
FSST: Fast Random Access String Compression

Peter Boncz
CWI

boncz@cwi.nl

Thomas Neumann
TUM

neumann@in.tum.de

Viktor Leis
FSU Jena

viktor.leis@uni-jena.de

ABSTRACT
Strings are prevalent in real-world data sets. They often
occupy a large fraction of the data and are slow to process.
In this work, we present Fast Static Symbol Table (FSST),
a lightweight compression scheme for strings. On text data,
FSST offers decompression and compression speed similar to
or better than the best speed-optimized compression meth-
ods, such as LZ4, yet offers significantly better compression
factors. Moreover, its use of a static symbol table allows ran-
dom access to individual, compressed strings, enabling lazy
decompression and query processing on compressed data.
We believe these features will make FSST a valuable piece
in the standard compression toolbox.

PVLDB Reference Format:
Peter Boncz, Thomas Neumann, and Viktor Leis. FSST: Fast
Random Access String Compression. PVLDB, 13(11): 2649-2661,
2020.
DOI: https://doi.org/10.14778/3407790.3407851

1. INTRODUCTION
In many real-world databases, including ERP [18] and vi-

sual analytics [21], a large fraction of the data is represented
as strings. This is because strings are often used as a catch-
all type for data of wide variety: In real-world databases,
both human-generated text (e.g., description or comment
fields) and machine-generated identifiers (e.g., URLs, email
addresses, IP addresses, UUIDs, non-integer surrogate keys)
are virtually always represented as strings.
Strings are often highly compressible, and many systems

rely on dictionaries to compress strings. However, because
strings often have many unique values, dictionary compres-
sion, which uniquely maps strings to fixed-size integers, is
not always effective or applicable. Dictionary compression
needs fully repeating strings to reduce size, and thus does
not benefit when strings are similar but not equal. Also,
many systems apply dictionary compression on chunks that
are smaller than the whole relation (e.g. row groups or data
blocks), which may limit its effectiveness further.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407851

http://in.tum.de
http://cwi.nl
www.uni-jena.de
www.wikipedia.org
http://www.vldb.org
...

corpus
(uncompressed)

http://
www.
uni-jena
.de
.org
a
in.tum
cwi.nl
wikipedi
vldb

0
1
2
3
4
5
6
7
8
9
...

255
symbol

7
4
8
3
4
1
6
6
8
4

length

symbol table

063
07
123
1854
0194
...

corpus
(compressed)

Figure 1: FSST provides very fast – yet effective –
string compression, by replacing symbols of length
1-8 by 1-byte codes. Finding a good symbol table
is a key challenge, addressed in Section 4. Tech-
niques to make FSST compression very fast, includ-
ing AVX512, are described in Section 5.

Most strings stored in databases are fairly small – gen-
erally less than 200 bytes and often less than 30 bytes per
string. General-purpose compressors such as LZ4 are not
suited for compressing small, individual strings, because they
require input sizes on the order of several kilobytes for good
compression factors (cf. Section 6.1). Some columnar data-
base systems therefore use these general-purpose compres-
sion methods on coarse granularity, compressing columnar
blocks of disk-resident data (i.e., compressing many string
values together). However, database systems generally bene-
fit from random access to individual string attributes, which
is not possible when using block-wise general-purpose string
compression. Examples of database access that requires
random access to individual strings are: selection push-
down in data scans (e.g., with strings stored in a colum-
nar block), data access in joins and aggregations (e.g., with
strings stored in a hash table) – or in fact any operator that
does not consume all values in sequential order.
We present Fast Static Symbol Table (FSST) compres-

sion, a lightweight encoding scheme for strings. As is illus-
trated in Figure 1, the key idea behind FSST is to replace
frequently-occurring substrings of up to 8 bytes with 1-byte
codes. Decompression is very fast as it merely needs to
translate each 1-byte code into a longer string using an ar-
ray of 256 entries. These entries form an immutable symbol

2649

table that is shared among a block of string values, enabling
decompressing individual strings. Previous random-access
compression schemes [9, 14, 4, 15] are much slower than
FSST on bulk compression and decompression, which may
explain why they have not been widely adopted.
The key features of FSST are

• random access (the ability to decompress individual
strings without having to decompress a larger block),

• fast decoding (≈ 1-3 cycles/byte, or 1-3 GB/s per core,
depending on the data set),

• good compression factors (≈ 2×) for textual string
data sets, and

• high encoding performance (≈ 4 cycles/byte, or ≈ 1
GB/s per core).

In comparison with LZ4, which is so far the best general-
purpose lightweight compression method (effective and much
faster than e.g., snappy and zstd [1, 2]), FSST is better over
all dimensions on typical database string columns. FSST
provides comparable – but often, faster – decompression and
compression speed, and noticeably better compression fac-
tors on textual data on top of its ability to compress and
decompress strings individually, enabling random-access –
which stands in contrast with all general-purpose methods
(including LZ4) that only support efficient block-wise de-
compression. These features are useful in many applica-
tions, but are particularly useful in database systems. Fast
compression and decompression enables all strings in the
database to be stored in compressed form without significant
performance loss, and being able to decompress individual
strings enables fast point access (e.g., into a B-tree, a trie,
a hash-table, or a sort buffer holding compressed strings).
FSST can be integrated into existing data management

systems and columnar file formats like Parquet, and should
be used in conjunction with dictionary compression. In
other words, after de-duplicating strings, FSST can be used
to compress the unique strings within the dictionary. Given
that strings make up a large fraction of real-world data [18,
21], this can have a substantial impact on overall space con-
sumption. The C++ source code of FSST released under
the MIT License, the “dbtext” compression database text
corpus we contribute, and the replication package of this
paper are available here:

http://github.com/cwida/fsst

The rest of the paper is organized as follows. In Sec-
tion 2 we first describe related work on string compression,
which is surprisingly sparse in comparison with the avail-
able research on integer compression. Section 3 then in-
troduces the basic idea behind FSST and how decompres-
sion is implemented. The key algorithmic challenge of our
approach is finding a good symbol table given a particu-
lar data set, for which we provide a genetic-like bottom-up
algorithm in Section 4. FSST decompression is fast right
out of the box, but making compression fast is non-trivial.
Techniques for this, including using AVX512 SIMD, are de-
scribed in Section 5. Section 6 evaluates FSST using a wide
variety of real-world string data showing that it offers good
(de)compression speed and very good compression factors.
We also include an evaluation on TPC-H, where FSST is
integrated in the Umbra database system. Finally, we sum-
marize the paper and present future work in Section 7.

2. RELATED WORK
Most research on lightweight compression for database

systems concentrates on integer data [25, 11, 13, 20, 17,
8]. Similarly, work on query processing on compressed data
generally does not focus on strings [22, 6]. We argue that
given the prevalence and performance challenges of strings in
real-world workloads [18, 12, 21], more research is required.
The most common approach for compressing strings is de-

duplication using dictionaries [25, 11, 13, 20]. Dictionaries
map each unique string to an integer code. The column
then consists of these integer codes, which can addition-
ally be compressed using an integer compression scheme.
The strings themselves, which can make up the bulk of the
data even after de-duplication, are not compressed in most
database systems. In the following, we describe some of the
proposals for compressing the string data itself.
Binnig et al. [5] propose an order-preserving string dictio-

nary with delta-prefix compression. The dictionary is repre-
sented as a hybrid trie/B-tree data structure that stores the
unique strings in sorted order. This order is exploited by
the delta-prefix compression, which truncates the common
prefixes of neighboring strings. To enable reasonably fast
random access to individual strings, the full string is stored
for every k (e.g., 16) strings. While delta-prefix compression
is effective for some data sets (e.g., URLs), many other com-
mon string data sets (e.g., UUIDs) do not have long shared
prefixes, which makes this scheme ineffective. Global dic-
tionaries have additional downsides (e.g., more expensive
updates) that have precluded their widespread adoption.
Another approach for compressing the string dictionary

was proposed by Arz and Fischer [4], who developed a vari-
ant of LZ78 [24] that allows decompressing individual strings.
However, with this approach decompression is fairly expen-
sive, requiring more than 1 microsecond for strings with an
average length of 19 [4]. This corresponds to roughly 100
CPU cycles per character or tens of megabytes per second,
which is too slow for many data management use cases.
PostgreSQL does not use string dictionaries, but instead

implements an approach called “The Oversized-Attribute
Storage Technique” (TOAST). Values that are larger than
2KB are compressed using a “fairly simple and very fast
member of the LZ family of compression techniques” [3],
and smaller values remain uncompressed. 2KB is indeed a
reasonable threshold for general-purpose compression algo-
rithms, but short strings require a different approach.

Byte Pair [9, 23] is one of few compression schemes that al-
low decompressing individual, short strings. It first performs
a full pass over the data, determining which byte values do
not occur in the input and counting how often each pair of
bytes occur. It then replaces the most common pair of bytes
with an unused byte value. This process is repeated until
there are no more unused bytes. In contrast to FSST’s es-
caping scheme, Byte Pair’s reliance on unused bytes implies
that, in general, unseen data cannot be compressed given
an existing compression table. The recursive nature of Byte
Pair makes decompression iterative and – therefore – slow.

RePair [14] (Recursive Pairing) is a random-access com-
pression format that recursively constructs a hierarchical
symbol grammar. The initial grammar consists of all single-
byte symbols, and is recursively extended by replacing the
most frequent pair of consecutive symbols in the source text
by a new symbol, reevaluating the frequencies of all of the
symbol pairs with respect to the extended grammar, and

2650

http://github.com/cwida/fsst

Algorithm 1 FSST-decoding
void decode(uint8_t*& in, uint8_t*& out,

uint64_t sym[255], uint8_t len[255]) {
uint8_t code = *in++;
if (code != 255) {

((uint64_t)out) = sym[code];
out += len[code];

} else { // escape code
*out++ = *in++;

}
}

then repeating the process until there is no pair of adja-
cent symbols that occurs twice. Grammar construction in
RePair is expensive, and the constructed grammar can be
large and complex. Recent work improved RePair decoding
speed using AVX512, but the reported throughput is still
below 100MB/s [15], 20× slower than FSST; while encoding
remains at least two orders of magnitude slower than FSST.

3. FAST STATIC SYMBOL TABLE
FSST’s compression is based on the observation that, al-

though each individual string might be short and have little
redundancy, the strings of a column often have common sub-
strings. To exploit this, FSST identifies frequently-occurring
substrings, which we call symbols, and replaces them with
short, fixed-size codes. Figure 1 illustrates this idea. For a
URL corpus like the one shown in the figure, good symbols
might be “http://”, “www.”, and “.org”.
For efficiency reasons, symbols have a length between 1

and 8 bytes and are identified at byte (not bit) boundaries.
Codes are always 1 byte long, which means there can be up
to 256 symbols. However, one of the codes is reserved as an
escape code as described in Section 3.2.
Given a particular data set, the compression algorithm

first constructs a symbol table that maps codes to symbols
(and vice versa). One crucial aspect of FSST is that the
symbol table, which is the only state used during decom-
pression, is immutable (i.e., static). This allows individual
strings to be decompressed independently without having
to decompress any other strings in the same compression
block. General-purpose compression algorithms like LZ4, in
contrast, modify their internal state during compression and
decompression, which precludes cheap point access.

3.1 Decompression
Given a symbol table and a compressed string, decompres-

sion is fairly simple. Each code is translated via an array
lookup into its symbol and the symbols are appended to the
output buffer. To make decompression efficient, we repre-
sent each symbol as an 8-byte (64-bit) word and store all
symbols in an array. In addition, we have a second array
that stores the length of each word. Using this representa-
tion, a code can be decompressed by unconditionally storing
the 64-bit word into the output buffer, and then advancing
the output buffer by the actual length of the symbol:

void decodeBasic(uint8_t*& in, uint8_t*& out,
uint64_t sym[256], uint8_t len[256]) {

uint8_t code = *in++;
((uint64_t)out) = sym[code]; // fast unaligned store
out += len[code];

}

Algorithm 2 FSST-encoding, given a symbol table.
void encode(uint8_t*& in,uint8_t*& out, SymbolTable& st)
{ uint16_t pos = st.findLongestSymbol(in);
if (pos <= 255) { // no (real) symbol found

*(out++) = 255;
*(out++) = *(in++);

} else {
*(out++) = (uint8_t) pos;
in += st.symbols[pos].len; // symbol length in bytes

}
}

Relying on the fast unaligned stores that are available
on modern processors, this implementation requires few in-
structions and is branch-free. It is also cache efficient as both
the symbol table (2048 byte) and the length array (256 byte)
easily fit into the level 1 CPU cache.

3.2 Escape Code
We reserve the code 255 as an escape marker indicating

that the following byte in the input needs to be copied as is,
i.e., without lookup in the symbol table. Note that having
an escape code is not strictly necessary; it would also be
possible to use only those bytes that do not occur in the in-
put string as codes (as in the Byte Pair scheme discussed in
Section 2). However, escaping has three advantages. First,
it enables compressing arbitrary (unseen) text using an ex-
isting symbol table. Second, it allows symbol table con-
struction to be performed on a sample of the data, thereby
speeding up compression. Third, it frees up symbols that
would otherwise be reserved for low-frequency bytes, thereby
improving the compression factor. Algorithm 1 shows the
implementation of decoding with escaping. While this code
contains a branch, it is well predictable since escape charac-
ters are rare in real-world data sets (otherwise the escaped
input byte would have been included in the symbol table).
Therefore, in practice, this version is faster than the one
without escaping thanks to its higher compression factor.
Our open-source implementation optimizes decoding by

detecting the absence of escapes (byte 255) in the next 4-byte
word using computation, and if so, decodes 4 codes without
having to look for escapes. It handles the presence of escapes
efficiently using a programming trick called “Duff’s device”.
All in all, FSST decoding is among the fastest string decom-
pressors, approaching 2GB/s in our evaluation.

3.3 Compression
The algorithmic challenge of FSST is finding a symbol ta-

ble for a given data set – we describe how to do this in Sec-
tion 4. However, as Algorithm 2 shows, given a symbol ta-
ble, the actual compression is conceptually straightforward.
findLongestSymbol finds the longest matching symbol at the
current input position. If no matching symbol was found,
the input byte is escaped. Otherwise, the output is the code
of the symbol found and the input position is incremented
by the length of the symbol. Given the simplicity of the rest
of the code, it is clear that the performance of compression
is dominated by findLongestSymbol. Its implementation is
described in Section 4.3.

3.4 Useful Properties
Strings stay Strings. Strings compressed in FSST be-
come sequences of codes, i.e., sequences of bytes, so they ef-

2651

fectively stay strings. This benefits the integration of FSST
in existing (database) systems. Namely, already existing in-
frastructures to store strings can be re-used unchanged.

Compressed Query Processing. When querying an FSST-
compressed database, one can postpone decompressing these
values early in the query and do this only later. One rea-
son that may force decompression is that some function or
operator in the query actually needs to inspect the string
values. Strings often face equality comparisons and a nice
property of FSST is that such comparisons can be directly
performed on the compressed value (even with the standard
string equality function), as long as both operands are com-
pressed with the same symbol table. Hence, in queries with
an equality-selection predicate that compare a (compressed)
table column against a constant, one can compress this con-
stant and then process the predicate on compressed strings.

String Matching. It may be possible to perform more
complex often-occurring string operations (e.g., LIKE pattern
matching) on compressed strings as well, by the transforma-
tion of automata designed for their recognition in a byte-
stream – re-mapping these onto a code-stream. This paper
will not endeavor this route yet: we leave it to future work.
However, it may not always be beneficial to perform costly
operations on FSST-compressed strings, because FSST de-
compression is so fast; hence the compressed method should
never become slower by more than the compression factor.

Late Decompression. If the operators that access the
strings require their decompression, this can be done just
before it is needed; all operators lower in the query plan
can just store, copy and forward the compressed strings.
The smaller size of the strings will make such manipula-
tion faster, but it will also decrease the size of hash-tables,
sort-buffers (reducing cache misses) and exchange spreading
buffers (also reducing network traffic, in case of parallel and
distributed query processing). Decoding strings on a remote
computer may require sending the symbol table, which, as
we will argue next, is small.

Small Symbol Table. Symbol tables have a maximum
size of 8*255+255 bytes, but typically take just a few hun-
dred bytes, because the average symbol length usually is
around two. Thus, it is perfectly feasible to compress each
page for each string column with a separate symbol table,
but more coarse-grained granularities are also possible (per
row-group, or the whole table). Finer-grained symbol table
construction leads to better compression factors, since the
symbol table will be more tuned to the compressed data.
This does complicate the processing infrastructure for op-
erating on compressed strings, since it needs to keep track
which symbol table belongs to which string.

Parallelism. Since there is no (de)compression state, FSST
(de)compression is trivial to parallelize – only the symbol
table construction algorithm may need to be serialized. On
the other hand, it may also be acceptable to have each thread
that bulk-loads a chunk of data construct a separate symbol
table (that should be put into each block header), such that
compression also becomes trivially parallel.

0-terminated Strings. FSST optionally can generate 0-
terminated strings (as used in C): code 0 then encodes the
zero-byte symbol. Because in 0-terminated strings the zero-

byte only occurs at the end of each string, there are ef-
fectively 254 codes left for compression. This slightly de-
grades compression (the 255-least valuable symbol has to
be dropped from the symbol table, and its occurrences will
be handled using escaped bytes), but this optional mode
allows FSST to fit into many existing infrastructures.

4. SYMBOL TABLE CONSTRUCTION
The compression factor achieved by FSST on a data set

depends on the 255 symbols chosen for the symbol table. We
first discuss why constructing a good symbol table is chal-
lenging and then describe an effective bottom-up algorithm.

4.1 The Dependency Issue
A naive, single-pass algorithm for constructing a symbol

table would be to first count how often each substring of
length 1 through 8 occurs in the data, and then pick the top
255 symbols ordered by gain (i.e., number of occurrences *
symbol length). The problem with this approach is that the
chosen symbols may overlap, and that the computed gains
are therefore overestimates. In a URL data set, for exam-
ple, the 8-byte symbol “http://w” might be chosen as the
most promising symbol. However, the symbols “ttp://ww”
and “tp://www” would seem equally promising, even though
they do not improve compression once “http://w” has been
added to the symbol table. Adding all three candidates to
the symbol table would be a waste of the limited number of
codes and would negatively affect the compression factor.
Another issue is that greedily picking the longest symbol

during encoding does not necessarily maximize compression
effectiveness. For example, if “http://w”, “<a href=”, and
“h” would be symbols in the symbol table, then the encode()

method would not use the most valuable symbol “http://w”
to encode the string “<a href="http://www.vldb.org”, be-
cause the symbol “"h” would have consumed the letter “h”
already1. To summarize, symbol overlap combined with
greedy encoding create the dependency issue between sym-
bols that makes it hard to estimate gain and therefore to
create good symbol tables. To reflect the dependency issue
between symbols in compression, we call the gain computed
based on frequency in the text static gain. The actual gain
achieved by a symbol is often significantly less.
Our first attempt at symbol table construction created a

suffix array to identify the symbols with highest gain. With
a suffix array-based approach, the first symbol picked will
indeed have the highest compression gain. However, the
compression gain of subsequent symbols depends on earlier
symbols. Correcting for the dependencies on earlier sym-
bols is very difficult and, depending on how it is done, leads
to large over- or underestimates. For this reason this ap-
proach produced significantly worse symbol tables than the
evolutionary algorithm we will present subsequently.
To deal with the dependency issue, one could fall back

to generating all possible symbol tables, testing them, and
choosing the best one. The cost of testing one solution, is
the cost of compressing the text, which is linear in its size
N . However, finding an optimal solution (i.e., the 255 sym-
bols that give the highest compression) is computationally
1 We experimented with an encoding function that frames
string compression as a dynamic programming problem,
rather than applying findLongestSymbol() greedily. However,
we found that the compression factor only marginally im-
proves, while encoding performance is severely affected.

2652

tu bdlvm$tuwimc
Iteration 2

len = 14

t bdlvmutiwcmu len = 13
Uncompressed

$ bdw $$cmu$t
Iteration 1

Symbol table um mccwwitusymbol

count
gain

len

22244
11122
22222

empty symbol table

len = 26

bdm$ vlu$c wit$tum
Iteration 3

len = 13

Symbol table tum vlmcwwittusymbol

count
gain

len

23346
11122
23323

tum b$vldtumcwi
Iteration 4

len = 6

Symbol table mvl wittumvldcwisymbol

count
gain

len

33333
11111
33333

tum bvldtumcwi
Compressed

len = 5

Symbol table tum bvldcwisymbol

count
gain

len

1336
1112
1333

(len * cnt)

Figure 2: Four iterations of symbol table construc-
tion algorithm on the corpus “tumcwitumvldb” with
a maximum symbol length of 3 and a maximum sym-
bol table size of 5. “$” stands for the escape byte.

expensive. The number of possible symbols is bounded by
N ∗ 8 (i.e. a substring of length between 1 and 8, starting
at any position) but that gives a bound on the number of
symbol tables of

(
8N
255

)
. Being more practical, when creating

a symbol table from a sample of a few tens of KB real-world
text, one could narrow the problem down to choosing 255
from, for example, the top-3000 symbols in terms of static
gain. The search space for symbol tables then still remains
an unreasonable

(
3000
255

)
, a number with 378 digits.

4.2 Algorithm Overview
In the following, we present a bottom-up algorithm that

has linear time complexity and overcomes the dependency
issue using multiple iterations and on-the-fly compression.
The key idea behind our bottom-up algorithm is that the

true worth of a collection of symbols is only learned while
compressing the corpus with the symbols interacting. In
other words, by counting the actually occurring codes in the
compressed representation, we sidestep the dependency is-
sue. Another building block is that, when evaluating a sym-

bol table by compressing, one can also count the pairs of sub-
sequent codes that manifest themselves to the compressor.
The pair of two symbols is a candidate for becoming a new,
longer symbol. Thereby, we refine the symbol table by con-
catenating frequently-occurring pairs of short symbols into
new, longer, higher-gain symbols. To exploit these ideas,
the symbol table construction algorithm performs multiple
iterations in which it refines the symbol table. In each iter-
ation, we add new promising symbols that then replace less
worthwhile symbols from the previous iteration.
Our iterative algorithm starts with an empty symbol ta-

ble. Each iteration consists of two steps: (1) we iterate over
the corpus, encoding it on the fly using the current symbol
table. This phase calculates the overall quality of the sym-
bol table (the compression factor), but also counts how often
each symbol occurs in the compressed representation, as well
as each pair of successive symbols. (2) we use these counts
to construct a new symbol table by selecting the symbols
with the highest apparent gains.
We always consider all symbols from the previous gener-

ation, plus all new symbols generated by concatenating all
occurring pairs of symbols. The new generation of symbols
in the next iteration simply consists of the top-255 symbols
considering their apparent gain in the previous iteration.
Here, we mean with considering: computing the apparent
gain (frequency*length) of a symbol, using the observed fre-
quency the symbol being chosen during actual compression.
In addition to pairs of symbols, we also (re-)consider all
symbols that consist of a single byte, as well as consider ex-
tending each existing symbol with the next occurring byte
– even if that single byte is not currently a symbol2.
Figure 2 illustrates the algorithm by showing 4 iterations

on the example corpus “tumcwitumvldb”. To keep the ex-
ample manageable, we limit the maximum symbol length
to 3 (rather than 8) and that the maximum symbol table
size to 5 (rather than 255). After each iteration, we show
the compressed string at the top, but instead of codes, for
readability, we show the corresponding symbols. “$” stands
for the escape byte. In the first iteration the length of the
compressed string temporarily doubles because the symbol
table is initially empty and every symbol must be escaped.
At the bottom of the figure, we show the symbol table, i.e.,
the top-5 symbols based on static gain. After the iteration
1, the top-5 symbols by static gain are “um”, “tu”, “wi”, “cw”,
and “mc”. The former two of these top symbols (“um”, “tu”)
have a gain of 4 since they occur twice, while the latter three
symbols (“wi”, “cw”, and “mc”) occur just once and therefore
have a gain of 2. Note that the symbols “mv”, “vl”, “ld”, “db”,
“m”, “t”, “u” also have a gain of 2 and could have been picked
as well. In other words, when picking the top symbols, the
algorithm resolved ties arbitrarily.

2 The reason to always consider single byte(-extension)s is
that it makes the algorithm more robust: creating a longer
symbol from two shorter ones may cause the shorter symbol
to disappear because the longer takes away some of its gain
and thereby it may end up outside the top-255. In a next
generation, this longer symbol may also lose the competition
for survival; so that eventually a valuable symbol could dis-
appear due to greedy combining. In essence, without recon-
sidering single byte(-extension)s, symbols would only grow
longer, and going back to shorter symbols if that is better
would never be possible. Continuously injecting single-byte
symbol(-extension)s allows to “re-grow” valuable longer sym-
bols that were lost due to such “too greedy” choices.

2653

In iterations 2, 3, and 4, the quality of the symbol table
steadily increases. After iteration 4, the corpus, which ini-
tially had a length of 13, is compressed to length of 5. The
figure also shows that our algorithm makes mistakes, but
that these are repaired in one of the next iterations. For
example, in iteration 2, symbol “tu” looks quite attractive
with a static gain of 4, but because “tum” is also in the sym-
bol table, “tu” turns out to be worthless and is discarded in
iteration 3.

4.3 Bottom-Up Symbol Table Construction
Algorithm 3 shows pseudo-code in Python style for the

bottom-up algorithm. The open-source C++ FSST im-
plementation is of course much faster. Nevertheless, class,
method, and variable names in this pseudo-code follow our
real implementation. The main methods are:

• buildSymbolTable(). This is the top-level entry point
of the algorithm. Given a text, it builds a symbol table
in 5 iterations; starting with an empty symbolTable().
In it, the st.symbols[] array always starts with 256
pseudo-symbols, representing single bytes. These are
used to represent and administer the frequency of
escaped bytes (i.e., the situation where compression
would use 2 bytes to represent a byte of text due to
an extra escape byte 255 getting generated). The next
st.nSymbols, up to 255, entries in the st.symbols[] ar-
ray contain the real symbols (initially st.nSymbols=0).

• compressCount(). This method compresses a text us-
ing the current symbol table st. In the first itera-
tion with the empty symbol table, it will only use
escaped bytes and the result will be twice the input
size. Rather than producing compressed output text,
this method just records the frequency of the codes or
bytes it encounters; as well as the frequencies of the
subsequent codes or bytes, in two arrays (count1[] and
count2[][], where the latter is 2-dimensional).

• makeTable(). Using the frequencies in count2[][]
and count1[], it generates all possible candi-
date symbols and calculates their gain. It
considers all single-bytes as new symbols
(st.symbol[0..255]), all symbols of the previous
generation (st.symbol[256..256+st.nSymbols]), but
also all combinations of these (concatenations, up to
length 8). Using a priority queue, the 255 symbols
with highest apparent gain (which is length*count)
are inserted in the new symbol table.

• findLongestSymbol(). This method finds the longest
matching (pseudo-)symbol in a text. We store the
(real) symbols (those from code 256 on) in lexicograph-
ical order, but when one string prefixes the other, the
longest is first. This means that when testing for prefix
match all real symbols from first to last, the first hit
will be the longest. This method restricts the search
to the range of symbols that start with the first byte
text[0]. For this purpose, there is an st.sIndex[byte]
array that keeps the position of the first (real) symbol
that starts with a certain byte.

• makeIndex(). This helper method is called to final-
ize a new symbol table. It sorts the symbols lex-
icographically as described above and initializes the
st.sIndex[].

Algorithm 3 Simplified Python-style pseudo code for
bottom-up symbol table construction.
class SymbolTable:

def __init__(st): # constructor
st.nSymbols = 0
st.sIndex[257] = [0]*256
st.symbols[512] = [’’]*512
the first 256 symbols are escaped bytes
for code in range(0,255)

st.symbols[code] = chr(code)

def insert(st, s):
st.symbols[256+st.nSymbols++] = s

def findLongestSymbol(st, text):
var letter = ord(text[0])
try all symbols that start with this letter
for code in range(st.sIndex[letter],st.sIndex[letter+1])

if (text.startswith(st.symbols[code]))
return code # symbol, code >= 256

return letter # non-symbol byte (will be escaped)

compress the sample and count the frequencies
def compressCount(st, count1, count2, text):

var pos = 0
var prev, code = st.findLongestSymbol(text[pos:])
while ((pos += st.symbols[code].len()) < text.len())

prev = code
code = st.findLongestSymbol(text[pos:])
count the frequencies
count1[code]++ # count single symbol[code]
count2[prev][code]++ # count concat(prev,code)
we also count frequencies for the next byte only
if (code >= 256)

nextByte = ord(text[pos])
count1[nextByte]++
count2[prev][nextByte]++

def makeTable(st, count1, count2): # pick top symbols
var res = SymbolTable()
var cands = []
for code1 in range(0,256+st.nSymbols)

single symbols (+all bytes 0..255) are candidates
gain = st.symbols[code1].len() * count1[code1]
heapq.heappush(cands, (gain, st.symbols[code1]))
for code2 in range(0,256+st.nSymbols)

concatenated symbols are also candidates
s = (st.symbols[code1]+ st.symbols[code2])[:8]
gain = s.len() * count2[code1][code2]
heapq.heappush(cands, (gain, s))

fill with the most worthwhile candidates
while (res.nSymbols < 255)

res.insert(heapq.heappop(cands))
return res.makeIndex()

def makeIndex(st): # make index for findLongestSymbol
sort the real symbols and init the letter index
var tmp = sort(st.symbols[256,256+st.nSymbols])
for i in range(0,st.nSymbols).reverse()

var letter = ord(tmp[i][0])
st.sIndex[letter] = 256+i
st.symbols[256+i] = tmp[i]

st.sIndex[256] = 256+st.nSymbols # sentinel
return st

def buildSymbolTable(st, text): # top-level entry point
var res = SymbolTable()
for generation in [1,2,3,4,5]

var count1[512] = [0]*512
var count2[512][512] = [count1]*512
st.compressCount(res, count1, count2, text)
res = st.makeTable(res, count1, count2)

return res

2654

4.4 Number of Iterations and Sampling
Our bottom-up approach means that we start with small

symbols (size 1-2 after the first iteration), which grow over
time (size 2-4 after the second and up to size 8 after the third
iteration). Thus, at least three iterations are necessary to get
to the maximum symbol length 8. Having larger symbols is
of course crucial for good compression factors. We observed
that 5 iterations are generally enough to converge to a good
compression factor. Besides the number of iterations, sym-
bol table construction speed obviously also depends on the
size of training corpus. Luckily, we can train our algorithm
using a sample rather than using the full corpus: Intuitively,
using a sample works well because it is highly unlikely that
symbols that occur frequently in the full corpus are uncom-
mon in the sample. Experimentally, we indeed found that
a fairly modest sample size results in compression factors
close to those of using the full corpus. Therefore, the com-
pression utility we ship in our code uses a 16KB sample for
compressing each 4MB chunk of string data. To save time in
the first iterations, we further reduce the sample adaptively:
growing it from 6% to 100% of the full sample linearly over
the 5 iterations. Finally, to improve cache efficiency, we split
the 256K count2[][] counters into 4 minor bits (frequently
accessed) and 12 (infrequently accessed) high bits.

5. OPTIMIZING COMPRESSION SPEED
The performance-critical method for compression in Al-

gorithm 3 is findLongestSymbol(). Our eventual goal is very
high compression performance using SIMD. An important
restriction in SIMD is that loops and branches are not sup-
ported. However, findLongestSymbol() loops over all symbols
that start with a particular byte, and compares the strings
(startswith()) and branches away on the first hit.
We therefore eliminate the use of loops and branches from

the scalar code in Section 5.1 and describe its AVX512 ver-
sion in Section 5.2. First, however, we describe the data
structures needed for this.

Lossy Perfect Hashing. Rather than storing the sym-
bols in a sorted array (indexed by sIndex[]), we switched
over to a perfect hash table hashTab[], plus a lookup array
shortCodes[][] (described later).
In a perfect hash table, there are no collisions and the

hash computation immediately points to a bucket where the
key should be, if present. Perfect hash tables normally need
at least two hash functions and an additional offset array,
which is used to eliminate hash collisions. To make encod-
ing fast, we do not have time for computing two hash func-
tions, and a memory access to an offset array; we just use
a single multiplicative hash on the symbol.val.num. That is
why we switch to a lossy approach: if two symbols are in
a hash-collision with each other, we only keep the symbol
with highest apparent gain. Rather than ending up with less
than 255 symbols (due to throwing out collisions), we keep
inserting symbols into the symbol table until it reaches 255
symbols. In other words, the penalty of throwing colliding
symbols out, is alleviated by the bottom-up symbol gen-
eration mechanism that will find alternative, non-colliding
symbols to fill the table.
The hash key are the first three bytes of a symbol. Sym-

bols with the same 3-byte prefix are therefore always colli-
sions, in addition to hash collisions when two different 3-byte
keys hash onto the same bucket.

Algorithm 4 Lossy Perfect Hashing: no loops & branches
struct Symbol {

union val { char buf[8]; uint64_t num}; // allows2compare str as int
uint16_t code; // bits [0..8]=code [12..15]=len. Unused: code=511
uint16_t ignoredBits; // unused bits in num, i.e. 64-len*8

}

struct SymbolTable {
uint8_t nSymbols; // # of normal symbols (not counting escapes)
Symbol symbols[512]; // all symbols: 0-255 escapes, then n Symbols

// uint16_t stores code&length: resp. bits [0..8] and bits [12..15]
uint16_t shortCodes[256][256];//codes (511=unused) of 1-2byte symbs

Symbol hashTab[hashTabSize]; // keyed on the first three bytes
static uint64_t hashTabSize = 4096; // fits L1
uint64_t hash(uint64_t x) { return (x*2971215073)^(x>>15); }

}

void encodeScalar(uint8_t*& cur, uint8_t*& out, SymbolTable& st){
uint64_t word = *(uint64_t*)cur;

// speculatively write 1st byte (required for escapes, else harmless)
out[1] = (uint8_t) word;

// lookup in lossy perfect hash table
uint64_t idx = hash(word & 0xFFFFFF) & (st.hashTabSize-1);
Symbol s = st.hashTab[idx]; // fetch symbol from hash table
uint64_t num = word & (0xFFFFFFFFFFFFFFFF >> s.ignoredBits);

uint16_t code = (s.val.num==num & s.code!=511) ? // hastable hit?
s.code : st.shortCodes[word&0xFFFF]; // conditional move

out[0] = (uint8_t) code; // write out code. Note: (uint8_t) 511=255

// advance the pointers with predication (i.e. without branches)
out += 2-((code>>8)&1); // increase with 1 or 2 (escape = 9th bit)
cur += (code>>12); // symbol length is in bits [12..15] of code

}

The additional shortCodes[A][B] array has 65536 entries (A
and B are bytes) used to check whether there is a 2-byte
symbol AB that matches the next two bytes. If the array
contains 511, its slot is free (escape); otherwise it contains
the code of a normal symbol. After inserting the 2-byte
codes in the array, we put in all free slots shortCodes[A][*]

the code of 1-byte symbols A. Thus, we can use the array to
check whether either a 2- or 1-byte symbol matches.
The optimized findLongestSymbol() first checks a string pre-

fix match with the symbol in the perfect hash table found by
using the next 3 bytes ABC as lookup key, and fetches code X

of that symbol. If there is a hit, a symbol of length 3 or more
matches the text. It also fetches Y = shortCodes[A][B] as the
potential next code, using short 1-2 byte symbols only. The
choice between these two can be made using a conditional
move (hit?X:Y), which is also supported in SIMD. This way,
no loop or branch is needed.

5.1 Predicated Scalar Compression.
In Algorithm 4 we show a scalar FSST-compression kernel

that advances one symbol in a text, and effectively inlines
findLongestSymbol(). The data layout is quite optimized:
codes (0-511) are represented as 16-bit integers, but we also
store the length of the symbol in its 4 highest bits (bits
12-15). We leverage the fact that FSST symbols fit into a
8-byte word to avoid string comparisons. This can be seen
in the union C++ definition of Symbol in the first lines of Al-
gorithm 4. We even pre-materialize the amount of unused
bits in symbols shorter than 8 (i.e., 64-8*len) as ignoredBits

to speed up the hash lookup by two fewer operations.
The current position in the text is cur, and the compressed

string is appended at out; both these in-out parameters are

2655

1

0

2

3

4

5

6

7

8

9

1 src end dst

0 src end dst

2 src end dst

5 src end dst

4 src end dst

7

3 src end dst

6 src end dst

9 src end dst

8 src end dst

1

0

2

3

4

5

6

7

8

9

(1) memcpy, split in 511B segments

 & put terminator

uncompressed string

segment buffer:256KB input

compressed string

segment buffer: 512KB output

(2) sort long-to-short into job queue

job queue (max 512 entries)

 (5)

 memcpy

&

 concat

 segments

(when all

jobs have

 finished)

 compressed

 strings:

finished

jobs

strings to compress:

active

jobs

todo

jobs

 (3)

 active jobs

 finished jobs

 AVX512 fsst string ¨meatgrinder¨

- 200cpu cycles per AVX512 sequence

- 8lanes*3xunroll=24strings in parallel

- sequence finds 1 code in each string

hash

table

shortCodes

array

 in

 hash table,

 shortCodes

(4)

the found

codes;

appending

them to the

compressed

segments

 expand_load

 compress_store

gather

scatter

Figure 3: AVX-512 FSST compression: a "meat-
grinder" that encodes 24 strings in parallel

moved forward. While we eventually write one byte to out[0]

(which due to the cast-to-byte will be the escape symbol 255
if the code=511, i.e. no symbol found), earlier we speculatively
wrote the current byte to out[1]. This speculative write
handles the case that FSST needs to escape a byte, but is
harmless in case a real code is found.
All in all, Algorithm 4 demonstrates a FSST compres-

sion kernel without loop or branch. It can compress strings
at 10cycles per byte, which is 400MB/s on our platform,
putting it among the fastest string compressors already.
An issue that we glossed over so far is dealing with end-of-

string correctly. This kernel can jump over end-of-string, as
it blindly loads the next 8 input bytes into word. Scalar code
could deal with this by testing whether cur<end-7, and use
a slower variant to encode the last 1-7 bytes. However, in
SIMD we must avoid all branches. FSST deals with this by
introducing a terminator byte. This is a byte that cannot
be part of a symbol longer than 1. Thus, if a terminator
byte is put at the end of the to-be-encoded string, match-
ing cannot jump over it. We use the byte with the lowest
frequency in the input corpus as terminator – except when
in 0-terminated mode, because then byte 0 is the termina-
tor. The terminator character is appended to each 511-byte
segment in the enclosing scalar code that calls the AVX512
kernel (step 1 in Figure 3).

5.2 Compression in AVX512
The FSST API compresses a batch of strings, preferably

100 or more. It is also efficient with fewer strings, even just
one, if the total string volume is significant – a few tens of
KB or more. The strings are copied into a temporary buffer
of 512 segments, chopping up long strings if needed, and
appending the terminator. This is shown in step (1) of Fig-
ure 3. When 512 segments have been gathered or there is
no more data, the AVX512 encoding kernel in Algorithm 5

is invoked. Each segment is an encoding job. The while-
loop in Algorithm 5 encloses the AVX512 encoding kernel:
each iteration it finds in each of the strings (=lanes) the
next symbol, advancing 1-8 bytes in the input, and 1 byte
in the output (or 2, in case of an escape). This loop finishes
when there are no longer enough active jobs to fill the lanes
(here:8, times 3 due to unrolling). We call this a “meat-
grinder”, as we push data through a compression cylinder
(AVX512 kernel) with 24 strings in parallel.
A job-description is a 64-bits integer consisting of two

input string offsets (cur and end). Their widths are 18 bits,
so their maximum value is 256K, which is the size of the
segment buffer (512x512). The output offset out is 19-bits,
since in worst case FSST produces output that is twice the
input. Because some jobs will stay longer in the processing
kernel than others, they will not finish in the input order and
it is necessary to track the job number nr: a 9-bit number
(we have max. 512 jobs). Note that 18+18+19+9=64.
The reason to squeeze all this control information into a

single lane is AVX512 register pressure. By carefully us-
ing as few registers as possible, it is possible to unroll this
kernel 3× without suffering performance degradation due to
register spilling. Unrolling AVX512 gather and scatter in-
structions is necessary, because they have a very long latency
(upwards of 25 cycles) yet multiple executions can be over-
lapped (three). Note that even used in overlapped AVX512
mode, gather instructions just load (from the CPU cache)
around 1 word per cycle amortized; whereas modern Intel
processors can load two words per cycle with scalar loads.
The strength of AVX512 is not memory access, but parallel
computation, which we leverage in this compression kernel.
We do not just fire off the SIMD kernel once to process 8

strings in its 8 lanes (or 24 strings in 24 lanes, 3× unrolled),
because some strings will be much shorter than others and
some will compress much more than others. This would
mean that many lanes would be empty towards the end of
encoding work. Therefore we buffer 512 jobs and refill the
lanes in each iteration, when needed. Retiring jobs (lanes
in the job control register) uses the compress_store instruc-
tion, and refilling the expand_load instruction, as depicted
in step (3) of Figure 3. In step (2) of Figure 3 we first
radix-sorted the job queue array on reverse string length –
quickly, in a single pass – so the longest strings start being
processed first, helping load balancing. Jobs may finish in a
non-sequential ordering anyway, so starting encoding work
in non-sequential job order due to sorting does not compli-
cate the algorithm (any further).
The AVX512 encoding kernel on our benchmark runs each

iteration in about 200 cycles, and given that 24 strings are
processed in parallel, and each step we advance roughly 2
bytes in each, this translates to about 4.1 cycles per byte,
which on our i9-7900X equates 920MB/s. As such, FSST
is the fastest known string compressor available.
This AVX512 encoding kernel led to slight adaptations of

the FSST format. Not only the SIMD, but also the scalar
code uses the 511 byte input segmenting. We use the scalar
variant on architectures that do not support AVX512, but
also to encode short strings (shorter than 10 bytes). Us-
ing input string segmenting in scalar code is necessary to
preserve the property that two strings encoded with the
same symbol table are binary identical. Further, the scalar
method also uses the terminator byte as a fast way to avoid
going over end-of-string. The terminator byte is meta-data

2656

Algorithm 5 AVX512 FSST-encoding kernel (not unrolled)
int encodeAVX512(

SymbolTable &st, int njobs,
uint64* injobs, *outjobs, // arrays with max 512 jobs
char *input, *output) // tempstring buffers (resp 256KB,512KB)

{
char *hashTab=(char*)st.hashTab, *shortCodes=(char*)st.shortCodes;
uint64* lastjob = injobs+njobs; // points to end of injobs
__mm512_i write, job;//job bit-format: [out:19][nr:9][end:18][cur:18]
__mm512_i cur, end, len, word, code, esc, idx, hash, mask, num;
__mmask8 hit, loadmask=255;
int done=0, delta=8;

while(injobs+delta < lastjob) { // while all lanes busy
// fetch 8 jobs. in this kernel we will find 1 code for each
job = _mm512_mask_expandloadu_epi64(job, loadmask, injobs);
injobs += delta;

// current position in each string
cur = __mm512_srli_epi64(job, 19+9+18); // cur field at bit 46

// get 8 bytes from the input strings
word = _mm512_i64gather_epi64(cur,input,1);

// code = shortCodes[X][Y]
// constants x8_YY: hexidecimal value YY in all 8 (64-bits) lanes
idx = _mm512_and_epi64(word, x8_FFFF);
code = _mm512_i64gather_epi64(idx, shortCodes, 2);

// speculatively put first byte into second position of write reg
write = _mm512_slli_epi64(_mm512_and_epi64(word,x8_FF),8);

// idx = first three bytes of string, hash fetch into icl
idx = _mm512_and_epi64(word, x8_FFFFFF);
hash = _mm512_mullo_epi64(idx,x8_PRIME);//YY=2971215073
idx = _mm512_xor_epi64(hash, mm512_srli_epi64(idx, 15));
idx = _mm512_and_epi64(idx, x8_MASK); // MASK=4095
idx = _mm512_slli_epi64(idx,4); // multiply idx*16 (bucket width)
icl = _mm512_i64gather_epi32(idx,hashTab,1);//probe hash table
// icl (i,c,l) = uint32 ignoredBits:16,code:12,len:4

// fetch the symbol (text) part of the hash table record and compare
num = _mm512_i64gather_epi64(idx,hashTab+8,1);//next 8bytes
hit = _mm512_cmplt_epi64_mask(icl, x8_FF0000); // used?
mask = _mm512_and_epi64(icl,x8_FF); // get ignoredBits
mask = _mm512_srlv_epi64(x8_FFFFFFFFFFFFFFFF, mask);
word = _mm512_and_epi64(word,mask); //clean word with mask
hit &= _mm512_cmpeq_epi64_mask(num, word); // hit?
icl = _mm512_srli_epi64(icl, 16); // extract code+len from icl

// conditional move: select between shortCodes and hashTab (hit)
code = _mm512_mask_mov_epi64(code, hit, icl);

// put code byte into write register, and scatter write to output
write=_mm512_or_epi64(write,_mm512_and_epi64(code,x8_FF));
idx=_mm512_and_epi64(job,x8_7FFFF);//get 19-bit output offset
_mm512_i64scatter_epi64(output, idx, write, 1);

// job bookkeeping: advance cur and out
code = _mm512_and_epi64(code, x8_FFFF);
len = _mm512_srli_epi64(code,12);//get symbol length from code
job = _mm512_add_epi64(job, _mm512_slli_epi64(len, 46));
esc = _mm512_srli_epi64(code, 8); // shift away 8 bits
esc = _mm512_and_epi64(esc, x8_1)); // keep only 9th bit
job = _mm512_add_epi64(job, _mm512_sub_epi64(x8_2, esc));
cur = _mm512_srli_epi64(job, 19+9+8); // cur field at bit 46
end = _mm512_srli_epi64(job, 19+9); // end field at bit 28
end = _mm512_and_epi64(end, x8_3FFFF); // keep 18 bits

// write out ready jobs
loadmask = _mm512_cmpeq_epi64_mask(cur, end);
_mm512_mask_compressstoreu_epi64(outjobs+done,loadmask,job);
done += (delta = _mm_popcnt_u32((int) loadmask));

}
// flush active and unprocessed jobs
__mmask8 activemask = 255 & ~loadmask;
_mm512_mask_compressstoreu_epi64(outjobs, activemask, job);
int i=done+8-delta;
while (injobs < lastjob) outjobs[i++] = *injobs++;
return done; // outjobs[done..njobs-1]: 2b finished with scalar encoding

}

that is added to the symbol table, such that when we serial-
ize and deserialize a symbol table (for persistent storage or
distributed processing), this information is preserved.
A final question could be whether SIMD could also be use-

ful for decompression. We think it is not, given the already
very high decompression speed of decode() and its character-
istics of having very little computational effort and consist-
ing only of memory instructions (see Algorithm 1).

6. EVALUATION
FSST has been designed for compressing textual string

columns. To evaluate it, we curated a text corpus (dubbed
“dbtext”) consisting of 23 string columns covering a wide
variety of real-world string data. The columns, which we
believe to be typical for database text attributes, are shown
in Table 1 and can be categorized to into

• machine-readable identifiers (hex, yago, email, wiki,
uuid, urls2, urls),

• human-readable names (firstname, lastname, city, cre-
dentials, street, movies),

• text (faust, hamlet, chinese, japanese, wikipedia),

• domain-specific codes (genome, location), and

• TPC-H data (c_name, l_comment, ps_comment).

The average string length per column ranges from 7 (first-
name) to 130 (wikipedia). Most of the data comes from
real-world sources such as Wikipedia, Tableau Public [10],
or IMDb [16]. For reproducibility, the data sets have been
published together with the MIT-licensed C++ source code.
Note that some of these columns (e.g., hex, uuid, genome,
location) would be better represented using specialized data
types. However, industrial experience taught us that users
virtually always use the string data type in these cases [21].
All experiments were performed on a workstation with

32GB RAM and a single 10-core (20-hyperthread) 3.3GHz
i9-7900X CPU, which has two AVX512 execution units per
core. This server is running Linux (Fedora Core) 4.18.16.
We used LZ4 version 1.8.1, and compiled all code with g++
(8.3.1) and flags -O3 -march=native. We use single-threaded
execution, but note that both compression and decompres-
sion can trivially be parallelized by splitting the data into
independent blocks (row-groups).

6.1 File Mode
Let us first compare FSST with LZ4, which is currently

the best general-purpose lightweight compression implemen-
tation. In this experiment we treat each string column as a
file, concatenating all strings until each file has 8MB of data.
Note that this file-based mode is the best case for LZ4, since
it has large blocks to compress and we not exploit FSST’s
random access capability. We measure the compression fac-
tor, bulk compression speed, and bulk decompression speed.
As Table 1 shows, the compression factors for FSST range

from 1.63× (wiki) to 3.84× (c_name), with an average of
2.28×.3 In any case, as a rule of thumb, FSST halves the size
of database text; whereas LZ4 achieves a 1.70× compression.
3In file mode the corpus is slightly different (each file is a
single string with newlines) than when each line of the file
is compressed as a separate string (shorter strings, no new-
lines). FSST compression gets a bit reduced, from 2.28× to
2.19× then. Line mode is used in the rest of the evaluation.

2657

Table 1: Evaluation data sets (“dbtext” corpus) and performance of FSST versus LZ4 in terms of compression
factor, compression speed, and decompression speed. Each data set is treated as a 8MB file.

avg compr. factor compr. [MB/s] decompr. [MB/s]
name len example string LZ4 FSST LZ4 FSST LZ4 FSST
hex 8 DD5AF484 1.14 2.11 1,097 944 1,891 1,546
yago 19 Ralph_A._Brown 1.25 1.63 572 768 1,394 1,078
email 22 xnj_14@hotmail.com 1.55 2.12 627 944 2,388 1,547
wiki 23 Benzil 1.31 1.65 556 763 1,493 1,196
uuid 37 84e22ac0-2da5-11e8-9d15- . . . 1.55 2.44 632 1,113 2,782 2,654
urls2 55 http://fr.wikipedia.org/ . . . 1.75 2.05 602 932 2,170 2,135
urls 63 http://reference.data.go . . . 2.77 2.16 711 986 2,264 2,296
firstname 7 RUSSEL 1.25 2.04 637 878 895 865
lastname 10 BALONIER 1.28 1.97 616 874 1,007 1,022
city 10 ROELAND PARK 1.37 2.14 540 879 1,098 1,120
credentials 11 PHD, HSPP 1.48 2.33 439 984 1,055 1,159
street 13 PURITAN AVENUE 1.60 2.38 501 1,001 1,275 1,287
movies 21 Return to ’Giant’ 1.23 1.66 541 787 1,443 1,143
faust 24 Erleuchte mein bedürftig Herz. 1.48 1.86 422 818 1,380 1,524
hamlet 30 <LINE>That to Laertes . . . 2.13 2.42 515 1,058 1,772 2,168
chinese 87 道⼈决心消除⾁会 . . . 1.40 1.70 540 591 2,503 2,163
japanese 90 せん。しかし、. . . 1.84 1.99 461 899 2,540 2,577
wikipedia 130 Weniger häufig fressen sie . . . 1.45 1.82 517 852 2,628 2,366
genome 10 atagtgaag 1.59 3.32 566 1,307 1,126 2,838
location 40 (40.84242764486843, -73 . . . 1.58 2.52 433 1,141 2,271 2,647
c_name 19 Customer#000010485 3.08 3.84 1,131 1,421 2,960 3,519
l_comment 27 nal braids nag carefully expres 2.22 3.01 605 1,164 1,664 1,893
ps_comment 124 c foxes. fluffily ironic . . . 2.79 3.38 741 1,359 2,715 3,920

average 1.70 2.28 608 977 1,857 1,942

compr. factor compr. speed [GB/s] decomp. speed [GB/s]

LZ
4

lin
e

LZ
4

di
ct

LZ
4

bl
oc

k

FS
ST

LZ
4

lin
e

LZ
4

di
ct

LZ
4

bl
oc

k

FS
ST

LZ
4

lin
e

LZ
4

di
ct

LZ
4

bl
oc

k

FS
ST

0.0

0.5

1.0

1.5

2.0

Figure 4: With LZ4 short strings do not compress
well, even with a pre-generated dictionary.

Table 1 shows the relative performance of LZ4 and FSST
on the three metrics for each data set individually and on
average. For almost all data sets, FSST outperforms LZ4 in
terms of the compression factor and compression speed. On
average, besides resulting in a 34% better compression fac-
tor4, FSST also achieves 60% higher compression speed. For
decompression speed, FSST is faster on some data sets and
LZ4 is on others – with the average being almost identical.
So far, we treated each data set as one 8MB file, which

works well with block-based approaches like LZ4. To under-
stand whether LZ4 would also work on smaller block sizes,
we split the urls data set into blocks of different sizes and
compressed each one individually:

blocksize (bytes) 64K 16K 4K 1K 256 64 16
compr. factor 2.73 2.45 2.03 1.59 1.14 0.78 0.46

4If one fully sorts the lines in the files of the dbtext corpus
lexicographically, LZ4 compression improves to 2.07×; still
not catching FSST, which is mostly indifferent to the very
localized text similarities such sorting creates.

FSST

LZ4

0e+00

2e+07

4e+07

6e+07

8e+07

1% 3% 10% 30% 100%

selectivity

re
su

lt
tu

p
le

s
/
s

Figure 5: Selective queries are fast in FSST due to
random access to individual values.

LZ4 compression suffers from blocks <27KB, and that at
least a few kilobytes are needed to achieve reasonable com-
pression. String sizes of <100 bytes, common in databases,
result in larger data sizes.

6.2 Random Access
In database scenarios we typically do not store large files

but instead we have string attributes or dictionaries with a
large number of relatively short strings. Compressing these
strings individually with LZ4 gives a very poor compres-
sion factor, as shown in Figure 4. Plain LZ4 (LZ4 line)
cannot handle the short strings reasonably – the compres-
sion factor is below 1, meaning that the data size actually
slightly increases. LZ4 also optionally supports using an
additional dictionary, which needs to shipped with the com-
pressed data. Using zstd to pre-generate a suitable dictio-
nary for the corpus (LZ4 dict) improves the compression
factor a bit, but hurts the compression speed very severely.
The only meaningful way to use LZ4 for string attributes is

2658

Table 2: Detailed FSST encoding performance as
cycles-per-input-byte for various encoding kernels.
“simd3” is fastest, i.e., AVX512 using 3-way enrolling
of the kernel in Algorithm 4. It is 2.5x faster than
scalar encoding.

simd1 simd2 simd3 simd4 scalar

7.82 5.22 4.57 4.76 4.65 hex
9.49 6.20 4.83 5.36 11.78 yago
7.29 4.55 3.88 4.25 11.48 email
9.39 5.95 4.96 5.37 12.06 wiki
6.44 4.10 3.47 3.60 8.64 uuid
7.71 4.83 4.17 4.35 10.29 urls2
6.42 4.14 3.53 3.87 8.51 urls
8.13 5.18 4.41 4.67 11.07 firstname
8.18 5.14 4.45 4.67 10.52 lastname
8.31 5.31 4.88 4.71 10.64 city
7.72 5.00 4.63 4.79 13.22 credentials
7.44 5.03 4.47 4.59 11.45 street
9.23 5.93 4.87 5.14 11.48 movies
8.60 5.54 4.86 5.19 12.67 faust
7.09 4.52 4.09 4.12 11.08 hamlet
9.03 5.78 4.80 5.17 13.79 chinese
9.10 5.13 4.67 4.89 14.30 japanese
8.19 5.27 4.33 4.72 12.43 wikipedia
5.16 3.54 2.87 3.02 8.84 genome
5.56 3.64 3.05 3.26 5.78 location
3.93 2.61 2.21 2.47 5.41 c_name
5.64 3.76 3.16 3.34 9.78 l_comment
4.72 3.09 2.58 2.85 8.89 ps_comment
7.42 4.76 4.08 4.31 10.38 average

to compress blocks of 1,000 values together (LZ block), which
helps compression but prevents random access. FSST of-
fers much better compression factors and compression speed
than all LZ4 variants, and decompresses just as fast as the
fastest LZ4 variant. Note that the block mode of LZ4 is
not ideal for database applications. When selecting only a
subset of the values, one still has to decompress the whole
block for LZ4, while FSST offers random access. The effect
of this is shown in Figure 5. When retrieving a subset of
values from a compressed relation, the output rate of FSST
is unaffected by the selectivity, while LZ4 block has to de-
compress all values, including values that are not needed
for the result. This makes FSST much more attractive for
database use cases.

6.3 Non-textual data
Outside our database context, the compression commu-

nity often evaluates compression methods on the Silesia cor-
pus, which consists of 11 files, of which 4 are textual (dick-
ens, reymont, mr, webster), one is XML and 6 are binary.
FSST achieves 10% better compression sizes on the text files,
but is 25% worse on the binaries, on average.
While we think binary files are not relevant for FSST,

its compression ratio on large XML and JSON files, which
are relevant, is 2-2.5x worse than LZ4. However, we think
database systems should store these composite values not as
simple strings, but in a specialized type that allows query
processing. For instance, Snowflake recognizes the struc-
ture in JSON columns, and internally stores each often-
occurring JSON attribute in a separate internal column [7].

Table 3: Evolution of FSST compression techniques
– top to bottom. Properties in terms of compression
factor (CF), symbol table construction (SC) cost in
cycles-per-byte, when constructing a new symbol ta-
ble for each 8MB of text, and string encoding (SE)
cost cycles-per-byte.

variant 1: suffix-array based construction (slowest)
symbol table org: sorted CF: 1.97
string encoding: dynamic programming SC: 74.8cyc/b
symbol matching: strncmp SE: 160.0cyc/b
variant 2: suffix-array based construction (slow)
symbol table org: sorted CF: 1.97
string encoding: dynamic programming SC: 73.8cyc/b
symbol matching: str-as-long SE: 81.7cyc/b
variant 3: suffix-array based construction (less slow)
symbol table org: sorted CF: 1.95
string encoding: greedy SC: 74.0cyc/b
symbol matching: str-as-long SE: 37.4cyc/b
variant 4: FSST - initial idea
symbol table org: sorted CF: 2.33
string encoding: greedy SC: 2.1cyc/b
symbol matching: str-as-long SE: 20.0cyc/b
variant 5: FSST - lossy-perfect-hash
symbol table org: lossy perfect hash CF: 2.28
string encoding: greedy (predicated) SC: 1.73cyc/b
symbol matching: str-as-long SE: 10.3cyc/b
variant 6: FSST - optimized construction
symbol table org: lossy perfect hash CF: 2.19
string encoding: greedy (predicated) SC: 0.83cyc/b
symbol matching: str-as-long SE: 10.3cyc/b
variant 7: FSST - AVX512 kernel 3-way unrolled (simd3)
symbol table org: lossy perfect hash CF: 2.19
string encoding: greedy (predicated) SC: 0.83cyc/b
symbol matching: AVX512 SE: 4.1cyc/b

This means that attribute names are not repetitively stored,
saving space, and only their values are stored in an appropri-
ately typed internal column. In case of strings, such internal
columns could then be compressed with FSST.

6.4 Encoding Kernels
Comparing variant 6 and 7 in Table 3, we see that AVX512

improves encoding performance by 2.5×. Table 2 investi-
gates the performance of different encoding kernel imple-
mentations. The simd columns show the encoding per-
formance of the SIMD kernel with different loop unrolling
counts. Best performance is achieved with 3-way unrolling
(i.e., “simd3”), beating scalar encoding by a factor 2.5.

6.5 Evolution of FSST
The FSST compression algorithm went through several

iterations before arriving at the current design. This evo-
lution is retraced in Table 3, which shows the compression
factor (CF), symbol table construction cost (CS), and string
encoding speed (SE) for 7 variants. As mentioned earlier,
our first design was based on a suffix array and achieved a re-
spectable compression factor of 1.97×, but required 74.3 cy-
cles/byte for symbol table construction and 160 cycles/byte
for encoding. Our current AVX512 version (variant 7 in the
figure) is 90× faster for table construction and 40× faster

2659

Table 4: Query execution times in ms for TPC-H SF10 with compressed string columns, using 20 threads.
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 geo. mean

uncompressed 118 14 71 44 54 25 93 40 186 75 15 54 228 33 27 65 26 165 99 38 120 49 57
LZ4 131 23 72 48 53 25 80 42 190 105 15 55 250 34 27 64 26 166 91 40 118 50 59
FSST 104 15 69 42 53 25 85 39 186 71 15 52 235 29 27 52 25 162 69 39 115 28 53

for encoding than the first version – while providing a higher
compression factor. The final variant is also much faster
than the initial FSST version (variant 4), thanks to lossy
perfect hashing and AVX512 – though we had to sacrifice
about 6% of the space gains relative to variant 4. Table 3
also shows that symbol table construction is only a fraction
of encoding time, despite requiring multiple iterations. Op-
timizing contruction entailed reducing iterations from 10 to
5, building on a sample (that grows every iteration), and
shrinking the memory footprint of the counters.

6.6 System Integration and Query Processing
To measure some end-to-end effects of FSST on query

processing, we did a prototype integration in our Umbra
system [19]. There are different ways how one could inte-
grate FSST into a database system. Our implementation
compresses each string individually, and then decompresses
it as late as possible. Equality predicates against a constant
can be evaluated directly upon the compressed form and
decompression is needed just for non-equality comparisons,
sorting, and result printing. We also created an LZ4 inte-
gration in Umbra, where we organize tuples in blocks of size
216 and then compress all string values of a given column
in that block. There, random access is no longer possible,
and strings have to be decompressed on block before ac-
cess. Block decompression is triggered only when needed,
i.e., only if there are qualifying tuples after checking the
non-string predicates.
Table 4 shows TPC-H results on SF10, using 20 threads.

As expected, compression had little effect, as TPC-H is usu-
ally dominated by joins on integer columns. There are some
notable exceptions though. Q13 is dominated by a like
predicate on o_comment, and thus directly shows the over-
head of decompression. Both FSST and LZ4 are very fast
here, with a slow-down of only 3% resp. 9%. Q19 makes
heavy use of well-compressible string columns, and perfor-
mance in fact improves. That is especially true for FSST, as
it not only saves scan memory bandwidth, but also allows
to push down string filter predicates.
In terms of space, the size of the string pool is 4.1GB un-

compressed, 1.5GB with LZ4, and only 0.69GB with FSST.
The compression factor of FSST is inflated by the fact that
Umbra inlines short strings of 12 bytes or less, and thereby
often avoids allocation in the string pool. Many TPC-H
strings happen to fall below that threshold after compres-
sion. Space consumption differences are likely less strong
under other circumstances.

In a different TPC-H experiment, Müller et al. [18] re-
placed all TPC-H (integer) key columns by strings. Repli-
cating this artificial experiment would not have the desired
effect in Umbra. To allow for random access, our string val-
ues are split into a fixed-size header and a variable part that
is referenced by the header. For short strings our system
directly inlines the string into the header, and only stores
a pointer value for longer strings. Storing the integer keys

as text would result in short strings only, which would effec-
tively disable compression. To replicate the spirit of their ex-
periment, we prepended the string ”keyvalue-padded” before
every key value, which makes the key columns sufficiently
large to see compression effects.
When running the query SELECT COUNT(*) FROM orders,

lineitem WHERE o_orderkey = l_orderkey
we now get query execution times of 484ms uncompressed,
560ms when using LZ4, and 554ms when using FSST. The
overhead is not caused by the decompression (which is nec-
essary because the two join predicate columns use different
dictionaries) but by the effects on the rest of the system: in
the uncompressed case, the strings are known to be stable,
and the system just stores them as they are. When build-
ing a hash table for decompressed strings, the system has
to make a copy, as the decompressed value will go away. A
profiler run shows that the overhead is largely caused by
memcpy into the hash table, whereas the FSST decompres-
sion itself takes just 9% of the time.
To summarize, the overhead of adding FSST compres-

sion on TPC-H is small. Even in the worst-case experiment
with padded strings as key columns the overhead is 14%.
For more realistic scenarios, where just string columns are
compressed the overhead is at most 3%, and queries like
Q19 in fact become faster by 30% by adding compression.
TPC-H has few selective predicates, thus FSST cannot show
off its random access capabilities here, but even in this bulk-
processing scenario it outperforms LZ4.

7. SUMMARY AND FUTURE WORK
Fast Static Symbol Table (FSST) is a lightweight, ran-

dom access compression scheme for strings that exploits
frequently-occurring substrings in a column. We presented
fast algorithms for decompression and compression. For tex-
tual data, FSST on average achieves compression factors of
over 2×, compresses at 4 cycles per byte with AVX512, and
decompresses at 2 cycles per byte (resp. 1GB/s and 2GB/s
on our platform). FSST thereby outperforms even the heav-
ily optimized LZ4 compression library on these three met-
rics. However, in contrast to LZ4, FSST also supports effi-
cient random access to individual strings, without having to
decompress a block of data. This makes FSST particularly
useful for database systems, which can exploit random ac-
cess, for example, during index lookups. Beyond database
systems, we also envision applications in information re-
trieval, network/cloud storage, text analysis and more.
In the future, we will investigate which operations besides

equality can be performed directly on compressed strings
without having to decompress them first. For example,
we believe it is possible to develop a Knuth–Morris–Pratt-
like substring search algorithm directly operating on FSST-
compressed strings. It would further be interesting to ex-
plore a hardware implementation of FSST decompression.
The small size of symbol table, the fact that it is static, and
finally the simplicity of the decompression algorithm, make
such an undertaking highly feasible.

2660

8. REFERENCES

[1] http://bit.ly/2uEKhzJ (shortened URI). Full URI:
https://web.archive.org/web/20200229161007/https:
//www.percona.com/blog/2016/04/13/
evaluating-database-compression-methods-update/.

[2] http://bit.ly/3ajy0QD (shortened URI). Full URI:
https://web.archive.org/web/20200229154849/https:
/github.com/inikep/lzbench.

[3] http://bit.ly/3adzJXu (shortened URI). Full URI:
https://web.archive.org/web/20200229161613/https:
//www.postgresql.org/docs/11/storage-toast.html.

[4] J. Arz and J. Fischer. Lempel-Ziv-78 compressed
string dictionaries. Algorithmica, 80(7):2012–2047,
2018.

[5] C. Binnig, S. Hildenbrand, and F. Färber.
Dictionary-based order-preserving string compression
for main memory column stores. In SIGMOD, pages
283–296, 2009.

[6] Z. Chen, J. Gehrke, and F. Korn. Query optimization
in compressed database systems. In SIGMOD, pages
271–282, 2001.

[7] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov,
A. Avanes, J. Bock, J. Claybaugh, D. Engovatov,
M. Hentschel, J. Huang, A. W. Lee, A. Motivala,
A. Q. Munir, S. Pelley, P. Povinec, G. Rahn,
S. Triantafyllis, and P. Unterbrunner. The snowflake
elastic data warehouse. In SIGMOD, 2016.

[8] P. Damme, D. Habich, J. Hildebrandt, and
W. Lehner. Lightweight data compression algorithms:
An experimental survey. In EDBT, pages 72–83, 2017.

[9] P. Gage. A new algorithm for data compression. C
Users J., 12(2):23–38, Feb. 1994.

[10] B. Ghita, D. G. Tomé, and P. A. Boncz. White-box
compression: Learning and exploiting compact table
representations. In CIDR, 2020.

[11] A. L. Holloway, V. Raman, G. Swart, and D. J.
DeWitt. How to barter bits for chronons: compression
and bandwidth trade offs for database scans. In
SIGMOD, pages 389–400, 2007.

[12] S. Jain, D. Moritz, D. Halperin, B. Howe, and
E. Lazowska. SQLShare: Results from a multi-year
SQL-as-a-service experiment. In SIGMOD, pages
281–293, 2016.

[13] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz,
T. Neumann, and A. Kemper. Data Blocks: Hybrid
OLTP and OLAP on compressed storage using both
vectorization and compilation. In SIGMOD, pages
311–326, 2016.

[14] N. J. Larsson and A. Moffat. Offline dictionary-based
compression. In Data Compression Conference, pages
296–305, 1999.

[15] R. Lasch, I. Oukid, R. Dementiev, N. May,
S. Demirsoy, and K.-U. Sattler. Fast & strong: The
case of compressed string dictionaries on modern
CPUs. In Damon, 2019.

[16] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3):204–215, 2015.

[17] D. Lemire and L. Boytsov. Decoding billions of
integers per second through vectorization. Softw.,
Pract. Exper., 45(1):1–29, 2015.

[18] I. Müller, C. Ratsch, and F. Färber. Adaptive string
dictionary compression in in-memory column-store
database systems. In EDBT, pages 283–294, 2014.

[19] T. Neumann and M. J. Freitag. Umbra: A disk-based
system with in-memory performance. In CIDR, 2020.

[20] V. Raman, G. K. Attaluri, R. Barber, N. Chainani,
D. Kalmuk, V. KulandaiSamy, J. Leenstra,
S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus,
R. Müller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle,
A. J. Storm, and L. Zhang. DB2 with BLU
acceleration: So much more than just a column store.
PVLDB, 6(11):1080–1091, 2013.

[21] A. Vogelsgesang, M. Haubenschild, J. Finis,
A. Kemper, V. Leis, T. Muehlbauer, T. Neumann,
and M. Then. Get real: How benchmarks fail to
represent the real world. In DBTEST, 2018.

[22] T. Westmann, D. Kossmann, S. Helmer, and
G. Moerkotte. The implementation and performance
of compressed databases. SIGMOD Record,
29(3):55–67, 2000.

[23] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes (2nd Ed.): Compressing and Indexing
Documents and Images. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1999.

[24] J. Ziv and A. Lempel. Compression of individual
sequences via variable-rate coding. IEEE Trans.
Information Theory, 24(5):530–536, 1978.

[25] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz.
Super-scalar RAM-CPU cache compression. In ICDE,
2006.

2661

http://bit.ly/2uEKhzJ
https://web.archive.org/web/20200229161007/https://www.percona.com/blog/2016/04/13/evaluating-database-compression-methods-update/
https://web.archive.org/web/20200229161007/https://www.percona.com/blog/2016/04/13/evaluating-database-compression-methods-update/
https://web.archive.org/web/20200229161007/https://www.percona.com/blog/2016/04/13/evaluating-database-compression-methods-update/
http://bit.ly/3ajy0QD
https://web.archive.org/web/20200229154849/https:/github.com/inikep/lzbench
https://web.archive.org/web/20200229154849/https:/github.com/inikep/lzbench
http://bit.ly/3adzJXu
https://web.archive.org/web/20200229161613/https://www.postgresql.org/docs/11/storage-toast.html
https://web.archive.org/web/20200229161613/https://www.postgresql.org/docs/11/storage-toast.html

	Introduction
	Related Work
	Fast Static Symbol Table
	Decompression
	Escape Code
	Compression
	Useful Properties

	Symbol Table Construction
	The Dependency Issue
	Algorithm Overview
	Bottom-Up Symbol Table Construction
	Number of Iterations and Sampling

	Optimizing Compression Speed
	Predicated Scalar Compression.
	Compression in AVX512

	Evaluation
	File Mode
	Random Access
	Non-textual data
	Encoding Kernels
	Evolution of FSST
	System Integration and Query Processing

	Summary and Future Work
	References

