which takes
O ((p+ x)I(p,∆)) time. Then, the BKPivot function inter-
sects sets P and X up to p times with the adjacency list
of vertices in P/N(u), which takes O (p(I(p,∆) + I(x,∆)))
time. The total time is the sum of these two results.

The next lemma offers the result for the time complexity
of the overall algorithm for two significant cases.

Lemma 2. Let D0 be the time to execute the BKPivot
function without its recursive calls. Then, the time it takes
for the BK algorithm with degeneracy ordering to compute
all maximal cliques of a graph G is:

D(G) =

{
O(∆avgn3d/3), forD0 = O(p2x)

O(∆avg∆maxn3d/3), forD0 = O(p2x∆max).

Proof. Using Lemma 5 of Eppstein et al. [26], execution
time of the BKPivot function including its child recursive
calls is O(x3p/3) when D0 = O(p2x) and O(x∆max3p/3)
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Table 2: Graph properties. Graph sizes are in MB. Graphs larger than 1 GB are considered large.
small graphs n ∆avg d h ∆max size large graphs n ∆avg d h ∆max size
wiki-talk (wt) 2.4 M 3.9 131 1055 100 k 64 orkut (or) 3.1 M 76.3 253 1638 33 k 1740
b-anon (ba) 2.9 M 14.3 63 722 4.4 k 80 sinaweibo (sw) 59 M 8.9 193 5902 278 k 3891
as-skitter (as) 1.7 M 13.1 111 982 35 k 143 aff-orkut (ao) 8.7 M 74.9 471 6064 318 k 4915
livejournal (lj) 4.0 M 13.9 213 558 2.6 k 393 clueweb (cw) 148 M 6.1 192 2783 308 k 7373
topcats (tc) 1.8 M 28.4 99 1457 238 k 403 wiki-link (wl) 26 M 41.9 1120 5908 4.2 M 9728
pokec (pk) 1.6 M 27.3 47 492 15 k 405 friendster (fr) 66 M 54.5 304 2958 5.2 k 30720

when D0 = O(p2x∆max). The total cost of all the invoca-
tions of BKPivot in the BKDegeneracy function is∑

v

O(x3p/3) ≤ O(m3d/3) = O(∆avgn3d/3), (2)

when D0 = O(p2x). Similarly, the total execution time is

O(∆avg∆maxn3d/3) when D0 = O(p2x∆max).

Hash-join-based set intersections require a first set
Sa to be hashed. The second set Sb is traversed while per-
forming lookups in Sa. Assuming each lookup takes O(1)
time in the worst case, the total time needed for the inter-
section is O(|Sb|). Constant worst-case lookup time can be
achieved using cuckoo hashing [42], hopscotch hashing [32],
and several different perfect hashing algorithms [6,12,27].

In the hash-join-based BK algorithm, the adjacency list
of each vertex is stored in a dedicated hash-table. Given a
graph with n vertices and m edges, construction of the hash
tables can be achieved in O(n+m) expected time and space
complexity, which can be approximated as O(∆avgn) when
∆avg >= 1. This pre-processing overhead is significantly
lower than the complexity of the BK algorithm.

Theorem 1. The BK algorithm computes all maximal
cliques of a graph G in O(∆avgn3d/3) time using degeneracy
ordering and hash-join-based set intersections.

Proof. Given that I(a, b) = O(a) when using hash joins
with the second set hashed, the complexity of the BKPivot
function without its child recursive calls is O(p(p+x)) using
Lemma 1. The total execution time of the algorithm is ob-
tained by applying Lemma 2 with D0 = O(p2x) given that
O(p(p+ x)) ⊂ O(p2x).

Note that Theorem 1 gives a tighter lower bound than
O(dn3d/3) by Eppstein et al. [26] because O(∆avg) ⊂ O(d).
Other hashing algorithms, such as linear probing and double
hashing [35], offer weaker bounds on the complexity of hash
table lookups. While on average each lookup takes constant
time, in the worst-case a lookup can require a linear scan of
the hash table. As a result, performing |Sb| lookups in Sa
takes O(|Sa||Sb|) time in the worst case, which increases the
time complexity of the BK algorithm by ∆max times.

Merge-join-based set intersections require both sets
to be sorted. We iterate through both sets in a sequential
fashion, looking for common elements. In the worst case,
a merge-join-based set intersection performs O(|Sa| + |Sb|)
comparisons. In the merge-join-based BK algorithm, sort-
ing the adjacency lists of the input graph is done as a pre-
processing step. Because the result of each intersection is
also sorted, all the sets remain sorted during the execution
of the algorithm without any additional sorting overhead.

Theorem 2. The BK algorithm computes all maximal
cliques of a graph G in O(∆avg∆maxn3d/3) time using de-
generacy ordering and merge-join-based set intersections.

Proof. Because the size of the largest adjacency list ac-
cessed can be as large as ∆max and given that I(a, b) =
O(a+ b) in the merge-join case, the complexity of BKPivot
without its child recursive calls is O((p+x)(p+∆max)) using
Lemma 1. By applying the Lemma 2 for D0 = O(p2x∆max)
given that O((p+ x)(p+ ∆max)) ⊂ O(p2x∆max), we obtain
the total execution time of the algorithm.

In summary, merge-join-based set-intersections lead to a
∆max times higher asymptotic time complexity than hash-
join-based set-intersections.

3.2 Effect of recursive subgraph creation
Eppstein et al. [26] contributed a subgraph-based BK al-

gorithm, which creates a new subgraph denoted as HP,X
before each recursive call. These calls then use their respec-
tive subgraphs instead of the original graph G. HP,X is a
subgraph of G induced by the vertex set P ∪X. However,
the edges that exist between the vertices in X in G are not
included in HP,X . Algorithm 3 shows the BKSubgraph func-
tion, which replaces the BKPivot function of the original BK
algorithm, wherein a new function called createHpxSubgraph
is introduced to create HP,X . Note that our formulation of
the BKSubgraph function given in Algorithm 3 is slightly
different from the one given by Eppstein et al. We create
only one subgraph per recursive call whereas Eppstein et
al.’s formulation [26] creates O(p) subgraphs per call; thus
our formulation incurs a lower overhead per call. Note also
that the BKDegeneracy function has to invoke BKSubgraph
instead of BKPivot when using recursive subgraph creation.

Algorithm 3: Bron-Kerbosch w. subgraph creation

1 Function BKSubgraph(Sets R, P, X, graph G)
2 if P = ∅ then
3 if X = ∅ then Report R as a maximal clique;
4 return;

5 SG = createHpxSubgraph(P , X, G);
6 pivot = getPivot(P,X, SG);

7 foreach vertex v : P/NSG(pivot) do
8 P ′ = P ∩NSG(v); X ′ = X ∩NSG(v);
9 BKSubgraph(R+ {v}, P ′, X ′, SG);

10 P = P − {v}; X = X + {v};

11 Function createHpxSubgraph(Sets P, X, graph G)
12 foreach vertex u : P do
13 NSG(u) = (P ∪X) ∩NG(u);

14 foreach vertex v : NSG(u) do
15 if v is in X then
16 NSG(v) = NSG(v) + {u};

17 return SG

In this section, we evaluate the impact of recursive sub-
graph creation on the time complexity of the BK algorithm.
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We evaluate this impact in combination with both merge-
join-based and hash-join-based set-intersection algorithms.

Merge join with recursive subgraph creation ap-
proach combines the subgraph-based BK algorithm with
merge-join-based set intersections. Because the subgraphs
shrink with each recursive call, using subgraphs that have
smaller adjacency lists than the original graph leads to faster
execution of merge-join-based set intersections.

Lemma 3. createHpxSubgraph can be executed in O(p(p+
x)) time using merge-join-based set intersections.

Proof. The createHpxSubgraph function iterates through
all the vertices in P . For each vertex u ∈ P , it determines
the adjacency list NSG(u) of the subgraph SG by intersect-
ing P∪X with the adjacency list NG(u) of the original graph
G. Because the size of NG(u) is O(p + x), the time needed
to create NSG(u) for each u ∈ P using merge-join-based
set intersections is O(p + x). The adjacency lists NSG(v)
of v ∈ X are initially empty. Whenever we find a vertex
v ∈ X in the previously created adjacency list NSG(u), we
update NSG(v) by inserting u into it. This insertion can be
done in O(1) time by appending the vertex u at the end of
NSG(v) because both the adjacency lists and the sets P are
always stored in a sorted fashion and traversed as such in
merge-join-based implementations. There are O(p+ x) ver-
tices to be examined in NSG(u). Therefore, for each u ∈ P ,
the time needed to update the adjacency lists NSG(v) of
v ∈ X is O(p + x). Since p iterations are performed in the
outer loop of the createHpxSubgraph function, the function
executes in O(p(p+ x)) time.

Theorem 3. The BK algorithm computes all maximal
cliques of a graph G in O(∆avgn3d/3) time using degeneracy
ordering and merge-join-based set intersections in combina-
tion with recursive subgraph creation.

Proof. Since we use the HP,X subgraph instead of the
original graph in the BKSubgraph function, the size of the
largest adjacency list used in that function is p+ x. There-
fore, the time needed to execute BKSubgraph without the
createHpxSubgraph function can be obtained using Lemma 1,
where ∆ = p + x and I(a, b) = O(a + b), which results in
O(p(p + x)) time. Recalling from Lemma 3 that subgraph
creation takes O(p(p+x)) time, the total time needed to ex-
ecute BKSubgraph without its recursive calls is O(p(p+x)).
Similar to the proof of Theorem 1, the overall complexity
can be obtained by using Lemma 2 with D0 = O(p2x).

In summary, recursive subgraph creation enables the BK
algorithm based on merge joins to achieve the same time
complexity bound as the hash-join-based BK algorithm.

Hash join with recursive subgraph creation method
combines hash-join-based set intersections with subgraph-
based BK algorithm. Because the hash-join-based imple-
mentation operates on hashed adjacency lists, creating a
new subgraph requires construction of several new hash ta-
bles that store the adjacency lists of the subgraph. Note
that the worst-case complexity of constructing a hash table
is quadratic in its size given that the worst-case complex-
ity of inserting an element into a hash table is linear in the
number of elements for most hashing algorithms.

Theorem 4. The BK algorithm computes all maximal
cliques of a graph G in O(∆avg∆maxn3d/3) time using de-
generacy ordering and hash-join-based set intersections in
combination with recursive subgraph creation.

Proof. The intersections shown in the line 13 of Alg. 3
can be performed in O(p + x) time using the hash-join ap-
proach. Therefore, computing all the adjacency lists of a
subgraph takes O(p(p+ x)) time. However, we also have to
construct hash tables that store the adjacency lists of the
subgraph. Given that a HP,X subgraph has p adjacency
lists with at most p+ x elements and x adjacency lists with
at most p elements, constructing all the hash tables takes
O
(
p(p+ x)2 + xp2

)
= O

(
p(p+ x)2

)
time because of the

quadratic complexity of hash table construction. The total
time needed to execute createHpxSubgraph is O

(
p(p+ x)2

)
.

Using Lemma 1 with I(a, b) = O(a), the execution time
of BKSubgraph without the createHpxSubgraph function is
O(p(p + x)). Adding it to the time to compute the cre-
ateHpxSubgraph function, the execution time of the BKSub-
graph function becomes O

(
p(p+ x)2

)
. The total execution

time of the BK algorithm is obtained by applying Lemma 2
with D0 = O(p2x∆max) given that x is at most ∆max and
O(p(p+ x)2) ⊂ O(p2x∆max).

Theorem 4 shows that recursive subgraph creation in-
creases the worst-case time complexity when using hash-
join-based set intersections. However, there exist hashing
algorithms that support insertions in constant worst-case
time complexity with high probability [3,4,7,24,29], leading
to a linear worst-case hash table construction complexity.
Using such algorithms would reduce the complexity of the
BK algorithm with hash-join-based set intersections and re-
cursive subgraph creation to O(∆avgn3d/3).

3.3 Space complexity
In this section, we perform a space complexity analysis of

the BK algorithm assuming the degeneracy ordering of the
vertices. In particular, we analyze the impact of recursive
subgraph creation on the peak dynamic memory usage.

At each recursive step, the BK algorithm computes new P,
R, and X sets. After that, the BK algorithm invokes a child
recursive call and passes the new sets as its parameters. Note
that the maximum clique size is upper bounded by d + 1.
Therefore, storing these three sets requires O(p + x + d) =
O(∆max) space. When the recursion tree is explored in a
depth-first-search (DFS) order, the space used for storing
the intermediate results is limited to the current execution
depth. In addition, when using the degeneracy ordering,
the maximum recursion depth is d. Thus, the peak memory
consumption of the single-threaded execution of the BK al-
gorithm is O(d∆max) without taking into account the space
needed to store the input graph and the cliques found.

Recursive subgraph creation increases the memory usage
further. Each HP,X subgraph uses O(p(p + x) + xp) =
O(p(p + x)) = O(d∆max) space because it connects either
two vertices of P or one from P and one from X [26]. Cre-
ating a new subgraph for each recursive call increases the
peak memory consumption to O(d×d∆max) = O(d2∆max).
Therefore, recursive subgraph creation can increase the dy-
namic memory usage by up to d times. In summary, even
though recursive subgraph creation reduces the time com-
plexity of the BK algorithm that uses merge-join-based set
intersections, it increases its dynamic memory usage.

The results of our analysis are given in Figure 2. Note
that when exploring the recursion tree in the DFS order, the
dynamic memory usage of the BK algorithm is independent
of n. It depends only on the recursion depth d and ∆max.
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3.4 Parallel time and space complexity
The BK algorithm can be parallelized by considering each

recursive call as an independent unit of work (i.e., task).
Given N hardware threads, N DFS-based explorations of
the recursion tree can be performed concurrently. Based on
Brent’s theorem, we have TN ≤ T1/N +T∞, where T1 is the
execution time using a single thread, T∞ is the execution
time using infinitely many threads, and TN is the execution
time using N threads [13]. In the case of the BK algorithm

with degeneracy ordering, T1 = O(∆avgn3d/3) and T∞ =
O(d) because d is the maximum depth of the recursion tree.
Thus, the execution time using N threads of execution is

TN = O

(
∆avgn

N
3d/3 + d

)
. (3)

As a result, we expect the performance of parallel imple-
mentations that take advantage of dynamic task scheduling
frameworks [10, 36, 44] to scale linearly with the number of
threads (strong scaling). In addition, when d is constant
and the number of threads (N) is a linear function of n,
the worst-case time complexity is also a constant. Hence, a
weak performance scaling can be achieved as well.

When we execute the BK algorithm on N threads, we ex-
plore N different DFS paths of the recursion tree in parallel.
Because the memory consumption of each thread is equal to
the memory usage of a single DFS path, the space needed
for executing the parallel algorithm is up to N times larger
than the single-threaded results given in Section 3.3. We
conclude that the peak memory consumption is O(Nd∆max)
without subgraphs while it is O(Nd2∆max) with subgraphs.
Considering both hash-join-based and merge-join-based set
intersections, we summarize these results in Figure 2.

3.5 Arbitrary vertex orderings
In this section, we derive new complexity bounds for ar-

bitrary vertex orderings. When using arbitrary vertex or-
derings, the size of set P is no longer upper bounded by d
but by the maximum vertex degree ∆max. Based on this
observation, the time complexity of the BK algorithm that
uses arbitrary vertex ordering is O(n3∆max/3), because each

invocation of the BKPivot function takes O(3∆max/3) time.
A better complexity bound can be derived for scale-free

graphs. In scale-free graphs, the probability of a vertex hav-
ing degree ∆ is P (∆) ∼ ∆−γ , where the γ parameter is
typically between 2 and 3 [5]. Many real-world graphs are
scale free, such as the World Wide Web, protein-interaction,
and email networks. These graphs have a limited number
of highly-connected vertices. When the BK algorithm is ex-
ecuted on scale-free graphs, most of its execution time is
spent when starting from those highly-connected vertices.

Theorem 5. The BK algorithm computes all maximal
cliques of a scale-free graph in O(3∆max/3) time using an

arbitrary ordering of vertices when ∆γ
max ≤ 3(∆max−1)/3.

Proof. Each invocation of BKPivot in the BKDegener-
acy function takes O(3∆/3) time, for an arbitrary vertex
ordering. The sum of the cost of all invocations is

∑
v

O(3∆/3) = O

(
∆max∑
∆=1

N(∆)3∆/3

)
, (4)

where N(∆) is the number of vertices with degree ∆. In
scale-free graphs, the degrees follow a power-law distribu-
tion, i.e., the number of vertices with degree ∆ is propor-
tional to n∆−γ . For scale-free graphs, it also holds that
n = O

(
∆γ−1
max

)
[5]. By using these properties, we obtain

O

(
∆max∑
∆=1

N(∆)3∆/3

)
= O

(
n

∆max∑
∆=1

3∆/3

∆γ

)

≤ O
(
n

3∆max/3

∆γ−1
max

)
≤ O

(
3∆max/3

)
,

(5)

where 3∆/3/∆γ ≤ 3∆max/3/∆γ
max holds for every ∆max if

3(∆max−1)/3 ≥ ∆γ
max.

In real-world graphs, the condition 3(∆max−1)/3 ≥ ∆γ
max al-

most always holds. For example, when γ = 3, the maximum
node degree (i.e., ∆max) needs to be larger than 29.

Theorem 5 shows that the worst-case complexity of the
BK algorithm using an arbitrary vertex ordering depends
only on the time to process the vertex with the maximum
degree. Note that ∆max is much smaller than n in real-world
graphs even though ∆max = O(n) (see Table 2). Effectively,
we have derived a new bound that is significantly tighter
than the O(3n/3) bound reported in Tomita et al. [55].

4. VECTORIZED SET INTERSECTIONS
In this section, we briefly describe our SIMD-accelerated

hash-join-based set intersection implementation. We show
that it outperforms state-of-the-art methods when the sets
involved in intersections have disproportionate sizes, which
frequently occurs when executing the BK algorithm.

4.1 Our set intersection implementation
We have developed a hash-join-based set intersection al-

gorithm, called SimpleHashSet, which constructs hopscotch
hash tables [32] and performs SIMD-accelerated table look-
ups. We use hopscotch hash tables to achieve O(1) worst-
case complexity for the lookups. Even though the construc-
tion of hopscotch hash tables differs from the construction
of the tables used by linear probing implementations, the
table lookups can be performed in exactly the same way.
Our SIMD implementation of table lookups is based on the
SIMD-accelerated linear probing implementation of Poly-
chroniou et al. [43]. However, we support only unique inte-
ger keys without payloads. Thus, our design is much simpler
than that of Polychroniou et al. [43]. Note that the set dif-
ference operations used by the BK algorithm can also be im-
plemented using our SIMD-accelerated hash-table lookups.

We build a dedicated hopscotch hash table for each ver-
tex of the input graph to store its adjacency list. Hopscotch
hash tables are constructed in such a way that each key is
found within H entries of the address computed by the hash
function [32]. In our implementation, H is the number of in-
teger keys that fit into one cache line. When computing the
size of a hash table, we multiply the size of the respective
adjacency list by two and round it up to the nearest power
of two. Note that the hopscotch hash tables require a hash
function from a universal family. We take advantage of mul-
tiplicative universal hashing, which uses one multiplication,
one addition, and one bit-shift operation [23,59].
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Table 3: Hardware platforms used in the paper
platform Intel KNL [53] Intel Xeon Skylake
no. cores 64 48
no. threads 256 96
SIMD instr. AVX-512 AVX-512
memory 110 GB 360 GB
L1d cache 32 KB per core 32 KB per core
L2 cache 1 MB per 2 cores 1 MB per core
L3 cache none 38.5 MB

Figure 3: Speedup of SIMD-accelerated set intersection al-
gorithms compared to scalar-merge-based set intersections.

4.2 Comparison to other algorithms
We perform an experimental study of set intersection algo-

rithms i) to show the efficiency of our algorithms in compar-
ison to prior solutions and ii) to understand when hash joins
should be favored over merge joins. Our experiments in this
section are performed on Intel Xeon Phi1 7210 - Knights
Landing (KNL) processor [53], described in Table 3. In-
tel KNL supports the state-of-the-art AVX-512 instructions,
where each vector register enables operations on sixteen 32-
bit integer operands in parallel. The following state-of-the-
art implementations of set intersection algorithms that use
SIMD instructions were used in the comparison.

QFilter is a merge-join-based set intersection algorithm
optimized for graph processing by Han et al. [30]. It uses
a compressed bit-vector representation of graph vertices,
called BSR, and it accelerates the set-intersection operations
using 128-bit vector registers and the AVX2 instruction set.
The main drawback of this method is that it requires a time-
consuming reordering of the input graph vertices in order to
achieve high-performance intersections.

Galloping is a merge-join-based intersection algorithm
that locates the members of the first set in the second set
using binary search, and it can be accelerated using SIMD
instructions [38]. Han et al. [30]. optimized this approach
to use their compressed bit-vector representation. We refer
to this implementation as SIMD Galloping with BSR.

CAlist was described in our previous work [8], which is
also a merge-join-based set-intersection implementation. It
uses cache-aligned linked lists to minimize cache misses and
efficiently leverages AVX-512 instructions. CAlist works
well when the sets have disproportionate sizes because it
can skip redundant comparisons. In addition, it can be eas-
ily adapted to take advantage of even wider vector registers.

Swiss Table is a highly-optimized open-source hash table
library by Abseil adapted from Google’s C++ codebase [1].

We use a microbenchmarking approach, in which we ran-
domly generate and intersect two sets S1 and S2 and vary

1Intel and Intel Xeon are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United
States and other countries.

their sizes. Within the BK algorithm, S1 is an adjacency list
of the graph, which is hashed in the hash-join-based case,
and S2 is either set P or set X. Figure 3 shows the speedup
achieved by different set intersection strategies over a scalar
merge join strategy that is used as the baseline. We fix
the density of the sets (i.e., the ratio between the larger set
size and the range of the elements in sets [30]) to 0.5 in the
case of QFilter and SIMD Galloping with BSR, and to 0.1
in all other cases. The reason for using the higher density
in QFilter and SIMD Galloping with BSR cases is because
they benefit from graph reordering [30], which increases the
densities of the sets and enables more efficient intersections.

Figure 3a compares the performance of different set inter-
section implementations when the ratio between the set sizes
(i.e., skew) varies. We fix the selectivity of the intersections
(i.e., the ratio between the size of the result and the smaller
set) to 0.3 because the BK algorithm using scalar-merge-
based set intersections spends 50−60% of its set intersection
time on set intersections with a selectivity lower than 0.3 on
average across all the graphs from Table 2. Then, we fix
the size of the set S1 to 32000, which is in the order of the
average size of set S1 observed when processing the large
graphs. Note that this average is much larger than ∆avg

because the vertices with higher degrees take part in the in-
tersections much more frequently. We then vary the skew
between 1 and 1024. We see that SimpleHashSet is prefer-
able when the set sizes are disproportionate (the shaded re-
gion) whereas QFilter is preferable when the skew is small.
(i.e., when S1 and S2 are similar in size).

When operating on the large graphs, the BK algorithm
that uses scalar-merge-based set intersections spends more
than 80% of its intersection time on intersecting sets with a
skew larger than 32. Thus, in Figure 3b, we fix the skew to
|S1|/|S2| = 32 while keeping the selectivity at 0.3 and we
vary the size of both sets proportionally until |S1| = 64000.
It is clear that SimpleHashSet outperforms all other set in-
tersections when |S2| is not extremely small. In Figure 3c,
we keep the skew at |S1|/|S2| = 32, fix the size of S1 to
32000, and vary the selectivity. Averaged across the large
graphs from Table 2, the BK algorithm that uses the scalar
merge spends almost 70% of its intersection time execut-
ing the intersections with a selectivity lower than 0.5. Our
SimpleHashSet is faster than the other set intersection algo-
rithms exactly in that region.

In conclusion, hash-join-based set intersections are prefer-
able to merge-join-based ones when the set sizes involved
in the intersections are highly skewed, which is often the
case for the BK algorithm. Furthermore, our SimpleHashSet
method is competitive against state-of-the-art set intersec-
tion methods such as QFilter without requiring compressed
bit-vector representations such as BSR.

5. MANYCORE IMPLEMENTATION
In this section, we build on the theoretical results of Sec-

tion 3 and develop a shared-memory parallel implementa-
tion of the BK algorithm that exploits task-level parallelism
and guarantees a worst-case complexity of O(Nd∆max) on
the peak dynamic memory consumption. First, we intro-
duce the software framework we use to exploit the task-level
parallelism dynamically and describe our initial parallel im-
plementation of the BK algorithm. Next, we discuss the op-
timizations that minimize the dynamic memory usage and
maximize the scalability of our software implementation.
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Figure 4: Impact of various optimizations on the total
CPU time used by the manycore BK implementation when
processing the orkut graph. In (a), we use scalar-merge-
based intersections. In (b), we use our SimpleHashSet.

The experiments presented in this section are performed
on the Intel KNL platform (see Table 3) using 256 hard-
ware threads. We use Intel VTune Amplifier version 2018.3
to obtain the execution time breakdown. Tools such as In-
tel VTune and Valgrind Massif [51] can be used to perform
dynamic memory usage profiling. However, they are ex-
tremely slow in doing so. Therefore, we extract the dynamic
memory usage profile by instrumenting our code. We keep
track of the dynamic memory allocations and deallocations
performed by individual threads on the relevant data struc-
tures, and periodically sample their sum. A new sample is
collected when a certain number of memory allocations have
been performed, which is tracked by an atomic counter.

5.1 Leveraging task parallelism frameworks
We use the Intel Threading Building Blocks (TBB) soft-

ware framework [36] for exploiting the task parallelism. TBB
implements a dynamic scheduler that can dispatch tasks
to parallel worker threads, where the load balance across
these threads is achieved via the work-stealing approach [11].
Each worker thread is typically pinned to a hardware thread.
Additionally, TBB offers a scalable memory allocator that
reduces the overhead of concurrent memory allocations.

Our initial manycore implementation wraps each recur-
sive call to the BKPivot function of Algorithm 1 in a task.
In each iteration of its foreach loop, memory for the new
sets P ′ = P ∩NG(v) and X ′ = X∩NG(v) is allocated, and a
new task is spawned with these sets as parameters. We refer
to the original task as the parent task, and to the spawned
tasks as child tasks. When the foreach loop completes, we
wait for all the child tasks to complete before destroying the
parent task. Note that, the BKDegeneracy function, which
is the root of the recursion tree, is also implemented as a
task, and the iterations of its foreach loop are executed in
parallel using TBB’s parallel for loop construct. When
recursive subgraph creation is enabled, each task creates a
HP,X subgraph from the P and X sets as described in Al-
gorithm 3. Parallel DFS exploration of the recursion tree
is enforced by the TBB scheduler by default. Each worker
thread simply prioritizes the task it spawned most recently.

Figure 4 shows the execution time breakdown of our many-
core BK implementation. In the unoptimized case shown in
Figure 4a, set intersections based on the scalar merge ap-
proach dominate the execution time. However, using our
SimpleHashSet, described in Section 4, accelerates set inter-
sections by 22×, as shown in Figure 4b. This result matches
the results of Figure 3a, where SimpleHashSet is up to 128
times faster than the scalar merge approach for the cases
that frequently occur in the BK algorithm. However, once

Figure 5: Dynamic memory usage over time for the orkut
graph. Our optimizations reduce the peak dynamic memory
usage by 80× while affecting the runtime only marginally.

the set intersection implementation is optimized, the task
and memory management overheads can constitute up to
50% of the total CPU time, as shown in Figure 4b. In ad-
dition, our initial implementation does not achieve the ideal
space complexity results reported in Section 3.4, and uses
more memory than necessary. In this section, we discuss
these problems in detail and offer our solutions.

5.2 Minimizing dynamic memory usage
The initial manycore implementation of the BK algorithm

described in the previous section uses more dynamic mem-
ory than what is predicted in Section 3.4. The main reason
is that a task executing on a TBB thread spawns all its child
tasks and allocates memory for them while it is still execut-
ing. After the completion of the current task, the thread can
switch to one of these child tasks. However, the remaining
child tasks occupy memory that is not yet being used, caus-
ing two main problems: 1) Dynamic memory usage depends
on the number of vertices n. 2) The memory used by the
BKPivot task can be up to d times larger than necessary.

The first problem is caused by the parallel for that
implements the foreach loop of the BKDegeneracy func-
tion. The default behaviour of TBB’s parallel for loop
is to heuristically group its iterations into chunks, and then
a worker thread sequentially executes an entire chunk be-
fore starting to work on another chunk [58]. Each iteration
of the main loop of the BKDegeneracy function spawns a
task with an initial pair of P and X sets (lines 4-6 of Al-
gorithm 2). By default, TBB does not limit the chunk size,
so the parallel for loop might have a chunk made of up
to n loop iterations. A thread executing that chunk would
then allocate O (n(∆max + c)) memory, assuming that c is
the memory used by the task context in addition to the sets.
The resulting memory allocations could easily become the
dominant component of the dynamic memory usage when
processing large graphs. Figure 5a shows that the initial
sets consume a significant amount of memory in the case of
the orkut graph. One way to solve this problem is to delay
creation of the initial sets to the start of the corresponding
BKPivot function, which ensures that each thread creates at
most one pair of the initial sets. By doing so, we reduce the
dynamic memory usage by 15× on the orkut graph, com-
pared to the initial implementation (Figure 5b). However,
the task contexts created in the parallel for loop of the
BKDegeneracy function still represent a large part of the
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Figure 6: Reducing dynamic memory usage by enabling
different threads to execute different loop iterations (circles).

execution time. This problem can be solved by limiting the
chunk size to one, which results in each chunk creating ex-
actly one task. As Figure 5c shows, this optimization further
reduces the dynamic memory usage to less than half. Note
that now the space complexity no longer depends on n.

The second problem happens because each BKPivot task
spawns O(|P |) ⊂ O(d) child tasks after creating the respec-
tive P andX sets, which leads to usage ofO(d)-fold more dy-
namic memory than necessary within recursive calls. Then,
the space complexity becomes d times higher than what is
predicted in Section 3.4. To solve this issue, we enable dif-
ferent threads to execute different iterations of the foreach

loop shown in line 6 of the Algorithm 1 (see Figure 6). Af-
ter executing a loop iteration, the worker thread can either
switch to the next loop iteration or to its child task. Us-
ing TBB’s scheduler bypass feature, we force the thread to
switch to the child task (Thread 0 of Figure 6) and return the
context of the parent task to the scheduler. Another thread
can later continue executing the parent task by picking up
its context from the scheduler (Thread 1 of Figure 6). This
approach is similar to continuation stealing introduced by
Cilk-5 [28, 37]. By executing the child task before the next
loop iteration, each worker thread spawns only one task at
a time instead of spawning O(d) tasks at once. Figure 5d
shows that this optimization further reduces the dynamic
memory usage by 50% when processing the orkut graph.

As a result of the previous optimizations, our manycore
implementation of the BK algorithm uses O(Nd∆max) space
for dynamic memory as we predict in Section 3.4. The dy-
namic memory usage is reduced by 80× in the case of the
orkut graph (see Figure 5), and between 30× to 180× when
processing the small graphs. The highest dynamic mem-
ory usage measured when processing these seven graphs is
around 10 MB, which is significantly lower than the cumula-
tive cache capacity of the Intel KNL processors (see Table 3).

5.3 Task grouping
If more time is spent on managing tasks rather than ex-

ecuting them, the manycore implementation will not scale
well. As Figure 4b suggests, more than 25% of the time is
spent on task management. One way of reducing the task
management overheads is to group several recursive calls in
a single task. However, grouping too many calls in a task
can lead to load imbalances, which increases the idle time
of the worker threads. In this section, we describe a task
grouping heuristic that aims to marginalize the impact of
task management on the runtime without causing resource
underutilization. This goal is fulfilled by creating sufficiently
complex tasks.

Theorem 1 shows that the complexity of executing a re-
cursive call without its child recursive calls depends on the

Figure 7: Manycore optimizations: task grouping and
memory allocation grouping. Circles represent recursive
calls, dashed ellipses the tasks, and dotted ellipses the recur-
sive calls that share the same pre-allocated memory region.

size of the sets P and X as O (|P |(|P |+ |X|)). Both sets
typically become smaller as we move deeper in the recur-
sion tree. Therefore, we heuristically restrict task grouping
only to the recursive calls near the bottom of the recursion
tree. We create the task groups implicitly by not spawning
new tasks if the cardinality of the corresponding P ∪X set
is smaller than a task threshold tt, and execute the follow-
ing recursive call sequentially instead, as depicted in Fig-
ure 7. Figure 4c shows that the task management overheads
become negligible after the optimization. In addition, the
memory management overheads are also indirectly reduced.
We will study the choice of the empirical parameter tt in
Section 5.5 and show that it is not particularly critical.

This optimization has no side effect on the peak space
complexity because the recursive calls within a task are im-
plicitly executed in DFS order by our C++ implementation.
Thus, the peak space complexity bounds derived for DFS-
based processing in Section 3.4 apply without any changes.

5.4 Memory allocation grouping
Frequent memory allocations and deallocations by multi-

ple threads can cause contention, lead to performance over-
heads, and limit scalability. TBB’s scalable memory alloca-
tor alleviates such problems, but it cannot eliminate them
completely. The main reason is the frequent dynamic allo-
cations and deallocations of the P and X sets. Given that
the majority of the recursive calls are short-lived, especially
towards the leaves of the recursion tree, memory allocation
can easily become a scalability bottleneck. Figure 4c shows
that, after task grouping, memory management overheads
still take up to 25% of the total CPU time.

We introduce a memory allocation grouping method to
reduce the memory management overheads of our imple-
mentation. To reduce the number of memory allocations,
we create a large block of memory, in which the sets created
by several consecutive recursive calls are placed. Consider-
ing that the sets become smaller and the memory allocations
become more frequent as we move deeper in the recursion
tree, grouping the memory allocations that originate near
the bottom of the tree is a necessity. Similarly to our task
grouping approach, we introduce a memory threshold tm
and group memory allocations of a recursive call and all its
child calls when |P | + |X| ≤ tm. We constrain tm to be
smaller than the task threshold tt to ensure that memory
blocks are not shared by different threads and that there is
no need to synchronize the accesses to these blocks.

We denote the size of a pre-allocated memory block as b.
When b is not large enough to accommodate all the sets, a
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Figure 8: Sensitivity of our manycore implementation to
the parameters tt, tm and b. Graph (a) shows the execution
time relative to tt = 30. Graph (b) shows the execution
time relative to tm = 30 and the peak memory usage relative
to tm = 0. Graph (c) shows the execution time relative to
b = 30 KB and the peak memory usage relative to b = 100 B.

singly-linked list of such blocks is created. Using a too large
b increases the memory usage whereas using a too small
one increases the number of allocations and negatively im-
pacts the performance. Figure 4d shows that our memory
allocation grouping method using tm = 20 and b = 20 KB
virtually eliminates the memory management overheads.

5.5 Sensitivity analysis
This section evaluates the impact of the manycore imple-

mentation parameters tt, tm, and b on execution time and
memory usage. Experiments are performed on Intel KNL
using 256 hardware threads and cover all small graphs and
one large graph (i.e., orkut) from Table 2.

First, we evaluate the task-grouping optimization in iso-
lation. Figure 8a shows the impact of the task threshold
tt on the execution time. In all the cases evaluated, the
best performance is achieved when tt is between 20 and 50.
Note that tt does not influence the dynamic memory usage.
Next, we set tt = 30 and evaluate the memory-allocation-
grouping optimization. In Figure 8b, we set b = 20 KB and
vary the memory threshold tm. Across all the graphs tested,
the lowest execution time and dynamic memory usage com-
binations are achieved when the range of tm is between 10
and 20. In fact, the highest performance is achieved when
tm = 30. However, its dynamic memory usage can be up to
13× higher than that of the baseline (i.e., tm = 0), which dis-
ables the memory grouping optimization. A good trade-off
is achieved when tm = 20. In this case, the execution time is
within 5% of the optimal and the memory usage is at most
3× higher than that of the baseline. Finally, in Figure 8c we
set tm = 20 and vary the block size b. The execution times
decrease as we increase b and reach their optimal values at
b = 20 KB. Note that the dynamic memory usage increases
linearly with the block size after a certain point. When
b = 20 KB, the memory usage can be up to 2× higher than
that of the baseline that does not use memory pre-allocation
(i.e., b = 0), which is not a significant overhead.

Thus, our experiments suggest that none of the empirical
parameters is particularly critical: i) the results are consis-
tent across all the graphs we use and ii) for each parameter
there exists a reasonable range where the optimizations are
similarly effective as with the very best values. Therefore,
we set tt = 30 for task grouping and b = 20 KB, tm = 20
for memory allocation grouping. We use these values in all
the experiments performed in the remainder of this paper.

Figure 9: Impact of various vertex ordering techniques on
the single-threaded performance of the BK algorithm when
using Intel KNL. The experiments using the inverse degree
ordering did not succeed in under 48 h for ao and wl graphs.

6. EXPERIMENTAL RESULTS
In this section, we first show the impact of our algorith-

mic and implementation choices as well as our optimiza-
tions on execution time, memory consumption, and many-
core scalability. Then, we compare our optimized imple-
mentation with state-of-the-art references in terms of both
single-threaded and multi-threaded performance.

6.1 Experimental setup
In the experiments we use two platforms: Intel KNL and

Intel Xeon Skylake. We developed our code on Intel KNL
and ran most of the analyses there; yet, for completeness, we
ran the scalability analysis and the comparisons to compet-
ing implementations also on Intel Xeon Skylake processors
available in Google Cloud’s Compute Engine. The proper-
ties of these platforms are summarized in Table 3. We build
our code, which is available online2, using GCC v8.3.1 with
-O3 optimization flag. To exploit task parallelism, we use
version 2019 U9 of the Intel TBB framework. As already
mentioned, the graph datasets we use are obtained from
the Network Data Repository [46] and SNAP [39] (see Ta-
ble 2). In our experiments, the input graph is preloaded in
the main memory and interleaved across all NUMA regions.
We remove all self loops from the graphs and transform all
directed edges to undirected edges. When evaluating the
performance of the MCE implementations, we do not store
the maximal cliques found, but we simply count them.

6.2 Evaluation of vertex ordering strategies
Figure 9 shows the impact of different vertex ordering

strategies on the single-threaded execution time of the BK
algorithm on Intel KNL. We evaluated three main strate-
gies: i) degeneracy ordering [26], ii) degree ordering (as-
cending order), and iii) inverse degree ordering (descending
order). The inverse degree ordering strategy provides us
with a lower bound of the worst-case behavior of arbitrary
vertex orderings covered in Section 3.5. As expected, this
strategy leads to the worst performance results, resulting
in an up to 16× slow-down with respect to degeneracy or-
dering, this confirms the results of our theoretical analysis
provided in Table 1. However, despite the better worst-case
complexity bound it achieves, the degeneracy ordering does
not always lead to a better practical performance than the
degree ordering. We believe that further theoretical analysis
could shed more light on this empirical observation.

2github.com/accelerated-graph-mining/hash-join-mce
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Figure 10: Impact of (i) hash-join- vs. merge-join-based
intersection algorithms and of (ii) recursive subgraph cre-
ation on runtime and memory usage of the BK algorithm.

6.3 Hash joins versus merge joins
In this section, we evaluate the impact of set intersection

algorithms on the overall performance and memory usage of
the BK algorithm. The hash-join-based set intersections are
implemented using SimpleHashSet described in Section 4,
and the merge-join-based set intersections are implemented
using CAlist [8]. We also evaluate the impact of using recur-
sive subgraph creation described in Section 3.1. However,
instead of creating a subgraph per call, we create a subgraph
per task to limit the overhead of subgraph creation.

The experiments are performed on Intel KNL using all 256
hardware threads. In Figure 10, we evaluate all six small
graphs and one large graph from Table 2 and show the exe-
cution time and the peak dynamic memory usage results of
different set intersection methods. We repeat these exper-
iments both with and without recursive subgraph creation.
The results given in Figure 10 are relative to our hash-join-
based BK implementation that does not use recursive sub-
graph creation. Peak dynamic memory usage is measured
as described in Section 5, where we track dynamic memory
allocations and deallocations of each thread and sample the
peak after a certain number of allocations. Note that these
results do not include the memory used by the input graphs.

We see that the merge-join-based approach benefits from
creating subgraphs. Its execution time is reduced as much
as 44% for the tc graph, but at the cost of increased memory
usage. In all the cases, our hash-join-based BK implemen-
tation that does not create subgraphs is Pareto optimal as
predicted by our theoretical analysis (see Figure 2). On the
other hand, also as predicted by our theoretical analysis, the
hash-join-based BK implementation does not benefit from
recursive subgraph creation. Note that the subgraphs cre-
ated by the hash-join-based implementation use more mem-
ory than those created by the merge-join-based implementa-
tion because the adjacency lists of the subgraphs are stored
as hash tables in the hash-join case, and our SimpleHashSet
implementation sets the size of the hash tables to twice the
size of the adjacency lists to minimize hash conflicts.

6.4 Scalability analysis
The scalability analysis is carried out on both hardware

platforms shown in Table 3 using the graphs from Table 2.
Figure 11a shows the performance improvements we achieve
with respect to single-threaded execution when increasing
the number of threads on the KNL architecture. We observe
an almost linear performance scaling up to 64 threads, which
is the number of physical cores available. After 64 threads,
the performance scales sublinearly because the threads run-
ning on the same core start sharing hardware resources,

Figure 11: Performance scaling on modern many-core pro-
cessors: speed-ups are relative to single-threaded execution.

e.g., SIMD units. Using two hardware threads per core im-
proves the performance by only 40%. Using all 256 hardware
threads, we achieve up to 100× speedup compared to single-
threaded execution. Figure 11b shows the performance scal-
ing when using Xeon Skylake processors. We observe up to
60× speedup using 96 hardware threads.

6.5 Comparisons with the state of the art
We compare our BK implementation with the following

state-of-the-art MCE implementations: i) QFilterMCE by
Han et al. [30] is an optimized single-threaded implementa-
tion that uses QFilter and SIMD Galloping with BSR meth-
ods, described in Section 4, to accelerate set intersections.
QFilterMCE uses compressed bit-vectors for representing
the graph vertices and requires a preprocessing step that
reorders the vertices in order to perform more efficient set
intersections. ii) ParMCE by Das et al. [22] is an optimized
shared-memory parallel C++ implementation that uses the
Intel TBB library for parallelization. In the comparisons,
we use our BK implementation based on degree ordering be-
cause the performance of the BK algorithm based on degree
ordering is similar to the one that uses degeneracy ordering
as shown in Figure. 9. In addition, computing the degree
order does not require any advanced preprocessing.

We compare the single-threaded execution of our imple-
mentation with QFilterMCE. Figure 12a shows that our
implementation, which uses the SimpleHashSet algorithm
given in Section 4 to accelerate set intersections, displays a
competitive performance to that of QFilterMCE even though
our solution does not require any preprocessing. On aver-
age, taking into the account both the time to preprocess
the graph and to execute QFilterMCE, our solution is faster
than QFilterMCE by 4.1× on KNL and by 2.7× on Xeon
Skylake. In addition, the QFilter preprocessing did not fin-
ish under 48 h on KNL for the ao and wl graphs, and under
24 h on Xeon Skylake for the wl graph. It also failed to
execute for the fr graph on both platforms. Note that we
reused the preprocessing results computed by Xeon Skylake
for the ao graph when executing QFilterMCE on KNL.

Figure 12b compares the execution time of our manycore
SimpleHashSet-based implementation with ParMCE using
256 hardware threads on KNL and 96 hardware threads on
Xeon Skylake. On average, we achieve 14.3× and 8.3× lower
execution times than ParMCE on KNL and Skylake, respec-
tively. Note that ParMCE runs out of memory when exe-
cuting the fr graph on KNL and goes into swap space when
executing the wl graph on KNL. The highest speedups we
achieve with respect to ParMCE on KNL and Skylake are
68× and 28×, respectively.
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(a) Single-threaded comparisons (b) Multi-threaded comparisons using all available hardware threads

Figure 12: Comparisons with state of the art on Intel KNL (the top value) and Intel Xeon Skylake (the bottom value).

7. RELATED WORK
Maximal clique enumeration (MCE) represents an im-

portant graph mining problem with applications in various
fields, such as bioinformatics [62, 63], social network analy-
sis [41], and electronic design automation [45,57]. The most
efficient class of MCE algorithms are based on backtracking
search, such as the algorithm from Bron and Kerbosch [15],
and its improvements by Tomita et al. [55] and Eppstein et
al. [26], which we discuss in more detail in Section 2. These
algorithms do not analyze the effect of using different inter-
section strategies on the overall time complexity. Our work
analyzes the effect of using hash and merge joins for intersec-
tions on the time and space complexity of the algorithm by
Eppstein et al. [26] and reaps the corresponding advantage.

SIMD-accelerated set-intersection algorithms can be used
to improve the speed of MCE [30,34,49]. Schlegel et al. [49]
and Inoue et al. [34] exploit STTNI instructions in order
to accelerate set intersections using merge joins. QFilter
by Han et al. [30] further improves the performance of set
intersections by using a compressed bit-vector representa-
tion. QFilter is used for accelerating graph algorithms such
as MCE. However, it requires a preprocessing of the input
graph in order to achieve a high performance. Our Simple-
Hashset approach uses hash joins rather than merge joins,
and it does not involve any significant preprocessing, yet it
achieves a performance comparable to that of QFilter.

Of particular interest to our work are multi-core imple-
mentations of MCE [22, 40, 50]. Schmidt et al. [50] present
a parallel variant of the MCE algorithm by Bron and Ker-
bosch [15], and describe a work-stealing method for load bal-
ancing. Das et al. [22] present ParMCE, a shared-memory
parallel algorithm for MCE, which uses Intel TBB library
for load balancing. ParMCE is based on the algorithm by
Tomita et al. [55], an improved version of the algorithm by
Bron and Kerbosch [15]. Our work further improves the
performance by addressing the task and memory manage-
ment overheads that arise in our TBB-based implementa-
tion of MCE. Lessley et al. [40] describe a parallel algorithm
based on data-parallel primitives [9], which can be executed
on both multi-core CPUs and GPUs by generating the cor-
responding TBB or CUDA code. However, it explores the
search space of MCE in a breadth-first order, which is mem-
ory inefficient compared to depth-first-based solutions such
as ours. As pointed out by Das et al. [22], the CPU im-
plementation of Lessley et al. [40] fails to execute on even
moderately sized graphs such as wiki-talk from Table 2. Our
work takes into account the dynamic memory usage of multi-
core MCE and proposes methods to minimize it.

Distributed implementations of MCE have also been pro-
posed [17, 33, 54]. Svendsen et al. [54] use different vertex
ordering strategies for statically balancing the load across
the computation nodes. Brighen et al. [14] propose using a
vertex-centric framework Giraph [48], which is based on the
bulk synchronous parallel (BSP) model [56], for distributed
computation of MCE. However, our work uses a framework
with dynamic load balancing, which is designed to cope with
load balancing and synchronization issues better than the
simpler static load balancing and the less specialized BSP
on shared-memory manycore processors. The work by Chen
et al. [17] uses the idea of recursive subgraph partitioning
in order to distribute the work across multiple computing
nodes dynamically. This technique aims at a coarser grain
parallelism than the one we exploit in our manycore imple-
mentation and is essentially orthogonal to our work.

8. CONCLUSIONS
In this paper we explore the use of join algorithms for ac-

celerating set intersections in the MCE algorithm proposed
by Eppstein et al. [26]. We theoretically show that the use
of hash-join-based set intersections enables Pareto-optimal
MCE implementations in terms of time and space complex-
ity compared to various possibilities that use merge-join-
based set intersections. Building on this result, we introduce
a simple SIMD-accelerated hash-join-based set intersection
implementation and use it to accelerate MCE. Using this
simple approach, we match the single-threaded performance
of an MCE implementation that uses highly-optimized set
intersections, which requires some time-consuming prepro-
cessing; our implementation does not suffer from such a
requirement. In addition, we contribute a manycore ver-
sion of MCE that uses a shared-memory parallel processing
framework for exploiting task-level parallelism. When im-
plemented in a naive way, the many-core implementation
suffers from scalability overheads and poor dynamic mem-
ory management. By addressing those issues, we achieve a
maximum speedup of 100× compared to the single-threaded
case on a machine with 64 physical cores; we outperform a
state-of-the-art manycore MCE implementation by an order
of magnitude. Our future work will focus on scalable exe-
cution of a wide range of recursive graph mining algorithms.
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