
Finding Large Diverse Communities on Networks:
The Edge Maximum k*-Partite Clique

Alexander Zhou
Hong Kong University of
Science and Technology

Hong Kong

atzhou@cse.ust.hk

Yue Wang
Shenzhen Institute of
Computing Sciences
Shenzhen University

Shenzhen
yuewang@sics.ac.cn

Lei Chen
Hong Kong University of
Science and Technology

Hong Kong

leichen@cse.ust.hk

ABSTRACT
In this work we examine the problem of finding large, di-
verse communities on graphs where the users are separated
into distinct groups. More specifically, this work considers
diversity to be the inclusion of users from multiple groups as
opposed to homogeneous communities in which the major-
ity of users are from one group. We design and propose
the k∗-Partite Clique (and the edge-maximum k∗-Partite
Clique Problem) which modifies the k-Partite Clique struc-
ture as a means to capture these large, diverse communities
in a way that does not currently exist. We then design a
non-trivial baseline enumeration algorithm, which is further
improved via heuristics to significantly reduce the running
time whilst avoiding excessive memory requirements. More-
over, we propose a core as well as a truss structure for the k-
Partite environment aimed at finding the edge-maximum k∗-
Partite Clique structure on the network. Comprehensive
experiments on real-world datasets verify both the effective-
ness of the k∗-Partite Clique at finding diverse communities
as well as the efficiency of the proposed heuristics to our
algorithms compared to reasonable baselines.

PVLDB Reference Format:
Alexander Zhou, Yue Wang, Lei Chen. Finding Large Diverse
Communities on Networks: The Edge Maximum k*-Partite Clique.
PVLDB, 13(11): 2576-2589, 2020.
DOI: https://doi.org/10.14778/3407790.3407846

1. INTRODUCTION

1.1 Motivation
On a network, nodes may be partitioned into groups based

on a common attribute shared among them. Common exam-
ples are ethnicities, religions or physical locations on human-
based networks and tags/categories on networks for items
commonly bought together in a retail environment. Net-
works are also the home to communities, which are collec-
tions of nodes that are closely connected to each other. Tra-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407846

ditional communities may contain users from any group but
they may just as equally contain no users from the majority
of groups. By being able to find and identify communities
that are diverse, that is they contain a balance of nodes
from multiple groups, over ones that cannot allow operators
of these networks to gain significant insight and benefits to
their system.

Before we define a diverse community, we first acknowl-
edge that the term ‘diverse’ (as well as ‘representation’)
holds multiple meanings in the eyes of different people. The
notion of ‘diverse’ that we utilise in this paper is not one that
aims to model communities with the same underlying distri-
bution as the population the users come from. Instead, we
use the ‘Value-in-Diversity’ Hypothesis [11], which favours
the idea diversity promotes the most ‘value’ when two indi-
viduals of differing backgrounds interact.

Maintaining a diverse network socially has commonly been
attributed to providing positive effects towards members of
the network. Noted benefits of enjoying such a diverse net-
work range from improved physical health (such as reduced
mortality rate in the elderly [3]) to increased success and
productivity in the workforce [12, 31]. Empirical studies and
surveys have observed that a diverse executive group is cor-
related to increased financial performance [20] and that in-
creased ethnic identity in scientific papers can be connected
to increased citations and publications in higher impact jour-
nals [14].

Additionally, individuals with similar backgrounds and
opinions can congregate and form ‘echo chambers’, which
reinforces these popular (yet not necessarily true) opinions
via confirmation bias [8, 37]. This promotes the spread of
‘fake news’ [4] in their community, thus exacerbating the
issue. Looking at diverse communities from another per-
spective, operators of social media platforms or employers
of a workforce may want to be able to identify a collection
of well connected individuals that is ‘diverse’, thus allowing
for future actions to maintain and grow these communities.

Despite the power of diversity being a well-established
concept, work regarding finding and identifying diverse com-
munities in a network is still a relatively unexplored field.
For the most part, previous works focus on issues in which
users have binary opinions [2, 10, 15, 24], with the common
motivation being political affiliation in the United States
(Democrat vs. Republican). However, in reality, most di-
versity metrics cannot be simply limited to binary options.
Even in the U.S. political example, multiple different can-
didates from the same party in the primary race will have

2576



distinct support bases with different values. Additionally,
countries such as Germany consist of multiple political par-
ties that cannot be modelled through polarisation.

Importantly, the concept of a diverse community is a fluid
one, given that there is no concrete, universally accepted
definition of the term. However, in line with the ‘Value-in-
Diversity’ hypothesis, any diverse community relative to the
network it exists upon should satisfy two core requirements:

1. The community should encourage the inclusion of more
groups;

2. The community should encourage more balanced par-
ticipation from each of its groups.

In this paper we address the problem of finding diverse
communities from any number groups by proposing a struc-
ture to model such a community in a network. Moreover, we
are interested in finding large diverse communities as these
groups of users tend to be of more interest to operators of
networks. To the best of our knowledge, no other structure
designed to model diverse communities with more than two
groups exists.

Our structure, the k∗-Partite Clique (k∗-PC) modifies the
established k-Partite Clique (k-PC) structure [33] with a
key distinction. The k-PC requires that each node from one
group contained within the structure must be connected to
each other node from another group inside the structure. A
particularly popular case of the k-PC is the biclique, which
operates on a bipartite graph (k = 2).

In the traditional k-PC on a k-Partite Graph problem,
at least one node must be present from each of k groups
found in the graph. However, when the number of groups in-
creases, it becomes increasingly unrealistic to expect a large
structure to exist which contains at least a member from
each group. One real-life example is using nationality as
the diversity metric. It is unreasonable to define a diverse
community as one that must include a member of each na-
tionality on the Earth.

1.2 Our Contribution
To accommodate for this issue, we define the k∗-Partite

Clique to allow for tightly connected communities from at
least k groups on a network which contains n total groups
(k ≤ n), thus turning k into a lower bound requirement for
the number of groups to be considered as desirably diverse.

An evident drawback to the k∗-PC is that for certain,
smaller k values it may become overly broad, with enumera-
tion allowing for outputs that may be considered not diverse.
As an example, if we have a network with twenty groups
but the structure we output contains only two (albeit the
outputted community contains the most users out of any
community) then it is difficult to argue that the structure is
diverse given the context. We are thus incentivised to define
our output structure to include more groups in a way that
obeys the two fundamental requirements mentioned previ-
ously.

To accommodate for this, the measurement we use for
quantifying a larger community is the number of cross-group
edges as opposed to the number of users inside of it. That
is, our top output is the one that is edge-maximum. In other
words, we wish to find the maximal k∗-PC with more cross-
group edges than any other k∗-PC on the given graph. Given
that the number of edges can be derived by the product of

C1

C2

Figure 1: A network divided into different groups
separated by colour. Despite C1 containing more
users than C2 (C1: 10 vs C2: 8), C2 is favoured
in our model as a diverse community given that it
contains more groups (C1: 2 vs C2: 7) which is
reflected in the cross-group connections (C1: 25 vs
C2: 27).

C2

C1

Figure 2: A network containing 5 groups separated
by colour, yet no 5-PC exists upon it. C1 and C2 are
two 3∗-PC, with only C1 being a 4∗-PC. Despite C1
containing more groups than C2, C2 is favoured in
our model given that it contains significantly more
cross-group edges (C1: 6 vs C2: 27).

the number of nodes in each group of the k-PC, not only
does this metric encourage a structure with more groups
participating but also a more balanced number of nodes from
each group. An illustrated example is in Figure 1 where C2
(8 users from 7 groups) contains less users than C1 (10 users
from 2 groups) but ultimately has more cross-group edges
(27 vs 25), thus making C2 a more diverse community than
C1 under our definition.

Given that we are interested in finding large, diverse com-
munities relative to the input network, the edge-maximum
requirement assists in that regard. Figure 2 provides a vi-
sual example of when the more preferable community is not
the one with the most groups. On this graph, C2 is selected
over C1 despite having fewer groups (C1: 4 vs C2: 3) due
to having significantly more cross-group edges (C1: 6 vs C2:
27).

In this work, we wish to find the edge-maximum k∗-PC
over the entire network (containing n groups), (for a given

2577



k ≤ n) which we then determine to be a large diverse com-
munity on our network.

Given the properties of our structure, we only require the
assumption that each user in the network has a known group
for the desired diversity metric. This is the only hurdle
for our model, with the level of difficulty to model being
dependent on the desired diversity metric itself. This is
unlike other existing models that require the ability to gauge
the susceptibility of each user to the opinions of others [24].

As a baseline for the edge-maximum k∗-PC problem, we
design a k∗-PC enumeration algorithm which utilises merg-
ing of two maximal (k − 1)-PCs to form a k-PC. Addition-
ally, we discuss added heuristics to increase the efficiency of
the algorithm. After which, we discuss an improved edge-
maximum specific algorithm which introduces a k-Partite
specific Core and Truss structure able to prune useless nodes
in polynomial time, thus heavily narrowing the search space.

Our contribution in this paper can be broken down into
the following points:

1. We propose the k∗-Partite Clique structure as a means
to model diverse communities on a network;

2. We formally introduce edge-maximum k∗-Partite Cliq-
ue problem (which is NP-Hard and NP-Hard to ap-
proximate) and introduce a baseline which consists
of a k∗-PC enumeration algorithm. We then propose
heuristic-based improvements that reduce the runtime
of the enumeration algorithm, including introducing a
Core and Truss structure for a k-Partite Graph;

3. We demonstrate the effectiveness of our structure by
comparing it to given baseline structures. We experi-
mentally show the efficiency of our enumeration algo-
rithm as well as the edge-maximum specific algorithms
compared to a baseline as well as the improved effi-
ciency of our heuristic improvements.

In the following sections of this paper, we first discuss re-
lated works to our topic (Section 2) before formally defining
our problem (Section 3). Then, we propose an enumera-
tion algorithm (with heuristic improvements) which serves
as the baseline (Section 4). After that, we introduce our
edge-maximum specific heuristics (Section 5). The effec-
tiveness and efficiency of our structure and algorithms are
examined afterwards (Section 6). Finally we discuss future
work (Section 7) and conclude the paper (Section 8).

2. RELATED WORKS
Community Detection: The area of community detec-

tion is one of great interest in the field of data mining, with
a particular focus on social networks. Given the fluid defini-
tion of the term ‘community’, a significant number of struc-
tures have been used to best work towards their own un-
derstanding of the term. These include very basic subgraph
structures such as the k-core [32], k-truss [9, 39] and clique
[40] as well as more sophisticated structures and methodolo-
gies.

Such advanced structures include using tie-strength [44,
47], leveraging observed and manifested attributes [42] or us-
ing both similarity and engagement [45]. Other techniques
focus on achieving specific benchmarks such as GN [17] or
LFR [21] as their definition of community. Whilst these

methods are suited towards their own specific branch of com-
munity detection, they are not diversity-aware.

Importantly, we note that there exists another definition
of diversity in community detection which aims to output
structures that are not encompassed by other outputs (i.e.
structural diversity). Examples of this include Diversified
Top-K Clique search [43] as well as Top-k Structural Diver-
sity Search [19]. However, these models do not address label
diversity.

Biclique and k-Partite Clique: The biclique as a struc-
ture has been the focus of a significant amount of work
for a very lengthy period of time. It is not only a noted
and utilised structure in data mining [26] but also well-
documented in the fields of cryptography [7], textile engi-
neering [18] and bioinformatics [38]. Maximal biclique enu-
meration as a problem has also been studied over time, with
algorithms in place such as iMBEA [46] and an alternative
method using MapReduce [26].

A problem which is encompassed by ours, the edge-max-
imum biclique problem over a graph has been established
to be NP-Complete [28] as well as hard to approximate
[13]. Previous work that tackle this problem tend to employ
heuristics in union with traditional enumeration techniques,
though an algorithm that focuses on Rank-one Matrix Fac-
torisation does exist [16].

On the other hand, k-Partite Cliques (for k ≥ 3) have
had significantly less focus as an area of research despite
still being of interest in multiple fields. In terms of k-PC
enumeration, there are two methods we need to consider.
The first method involves creating a set intersection graph
on the original graph and then perform maximal biclique
enumeration [30]. The second method works by finding a
maximal (k − 1)-PC and then adding an additional group
to the previously found structure [22]. Importantly, these
methods only find structures with a fixed k value and they
are hence only able to model a specific number of groups
with no leeway. A simplified case of the k -PC, the k-clique
(where it is required that only one node from each of the k
groups is a part of the structure) has had enumeration tech-
niques proposed [18, 25], though their fixed size makes them
unattractive from the perspective of large communities.

Diversity in Social Networks: For the most part, pre-
vious works that have examined the concept of diversity
have worked from the perspective of detecting [2, 10] and
reducing polarization [15] or maximising diversity [24]. In
particular, they focus on issues in which users have binary
opinions with the common motivation being political affilia-
tion in the United States (Democrat vs Republican). These
works are not designed with networks containing more than
two groups in mind, which make up a significant portion of
real world systems. Additionally, they may require difficult
assumptions such as knowing the influence that any given
user has on other users or the susceptibility of each individ-
ual to the opposing viewpoint. Furthermore, they are not
aimed at community detection.

3. PROBLEM DEFINITION
Let us have an undirected, unweighted graph G = (U,E)

with a set of users (nodes) U and edges E (which represents
a connection between two users). Now suppose we have a
set of n non-overlapping and distinct groups (or ‘labels’) ð =
{g1, g2, . . . , gn} with each node being a member of exactly

2578



3-Partite Clique 4-Partite Clique

3*-Partite Cliques

Figure 3: The subgraph on the left is a 3-PC whilst
the one on the right is a 4-PC. They are both valid
3∗-PCs.

one group. We denote the set of all nodes in U that belong to

group gi as the set Ugi (U =
n⋃
i=1

Ugi , Ugi ∩ Ugj = ∅, ∀i 6= j).

Before we introduce the k∗-Partite Clique, we lay the
foundations with the established k-Partite Clique [33].

Definition 1. k-Partite Clique (k-PC): Suppose we have
any set of groups ð′ ⊆ ð, |ð′| = k. A k-Partite Clique Ck

is a subgraph on G such that it contains a set of nodes
U ′g′i
⊆ Ug′i , U

′
g′i
6= ∅ for all g′i ∈ ð′ in which there exists an

edge eα,β for all uα ∈ U ′g′i uβ ∈ U
′
g′j

, g′i, g
′
j ∈ ð′, i 6= j. We

may also use the notation Ckð′ to denote a k-Partite Clique
with groups ð′.

The problem of determining if a k-PC exists onG for k ≥ 3
has been determined to be NP-Complete [30]. Furthermore,
a k-Partite Clique is not guaranteed to exist on all graphs.

Given the formal definition of the k-PC, we then relax the
requirement of needing exactly k groups in the structure.
With this, we derive the definition of the k∗-Partite Clique.

Definition 2. k∗-Partite Clique (k∗-PC): For a value k
and graph G, if there exists a value k′ (k ≤ k′ ≤ |ð| = n)
such that a k′-PC exists on G, then we say G contains a k∗-
Partite Clique. We may also use the notation Ck∗ð∗ to denote
a k∗-Partite Clique with nodes from groups in ð∗ ⊆ ð where
|ð∗| ≥ k′.

If the value of k′ = k = n, then the set of all k∗-PC
is equivalent to the set of all k-PC. We are interested in
larger values of k′ as (demonstrated later in the paper) the
subgraphs induced by these values are more likely to produce
a large, diverse community. Figure 3 illustrates an example
where two structures, a 3-PC on the left and a 4-PC on the
right, are both valid 3∗-PC. However, only the structure on
the right is a valid 4∗-PC and neither are a 5∗-PC.

In essence, the value k is the lower bound of the number
of groups required (out of n total) for a community to be
considered diverse.

Definition 3. Maximal k∗-Partite Clique: A k∗-PC C (wi-
th nodes U) is maximal if there exists no other k∗-PC C′

(with nodes U ′) such that U ⊂ U ′.

The set of all maximal k-PCs are encompassed by the set
of all maximal k∗-PCs, giving our structural definition more
flexibility to find larger groups that would reasonably still be

C1 C2

Figure 4: C1 contains 11 nodes and 19 cross group
edges as opposed to C2 with 9 nodes but 27 cross
group edges

Table 1: Key Notation and Definitions
Notation Definition

G Undirected and Unweighted Graph
gi Group i
ð Set of groups

Ckð k-Partite Clique containing groups ð
Ck∗ð k∗-Partite Clique containing groups ð
Ck∗emax edge-maximum k∗-Partite Clique

E(Ck∗) # cross-group edges on Ck∗

considered diverse despite not consisting of all groups in our
network. We define a cross-group edge as an edge between
nodes of different groups.

Definition 4. Edge-Maximum k∗-Partite Clique: The ed-
ge-maximum k∗-Partite Clique Ck∗emax is the k∗-PC with the
greatest number of cross-group edges in G.

By definition, the edge-maximum k∗-PC on G is a max-
imal k∗-PC. From mathematical intuition, the number of
cross-group edges greatly improves with the introduction of
more groups which helps to push our outputted structure to-
wards the inclusion of more groups. Additionally, the focus
on the number of edges also pushes us towards structures
with a greater balance in the number of each participants
from each group. As an example in Figure 4, suppose we
have two 3∗-PCs C1 with |Ug1 | = 9, |Ug2 | = 1, |Ug3 | = 1 and
C2 with |Ug1 | = 3, |Ug2 | = 3, |Ug3 | = 3. Despite C1 consist-
ing of more vertices, E(C2) = 27 > E(C1) = 19 and thus
C3∗
emax = C2.
Table 1 provides a summary of key notations that may be

used in this paper. Here, we formally define the problem we
wish to tackle in this work:

Definition 5. The Edge-Maximum k∗-Partite Clique Prob-
lem: Given a graph G = (U,E) with n groups ð = {g1, . . . ,
gn}, in which the nodes U are partitioned into these groups
(U = Ug1 ∪ · · · ∪ Ugn), as well as an input value k ≤ n we
wish to find the edge-maximum k∗-Partite Clique on G.

Theorem 1. The edge-maximum k∗-Partite Clique prob-
lem is NP-Hard and also NP-Hard to approximate.

Proof. Given that the edge-maximum k-Partite Clique
problem on a k-Partite graph, which has been established
to not only be NP-Hard but also NP-Hard to approximate
[30], is a special case of the edge-maximum k∗-Partite Clique
problem, it is trivial to determine that our problem is also
NP-Hard an NP-Hard to approximate.

Our problem and structure do not require intra-group con-
nections inherently, however in the event in which they are

2579



of interest to form the community a constraint can be added
which requires each user from a group to be connected to
each other user in the same group in the final community.
Modifications to our k∗-PC algorithms to suit this problem
are noted as necessary.

4. ENUMERATION ALGORITHM
The trivial solution in finding the edge-maximum k∗-PC

would be to enumerate all maximal k∗-PCs on G and then
scan them for the structure with the most edges.

Despite the k-PC being an identified structure for a con-
siderable period of time, methodologies for maximal k-PC
enumeration (when k > 2) are still costly. As k∗-PC enu-
meration is evidently expensive, it is imperative to find as
many cost saving measures as possible.

An obvious, trivial baseline for enumeration would be
finding each maximal m-PC for all values m = k, . . . , n in-
dependently (e.g. for a 2∗-PC find all 2-PCs, 3-PCs, . . . , n-
PCs) and combining the outputs to satisfy our requirement.
However, this technique is not only prohibitively slow but
also holds redundancy when moving from lower values of k
to higher ones.

We propose a method that sequentially enumerates all k∗-
PCs in a more efficient manner.

Lemma 1. A maximal (k − 1)-Partite Clique Ck−1 with
groups ð′ = {g1, . . . , gk−1} and another group gk contains all
required nodes to find a maximal k-PC Ck over the entire
graph. As a result, a set of all maximal k-PCs from ð′ and
all nodes from gk are all that is required to produce the set
of all maximal k-PCs from ð′ ∪ gk.

Proof. Suppose we have a graph G with k groups, a
maximal (k − 1)-PC Ck−1, and the final group gk not in
Ck−1. In this situation, there are four possible outcomes for
any node u in Ck−1.

1. u is not connected to any nodes in gk and thus is not
in any maximal k-PC.

2. u exists in a k-PC with only nodes in Ck−1 and gk.

3. u exists in a k-PC with nodes in g1, . . . , gk−1, but not
in Ck−1, and gk. In this situation, these nodes from ð′
will be all be found in another maximal (k − 1)-PC.

4. Any combination of Item 2 and 3 (each item may occur
multiple times).

Importantly, it is impossible to have a k-PC that does not
only contain nodes from one (and only one) maximal (k−1)-
PC and gk. This is fairly trivial, given that all nodes from
ð′ in a k-PC Ckð form a (k− 1)-PC Ck−1

ð′ which must either
be maximal or be part of a maximal structure over G.

From Lemma 1, all maximal k-PCs on G can be found by
knowing all maximal (k−1)-PCs on G, which can be further
stated in the following theorem:

Theorem 2. A maximal k-PC (where k > 3) must exist
in the combined nodes of two (and only two) maximal (k−1)-
PCs given that they share at least one common node from
exactly (k − 2) groups.

Proof. Suppose we have two maximal (k − 1)-PCs C1
and C2 with common nodes in (k−2) groups with the other
group in each clique being different (denoted by g1, g2 for
C1 and C2 respectively). Via Lemma 1 we may see that
C1 and another group is all that is required to (potentially)
form a maximal k-PC on G. By knowing C1 and C2, this is
the equivalent of having only the common nodes of C1 and
C2 and the nodes from g1 in C1 and nodes from g2 in C2
to consider.

By finding all maximal bicliques between nodes from C1 ∈
g1 and C2 ∈ g2, if we combine each of these bicliques with
the common nodes of both structures C1 ∩ C2 (which we
know to be fully connected to all nodes in C1 and C2), the
resulting combination of nodes forms a maximal k-PC on the
nodes in C1 ∪ C2, which may be maximal on G. Further-
more, all maximal k-PCs on G exist in the combinations of
two maximal (k− 1)-PCs from all such structures on G.

Theorem 2 guides the foundation of our enumeration al-
gorithm as we can use previously found results to construct
future results.

Algorithm 1: MaximalkPCEnumeration

Input : G: Input Graph
k: k value
Ck−1: All maximal (k − 1)-PCs

Output: Ck: All k-PCs
1 Ck ← ∅;
2 foreach C1 and C2 in Ck−1 do
3 if C1 and C2 share common nodes in k − 2

groups then
4 Ucommon ← Common nodes of C1 and C2;
5 UC1 ← Nodes in uncommon group of C1;
6 UC2 ← Nodes in uncommon group of C2;

7 C2 ←
MaximalBicliqueEnumeration(UC1, UC2);

8 foreach Maximal Biclique C2
i in C2 do

9 Ckmax ← C2
i ∪ Ucommon;

10 if Ckmax is maximal AND Ckmax 6∈ Ck
then

11 Ck.insert(Ckmax);
12 end

13 end

14 end

15 end

Our maximal k-PC Enumeration algorithm for a fixed k
value (Algorithm 1) takes a Graph G, the k value and all
(k − 1)-PCs (Ck−1) on G as an input. For any two maxi-
mal (k− 1)-PCs C1 and C2 in Ck−1, we check if they share
nodes in exactly (k − 2) groups (the final group in each of
the two structures must be different) (Line 3). We then de-
termine the common nodes between C1 and C2 (denoted as
Ucommon) (Line 4) as well as the nodes from the off-group in
C1 and C2 (denoted by UC1 and UC2 respectively) (Lines
5-6). We then perform a maximal biclique enumeration tech-
nique (with the current benchmark being iMBEA [46]) on
UC1 and UC2(Line 7). For each discovered maximal biclique,
we combine them with Ucommon to create a maximal k-PC
over C1 ∪ C2, which we then add to the output given it
is maximal over G (an easy check) and not already in the
output (Line 8-12).

2580



The time cost of Algorithm 1 is:

O

 ∑
C1,C2∈Ck−1

|U |+ Γ(C1, C2)

 ,

as we can check if C1 and C2 shares common nodes in (k−2)
groups in O(|U |) time. Γ(C1, C2) is the cost of performing
maximal biclique enumeration for the nodes in the two off
groups between C1 and C2 if the common node check is
successful. If it is not, Γ(C1, C2) = 0.

Algorithm 2: Maximalk*PCEnumeration

Input : G: Input Graph
k: k value

Output: Ck∗: All k∗-PCs
1 Ck∗ ← ∅;
2 Ck ← MaximalKPCEnum(G);

3 Ck∗ ← Ck∗ ∪ Ck;
4 for i = k + 1, . . . , n do
5 Ci ← kPartiteCliqueEnumeration(G, i,Ci−1);

6 Ck∗.insert(Ci);
7 end

In essence, our baseline maximal k∗-PC enumeration al-
gorithm (Algorithm 2) is simple. We first find all maximal
k-PCs using any state-of-the-art maximal k-PC enumeration
algorithm without all maximal (k − 1)-PCs as input. Then
for each other value between k and n, we call Algorithm 1
method iteratively (Lines 4-7).

Algorithm 2 takes O(Ψ+
∑n
i=k+1 Ξi) time to run where Ψ

is the cost of maximal k-PC enumeration without without
all maximal (k− 1)-PCs as input and Ξi is the cost of i-PC
enumeration using Algorithm 1, described previously.

Our memory requirements for our technique is minimal
as all objects that are accessed are either pre-loaded as part
of the input or are a member of the output. However, on
the time cost side, each call of maximal biclique enumera-
tion (Line 7 in Algorithm 1) is evidently expensive as the
problem is NP-Hard, though the search space in general on
real-world graphs is significantly smaller than the worst case
of all nodes from g1, g2 ∈ ð.

Before we continue, let us form some notation to better
separate the k-PCs in Ck.

Definition 6. k-Group Set (k-GS): Let us denote the set
of all k-PCs consisting of groups ð′ ⊆ ð, |ð′| = k as Skð′ . We
will refer to this from hereon as a k-Group Set.

In a naive implementation of our maximal k∗-PC enumer-
ation algorithm (Algorithm 2), we will call the maximum
biclique enumeration:

O

 n∑
i=k+1

∑
S1,S2∈Si

I · |S1| · |S2|


times. Where Si is the set of all i-GSs and I = 1 when S1
and S2 share exactly (k − 2) groups and I = 0 otherwise.

In the event we wish to include an intra-group connection
requirement, we use our algorithms as described above with
the following key change. When finding the initial bicliques

which will be used as the foundation to form > 2-PCs, we
first find maximal intra-group cliques for each group. Then,
instead of finding the initial bicliques normally for groups gi
and gj , we instead find the maximal bicliques between nodes
from one intra-group clique for gi and another intra-group
clique for gj . We repeat this process for the combination
of all intra-group cliques between the two groups and then
check for redundant structures. Afterwards, we continue the
algorithms as described.

4.1 Improvements to (k-1)-Partite Clique Com-
bining

To avoid these unnecessary operations when combining
(k−1)-PCs to form the set of all k-PCs, we propose multiple
heuristics. These proposed heuristics reduce both the num-
ber of common node checks, via the use of Bloom Filters, as
well as reduce the number of maximal biclique enumeration,
via systematic merging of (k − 1)-GSs, calls up to a factor
of 1

k
the number required in the baseline method.

4.1.1 Common Node Check
When determining whether two (k−1)-PCs (C1, C2) from

all such structures Ck−1 share common nodes from at least
(k − 2) groups, the trivial method would be to individually
examine all possible combinations of two structures from
Ck−1. This would imply O(|Ck−1|2) total comparisons of
(k − 1)-PCs.

Evidently, we only need to compare structures which share
(k − 2) groups in the first place, information which we can
easily maintain at minimal cost throughout the enumeration
process by grouping together (k − 1)-PCs into appropriate
k-GSs based on the groups in which they are a part of. With
this, we can use a merging approach similar to the Apriori
approach for Frequent Itemset Generation [1].

We can observe that the number of k-GSs on a graph G
with n total groups can be derived via the basic combination
formula, in which order does not matter. That is, there are(
n
k

)
k-GSs on G.

Lemma 2. When combining all (k − 1)-PCs into all k-
PCs, comparisons on

(
n
k

)
combinations of two (k − 1)-GSs

are required.

Proof. Naively, when combining all (k− 1)-PCs into all
k-PCs, we would need to perform comparisons on

(
n
k−1

)
·

(
(
n
k−1

)
−1) combinations of (k−1)-GSs to produce all max-

imal k-PCs. However, this is not necessary given that there
are

(
k
k−1

)
) combinations of two (k − 1)-GSs which produce

the same k-GS.
For example, suppose we have S2

g1,g2 , S2
g1,g3 , S2

g2,g3 and
we wish to form S3

g1,g2,g3 . Despite there being three possible
combinations of the 2-GSs which will sufficiently create the
same 3-GS, we require only one to produce it perfectly.

In fact, if we do not conduct comparisons on any unnec-
essary combinations of two (k − 1)-GSs when attempting
to form all k-GSs, we only need to perform

(
n
k

)
combina-

tions of two (k − 1)-GSs. Rather evidently, we know that(
n
k

)
<
(
n
k−1

)
· (
(
n
k−1

)
− 1) for all values of n, k > 0.

There are of course also costs associated with determin-
ing if two (k − 1)-PCs share the sufficient common nodes
in order to even possibly create a k-PC. When finding com-
mon elements between two sets, on larger datasets even this
process can be costly if not treated appropriately.

2581



One notable data structure we can leverage is the Bloom
Filter [6] or, if memory costs are not a concern, perfect
“error-free” hashing methods. We will henceforth operate
under the assumption our Bloom Filter has 0% chance of
a false positive the description of our technique though in
actual implementation a further check is necessary past the
initial Bloom Filter check.

Algorithm 3: CommonNodeCheck

Input : C1, C2: Maximal (k − 1)-PCs which share
(k − 2) groups
B: Set of Bloom Filters for each group in

C1
Output: out: Boolean Output

1 foreach Group gi which is in both C1 and C2 do
2 contain← false;
3 foreach Node u ∈ gi in C2 do
4 if Bi.contains(u) then
5 contains← true;
6 end

7 end
8 if !contains then
9 return out = false;

10 end

11 end
12 return out = true;

Algorithm 3 highlights a straightforward method to deter-
mine if two (k− 1)-PCs C1 and C2, sharing (k− 2) groups,
share nodes in those groups. Suppose C1 consists of groups
{g1, . . . , gk−1} and B = {B1, . . . , Bk−1} is a set of Bloom
Filters for those groups with all nodes in C1 loaded into
their corresponding filter. For each group (gi) that is shared
between C1 and C2, we use the corresponding Bloom Filter
(Bi) to check if a common node is shared. This method is
particularly attractive as it takes O(|C1|) time and memory
to build the set of Bloom Filters and O(|C2|) time to find
common nodes.

When comparing only two structures to each other, the
cost of creating a Bloom Filter may not necessarily offset the
minimal gains. Ultimately, our aim should be to maximise
the number of uses for each Bloom Filter and avoid having
to remake a filter when possible.

If we have a (k − 1)-GS Sk−1
ð′ on G, it is possible to form

a total of up to (n− k+ 1) k-GSs with the inclusion of that
many other (k − 1)-GSs. If we only create Bloom Filters
for the structures in Sk−1

ð′ (we henceforth refer to this as
a pivot), we can use these filters to perform the necessary
common node checks as opposed to creating Bloom Filters
for up to (n− k + 1) (k − 1)-GSs which may save us a non-
trivial accumulated time cost.

4.1.2 Reducing Maximal Biclique Enumeration Calls
Another simple heuristic we may adopt when selecting

which (k − 1)-GS to use as the pivot is choosing the one
which contains the least number of (k − 1)-PCs (i.e. |Sk−1

ð′ |
is the smallest). This not only further reduces the total
number of Bloom Filters we create when running the com-
bining algorithm but also reduces the number of maximal
biclique enumeration calls.

Lemma 3. When trying to form a k-GS Sk consisting of
groups ð and given a set of (k − 1)-GSs S in which each
(k − 1)-GS contains (k − 1) groups of ð, only:

O (min{|S1| · |S2| : ∀S1, S2 ∈ S)

maximal biclique enumeration calls are required.

Proof. From mathematical observation, there are
(
k
k−1

)
possible combinations of (k−1)-GSs which may form a spe-
cific k-GS S. Therefore, by selecting the two (k − 1)-GSs
S1, S2 ∈ S whose product of (k − 1)-PCs contained within
them is the smallest, we require at most |S1| · |S2| maximum
biclique enumeration calls to form S.

Compared to the naive solution where any two (k − 1)-
PCs which share nodes in (k−2) groups requires a maximal
biclique enumeration call, by only performing the action on
(k − 1)-GSs which satisfy Lemma 3 we require potentially
as 1

k
many calls compared to the baseline. Additionally,

choosing the smallest product allows us to attempt to avoid
excess unnecessary calls compared to selecting two random
(k − 1)-GSs at random.

4.1.3 Improved Enumeration Algorithm

Algorithm 4: ImprovedMaximalkPCEnumeration

Input : Sk−1: All (k − 1)-GSs
Output: Sk: All k-GSs

1 Sk ← ∅; Starget ← all possible k-GSs given Sk−1;
2 while Starget is not empty do
3 S1← Smallest (k − 1)-GS which may produce a

structure in Starget;
4 Scandidates ← ∅;
5 foreach Possible k-GS S created with S1 do
6 S2← Smallest (k − 1)-GS that may be

combined with S1 to produce S;
7 Scandidates.insert(S2);
8 Starget.delete(S);

9 end
10 foreach (k − 1)-PC C1 in S1 do
11 B ← Bloom Filters populated by nodes in

C1;
12 foreach (k − 1)-GS S in Scandidates do
13 Sdiscovered ← ∅;
14 foreach (k − 1)-PC C2 in S do
15 if CommonNodeCheck(C1, C2, B)

then
16 Sdiscovered.insert(Combine(C1, C2));

17 end

18 end
19 Sk.insert(Sdiscovered);

20 end

21 end

22 end

Algorithm 4 details our complete improved combining al-
gorithm which leverages both previously discussed heuristics
as well as utilising the k-GS idea to avoid wasted operations
whilst guaranteeing all outputs are reached. We input all
(k − 1)-GSs (which contain all maximal (k − 1)-PCs) and

2582



output all k-GSs (containing all maximal k-PCs). We de-
fine Starget as all possible k-GSs that may be formed on G
(Line 1). We then select the (k − 1)-GS S1, which contains
the least number of maximal (k − 1)-PCs, that may pro-
duce a k-GS in Starget (Line 3) which allows us to leverage
Lemma 3.

Then for each create-able k-GS S, we select the smallest
(k − 1)-GS S2 which may be combined with S1. Our set of
all of these (k − 1)-GSs is called Scandidates. When S1 and
S2 have been properly identified, S is removed from Starget
(Lines 5-9).

Now, we begin the merging process. For each maximal
(k−1)-PC C1 in S1 we create a Bloom Filter for each of its
groups containing the corresponding nodes (Line 11). We
then check all maximal (k − 1)-PCs C2 in Scandidates to
see if they have satisfied the requirements for combining. If
they do, we combine them using the method discussed in
Algorithm 1 and add the result (if any) to the output whilst
making sure to keep note of which k-GS each maximal k-PC
output belongs to (Line 12-19).

We repeat this entire process until there are no more k-
GSs that can be created (i.e. Starget = ∅). This algorithm
requires at most (k − 1) Bloom Filters in memory at any
given time, with the size of each Bloom Filter being variable
to suit individual system limitations (with the drawback of
increased false positive likelihood and subsequent associated
costs with checking correctness).

The time cost of Algorithm 4 is:

O

 ∑
S1∈Sk−1

∑
C1∈S1

|C1| ·

 ∑
S2∈Sk−1

I ·
∑
C2∈S2

|C2|+ Γ(C1, C2)


where I = 1 if S1 and S2 (which forms a specific k-GS) are
the pair of (k−1)-GSs which have have the smallest product
as per Lemma 3. Γ(C1, C2) is the cost of maximal biclique
enumeration for the nodes in the two off groups of C1 and
C2.

By using Algorithm 4 instead of the baseline (Algorithm
1), we reduce the total number of common node checks to
form all maximal k-GSs from Θ((

(
n
k−1

)
· (
(
n
k−1

)
− 1))) to

Θ(
(
n
k

)
). Additionally, we require as potentially as low as 1

k
the number of maximal biclique enumeration calls compared
to the baseline solution.

5. EDGE-MAXIMUM ALGORITHM
We will now propose heuristics which help directly target

the edge-maximum k∗-PC structure whilst avoiding enumer-
ating all maximal k∗-PCs. We propose two key heuristics,
that being a pruning value and an inexpensive upper bound
structure.

5.1 Epotential Pruning Value
The first, most straightforward technique is to know when

to abandon a structure or search that is unable to produce
the desired output.

By storing the current number of edges (Emax) in the
largest structure discovered so far, we then aim to prune un-
promising searches later down the line. We can accomplish
quite simply by calculating the maximum possible number of

edges that may exist based on the number of current nodes
in the structure to be expanded on plus the remaining can-
didate nodes. This can quickly be done via:

Epotential =
∑

(gi 6=gj)∈ð′, i<j

|Ugi | · |Ugj | (1)

for all such nodes. If Epotential < Emax, we can stop search-
ing the current structure. Alternatively, as a tighter bound,
you may redefine Emax as the number of edges connecting
these nodes. However this method is more expensive as it re-
quires a scan of the edge list as opposed to a straightforward
calculation.

5.2 Upper Bound Structure
An upper bound structure is one that holds a k∗-PC as a

subgraph inside of it. By defining an upper bound structure
which is less costly to compute compared to k∗-PC enuma-
ration, we can quickly prune nodes which cannot be included
in the edge-maximum k∗-Partite Clique.

5.2.1 (a1, . . . , an)-Core
One upper bound structure is the (a1, . . . , an)-core, which

is a variation of the well established k-core structure [32]
adapted to work on a k-Partite graph scenario. We define
it as follows:

Definition 7. (a1, . . . , an)-core: For a graph G with gro-
ups ð = {g1, . . . , gn}, we say a subgraph A is a (a1, . . . , an)-
core if each node ui ∈ gi in A is connected to aj nodes from
gj in A for all j = {1, . . . , n}, i 6= j. We may use the notation
A(a1,...,ak) to denote a (a1, . . . , an)-core.

An important note is that we may set the value of any aj
value to be equal to 0. This essentially means that we are
not interested in gj for this particular core.

We define a maximal (a1, . . . , an)-core as a (a1, . . . , an)-
core that is not contained in a larger (a1, . . . , an)-core. That
is for any maximal (a1, . . . , an)-core A, there exists no
(a1, . . . , an)-core A′ such that A ∈ A′.

Firstly, we demonstrate that the (a1, . . . , an)-core may
serve as an upper bound structure for the k∗-PC.

Theorem 3. A maximal k∗-Partite Clique Ck∗ that ex-
ists on G must be located inside of a maximal (a1, . . . , an)-
core A(a1,...,ak) where ai ≤ |Ugi |, Ugi ∈ Ck∗.

Proof. Firstly we note that the (a1, . . . , an)-core, similar
to the k-core, obeys a nested property. If we have a maximal
(a1, . . . , an)-core Aa, then it must be located in a maximal
(a′i, . . . , a

′
n)-core Aa′ where all ai ≥ a′i,∀i = {1, . . . , n}. This

statement is fairly trivial to verify, given that if a node uj ∈
gj , Aa is connected to ai (i 6= j) nodes from gi in Aa then it
must be connected to a′i nodes in Aa.

To verify Ck∗ ⊆ A(a1,...,an) is equally trivial. Every node

uj ∈ gj in Ck∗ is connected to |Ugi | nodes from gi in Ck∗

(i 6= j) as per the definition of a k-PC.
From these two properties, we can verify Theorem 3 to be

true.

Next, we introduce an algorithm for finding maximal (a1,
. . . , an)-cores from an input graph, similar to existing max-
imal k-core enumeration algorithms [5].

Algorithm 5 highlights our method for maximal (a1, . . . ,
an)-core enumeration on any given graph G. Firstly for each

2583



Algorithm 5: MaximalCoreEnumeration

Input : G: Input Graph with n groups
a: Values for {a1, . . . , an}

Output: A: All maximal (a1, . . . , an)-cores
1 A← ∅;
2 foreach Node u ∈ gi in G do
3 {δu1, . . . , δun} ← # Edges from u to g1, . . . , gn;
4 end
5 foreach Node u ∈ gi in G do
6 if δuj < aj for any j = {1, . . . , n}, i 6= j then
7 G.remove(u);
8 DecremementNeighbours(u);

9 end

10 end
11 foreach Connected Subgraph Aconnected in G do
12 A.insert(Aconnected);
13 end

node u ∈ gi in G, we determine its degree value to each
other group (denoted by {δu1, . . . , δun}), where the value of
δui = 0 (Lines 2-4). Then for each node, we examine if
any of their degree values are less than the desired input
values except the nodes own group (i.e. δuj < aj , i 6= j)
(Line 5). If any value fails to reach the requirement, we
remove u and all edges connected to u from the graph and
then decrement all previous neighbours of u. If any of them
then subsequently fall below the degree requirement, then
we also remove them from G and decrement their neighbours
(Lines 7-8). The resulting connected subgraphs of G are the
maximal (a1, . . . , an)-cores (Lines 11-13).

Similar to Batagelj’s maximal k-core enumeration algo-
rithm via decomposition [5] (which runs in O(|E|) time),
our enumeration algorithm runs in O(|Ecross−group|) time
(as we do not consider inter-group edges) since we traverse
each edge at most three times, twice when calculating degree
values and once if we must remove a node.

We utilise the structure as a pruning tool to remove nodes
that cannot exist in a k-PC Ckð′ by setting the value of ai = 1
if gi ∈ ð′ and ai = 0 otherwise. We utilise this binary
allocation as it guarantees all k-PCs on groups ð′ will be
found, as if any node from a given group is not connected to
any nodes from another group, it cannot be in a k-PC. This
upper bound structure allows us to narrow down the search
space when finding the k-PC.

Additionally if we find the (a1, . . . , an)-core consisting of
Ckð′ and all the nodes in groups ð/ð′, we can derive the
Epotential of any k∗-PC which may be produced by merging
Ckð′ , thus potentially pruning it for future merges.

5.2.2 (b1, . . . , bn)-Truss
Another upper bound structure we have designed for this

work is a (b1, . . . , bn)-truss (n ≥ 3), based on the established
k-truss structure [9]. Naturally, the standard k-truss idea
does not translate directly into a bipartite situation (due to
the impossibility of triangles).

We will utilise the majority of standard terminology re-
garding trusses in our definition. We slightly modify the def-
inition of triangle (4u,v,w) such that each node that makes
the triangle must be a member of a different group (u ∈
gu, v ∈ gv, w ∈ gw, u 6= v 6= w).

We maintain the idea of the ‘support’ of an edge (denoted

by sup(e,G)), being the number of triangles in G which
include edge e. Further details regarding general truss ter-
minology can be found in [9]. We define our structure as
follows:

Definition 8. (b1, . . . , bn)-truss: For a graph G with gro-
ups ð = {g1, . . . , gn}, we say a subgraph B is a (b1, . . . , bn)-
truss if each edge e connecting a nodes from groups gi and
gj has sup(e,G) ≥ min{(bi − 2), (bj − 2)}. We may use the
notation B(b1,...,bn) to denote a (b1, . . . , bn)-truss.

We show that the (b1, . . . , bn)-truss is an upper bound
structure of a k-PC.

Theorem 4. A maximal k-Partite Clique C with groups
(g1, . . . , gn) that exists on G must be located inside a maxi-
mal (b1, . . . , bn)-truss B(b1,...,bn) where bi ≤

∑
gj 6=gi(|Ugj |)+

2, Ugj ∈ C.

Proof. We can trivially prove the nested property of the
(b1, . . . , bn)-truss structure using the same logic as the proof
for Theorem 3. By the definition of the k-Partite Clique, we
can determine the support of any edge e connecting nodes
u ∈ gα and v ∈ gβ to have support min{(

∑
gi 6=gα |Ugi |) +

2,
∑
gj 6=gβ

|Ugj |) + 2}. As a result, a k-PC may also be de-

fined as a (
∑
gi 6=g1 |Ugi |)+2, . . . ,

∑
gj 6=gn |Ugj |)+2)-truss.

Our maximal (b1, . . . , bn)-truss enumerating algorithm is
based on the existing k-truss decomposition algorithms [9].

Algorithm 6: MaximalTrussEnumeration

Input : G: Input Graph with n groups
b: Values for {b1, . . . , bn}

Output: B: All maximal (b1, . . . , bn)-trusses
1 B ← ∅;
2 foreach Edge e(u ∈ gi, v ∈ gj) in G do
3 sup(e)← Support of e;
4 end
5 foreach Edge e(u ∈ gi, v ∈ gj) in G do
6 if sup(e) < min{bi − 2, bj − 2} then
7 G.remove(e);
8 foreach Node w ∈ neigh(u) ∩ neigh(v) do
9 ReduceSupport(u,w);

10 ReduceSupport(v, w);

11 end

12 end

13 end
14 foreach Connected Subgraph Bconnected in G do
15 B.insert(Bconnected);
16 end

Algorithm 6 details the maximal (b1, . . . , bn)-truss decom-
position algorithm. Firstly, we calculate the support of each
edge e (Line 2-4) which can be done in O(|Ecross−group|1.5)
time. For each edge e(u ∈ gi, v ∈ gj) with sup(e) < min{bi−
2, bj − 2}, we delete it (Line 6-7). Then, for each node
w connected to both u and v (which previously formed
4u,v,w, we reduce the support of edges e(u,w) and e(v, w)
(ReduceSupport()) and check they are still valid in our struc-
ture (Line 8-11). If their support is no longer valid, we also
remove them from G and reduce the support of their affected
edges.

2584



Algorithm 6 runs in O(
∑
e(u,v)∈E deg(u) + deg(v)) time

similar to the k-truss algorithm. We may simplify that to
O(|U |2|Ecross−group|) time, which is polynomial. If all val-
ues of b are equal, we may utilise a variation of Wang and
Cheng’sO(|E|1.5) time k-truss enumeration algorithm which
utilises sorting to streamline the process [39].

Whilst maximal (b1, . . . , bn)-truss decomposition is more
expensive than maximal (a1, . . . , an)-core decomposition, it
is still polynomial. Furthermore, we can show that it is
a tighter bound than the (a1, . . . , an)-core in certain situa-
tions.

Theorem 5. A (b1, . . . , bn)-truss B(b1,...,bn) is a subgraph
of a (a1, . . . , an)-core A(a1,...,an) when bi ≥

∑
j 6=i aj+1 given

the largest b value has two instances in (b1, . . . , bn).

Proof. Since we require that the largest b value must
appear twice, each node u ∈ gi must be connected to at least
one edge with support bi. Therefore, u must be connected
to at least bi − 1 =

∑
j 6=i aj nodes in other groups.

Since the nested property holds true, similar to how the
k-truss is tighter variation of the k-core in regards to prun-
ing nodes to find cliques, the (b1, . . . , bn)-truss prunes more
nodes than the (a1, . . . , an)-core with the aim of finding k-
PCs with the trade-off of a more expensive (yet still poly-
nomial) runtime.

When creating an upper bound structure for a k-PC Ckð′ ,
we set the value of bi = k if gi ∈ ð′, since each edge connect-
ing u ∈ gi must be connected to at least (k−2) other groups.
We set bi = +∞ otherwise, as to not include edges connect-
ing nodes from groups we are currently unconcerned with.
If any truss produced is missing nodes from any required
group, we discard it.

We may further find a (a1, . . . , an)-core consisting of the
nodes in the found truss and all nodes in groups ð/ð′ to
prune the found truss for future merges using Epotential.

6. EXPERIMENTAL STUDY
In order to demonstrate the effectiveness and efficiency of

our algorithm and heuristics, we have conducted extensive
experiments on both real and semi-synthetic networks. In
this section, we first present the experimental setting and
then analyse the experimental results.

6.1 Experimental Setting

6.1.1 Datasets
All networks we utilise in our experimentation are publicly

available1, though some have been artificially labelled (thus
semi-synthetic) in order to be eligible towards our problem
(namely, having a known group).

To generate synthetic data in a way that is realistic, we
utilise the method developed by Nettleton [27] which com-
bines distribution profiles, real demographic data as well as
the inherent ground truth communities in order syntheti-
cally populate a graph in a realistic manner. This allows
us to capture the realistic likelihood that users connected
to each other in traditional communities are more likely to
share at least some common attributes.

The following datasets are used:

1All datasets are from https://snap.stanford.edu/data/

• p2p-Gnutella4: We assign each user an educational
group (from 5 possible labels) based on 2019 informa-
tion by the United States Census Bureau [36].

• musae-Facebook: Each page is categorised into one
of five groups (Politicians, Governmental Organisa-
tions, Television Shows, Companies and Undefined).

• com-Amazon: We assign each node a label from 8
professions, based on information by the U.S. Bureau
of Labor Statistics [34].

• com-DBLP: We assign each author one of seven reli-
gious groups based based on information and demo-
graphic distribution from the Pew Research Center
[29].

• com-Youtube: We assign each user one of 16 groups
based on age and sex demographics from information
provided by U.S. Census Bureau [35].

These datasets are commonly used in the field of com-
munity detection [41]. Further information regarding these
datasets may be found in Table 2.

Table 2: Dataset Information
Dataset Groups |U | |Ecross−group|
Gnutella 5 10,876 23,419
Facebook 5 22,470 19,622
Amazon 8 334,863 535,624
DBLP 7 317,080 602,872

Youtube 16 1,134,890 2,056,737

6.1.2 Implementation
All code is implemented in Standard C++ and ran on

a Intel(R) Core i7-8565U CPU @ 1.80GHz with 16GB of
RAM.

6.2 Experimental Results
In this subsection we report and examine the results of

our experimentation.

6.2.1 Effectiveness Comparison
The metric that we will use to examine diversity is the

Entropy value (E) [23] which is used to determine the di-
versity of a collection of items (from multiple groups) in a
set of size n. To derive the E value we can use the following
formula:

E =

n∑
i=1

πi ln(
1

πi
) (2)

πi represents the proportion of users from group i in the
community. If no member of group i is in our current com-
munity, we set the value of ln( 1

πi
) = 0. We then normalise

this E value into an Entropy Index value (EI) between 0
and 1. An EI value of 0 implies that the community has
minimal diversity (i.e. there exists only one group in the
community) whilst an EI value of 1 implies that the com-
munity has maximal diversity (i.e. all groups have exactly
equal participation).

2585



6.2.2 Effectiveness Analysis
As a baseline to examine the diversity of the communities

discovered by our method, we compare the top 500 k∗-PCs
(based on the number of cross group edges) to the top 500
(a1, . . . , an)-core communities and top 500 (b1, . . . , bn)-truss
communities for appropriate values of ai and bi. The Core
baseline is the set of all (a1, . . . an)-cores where k a values are
set to 1 and the remaining are set to 0, which produces an
output structure with at least k groups. The Truss baseline
is the set of all (b1, . . . , bn)-trusses of > k groups where all bi
values are set to 3 (i.e. each edge is a member of at least one
triangle) when gi is to be included in the truss or ∞ as to
not include gi in the truss structure. If a truss is outputted
that contains less than k groups, we erase it.

Figure 5: Boxplots detailing the distribution of the
Entropy Index values for the Top 500 outputs over
the Amazon and DBLP datasets for the Core and
Truss baseline compared to the k∗-PC.

From Figure 5, we can see that the EI value of the top 500
k∗-PCs compared to the top 500 Core and Truss baselines
(with members from at least k groups) on the Amazon and
DBLP datasets displays an increased effectiveness from our
model.

Figure 6 allows us to observe the top 500 k∗-PCs on both
the Amazon and DBLP datasets. It is clear that as the k
value increases, the diversity of our outputted structures also
increases due to the inherent requirement of more groups.
Importantly, the EI value produced by the top k∗-PC cannot
be worse than the EI value of the top < k∗-PC. An impor-
tant note is that there exists no 7-PC and subsequently no
8-PC on the Amazon dataset due to the way the groups
were synthetically generated. This type of problem may of-
ten exist on real world datsets with either many groups or

Figure 6: Boxplots detailing the distribution of the
Entropy Index values for the Top 500 k∗-PC outputs
over the Amazon and DBLP datasets for growing
values k.

Table 3: The runtime (seconds) of the three enu-
meration methods when finding 2∗-PCs.

Dataset Baseline RandomProd LowestProd
Gnutella 2,331 566 318
Facebook 1,539 683 340
Amazon - 203,343 125,705
DBLP - - 141,523

groups with extremely small representation which further
illustrates the need for the flexibility afforded by the k∗-PC
compared to the standard k-PC.

By examining our effectiveness, we can draw the conclu-
sion that the communities outputted by our k∗-PC structure
is a reasonable structure for the problem of finding diverse
communities on networks.

6.2.3 Efficiency Comparison
We examine the runtime cost of our baseline enumeration

algorithm detailed in Section 4 in comparison to the trivial
baseline consisting of independent k-Partite Enumeration
for k = 2, . . . , n over all our datasets. Then we examine the
effects of our heuristics (introduced in Section 4.1) in terms
of improvements to efficiency when enumerating all k∗-PCs
over the dataset.

Furthermore, we examine the efficiency gains of our edge-
maximum specific improvements (detailed in Section 5). In
particular we look at the costs associated with (a1, . . . , an)-
core decomposition and the effects the upper bound struc-
ture has on the edge-maximum k∗-Partite Clique problem.

6.2.4 Efficiency Analysis
When enumerating all k∗-PCs on a given dataset, we con-

sider the three following methods:

• Baseline: The baseline algorithm detailed in Algo-
rithm 2 in Section 4 with no heuristics selected to
avoid unnecessary comparisons and maximal biclique
enumeration calls.

• RandomProd: An improved heuristic algorithm which
utilises the Bloom Filter technique to avoid unneces-
sary comparisons when finding common nodes between
two (k−1)-PCs. In Random Product, the (k−1)-GSs
which are to be merged are chosen at random.

• LowestProd: The same heuristic implementation of
Bloom Filters as in RandomProd with the added heuris-
tic that the smallest (k − 1)-GSs are chosen to build
Bloom Filters and compare groups, which attempts to
reduce the number of maximal biclique enumeration
calls. This is the method described in Algorithm 4.

To demonstrate the power of the heuristics on k∗-PC
enumeration, we examine the 2∗-PC enumeration scenario,
which is the most expensive enumeration procedure that can
be performed over any dateset as any other k∗-PC (k > 2)
is a subset of it. RandomProd is used to demonstrate the
effects of the LowestProd heuristic.

Table 3 illustrates the runtime associated with each of the
enumeration scenarios on all four datasets. Notably, Base-
line for Amazon and DBLP as well as Random Product for
DBLP did not terminate after being ran for 60 hours due

2586



Table 4: Runtime (seconds) required to find the
edge-maximum 3∗-PC.

Dataset Enumeration Core Truss
Gnutella 190 128 15
Facebook 210 7 6
Amazon 93,422 11,041 9,721
DBLP 114,744 62,693 42,149

Youtube - - 154,683

Figure 7: Effects of runtime for increasing values of
k over Amazon and DBLP.

to the size of the dataset. The Youtube dataset did not ter-
minate using any three of the enumeration techniques given
its size. It is clear to see that the two heuristic approaches
in RandomProd and LowestProd provide gains in reducing
the runtime of k∗-PC enumeration, with a reasonable mar-
gin between RandomProd and LowestProd. In particular,
LowestProd is observed to hold considerable improvements
over the trivial Baseline.

Additionally, we wish the examine the improvement in ef-
ficiency when observing the edge-maximum specific heuris-
tics. We utilise the Epotential pruning value when conduc-
ing our search. We set the Baseline as k∗-PC Enumera-
tion using the LowestProd method. For our heuristic meth-
ods, one method utilises the (a1, . . . , an)-core (using the
binary allocation method described in Section 5.2.1.) as
the upper bound structure whilst the other one uses the
(b1, . . . , bn)-truss (using the allocation method described in
Section 5.2.2.) as the upper bound structure. We call them
Core and Truss respectively.

From Table 4, we can see the improvement in runtime for
our heuristic methods for finding the edge-maximum 3∗-PC
on our datasets. Notably, both Core and Truss result in
significant improvements due to the pruning of nodes which
are unable to be a part of our final output. Both Enumer-
ation and Core did not terminate after 100 hours for the
Youtube dataset, but Truss terminated within a reasonable
time frame indicating the effectiveness of that heuristic on
that dataset. Being able to reasonably reduce the search
space in polynomial time when conducing maximal biclique
enumeration, which is the bottleneck of our algorithm, can
result in significant gains in performance. Additionally we
can see that Truss solution is in general faster than Core,
despite (b1, . . . , bn)-truss enumeration being more expensive
than (a1, . . . , an)-core enumeration, since the truss is tighter
than the core.

From Figure 7, we examine the effects of our heuristic
methods as the value of k increases over the Amazon and
DBLP datasets. From this, we observe the significant effects
of Core and Truss when pruning nodes for larger k values.

7. DISCUSSION AND FUTURE WORK
From our experimental results we may conclude that our

structure does indeed model diverse communities relative to
the network it exists upon. Given that the field of commu-
nity detection for large, diverse communities is largely in its
infancy there are multiple potential future work topics.

Firstly, we may look to improve the efficiency of the algo-
rithms described in this paper by exploring other techniques
used in network analysis and more specifically subgraph enu-
meration. Other ideas, such as leveraging previously dis-
covered maximal bicliques when combining two (k− 1)-PCs
offer potentially significant time cost savings as a trade-off
for memory requirements. Furthermore, local search ap-
proaches are an interesting direction for very large graphs.
Further exploration of the (ai, . . . , an)-core and (b1, . . . , bn)-
truss structures are also interesting.

Additionally, work may be conducted on determining a
suitable value of k given the inherent properties displayed by
the input network. This area is of exceptional interest as it
allows for the removal of either trial and error or examining
values of k which are ‘too low’, which are simultaneously the
most expensive queries.

8. CONCLUSION
In conclusion, we tackle the problem of finding large com-

munities of diverse users on a network by proposing the k∗-
Partite Clique (with a particular focus on the edge-maximum
k∗-Partite Clique problem) as a means of modelling these
communities. Given the problem was previously undefined,
we show that it is NP-Hard and NP-Hard to approximate.
Importantly, we demonstrate using the Entropy Index as a
means of measuring diversity that our structure is indeed
more diverse relative to a (a1, . . . an)-core and (b1, . . . , bn)-
truss baseline. We developed a non-trivial baseline enumer-
ation algorithm for all k∗-PC over a network as well as in-
troducing multiple heuristics that significantly reduce the
costs associated with running our algorithms. Additionally,
we propose and demonstrate some other heuristics aimed at
finding the edge-maximum k∗-PC over the network. Our
extensive experiments conducted on real-world graphs cor-
roborate both the effectiveness and efficiency claims in this
work.

Acknowledgements
Lei Chen’s work is partially supported by the Hong Kong
RGC GRF Project 16207617 , CRF Project C6030-18G, C10
31-18G, C5026-18G, AOE Project AoE/E-603/18, China
NSFC No. 61729201, Guangdong Basic and Applied Ba-
sic Research Foundation 2019B151530001, Hong Kong ITC
ITF grants ITS/044/18FX and ITS/470/18FX, Microsoft
Research Asia Collaborative Research Grant, Didi-HKUST
joint research lab project, and Wechat and Webank Re-
search Grants. Yue Wang’s work is partially supported by
Guangdong Basic and Applied Basic Research Foundation
2019A1515110473. Corresponding Author: Yue Wang.

2587



9. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. VLDB’94, pages
487–499, 1994.

[2] L. Akoglu. Quantifying political polarity based on
bipartite opinion networks. ICWSM, pages 2–11, 2014.

[3] T. Ali, C. J. Nilsson, J. Weuve, K. B. Rajan, and
C. F. M. D. Leon. Effects of social network diversity
on mortality, cognition and physical function in the
elderly: a longitudinal analysis of the chicago health
and aging project (chap). JECH, 72(11):990–996,
2018.

[4] V. Bakir and A. Mcstay. Fake news and the economy
of emotions. Digit. Journal., 6(2):154–175, 2017.

[5] V. Batagelj and M. Zaveršnik. An o(m) algorithm for
cores decomposition of networks. 2003.

[6] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. CACM, 13:422–426, 1970.

[7] A. Bogdanov, D. Khovratovich, and C. Rechberger.
Biclique cryptanalysis of the full aes. ASIACRYPT,
pages 344–371, 2011.

[8] J. Brown, A. J. Broderick, and N. Lee. Word of mouth
communication within online communities:
Conceptualizing the online social network. J. Interact.
Mark., 21(3):2–20, 2007.

[9] J. Cohen. Trusses: Cohesive subgraphs for social
network analysis. Technical Report MD 20755-6513,
National Security Agency, 9800 Savage Road, Fort
Meade, 2008.

[10] M. Conover, J. Ratkiewicz, M. Francisco,
B. Gonçalves, F. Menczer, and A. Flammini. Political
polarization on twitter. ICWSM, pages 89–96, 01 2011.

[11] T. H. Cox, S. A. Lobel, and P. L. McLeod. Effect of
ethnic group cultural differences on cooperative and
competitive behaviour on a group task. AMJ,
34(4):827–847, 1991.

[12] N. Eagle, M. Macy, and R. Claxton. Network diversity
and economic development. Science,
328(5981):1029–1031, 2010.

[13] U. Feige and S. Kogan. Hardness of approximation of
the balanced complete bipartite subgraph problem.
Technical Report MCS04-04, Weizmann Institute,
Rehovot 76100, Israel, 2004.

[14] R. B. Freeman and W. Huang. Collaborating with
people like me: Ethnic co-authorship within the us.
NBER, 2014.

[15] K. Garimella, G. D. F. Morales, A. Gionis, and
M. Mathioudakis. Reducing controversy by connecting
opposing views. WSDM, pages 81–90, 2017.

[16] N. Gillis and F. Glineur. A continuous
characterization of the maximum-edge biclique
problem. J. Global Optim., 58(3):439–464, 2013.

[17] M. Girvan and M. Newman. Community structure in
social and biological networks. PNAS, 99:7821–7826,
2001.

[18] T. Grünert, S. Irnich, H.-J. Zimmermann,
M. Schneider, and B. Wulfhorst. Finding all k-cliques
in k-partite graphs, an application in textile
engineering. Comput. Oper. Res., 29(1):13–31, 2002.

[19] X. Huang, H. Cheng, R.-H. Li, L. Qin, and J. Yu.
Top-k structural diversity search in large networks.

VLDBJ, 24, 02 2015.

[20] V. Hunt, D. Layton, and S. Prince. Diversity matters.
McKinsey & Company, 2015.

[21] A. Lancichinetti, S. Fortunato, and F. Radicchi.
Benchmark graphs for testing community detection
algorithms. Phys. Rev. E, 78(4), 2008.

[22] Q. Liu, Y.-P. P. Chen, and J. Li. k-partite cliques of
protein interactions: A novel subgraph topology for
functional coherence analysis on ppi networks. J.
Theor. Biol., 340:146–154, 2014.

[23] D. S. Massey and N. A. Denton. The dimensions of
residential segregation. SF, 67(2):281–315, 1988.

[24] A. Matakos and A. Gionis. Tell me something my
friends do not know: Diversity maximization in social
networks. ICDM, 1:327–336, 2018.

[25] M. Mirghorbani and P. Krokhmal. On finding
k-cliques in k-partite graphs. Optim. Lett.,
7:1155–1165, 2013.

[26] A. P. Mukherjee and S. Tirthapura. Enumerating
maximal bicliques from a large graph using
mapreduce. IEEE Big Data, 10, 2014.

[27] D. F. Nettleton. A synthetic data generator for online
social network graphs. SNAM, 6:1–33, 2016.

[28] R. Peeters. The maximum edge biclique problem is
np-complete. Discret. Appl. Math., 131(3):651–654,
2003.

[29] Pew Research Center. America’s changing religious
landscape. Technical Report RLS-08-06, 2015.

[30] C. Phillips, K. Wang, E. Baker, J. Bubier, E. Chesler,
and M. Langston. On finding and enumerating
maximal and maximum k-partite cliques in k-partite
graphs. Algorithms, 12(1):23, 2019.

[31] M.-É. Roberge and R. V. Dick. Recognizing the
benefits of diversity: When and how does diversity
increase group performance? HRMR, 20(4):295–308,
2010.

[32] S. B. Seidman. Network structure and minimum
degree. Soc. Netw., 5(3):269–287, 1983.

[33] P. Turan. On an external problem in graph theory.
KöMaL, 48:436–452, 1941.

[34] U.S. Bureau of Labor Statistics. Employment by
major industry sector, 2019.

[35] U.S. Census Bureau. Age and sex compositions: 2010,
2011.

[36] U.S. Census Bureau. Educational attainment in the
united states: 2019, 2020.

[37] M. D. Vicario, G. Vivaldo, A. Bessi, F. Zollo,
A. Scala, G. Caldarelli, and W. Quattrociocchi. Echo
chambers: Emotional contagion and group
polarization on facebook. Sci. Rep., 6(1), 2016.

[38] H. Wang, W. Wang, J. Yang, and P. Yu. Clustering by
pattern similarity in large data sets. IEEE Big Data,
3:394–405, 2002.

[39] J. Wang and J. Cheng. Truss decomposition in
massive networks. PVLDB, 5(9):812–823, 2012.

[40] J. Wang, J. Cheng, and A. W.-C. Fu.
Redundancy-aware maximal cliques. SIGKDD, pages
122–130, 2013.

[41] J. Yang and J. Ledkovec. Defining and evaluating
network communities based on ground-truth. ICDM,
pages 745–754, 2002.

2588



[42] J. Yang, J. Mcauley, and J. Leskovec. Community
detection in networks with node attributes. ICDM,
2013.

[43] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang.
Diversified top-k clique search. ICDE, pages 387–398,
2015.

[44] F. Zhang, L. Yuan, Y. Zhang, L. Qin, X. Lin, and
A. Zhou. Discovering strong communities with user
engagement and tie strength. DASFAA, pages
425–441, 2018.

[45] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin.

When engagement meets similarity: efficient (k,
r)-core computation on social networks. PVLDB,
10(10):998–1009, 2017.

[46] Y. Zhang, C. A. Phillips, G. L. Rogers, E. J. Baker,
E. J. Chesler, and M. A. Langston. On finding
bicliques in bipartite graphs: a novel algorithm and its
application to the integration of diverse biological
data types. BMC Bioinformatics, 15(1):110, 2014.

[47] F. Zhao and A. K. H. Tung. Large scale cohesive
subgraphs discovery for social network visual analysis.
PVLDB, 6(2):85–96, 2012.

2589


