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ABSTRACT
Client-side replication and direct client-to-client synchro-
nization can be used to create highly available, low-latency
interactive applications. Causal consistency, the strongest
available consistency model under network partitions, is an
attractive consistency model for these applications.

This paper focuses on how client misbehaviour impacts
causal consistency. We analyze the possible attacks to causal
consistency and derive secure consistency models that pre-
clude different types of misbehaviour. We propose a set of
techniques for implementing such secure consistency models,
which exhibit different trade-offs between the application
guarantees, and the latency and communication overhead.

Our evaluation shows that secure consistency models im-
pose low overhead when compared with their insecure coun-
terparts, while providing low user-to-user latency and server
load compared with traditional client-server architectures.
Secure consistency models can be used to enrich server-based
architectures with fast and secure peer-to-peer interactions.
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1. INTRODUCTION
Latency is a key property in distributed applications, with

several studies showing that user engagement drops when la-
tency increases [17, 18, 43]. In interactive applications, such
as multi-user games, low latency is vital for a good user expe-
rience. Geo-replication [88, 53, 81] is used to reduce latency
of global services, by keeping replicas at multiple geographic
locations and allowing clients to access the closest replica.

In such cloud computing architectures, client interactions
are mediated by servers. Communication latency among
clients is directly related to the latency between clients and
the server, which can be high due to the small number of
data centers where applications can be deployed.
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Figure 1: Peer-to-peer architecture (latency for Peer-to-Peer
(P2P) and Client-Server (C-S) deployments, with a server
on AWS Ireland and clients in Grid5000 in France – see §6).

An alternative is to allow clients to locally replicate ap-
plication state and synchronize directly among themselves
using peer-to-peer interactions (Figure 1a) – several recent
works adopt this approach [42, 86, 83]. As shown in Fig-
ure 1b, direct client-to-client interactions potentially lead to
lower latency when compared with the traditional approach
where all communication is mediated by a server. Addition-
ally, clients can continue interacting given than they can
communicate directly, masking network and server faults.

Many applications can benefit from the direct interaction
among nearby clients, from collaborative applications, such
as document editors, games and audience engagement appli-
cations, to location-dependent information sharing, such as
geo-social networks, traffic information, and contact tracing
applications. A particularly interesting example is that of
location-based and augmented reality games, such as Ingress
and Pokemon Go [65, 66], where a player interacts with
nearby players and low latency is crucial for interactivity.

Moving application state to clients and allowing peer-
to-peer synchronization poses multiple security challenges.
First, it is necessary to guarantee that unauthorized accesses
do not compromise confidentiality and integrity. This prob-
lem has been addressed resorting to standard security tech-
niques [58, 89]. Second, it is necessary to address client
misbehaviours, which can be characterized by the Byzan-
tine [47] and BAR [50] models. Several algorithms for pro-
viding functionality under these models have been proposed,
such as reliable dissemination [15, 50, 74] and BFT state ma-
chine replication [16, 90, 10]. Decentralized replication algo-
rithms, such as secure causal BFT [31, 30, 75] and blockchain-
based replication [4, 14, 33, 82], still enforce a total order
on all operations, imposing an high latency on writes.

This paper focuses on a different problem: how to address
clients’ misbehaviour, that deviates from correct behaviour
in a way that cannot be detected, in systems with client-side
replicas and peer-to-peer synchronization and that adopt
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weaker consistency models to promote availability and low
latency. This is an important issue as many applications
(e.g., games) require high availability and low latency for a
smooth user experience, and users have incentives for mis-
behaving (to gain an unfair advantage), but only if it is not
possible to prove that they are misbehaving. To the best of
our knowledge, this work is the first to study the interaction
between weak consistency models and misbehaving replicas.

We analyze the possible effects of misbehaving nodes in
causal consistency [3, 53], the strongest consistency model
that is available under network partitions [57]. From this
analysis, we derive secure variants of causal consistency that
preclude different types of misbehaviour. We propose prac-
tical algorithms for implementing these models in a setting
where clients communicate directly. We also propose a se-
cure version of eventual linearizability [76, 85], as a way to
provide stronger guarantees when required.

We have designed and evaluated a system that provides
the proposed secure consistency models. Our evaluation
shows that adopting the secure consistency models imposes
low overhead when compared to an insecure version, while
improving latency and server load when compared to classic
client-server architectures. The latency gains are more ex-
pressive for interactions among nearby clients, which maps
the expected use in many applications, such as augmented
reality games. We show that providing multiple secure con-
sistency models can be important, as it allows developers
to select a different point in the trade-off space between ap-
plication guarantees, latency, and communication overhead.
In summary, this paper makes the following contributions:
• a systematic study on how client misbehaviour impacts

the guarantees of causal consistency (§3);
• the definition of secure variants of causal consistency,

preventing multiple types of misbehaviour (§4);
• algorithms for the secure variants of causal consistency

and also eventual linearizability (§5); and
• an experimental evaluation (§6) of our prototype.

2. SYSTEM MODELS
In this paper we consider multi-user applications where

users interact using their own devices. We assume that the
state of the application is maintained by a centralized ser-
vice and that clients replicate a subset of the state. Clients
execute operations on their local replicas and synchronize
directly among themselves by propagating operations (the
terms client and replica are used interchangeably throughout
this paper). A subset of these clients synchronize with the
server to ensure durability and to allow clients that cannot
communicate directly with other clients to participate.

To provide low latency and ensure availability despite
network and replica faults, the system is designed to pro-
vide causal+ consistency [3, 53]. Eventual convergence is
achieved by modeling state as operation-based CRDTs [78],
and by executing operations in every replica in causal order.

Some of the proposed solutions assume that the system
includes a set of low-resource trusted infrastructure nodes.

2.1 Attacker Model
In this paper we study how malicious clients can thwart

the guarantees of causal consistency. We consider an at-
tacker model focused on clients (i.e., servers and other in-
frastructure nodes are trusted). Correct clients will always
follow the prescribed protocol. Malicious clients can behave
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Figure 2: Dependencies in causal consistency.

in a fully byzantine mode (arbitrarily deviating from their
prescribed behaviour) or be rational [50], meaning they will
deviate from the prescribed protocol (to attempt to gain
some advantage) only if the misbehaviour cannot be de-
tected by correct clients or servers. We assume that the
cryptographic primitives such as digital signatures and hash
functions cannot be undermined. This is similar to the BAR
model [50] enriched with a trusted centralized server and in-
frastructure nodes with limited resources.

A byzantine node [47], by not focusing in hiding its mis-
behaviour, provides to its peers either a demonstration or a
proof of its malicious action. For example, sending unsigned
messages is a demonstration of misbehaviour but doesn’t
lead to a proof, while a correctly signed message that con-
tains a falsehood is a proof-of-misbehaviour. Although we
do not focus on byzantine behaviour, when it occurs, in-
cluding attempts to interfere with operation propagation,
the system detects and isolates such clients, ensuring cor-
rect clients continue to communicate (§5.7). We assume that
malicious clients cannot prevent correct clients from estab-
lishing secure channels with a server or among themselves.

The primary focus of our study is the risks posed by ra-
tional clients. These clients may attempt to manipulate the
generation and propagation of operations in a way that ben-
efits them. This problem is important, for example, for the
game industry, where peer-to-peer approaches are attrac-
tive in terms of latency and availability if cheating can be
avoided. In this case, clients (players) have interest in being
rational (to gain an advantage) if they cannot be discovered
as being rational (to avoid being banned due to cheating).
In §3 we detail the possible attacks by misbehaving clients.

2.2 Consistency model
Causal consistency is a consistency model that can be de-

scribed, at a high level, as enforcing clients to always observe
a state that respects happens-before relationships among op-
erations [46]. For a replicated system, we say that operation
o1 happened before operation o2, o1 ≺ o2, iff o2 was gener-
ated in some replica where o1 had already been executed.
For a set of operations Ops, (Ops,≺) is partial order.

For any operation o, generated at replica r, we can con-
sider three disjoint sets of operations, as shown in Figure 2:
• P (o) is the set of past operations that happened before
o – this is also known as the causal history of o, H(o);
• C(o) is the set of operations that are concurrent with o,

i.e., ∀oc∈C(o),¬(oc≺o) ∧ ¬(o≺oc);
• F (o) is the set of future operations that happened after
o, i.e., ∀of ∈F (o), o≺of .

We say that for a set of operations Ops, Oi = (Ops,<)
is a causal serialization of O = (Ops,≺) iff Oi is a linear
extension of O, i.e., ∀o1, o2 ∈ Ops, o1 ≺ o2 ⇒ o1 < o2. A
system enforces causal consistency iff all replicas execute
operations according to a causal serialization.
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Figure 3: Attacks on causal consistency.

Multiple algorithms have been proposed to enforce causal
consistency (and causal dissemination) [46, 7, 12, 32, 53, 79].
Two of the most popular techniques consist in using version
vectors [60, 67] and direct dependency graphs [53, 69, 72].

In the former, the dependencies of each operation are sum-
marized in a vector that states which operations generated
at each site happened before a given operation. In the ex-
ample of Figure 2, the dependencies of the new operation o
would be [2,4,4], stating the dependency on operations up
to 2 from replica A, and up to 4 from both replicas B and
C. Using direct dependencies, each operation includes infor-
mation on the operations that have been executed before its
generation. Since each operation includes its dependencies,
it is possible to build the whole dependency graph. In the
example, operation o would depend on {B:4, C:4}.

3. ATTACKS ON CAUSAL CONSISTENCY
Malicious replicas, if left unchecked, can easily disrupt the

properties of a replication algorithm for causal consistency.
This section systematically identifies possible attacks.

3.1 Tampering with other replicas’ operations
This class of attacks comprises actions that a malicious

replica can perform regarding operations created by other
replicas – this includes tampering with the integrity of mes-
sages in transit (such as modifying causal dependencies of
operations), generating operations in the name of other repli-
cas, and creating malformed operations.

A simple example is altering the overall order of events by
creating new operations and set other (already existing) op-
erations to depend on them. In a game where players shoot
each other, one can make a shot depend on a later created
moving operation, making the shot miss instead of hit the
malicious player. In general, such attacks can be addressed
by having replicas sign the operations they generate, as dis-
cussed in §5.1. Attacks on message propagation (e.g., not
propagating some operations) are discussed in §5.7.

3.2 Attacks on operation generation
This class of attacks consists in manipulating the creation

of new operations by attaching incorrect dependencies. Fig-
ure 2 illustrates the correct dependencies of a new operation
o, while Figure 3 shows possible attacks, discussed next.

3.2.1 Omitting dependencies
A malicious replica may create an operation that contains

a subset of the actual dependencies. Given the set of opera-
tions executed in replica r, Pr, this attack consists in setting
the causal history of a new operation to the set Pr

rem, such
that Pr

rem(Pr (i.e., Pr
rem⊂Pr ∧ ∃o∈Pr : o /∈Pr

rem).
By including only a subset of the known operations in the

dependencies, a malicious replica can forge an operation that
is concurrent to operations that it already knows, creating

an operation that occurred in its logical past. In Figure 3
this is shown as Omit, with the omission of known operations
from replica B in the dependencies of the new operation.

This attack can also be used for moving away from another
user’s shot (as the previous attack). The difference is that
the result will depend on the application’s conflict resolution
policy, as the shot and movement will be concurrent.

We note that the possible attacks to causal consistency is
similar when using version vectors or direct dependencies.
Consider the example of Figure 2. When generating o, op-
erations 1-2 from replica A and 1-4 from replicas B and C
were received, leading to a version vector [2,4,4] or to the
direct dependencies {B : 4;C : 4}. When using version vec-
tors, a malicious replica can selectively remove a suffix of
operations from any replica – e.g., vector [0,4,4] would re-
move the dependencies from replica A. However this has no
impact when enforcing causal consistency, as only the direct
dependencies are important – executing operation 3 (and 4)
from B requires executing operation 2 from A before.

3.2.2 Depending on unseen operations
A malicious replica may create an operation that depends

on an operation that has not been executed locally and pos-
sibly does not even exist yet. Given the set of operations
executed in replica r, Pr, this attack consists in setting the
causal history of a new operation to the set Pr

add, such that
Pr(Pr

add (i.e., Pr⊂Pr
add ∧∃o∈Pr

add:o /∈Pr). In Figure 3,
Add and Future represent, respectively, depending on a not
yet received operation and on a future operation. Such an
attack allows a malicious replica to create operations that
do not respect the real time order, potentially counter-acting
the actions of other replicas even before they take place.

Consider a multi-player game where players fight some
monster, which drops a specific item when defeated. The
item is available as soon as it is dropped, but only the first
player to react will pick it up. A malicious player can create
a pick-up operation that depends on a future drop operation.
This ensures an unfair advantage over other players, as the
pick-up will execute immediately after the drop operation is
created and the dependency is met.

Depending on the application, such an attack may be de-
tectable – the dependency may never be executed (e.g., if
the creature is never defeated) or might reach the replica
that will execute the dependency before its execution.

3.2.3 Combining omit and add
A malicious replica can create an operation that combines

the previous two attacks, altering dependencies to both omit
and include unseen operations. Given the set of operations
executed in replica r, Pr, the attack consists in setting the
causal history of a new operation to the set Pr

a+r, such that
(∃o1∈Pr

a+r :o1 /∈Pr) ∧ (∃o2 ∈ Pr : o2 /∈Pr
a+r).

3.2.4 Sibling generation
In any replicated system, an operation typically includes

an identifier. A malicious replica may generate two different
operations with the same identifier (sibling operations). In
a system that is not prepared to deal with malicious repli-
cas, different replicas may execute different versions of the
operation, leading to a permanent state divergence.

A simple example is a replica creating, within a chat ap-
plication, two different messages with the same identifier,
leading to different users seeing a different chat history.
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4. SECURE CONSISTENCY MODELS
We now propose consistency models derived from causal

consistency that deal with the presence of malicious replicas,
by addressing the attacks discussed in the previous section.

4.1 A Secure Form of Causal Consistency
We start by deriving a secure form of causal consistency,

defining a set of properties that must be enforced. Our first
property precludes tampering with the causal history of an
operation, after it is generated:

Secure Causal Property 1. (Immutable History) If Ho

is the causal history of operation o at generation, o is deliv-
ered with Ho at every correct replica.

We now define properties concerning the dependencies on
unseen operations. The No Future Dependencies property
precludes having dependencies on operations that have not
been executed yet in any replica (Future in Figure 3):

Secure Causal Property 2. (No Future Dependencies)
Given Pall, the set of all operations generated in any replica
of the system when operation onew is created, onew can only
depend on such operations, i.e., @o /∈ Pall : o≺onew.

As for creating operations that depend on operations gen-
erated in some other replica that have not been executed lo-
cally (Add in Figure 3), we note that this situation is equiv-
alent to synchronizing the local replica before issuing the
operation. In a system where replicas synchronize peer-to-
peer, verifying this situation is not straightforward. Thus,
we only define a property that enforces all correct replicas
to execute operations respecting their defined dependencies:

Secure Causal Property 3. (Causal Execution)All cor-
rect replicas execute an operation respecting the dependencies
defined in the operation. Given the causal history of an op-
eration o, H(o), the causal serialization Or = (Ops,<) in
every correct replica r is such that ∀oi∈ H(o), oi<o.

We now address the problem of having a malicious replica
issuing two operations with the same identifier, which can
lead correct replicas to execute different versions of the op-
eration (Siblings in Figure 3). This could be avoided by ex-
ecuting a consensus step to certify the operation associated
with each identifier [30, 31, 75]. However, this goes against
our objective of allowing a replica to immediately execute a
received operation, thus being highly available. Instead, we
require this situation to be eventually detected and reported
to correct replicas, by locally executing a fault(o) operation:

Secure Causal Property 4. (Eventual Sibling Detec-
tion) Given two operations o1 and o2 with the same identi-
fier, for any replica r that has executed the set of operations
Opsr, the following conditions will apply: (i) if o1∈Opsr,
then eventually fault(o1) ∈ Opsr, with o1 < fault(o1); and
(ii) if o2 ∈ Opsr, then eventually fault(o2) ∈ Opsr, with
o2< fault(o2).

4.1.1 Omitting dependencies
We now consider the attack where a malicious replica gen-

erates an operation that omits some of the locally executed
operations from the set of dependencies (Omit in Figure 3).
It is impossible for a correct replica rc, receiving an opera-
tion o from a malicious replica rm, to verify if o includes all

dependencies it should or not. Even if rc has previously sent
to rm some operation oo, the fact that oo is not included in
the dependencies of o can be due to o being generated before
oo was received and executed. The correct behaviour due
to delays is indistinguishable from an incorrect behaviour
where oo is purposely omitted from the dependencies.

Let Oreal =(Ops,≺real) be the happens before partial or-
der as registered by an external observer, which perceives
all dependencies within the system. When generating a new
operation o, a malicious replica may omit some of its real de-
pendencies, leading to the partial order Oomit=(Ops,≺omit),
that omits some of the dependencies defined in Oreal, in-
cluding direct dependencies of o and indirect dependencies
among other operations established through o.

A malicious replica cannot omit dependencies in an arbi-
trary way without being detected. This can be exemplified
in Figure 3, where if operation A2 is omitted from the de-
pendencies, then all operations that depend on it (A3, A4,
B3, B4) must also be omitted. When using version vectors,
as discussed before, setting the dependencies as [0,4,4] has
no actual effect, as B3 has A2 as its dependency and so will
only execute after A2 has executed. Moreover, it allows the
detection of the misbehaviour by analyzing the graph of de-
pendencies. When using direct dependencies, it is also only
possible to omit (a suffix of) immediate dependencies.

In general, to avoid detection, a malicious replica cannot
omit from the dependencies of an operation o it generates
any operation op that happened before an operation om in-
cluded in the dependencies of o:

Secure Causal Property 5. (Limited Omission) Given
Pr, the set of operations executed in replica r, a malicious
replica can only omit dependencies for a new operation with-
out being detectable, by setting the causal history of the new
operation to be Pr

rem, such that Pr
rem ( Pr ∧@op ∈ Pr \

Pr
rem, o ∈ Pr

rem : op ≺ o.

We now formally define secure causal consistency :

Definition 4.1.Secure Causal Consistency is a model
which ensures that any correct replica r executes operations
according to a serialization order Or = (Ops,<), such that:

a) no operation with tampered dependencies is executed
( Immutable History);

b) no operation that depends on a future operation is ex-
ecuted ( No Future Dependencies);

c) Or is a valid serialization of (Ops,≺omit), i.e., given
the set of dependencies of operation o, H(o), ∀op ∈
H(o), op < o (Causal Execution, Limited Omission);

d) if two different operations with the same identifier are
generated, any correct replica that executes any of such
operations o will also eventually execute fault(o), with
o < fault(o) (Eventual Sibling Detection).

4.2 Strengthening Secure Causal Consistency
Ideally, a replica should be forced to set the real depen-

dencies to the operations it generates:

Secure Causal Property 6. (Real Dependencies) The
dependencies of an operation o, H(o), are the real depen-
dencies iff ∀op, op≺real o⇒ op∈H(o).

This leads all operations to be created with the depen-
dencies according to ≺real (we discuss practical implementa-
tions of such a property in §5.3, leveraging trusted software
or hardware). From this property we can derive:
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Definition 4.2.Secure Strict Causal Consistency is
a consistency model that ensures that any correct replica i
executes operations according to a serialization order Oi =
(Ops,<), such that Oi is a valid serialization of (Ops,≺real),
i.e., given the dependency set of operation o, H(o), ∀oi ∈
H(o), oi < o (Causal Execution). Note that a), b) and d)
from Secure Causal Consistency are enforced by this model.

4.3 A Compromise for Collusion Tolerance
Even if replicas are unable to generate operations with in-

correct dependencies, two colluding replicas can communi-
cate through a side-channel, circumventing the mechanisms
to enforce secure strict causal consistency.

A possible solution to tackle this challenge is to use a con-
sistency model based on recency, requiring new operations to
depend on all existing operations at all replicas (e.g., Exter-
nal Causal Consistency [11]). Implementing this approach
requires some form of synchronization among all replicas for
generating an operation. This goes against our goal of re-
maining available in the presence of network partitions [36].

We adopt a different approach: operations are generated
and executed without coordination, and a replica is eventu-
ally notified if an operation o2, that might externally depend
on operation o1, was executed before o1.

We define a total order, <ext, that guarantees that if an
operation o2 might depend on operation o1, then o1<

ext o2.
The total order must respect the following properties:

Extended Causal Property 1. (Total Order) Given
the set of operations Ops, O<ext = (Ops,<ext) is a total
order (i.e., ∀o1, o2∈Ops : o1<

ext o2 ∨ o2<ext o1).

Extended Causal Property 2. (External Causal Visi-
bility) Given two operations o1 and o2, if some replica has
observed (in realtime) o1 before the generation of o2 in any
replica, then o1<

ext o2 ( ∀r1, r2, ∀o1, o2 : observedr1(o1)<obs

generater2(o2) ⇒ o1 <
ext o2, with <obs the total order of

events as observed by an external omniscient observer).

We now define two consistency models that use this total
order (<ext). First, Secure Extended Causal Consistency
which extends Secure Causal Consistency by notifying ap-
plications of out of order (according to <ext) executions:

Definition 4.3.Secure Extended Causal Consistency
is a consistency model that ensures that any correct replica
i executes operations according to a serialization order Oi =
(Ops,<), such that:
a-d) equal to Secure Causal Consistency;

e) if an operation executes in an order that violates <ext,
the application is notified when executing the operation
that should have been executed earlier using signal, i.e.,
if ∃o2 : o1 <

ext o2 ∧ o2 < o1 then the execution of o1
is replaced by the execution of signal(o1, Oa), with Oa

the operations that should have been executed after o1
according to <ext (i.e., Oa = {o : o<o1 ∧ o1<ext o}).

Note that signaled operations are not necessarily a causal-
ity violation due to collusion, and should be handled by the
application in an application-dependent way. For example,
in a chat application, an out of order reception can simply
lead to an update in the user interface showing clearly what
happened, leading to an intuitive user experience. In §5.5
we further detail how this model can be used in practice.

Second, Secure Eventual Linearizability[76] which enforces
the execution of received operations according to <ext:

Definition 4.4.Secure Eventual Linearizability is a
consistency model that ensures that any correct replica i ex-
ecutes the operations it has received, Ops, according to the
serialization order Oi =(Ops,<ext).

Note that this definition allows to execute operations im-
mediately after they are received. To enforce the order <ext,
when a new operation is received, it might be necessary to
undo/redo operations. In the next section we discuss how
the proposed secure consistency models can be implemented.

5. ALGORITHMS FOR SECURE MODELS
This section discusses possible implementations of the se-

cure consistency models, which we used in our prototype.
Figure 4 presents excerpts of the proposed algorithms.

We assume that each replica authenticates with the cen-
tralized service when joining the system (i.e., starting its
session), receiving a certificate signed by the server that can
be used to prove the replica’s identity. All replicas trust
the server, being able to locally validate certificates of other
replicas. Replicas use the associated private key to sign
information. We further assume that replicas communicate
through secure channels, authenticating each other by lever-
aging the certificates obtained when joining the system.

5.1 Authenticity,Non-Repudiation and Integrity
An application can issue a new operation, op, by calling

function NewOp (line 5). This function creates an opera-
tion record that includes the operation with its identifier
(pair (cntrep, idrep)) and metadata specific for each consis-
tency model. The record has a signature of this information
(rec.sign). The operation record (or simply operation where
no confusion can arise) is sent to the replica’s neighbours.

The signature is used to ensure that operations propa-
gated among replicas are originated in a valid replica (au-
thenticity), that operations can be associated to its creators
(non-repudiation), and that they are not modified in transit
by malicious replicas (integrity).

Upon receiving an operation record (line 21), a replica
first verifies that the signature is correct. If the operation’s
signature cannot be validated, the operation is discarded. If
the signature is valid, the metadata is verified and, if valid,
processed according to the chosen secure consistency model.

If the previous verifications end successfully, the operation
contents can still be invalid, for instance when a Byzantine
node issues invalid operations according to application logic
or impersonates other replicas [21, 27, 91]. In this case, a
proof-of-misbehaviour is produced for the replica that gener-
ated the operation and sent to the centralized infrastructure
which will disseminate the proof among all clients to expel
the Byzantine client from the system (§5.7).

For misbehaviour that does not allow to produce a proof
(e.g., sending unsigned messages), clients will simply discon-
nect from its sender. Continuous erroneous execution thus
leads to a malicious replica to be restricted to pure client-
server model as correct replicas will deny connections to it.

5.2 Secure Causal Consistency
To track causal dependencies, the metadata of each opera-

tion includes the identifiers of its direct causal dependencies
(line 11) [53, 69, 72]. For a newly generated operation, the
direct causal dependencies includes any locally executed op-
eration o for which there is no operation on : o≺on. When
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1: Local State:
2: idrep : identifier of local replica
3: cntrep : counter used for identifying operations
4: certrep : local replica certificate

5: procedure NewOp(op)
6: cntrep ← cntrep + 1
7: rec.op←AddDepsmodel(op, (cntrep, idrep))
8: rec.sign←signrep(rec.op)
9: send(p, rec), ∀p ∈ neighbours

10: function AddDepsSecure(op, opid)
11: deps← LatestDepIds( )
12: hDepRecs← Hash(LatestDepRecord( ))
13: return <op, opid, random(), deps, hDepRecs>

14: function AddDepsStrictSecure(op, opid) . Run in
15: deps← LatestDepIds( ) . secure module
16: return Encode(<op, opid, random(), deps>)

17: function AddDepsExtSecure/EvtLinear(op, opid)

18: deps← LatestDepIds( )
19: (ts, signTiS)← T iS OpTs(<Hash(op, deps)>)
20: return <op, ts, deps, signTiS>

21: upon receive rec from p do:

22: if verify(certp, rec) then
23: if CheckDepsmodel(p, rec) then
24: Processmodel(rec)

Figure 4: Algorithms for secure consistency models.

compared with version vectors, this approach has the ad-
vantage of not requiring one entry per replica, being more
suitable for handling large and dynamic memberships.

Immutable History: As replicas sign the operations,
the causal histories of operations cannot be manipulated by
malicious replicas, thus enforcing Secure Causal Property 1.

No Future Dependencies: To disallow depending on
operations that have not yet been seen, including future op-
erations, the metadata of an operation includes a random
number (line 13) and a cryptographic summary (hash) of
all direct causal dependencies (line 12). This makes it im-
possible for a malicious replica to create a dependency on an
operation that it has not yet observed, as it is unable to com-
pute a valid hash of the dependencies. A replica validates
the hash before executing the operation. If an invalid hash
is detected, a proof-of-misbehaviour for the replica that gen-
erated the invalid operation is issued which, as previously
stated, will lead the replica to be excluded from the system.
This technique allows to enforce Secure Causal Property 2.

Causal Execution: Causal execution (Secure Causal
Property 3) is achieved by verifying, before executing an op-
eration, that its dependencies have already been executed.

Our prototype uses the protocol proposed by Linde et. al.
[86], where operations are disseminated through a commu-
nication overlay and a replica only propagates an operation
to a peer after propagating the operation’s dependencies (or
knowing that the peer already received them). This guaran-
tees that, when receiving an operation, causal dependencies
are satisfied and the operation can execute immediately.

When a replica detects that a remote replica is not fol-
lowing the protocol, it produces a proof-of-misbehaviour.
This proof follows directly when discovering an out-of-order
propagation as all messages sent between two replicas are
hash-chained: the signed message includes the hash of the
previous message (omitted in the code for simplicity).

Limited omissions: As the metadata includes only di-
rect dependencies, it is impossible by design for a replica

to introduce causal gaps in the dependency graph (as it can
only omit dependencies in a suffix of the dependencies), thus
guaranteeing Secure Causal Property 5.

Eventual Sibling Detection: We use several techniques
to detect when multiple operations with the same identifier
are created, as to enforce Secure Causal Property 4. First, a
replica that receives two siblings from different paths creates
a proof-of-misbehaviour and informs the server. Second, an
operation includes in its metadata the hash of its depen-
dencies – when receiving an operation, if this hash does not
match the hash computed locally for the same dependencies,
the replica signals a potential sibling by informing the server.
Finally, the server periodically sends a summary of its state,
containing the hash of the last observed operations at the
server that replicas can use to verify if they have received the
same operations. If the verification fails, the client connects
to the server to verify the hashes of each individual opera-
tion, leading to a proof-of-misbehaviour. The server’s state
summaries also follow causal propagation – a replica found
to propagate a summary which includes some operation it
has not previously sent, is proven to be malicious.

While these mechanisms cannot prevent Byzantine repli-
cas from exhibiting arbitrary behaviour, they are enough to
prevent rational replicas (that want to avoid exclusion from
the system) to perform such attacks. These mechanisms
together allow to provide Secure Causal Consistency.

Intuitively, there is no defense against omitting operations
or delaying operation propagation. As any two operations
generated by the same replica always have an implicit de-
pendency from higher to lower identifier, a replica is unable
to selectively hold back its own operations. Nevertheless,
replicas can collude to omit operations from causal depen-
dencies. The following sections discuss how to provide addi-
tional guarantees by leveraging trusted components, being
it within trusted servers or secure hardware modules.

5.3 Secure Strict Causal Consistency
Secure Strict Causal Consistency requires a replica

to record the exact causal dependencies. This can be imple-
mented by delegating the reception and generation of opera-
tions to a trusted service. An instance of the service can use
trusted hardware, such as Intel’s SGX [61], if available at
the replica. When the replica has no trusted hardware, the
same function can be delegated to instances of the trusted
service running at nearby replicas or infrastructure nodes.

Intuitively, the service is responsible to receive operations
before delivering them at the client to track all received op-
erations (to guarantee that causal dependencies are faith-
fully assigned). When new operations are created, the ser-
vice assigns the precise dependencies. When compared with
secure causal consistency, the metadata does not need to
include the random number and the hash of dependencies,
as: (i) the trusted module will never include incorrect de-
pendencies; and (ii) it detects if an application tries to use
the same identifier for two different operations.

To prevent the application from accessing an operation
before it being processed by the secure module, each oper-
ation is ciphered (line 16) by the secure module with a key
shared only among instances of the trusted service. As only
instances of the trusted service can access the shared key, it
is guaranteed that operations were correctly created and can
only be accessed after being Decoded by the secure module
(for simplicity, the Decode step is omitted in the code).
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An immediate issue that arises when using an external
service is ensuring correct client-handover and maintaining
causal dependencies when such a handover is done. Apply-
ing earlier works [1, 2, 72] is not practical as no thought
has been given to nodes attempting to circumvent causal
relations – intuitively, any reconnection by a client from one
instance of the service to another always requires some form
of coordination among instances of the service. A malicious
client actively hopping around can introduce a great over-
head in such a system. Due to this costly operation, we do
not further explore this direction, leaving it for future work.

5.4 Collusion Tolerance
Even if a single replica is unable to forge an operation with

incorrect dependencies, two replicas, r1 and r2, can collude
create an operation o2 that is concurrent with some known
operation o1 (by having replica r1 sending o1 through an
external channel to r2, and having r2 submitting o2). In
§4.3, we proposed to address this problem by using a total
order <ext on operations, such that if o2 might depend on o1,
then o1 <

ext o2 – we synthesized the underlying properties
as Extended Causal Property 1 and 2.

Consider realtime timestamps uniquely attributed to each
operation by an omniscient entity. Such timestamps would
allow to order operations in a way that respects the re-
quired conditions, as any externally visible happens-before
relations are captured by the global realtime order. Hav-
ing a single server assigning timestamps would provide the
required total order, but would defeat the goal of allowing
replicas to make progress without coordination.

5.4.1 Practical external visibility
We propose the use of a decentralized timestamping ser-

vice (TiS) of which all instances have synchronized clocks
with a small divergence of up to δ. Replicas communicate
with this service to obtain timestamps for their operations.

There is a total order on all operations generated at a sin-
gle instance of the service, as we restrict it to only emit one
timestamp per time unit. With multiple instances, we order
operations with colliding timestamps by sorting on a hash
of the whole operation. This provides a total order among
all operations, thus providing Extended Causal Property 1.

For enforcing Extended Causal Property 2, we must guar-
antee that, if any replica observes an operation, and after
(in realtime), any replica creates a new operation, the latter
must appear after the former in the total order.

Secure timestamps for <ext: Consider Figure 5, where
replica r2 generates o2 after observing replica r1’s o1. If
clocks and execution were perfect, the lowest timestamp for
o2 would be: t2 = t1 + (T iS →T r1) + (r1 →T r2) + (r2 →T

T iS)1. As clocks are not perfectly synchronized, we need
to consider the divergence of clocks, leading to: t2 = (t1 +
δTiS1) + (T iS →T r1) + (r1 →T r2) + (r2 →T T iS) + δTiS2 .

As in a distributed systems it is impossible to exactly
measure the minimum value for (T iS →T r1),(r1 →T r2),
and (r2 →T T iS), the safe approach is to assume they are
0. This leads to t2 = t1 + δTiS1 + δTiS2 .

For guaranteeing that t2 > t1, we force all TiS instances to
wait TWait before returning a newly generated timestamp
to a client (i.e., timestamp ti is returned at ti+TWait), with
TWait > |δTiS1 + δTiS2 |. As δTiS1 is the clock divergence of

1A→T B is the minimum time it takes for a message to be sent
from A to B, by any means, internal or external to the system.

r1
r2
TiS2

TiS1
generate: o1

generate: o2

t1

t2

Figure 5: Timestamping.

T iS1 to a global reference, δTiS1 + δTiS2 is the clock diver-
gence between T iS1 and T iS2. To guarantee that the con-
dition for <ext holds for timestamps generated in any pair
of TiS instances, we need to wait for more than the max-
imum clock divergence between any pair of TiS instances,
i.e., max({|δTiSi + δTiSj |+ 1,∀TiSi,T iSj ∈ T}).

5.4.2 Discussion on TiS implementation
The TiS is a lightweight service that executes across mul-

tiple (and potentially geographically distributed) nodes, al-
lowing a replica to request a signed timestamp for a given
operation. To avoid that a malicious replica requests multi-
ple timestamps that are then used at its convenience to issue
arbitrary operations at points in the past, these timestamps
must be issued linked to a particular operation. To this
end, when a replica requests a timestamp for an operation,
it must send the TiS the cryptographic summary of the op-
eration and dependencies (line 19). The TiS will then issue
a verifiable and trusted timestamp in the form of a tuple
(ts, signTiS), where signTiS is the signed operation sum-
mary (including ts) and ts is the timestamp generated by
the TiS. These timestamps can be validated by any replica
using the certificate of the TiS, which is signed by the cen-
tralized server. In summary, the service can be implemented
by leveraging well known timestamping protocols [5, 38].

The deployment of the timestamping service is an inter-
esting research question on its own. The lightweight nature
of the TiS, in contrast to full application servers, makes it
easy to deploy and scale. We envision the following scenar-
ios: i) collocated with the application’s centralized service;
ii) geo-distributed at multiple cloud points of presence; iii)
at edge locations such as ISPs and 5G towers; or iv) on client
devices within Trusted Execution Environments.

A client that cannot contact a TiS instance directly or
through other replicas must stop generating operations (and
possibly notify the user). Given the different alternatives to
deploy the TiS, we expect this situation to be rare (and less
frequent than unavailability in client-server architectures).

Synchronizing TiS instances: TiS instances should exe-
cute a clock synchronization protocol (e.g., NTP [62] or PTP
[40]), whose precision will directly impact TWait . This work
does not focus on synchronizing the clocks of TiS instances,
and we assume that: (i) TiS clock synchronization cannot
be tampered by clients [23]; (ii) under normal conditions
and in most common deployments scenarios, TWait will be
under single-digit milliseconds [35, 44, 48, 63, 71]. We note
that even if TWait is up to double-digit milliseconds, it still
allows faster progress than resorting to a client-server model.

5.5 Secure Extended Causal Consistency
Applications that use Secure Extended Causal Con-

sistency will be notified when an operation is delivered in
an order that is correct to the system’s observed causality,
but that does not respect the external observer’s order, <ext.
The system itself does not reject or re-order any operation –
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it is up to the application to use this information to perform
suitable actions in accordance with the application logic. A
simple example, discussed previously in §4.3, is a chat ap-
plication where the user-interface can be updated with this
information for an intuitive outcome.

As reported in other systems [68], using this information
can lead to complex application code, as it typically requires
applications to recompute the final state, while guarantee-
ing that all replicas converge to the same state. To help
programmers, our prototype includes a set of CRDT data-
types that take advantage of this information by providing
semantics that are not typically available in systems that
provide causal consistency. Some examples include:
• a list object where concurrent insertions on the same

position are ordered by insertion time – e.g., this can
be useful in a chat application;
• a map with a first-to-write-wins conflict resolution pol-

icy – e.g., this can be useful for ordering bids of the
same value in an auction.

If using this information is too complex, the application
programmer should resort to Secure Eventual Linearizabil-
ity, in which operations are executed according to the exter-
nal observer’s order (by relying on undo-redo).

5.6 Secure Eventual Linearizability
Secure eventual linearizability is implemented by exe-

cuting the operations in timestamp order, thus guaranteeing
that each replica executes the received operations according
to<ext, as defined by the timestamps obtained from the TiS.
As operations can be received out-of-order, our implementa-
tion uses an undo-redo execution model – when an operation
is received, operations that were executed out-of-order are
undone and reapplied in the correct order. Although this
consistency model only uses the timestamps, the metadata
of an operation includes its dependencies (line 18) as this in-
formation is often useful for managing the application state.

With this approach, the final outcome of an operation is
only determined after its execution order becomes stable,
i.e., when no operation with a smaller timestamp can arrive
– until then, the operation’s execution is considered tenta-
tive [85]. Our prototype includes an optional mechanism
for establishing the stability of operations, that works as
follows. The server periodically defines the stability times-
tamp, ts (up to some seconds in the past of the current
clock), and determines the set of operations that become
stable: the operations it has received with a timestamp t,
such that t ≤ ts. This information is broadcasted to all
clients (we note that it is only necessary to propagate the
identifiers of operations that have no operation that hap-
pened after). The operations with a timestamp t ≤ ts that
are not included in the set of stable operations are undone
forever. When a replica finds out that an operation it has
generated is in this situation, it may resubmit the operation
by first obtaining a new timestamp from the TiS.

5.7 Denial of Service and Eventual Delivery
For implementing the proposed secure consistency mod-

els, it is also necessary to guarantee that all correct replicas
will receive all valid operations. We build on the mechanism
to detect sibling operations to achieve this property. The
centralized service periodically disseminates a summary of
its state, including a hash of the last observed (concurrent)
operations. If after some time, a replica has not received

the reported operations or its own operations have not been
reported by the centralized service (either as a recent op-
eration or a dependency of a recent operation), the replica
contacts the server directly to synchronize its state. The
replica also contacts the server when it does not receive an
updated server report for some time.

This approach prevents Eclipse Attacks, where malicious
replicas attempt to create a barrier between correct repli-
cas. When this happens, correct replicas will communicate
resorting to replica-server-replica interaction. Several decen-
tralized protocols for providing secure broadcast [29, 50, 59]
and preventing Eclipse attacks [80] have been proposed in
literature and could have been adopted to provide the same
guarantees without resorting to the centralized service.

Since in our system the server must be used to connect to
the peer-to-peer network (§5.7), it also acts as a protection
against malicious replicas appearing with multiple identi-
fiers (Sybil attacks [28, 64]) or from reappearing with a new
identifier after a proof-of-misbehaviour has been generated.

A correct replica that detects a Byzantine behaviour im-
mediately disconnects from the malicious one, never to con-
nect again. If a malicious replica misbehaves with all correct
peers, it is eventually removed from the peer-to-peer network
and limited to interact through the server. If a proof can
be obtained, then the correct replica submits the proof to
the server which propagates it through the peer-to-peer net-
work. This is similar to the eviction protocol in Legion [86],
leading Byzantine replicas to have no effect on correct ones.

A malicious replica can follow the protocol but submit
invalid operations according to the application logic. As an
operation includes its dependencies, other replicas and the
server can use this information to verify the validity of the
operation. The complexity of this process depends on the
application. When verification is complex (e.g., requiring
recomputing the state of the replica when the operation was
issued), this can be done in the background by the server.

This opens the opportunity for attacks, but there is little
incentive for a single rational client to emit an invalid op-
eration, as it will be expelled from the system and it will
not be able to reenter. However, when users compete in
teams, if the gain/loss ratio is high enough, there might be
an incentive to sacrifice some members by issuing an invalid
operation that will only be detected much later – simple
solutions such as banning the whole team can be applied
but that depends on the application. This is an open prob-
lem that is not specific to our decentralized approach, but
inherent to systems running under weak consistency.

Our system mitigates attacks on the consistency model
but it is not able to completely eliminate all of the attacks
that have been discussed. Although eventual delivery is en-
forced, as we show in the evaluation (§6.6), it still requires
a 50% ratio of correct replicas to ensure interactions among
correct replicas are not delayed. This is in line with the work
on BAR-tolerant protocols [50].

6. EXPERIMENTAL EVALUATION
Our evaluation demonstrates that security guarantees can

be provided even when clients replicate data and communi-
cate directly. The highlights of our results are the following:
• Our secure consistency models provide considerable

reduction in user-to-user latency when compared to
client-server, with interactions between nearby clients
exhibiting the larger improvements. (§6.2)
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• Our solution scales to a large number of clients with a
modest increase in latency. (§6.3)
• Low-latency is crucial for effective Eventual Lineariz-

ability since its execution is affected by staleness. (§6.4)
• Deployment of the timestamping service should con-

sider the geographic distribution of clients, ideally by
exploiting dynamic placement in client vicinity. (§6.5)
• The proposed algorithms disallow discoverable Byzan-

tine misbehaviour, mitigating the effect of such be-
haviour on correct clients. Rational clients (remaining
undiscovered) can impact correct clients most when
they are a majority of the nodes. Resorting to the TiS
and the centralized component mitigates the actions
of colluding rational replicas. (§6.6)

Prototype: Our prototype allows applications running in
browsers to use the secure causal consistency models pro-
posed, namely secure causal and secure extended causal con-
sistency, and for applications that require stronger guaran-
tees, secure eventual linearizability (EvtLin).

Our prototype extends Legion [86], a causally consistent
system that includes a library of CRDTs [87] for merging
concurrent updates. The secure models were implemented
by replacing Legion’s propagation mechanisms, which were
susceptible to the attacks discussed in §3, and extending the
CRDT library to implement the semantics defined in §5.5.
Legion is used in the evaluation as the baseline providing
unsecured causal consistency (Causal unsecured).

The prototype was written in JavaScript, with test appli-
cation running in browsers or as NodeJS applications. The
latter were primarily developed to avoid the overhead of
graphical user interfaces in our experiments. Our prototype
has an abstract communication layer that enforces the re-
quired security abstractions and FIFO channels on top of the
network layers in both environments: WebSockets (TLS) in
NodeJS and WebRTC (DTLS) in browsers. The implemen-
tation of our algorithms uses SHA-256 and RSA:2048 for
hashes and signatures, relying on the forge library [25].

Baseline: User-facing applications typically rely on client-
server architectures. To serve as a baseline, we added sup-
port in our prototype for strict-serializability, using client-
server interactions with a single master (Client-Server in
the plots). Switching from EvtLin to Client-server requires
changing a single configuration variable, ensuring a fair com-
parison as there are no hidden language overheads or imple-
mentation optimizations that can affect results.

Replicas communicate with the server using standard tech-
niques: WebSocket over TLS, with an initial client authen-
tication (user login). Unlike the secure models, operations
are transmitted over the secure channel without any further
cryptographic processing. The server verifies if an operation
is valid before propagating it to other replicas, by checking
if it can be applied in the current state.

Application: For the evaluation, we created a game where
players move on a 2D map with obstacles and gather coins
to obtain points. Initially a coin is located at the center of
the map, and players are spawned near the edges. When
a player touches the coin, it gains a point and a new coin
is spawned at a random location on the map (computed
deterministically from the hash of the catching replica’s op-
eration). The movement and gathering operations can be
verified based on the last movement from that player (this
gives a verified trace as they start in deterministic positions).

Figure 6: Grid5000 clusters map (France).

6.1 Experimental Setup
Our experiments were run on the Grid’5000 [6] platform

(G5k), complemented with AWS EC2. Clients instances
(1792 by default, with 256 at each cluster) are spread over
G5k’s clusters (except Grenoble), shown in Figure 6. Each
client has one CPU core and 1 GB RAM available. Un-
less stated otherwise, the server runs in Ireland (AWS EC2
t2.xlarge, 4vcpu, 16GB) and the TiS instances are deployed
in Ireland, Paris, and Frankfurt (also on AWS EC2).

With this setup, clients and servers are distributed across
different geographic locations, with different latency among
clients and from different clients to the servers.

6.2 Latency Evaluation
Client-to-client latency measurements consider the time

since the call to create a new operation (NewOp) until its
reception at each client. All clients generate, apply locally,
and propagate an operation every 5 seconds. Thus, every
client will receive, verify, and apply 1792/5 = 358.4 opera-
tions per second. A typical (single room) multiplayer game
has significantly less players and operations being executed.

Figure 7a reports the latency (as a Cumulative Distribu-
tion Function) observed for the secure variants of our system
compared with the client-server baseline. Among the secure
variants, Secure Causal provides the lowest latency between
clients as new operations only have to be signed before being
propagated (and verified upon reception). Extended Causal
and EvtLin require a client to obtain a timestamp from the
TiS for each operation, leading to an additional delay before
propagation. As a consequence, results are very similar (due
to this reason, we omit the results of EvtLin in Figs. 7b, 7c,
and 8). Client-Server presents the highest latency due to
the time required for operations to be sent to the server and
back to other clients. When comparing with the unsecured
implementation of causal consistency, we can observe that
the secure variants exhibit additional latency due to the use
of cryptography and communication with the TiS.

Impact of server and TiS location: Figure 7b shows the
effect of server and TiS location. We considered three server
locations: local to G5k (in Grenoble), in Ireland, and in the
US (east). For servers in AWS locations, latency of Client-
Server increases as the latency to the data centers increases,
as expected. For the Grenoble server, latency becomes bet-
ter than for the Extended Secure model using the TiS at
AWS locations, as obtaining the timestamp from the TiS is
more expensive than sending the operation to the Grenoble
server (located close to the center of the G5k network). With
a TiS server in Grenoble (S. Extended Causal - Grenoble),
the latency of the Extended Secure model became slightly
better than that of Client-Server with a Grenoble server, as
it is more efficient to propagate messages in an overlay net-
work than having a server sending all messages to all clients.
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Figure 7: Client-client delivery latency (ms) with clients spread over Grid5000.
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Figure 9: Effect of operating on stale
views using EvtLin.
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Figure 10: Latency when adding TiS
servers (mean value of 1s windows).

Due to the same reason, the Secure Causal model has bet-
ter latency than Client-Server with the server in Grenoble.
The Secure Causal model is the only one that is not im-
pacted by the latency to the server/service, as operations
are propagated through the overlay (in the normal case).

Impact of data-locality: Figure 7c shows the difference
of latency for operations received from nearby clients (run-
ning in the same DC) and from remote locations. As ex-
pected, the Client-Server solution shows no difference, as
operations always have to be propagated through the server,
even for operations from nearby clients. For secure consis-
tency models (and Causal unsecured), there is a noticeable
difference between operations from local and remote clients,
which results from the underlying latency among clients. Se-
cure Causal Consistency has considerably lower latency than
other variants, for which the latency depends on the latency
to reach the closest TiS instance to generate operations.

Discussion: The results suggest that the proposed decen-
tralized secure consistency models are preferable to tradi-
tional cloud-based solutions when the latency among clients
is lower than the client-server-client latency. We expect that
this is the common case in cloud-based deployments, where
an application is deployed in a small number of data centers.

When servers can be deployed close to clients, leading
to client-server latency lower than the latency between dis-
tant clients, the decentralized models still exhibit consider-
able advantage for interactions among nearby clients. This
makes the proposed models attractive for applications domi-
nated by interactions among nearby clients, such as location-
dependent information sharing and augmented reality games.

If an application is dominated by interactions among dis-
tant clients, and needs to use a consistency model stronger
than Secure Causal Consistency, the advantage of the de-
centralized models is reduced (and depends on the location
of TiS servers). In this case, the additional complexity of
the proposed models might not be worth the benefit. We
note that the cost and overhead of deploying and maintain-
ing a fleet of full application servers is much higher when

compared with TiS instances, which should also be taken
into consideration when deciding which approach to adopt.

6.3 Scalability
Figure 8 reports latency between clients as a function of

the total number of clients. The results show that, unlike
the Causal unsecured model, the penalty in latency grows
modestly with an increasing number of clients for all secure
consistency models and for the Client-Server solution. The
reason for this lies on the processing overhead in the repli-
cas (cryptography) for the decentralized models and in the
server (message propagation) for Client-Server. We have not
scaled beyond 1792 clients due to lack of available hardware.

6.4 On Data Staleness
Games typically use some form of extrapolation to show

expected object positions based on current object move-
ment, but this can lead to objects jumping when the extrap-
olated value is stale due to actions of other players (which
did not arrive before calculating expected positions). Deci-
sions are thus made (by the players) on stale data. In this
experiment we measure the effect of data staleness (due to
propagation latency) on EvtLin and Client-Server baseline.

To increase contention, we used the game application but
reduced the play-area and enabled player collisions. When
clients operate over local stale data they possibly grab a
coin concurrently with other players. In Client-Server, only
the first grab operation to arrive at the server is accepted,
with all concurrent operations being aborted. In EvtLin,
concurrently applied (local at clients) operations must be
undone and reapplied in the correct order (undo/redo).

We vary the number of operations per second to tune the
amount of conflicts that occur. The results, in Figure 9,
show that with few operations, the contention among play-
ers grabbing the coin is low (few aborts in Client-Server).
As contention increases, due to the increasing number of op-
erations per second, staleness increases which leads to addi-
tional aborts. EvtLin has significantly less aborts as clients
operate over fresher data when compared with Client-Server.
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This is confirmed by the even lower number of aborts in
EvtLin-Grenoble, which, as discussed in the previous sec-
tion, further reduces the latency to propagate operations.

The take away from these experiments is that enforcing
application invariants that require coordination, with a low
number of aborts, requires a scheme that lowers propagation
latency of updates among clients, avoiding data staleness.

6.5 Impact of TiS deployment
Figure 10 shows the effect on latency of adding TiS in-

stances closer to clients. Clients are scattered throughout
the G5k clusters and continuously issue operations. Initially
there is a single TiS instance in AWS EC2 Frankfurt. At the
90 and 150 second marks we deploy additional instances in
AWS EC2 Paris and in G5k Grenoble, respectively. We also
report the average latency for Client-Server (with the server
in AWS EC2 Ireland) and Extended Causal with a TiS in-
stance deployed at each G5k cluster (Ext Causal - local).

The results show that adding new TiS instances has a sig-
nificant positive effect in the latency experienced by clients.
This effect is more noticeable when the TiS is closer to
clients. This process can be done in an autonomic fashion
by, for instance, leveraging on work on database manage-
ment on auto-tuning and commissioning replicas [41, 54].

The results also show the benefit of placing TiS servers
very close to the clients. As TiS servers are lightweight, it
is easy to deploy them in the edge of the network.

6.6 Impact of rational and arbitrary behaviour
We now discuss how client misbehaviour affects latency.

Discoverable (Malicious) behaviour: Figure 11a re-
ports the latency observed by correct and incorrect clients
in a scenario with multiple malicious clients, for which a
proof-of-misbehaviour can be produced. In this experiment,
incorrect clients (one third of all clients) follow the protocol
up to the 27s mark, at which point they start propagating
incorrect messages (trash, incorrectly signed, and tampered
contents). This behaviour makes correct clients disconnect
from such misbehaving clients. The latency perceived by
incorrect clients grows beyond the round-trip-time to the
server (Server RTT ), as incorrect client need to communi-
cate through the server. Correct clients continue experi-
encing low latency, as they restrict peer-to-peer interactions
among them. Our experiments in varying the amount of
malicious clients (5% to 95%) all presented similar results.

Undiscoverable (Rational) behaviour: Rational clients
can delay operation propagation to other clients or the server,
while being fast to disseminate to other rational clients (i.e.,
a form of collusion). We focus on delaying propagation, as
other attacks either have the same or smaller effect, or lead
the rational clients to be discovered. Figure 11b reports the
latency with an increasing fraction of rational clients col-
luding to delay messages sent to correct clients. The results
show that rational clients always observe operations of cor-
rect clients fast (Inc-Corr) and correct replicas observe op-
erations from rational clients with a high delay (Corr-Inc).

Interestingly, correct clients start to perceive a notice-
able effect among operations generated by themselves (Corr-
Corr) when the amount of colluding rational clients grows
over 50%. Similarly, at that point, the latency perceived by
rational clients for operations issued by other rational clients
(Inc-Inc) significantly drops. This is related with the prob-
ability of a correct (resp. rational) client having another

correct (resp. rational) client as a direct neighbour, which
depends on the fraction of rational clients, as neighbours are
mostly selected at random. This implies that in our system,
correct clients will benefit the most as long as they are the
majority of participants (this was observed already in [50]).

Attacking the speculative execution of EvtLin: As
discussed previously (Figure 9), EvtLin is significantly im-
pacted by local data staleness when creating new operations.
Delayed operations can lead to increased data staleness and
force frequent undo/redos. We designed an experiment to
measure the capacity of rational clients to disrupt a sys-
tem using EvtLin by delaying operation propagation, where
clients manipulate a bounded counter concurrently. Fig-
ure 11c shows the moment and number of operations un-
done/reapplied at each client. As baseline, we show the
results when no client delays propagation (NoCheat) – in
this case, contention over the counter already leads to some
undo/redos. For disrupting the system, a rational client ob-
tains from the TiS timestamps for 5 operations (identified
by Create at the x axis) propagating these operations much
later (at the following Release). This leads to a high number
of undo/redos (Cheat), as operations with later timestamps
have to be undone/reapplied by each client.

We also investigated if the problem could be addressed
by having TiS instances storing timestamped operations. In
this case, clients poll the TiS for operations that they might
be missing – we use a polling time of 10s, 1s, or 0.25s. The
late release of an operation does not lead to a large number of
undo/redos, as clients obtain the delayed operations directly
from the TiS service, showing that keeping operations at the
TiS mitigates this attack. Naturally, enabling clients to poll
the TiS more frequently increases the mitigation effect at
the expense of additional resource consumption.

Discussion: It is clear that rational replicas cannot be re-
moved altogether – users can always communicate out-of-
band to gain a latency benefit. This is also true in the client-
server model, as nothing disallows such replicas from run-
ning additional software. Our approach in reducing inter-
replica latency mitigates this by letting correct clients ob-
serve operations from other correct clients with low latency.

6.7 Discussion on Network Performance
When running the experiments, we also measured the net-

work usage and concluded that, when using our system, the
server makes a lower use of the network (about one third)
when compared with the classic Client-Server model. This
happens because our system elects a fraction of clients to
maintain communication with the server [34, 86], having the
remaining clients only interacting with other clients. This
enables the server to support a larger number of clients.

Comparing secure and non-secure consistency variants,
there is an overhead when a client bootstraps since cryp-
tographic keys must be generated and exchanged with the
server to obtain a lease – this is a one-time cost. The
overhead on the network due to secure mechanisms among
clients depends on the application’s message sizes. Experi-
ments using small messages between clients incur an increase
of bandwidth usage of up to 2.5×, due to the additional sig-
natures and timestamps, which can have a considerable size
for small data sizes (256 bytes for signatures with key sizes
of 2048 bytes). This additional cost tends to ×1 (minimal
overhead) when the size of application messages increases.
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Figure 11: Effect of rational and malicious behaviour.

7. RELATED WORK
Consistency: Web applications are typically client-server

architectures, leading to high user-to-user latency due to
client-server-client propagation [19, 20, 81, 84]. Weak con-
sistency models [3, 12, 22, 24, 68, 73] can be used to reduce
latency, requiring mechanisms to merge concurrent updates.
We leverage CRDTs [77] to provide eventual convergence.

Byzantine fault tolerance (BFT) is designed to cope with
malicious nodes that can perform arbitrary actions [16, 45].
In the context of replicated systems, solutions typically focus
on the strong-consistency model among limited numbers of
replicas [15, 16, 74]. Secure causal BFT [30, 75, 31] requires
the total order established in BFT to respect causal order.
Our work focus on weak consistency models, requiring no to-
tal order on operations. This leads to different requirements
and properties for the proposed models and algorithms.

Blockchain approaches [4, 14, 33, 82] enforce a total order
but the decentralized consensus algorithms used (e.g., proof-
of-work) impose high latency on writes. These algorithms
are sensitive to a majority of replicas acting against the rest.
Our system mitigates the effects of a majority of incorrect
nodes by using a trusted fallback – the central server.

Bayou [85] uses a form of eventual linearizability by rely-
ing on a primary server to assign a global order of all opera-
tions. An operation is tentatively executed in a replica until
its global order is known. Our implementation of eventual
linearizability orders operations based on the timestamps
assigned by the TiS service. Furthermore, our algorithm
provides protection against malicious replicas.

Peer-to-peer Middleware: Leveraging weak consist-
ency together with peer-to-peer communication offers lower
latency and reduced server load compared to using a client-
server communication model [49, 52, 55, 56, 86]. Most
peer-to-peer content delivery schemes [52, 55, 56] only allow
clients to share static content and do not cope with simple
man-in-middle attacks to provide malicious or fake content.

Atum [39] offers resilient group communication for large
dynamic networks, but does not address attempts to sub-
vert the system itself. FlightPath [49] is a peer-to-peer data
streaming system tolerating up to 10% of malicious nodes,
with the remaining peers acting rationally. S-Fireflies [26] is
a data dissemination system robust to Byzantine faults. In
contrast to our system, it relies on global knowledge of all
nodes at all times. BAR Gossip [50] proposes algorithms for
reliable dissemination in the BAR model using peer-to-peer
gossip protocols. Our work is complementary to these works
and could use the proposed solutions to achieve reliable dis-
semination (instead of leveraging a centralized component).

Legion [86] middleware offers a peer-to-peer communica-
tion mechanism with bolted-on causal delivery. Although
using secure channels and providing access control, Legion
does not deal with node misbehaviours after joining the sys-
tem. In contrast, we focus on dealing with nodes attempting
to misbehave by circumventing the data-layer’s properties.

Secure hardware: Trusted Execution Environments can
be used at the client to provide additional security guaran-
tees for user-executed code [61, 70, 8]. Using trusted hard-
ware at each client can provide a secure execution environ-
ment for a given application or web-page [37] or even disal-
low un-authorized users from accessing sensitive information
[9]. Although in §5.3 we propose using such hardware for
Secure Strict Causal, such modules are not widely available
and recent works [13, 51] show possible attacks. These so-
lutions do not consider attacks based on delays or collusion,
which we partially address with the timestamping service.

8. CONCLUSION
This paper addresses the impact of replica misbehaviour

on the guarantees of the causal consistency model. We an-
alyzed the possible replica misbehaviours, derived secure
consistency models that prevent different types of misbe-
haviour, and proposed algorithms for implementing these
models. Depending on the application, a client may gain
an unfair advantage by executing a different type of mis-
behaviour. By using the secure model that prevents such
misbehaviour, an application may prevent such attacks.

Our evaluation shows that the proposed algorithms to
enforce secure consistency models impose a modest over-
head when compared with unsecured versions, while keeping
much lower user-to-user latency and a reduced server load
when compared to client-server solutions. Additionally, our
algorithms effectively mitigate the effects of incorrect clients
(even when colluding). Preventing different types of misbe-
haviour leads to different overheads, justifying the interest
of providing different consistency models.
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