
Deep or Simple Models for Semantic Tagging?
It Depends on your Data

Jinfeng Li, Yuliang Li, Xiaolan Wang, Wang-Chiew Tan
Megagon Labs

{jinfeng,yuliang,xiaolan,wangchiew}@megagon.ai

ABSTRACT
Semantic tagging, which has extensive applications in text mining,
predicts whether a given piece of text conveys the meaning of a
given semantic tag. The problem of semantic tagging is largely
solved with supervised learning and today, deep learning models
are widely perceived to be better for semantic tagging. However,
there is no comprehensive study supporting the popular belief. Prac-
titioners often have to train different types of models for each se-
mantic tagging task to identify the best model. This process is both
expensive and inefficient.

We embark on a systematic study to investigate the following
question: Are deep models the best performing model for all se-
mantic tagging tasks? To answer this question, we compare deep
models against “simple models” over datasets with varying charac-
teristics. Specifically, we select three prevalent deep models (i.e.
CNN, LSTM, and BERT) and two simple models (i.e. LR and
SVM), and compare their performance on the semantic tagging task
over 21 datasets. Results show that the size, the label ratio, and the
label cleanliness of a dataset significantly impact the quality of se-
mantic tagging. Simple models achieve similar tagging quality to
deep models on large datasets, but the runtime of simple models is
much shorter. Moreover, simple models can achieve better tagging
quality than deep models when targeting datasets show worse label
cleanliness and/or more severe imbalance. Based on these find-
ings, our study can systematically guide practitioners in selecting
the right learning model for their semantic tagging task.

PVLDB Reference Format:
Jinfeng Li, Yuliang Li, Xiaolan Wang, Wang-Chiew Tan. Deep or Simple
Models for Semantic Tagging? It Depends on your Data. PVLDB, 13(11):
2549 - 2562, 2020.
DOI: https://doi.org/10.14778/3407790.3407844

1. INTRODUCTION
A lot of applications for processing text rely on tagging words,

phrases or sentences with semantically informative tags. Sentiment
analysis [27, 56, 39], for example, annotates sentences or phrases
with a sentiment tag that indicates whether the sentence has a pos-
itive or negative sentiment. These sentiment tags are exploited by

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407844

downstream applications to determine appropriate actions. Another
example is entity tagging, which determines if a span in the text
refers to a real-world object. Generally speaking, the task of an-
notating text with semantic tags can be referred to as the semantic
tagging problem. More precisely, semantic tagger takes a piece of
text and a predefined tag as inputs, and outputs whether this text
conveys the semantics of the tag. In this paper, we focus on short
text, which can be a sentence, a paragraph, or a passage. We also
refer short text loosely as sentence.

There are two types of methods for semantic tagging: rule pro-
gramming and supervised learning. Rule programming-based meth-
ods require an expert to specify rules for semantic tagging. This
is often error-prone and requires significant programming effort.
In contrast, supervised learning models do not require much pro-
gramming effort. However, training these models requires labeled
data but can typically produce models with good semantic tagging
results.

Our focus in this paper is on supervised learning models. Deep
learning models (or deep models in short) have become popular
methods for semantic tagging today. One reason why deep models
are popular for semantic tagging is that they are often more capa-
ble of learning complicated functions than other kinds of models.
Another reason is that the superiority of deep models has been re-
ported by many publications. For example, deep models achieve
good prediction quality that is close to the human prediction on
GLUE SST-2 sentiment classification task [50, 13]. Some recent
studies [35, 34, 49, 15, 51, 37, 33, 18, 46, 52] made comparisons
between deep models and simple models (i.e., machine models that
do not leverage deep learning) to understand whether deep models
are always superior to simple models. They conducted compar-
isons on various tagging tasks such as suggestion mining [36] or
humor detection [40]. Their results reveal marginal or sometimes
no improvements of deep models over simple models. It is there-
fore natural to ask whether deep models are better than simple mod-
els when developing solutions for semantic tagging.

Semantic tagging forms the core of many tasks including senti-
ment classification, suggestion mining, and humor detection. Ex-
isting studies, however, compare deep and simple models only on
individual tasks. Furthermore, they do not provide insights on how
dataset characteristics affect the performances of different models.
Consequently, it is hard to generalize their model selection criteria
to new tasks or new datasets for the same task. Hence, given a new
dataset, it is still unclear whether selecting a deep model will bring
the best tagging performance.

In this paper, we embark on a systematic study to understand
the performance tradeoffs of deep models vs. simple models for
semantic tagging. Towards this goal, we selected 3 representative
deep models: CNN, LSTM, and BERT and 2 representative sim-

2549

ple models: LR and SVM. CNN [23] and LSTM [17] are well-
known methods that have been widely used in both the academic
and industry communities and more recently, BERT [10]. To make
a meaningful comparison and systematic study, we collected 21
real datasets that are frequently used in semantic tagging. These
datasets exhibit several prominent data characteristics, including
(1) a variable number of labels (thousands to millions); (2) a wide
range of tag-conveying label ratio (1.6% to 71.4%, ratio < 25%
considered as imbalance in this paper); (3) different label cleanli-
ness (clean and dirty labels).

We evaluate the quality of semantic tagging on five selected mod-
els on 21 datasets and we obtain a rather surprising finding. We find
that deep models and simple models are complementary to each
other on the task of semantic tagging. Specifically, deep models
perform significantly better on smaller datasets, while simple mod-
els can be trained more efficiently on larger datasets and achieve
similar semantic tagging quality. Therefore, one should select deep
models or simple models for semantic tagging based on the actual
dataset characteristics and requirements on efficiency.

Based on our findings, we develop a comprehensive heat map
to guide practitioners on selecting the appropriate model for the
desired semantic tagging performance for their datasets. This heat
map shows the characteristics of the datasets and their quality score
of semantic tagging with different tagging models. By using this
heat map, practitioners can estimate the semantic tagging quality
gain while adopting different deep or simple models. At the same
time, they can also try to improve the dataset characteristics to im-
prove the quality of semantic tagging.

Contributions. We systematically evaluate deep models and sim-
ple models for the task of semantic tagging. Our key contributions
are as follows. (1) We surveyed a number of applications to moti-
vate our study. We selected three representative deep models and
two simple models that are widely used to develop these applica-
tions. We collected 21 datasets of varying characteristics for a com-
prehensive study. (2) We conducted extensive evaluations to obtain
performance of semantic tagging of the five selected models on all
the datasets. We found deep models do not necessarily perform
better than simple models on large datasets. (3) We evaluated the
effects of dataset characteristics on the quality of semantic tagging.
We found the training size, label ratio, and label cleanliness impact
the quality of semantic tagging. (4) We generated a comprehen-
sive heat map that can guide practitioners to decide whether they
should adopt deep models or simple models and anticipate the per-
formance of semantic tagging for their datasets. To facilitate future
research, we will release our collection of datasets, models, and
implementations at https://github.com/rit-git/tagging.

Outline. We survey a number applications in Section 2. We dis-
cuss the designs of selected deep models and simple models in Sec-
tion 3. We introduce the collected datasets and their characteristics
in Section 4. We perform experimental evaluations and compar-
isons in Section 5. We analyze the effect of dataset characteristics
and present key findings in Section 6. We conclude our study in
Section 7.

2. LATEST APPLICATIONS OF SEMANTIC
TAGGING

Semantic tagging has broad applications in the field. In this sec-
tion, we focus on introducing the latest ones. These novel appli-
cations come from publications and industrial practices in recent
three years. We investigated related literature and link them to five

Table 1: TripAdvisor city guide tips

City Tips

Washington DC 1. 20% tip is customary for most services
2. Avoid walking through parks at night

Hong Kong 1. Many ’local’ restaurants offer menus in English.
Ask if they have one before you sit down.
2. Grab an Octopus Card to store money and use on
buses, trains and in convenience stores (you have to
pay deposit). It will save you a lot of time queuing or
fishing for change.

new tags, i.e. Tip, Product Description, Humor, Spoiler, and Argu-
ment. These new tags and applications can contribute more ideas
to practitioners to leverage semantic tagging on their datasets.

2.1 Tip
Experience-sharing websites such as TripAdvisor and Yelp en-

courage users to write short yet useful tips such as those in Table 1
and Table 2. This motivates the tip tagging task, which automat-
ically identifies tip-expressing sentences from reviews instead of
mandatorily asking users to do so. In comparison to a full review,
which is sometimes lengthy, a tip is much shorter yet still reveals
the most prominent features of targets.

A tip usually contains suggestive information that enables future
customers to improve their consumption experience. For example,
a tip may recommend paying 20% tips for services in Washing-
ton DC or ask for English menus in Hong Kong as in Table 1.
Guy et al. [15] studied tagging practical and short texts from re-
views. The authors noticed that readers might feel overwhelmed
by reading massive reviews and tend to miss key points. Also, a
lengthy review is not friendly to cell phones as the screens have
limited space. Wang et al. [51] explored how to highlight tip sen-
tences in software review to help developers pinpoint potential im-
provements of the software. The developers feel easier to identify
emerging issues or prominent problems by reading tips. Weber et
al. [52] analyzed queries sent to Yahoo Search and found a large
fraction of queries containing how-to intent, such as “how to zest a
lime without zester”. They tagged tip answers from Yahoo!Answer
databases and showed the tip answer at the front of the screen when
receiving a how-to query from the user. The conciseness and prac-
ticability of a tip help users obtain answers quickly. Zhu et al. [59]
observed that a practical tip tends to mention the speciality of a ser-
vice, i.e. aspects frequently discussed in reviews of this service but
less frequently in reviews of other services.

A number of studies focus on tips that give suggestions explic-
itly. Sapna et al. [35] asked human annotators to label explicit
customer-to-customer suggestions that meet two conditions: (1) ex-
plicitly state the intention of giving a recommendation; (2) have the
potential to benefit customers. For example, a suggestion sentence
to be labeled may look like ’Try the cup cakes at the bakery next
door’. An opposite example may look like ”the cup cakes from the
bakery next door are delicious”. Since suggestion-expressing sen-
tences are valuable, tagging them from massive reviews becomes
an essential task for SEMEVAL 2019 competitions [36]. To per-
form this task, competitors built classifiers to predict whether a sen-
tence expresses a suggestion or not. The task provided 9092 and
808 labeled sentences in software and hotel domain correspond-
ingly. The best performing algorithm [28] adopted the recent pre-
trained BERT [10] model that can work decently with a small num-
ber of training data.

2550

Table 2: Yelp tips

Business Tips

Restaurant 1. There aren’t many sushi choices in Mountain View,
so take what you can get.
2. Free Parking in the lot across the street and around
the residential areas.

Coffee shop 1. only place in Bay Area I’ve been able to find soft
boiled eggs
2. Delightful cafe with solid pastries. Drinks left
more to be desired and service is a bit slow, so make
sure you have ample time!.

2.2 Product Description
E-commerce websites such as Amazon and eBay collect a lot

of customer reviews in recent years. Among these customer re-
views, product description is one of the most informative sentences.
Product description from customer reviews often contains supple-
mentary information that is missing in official product descriptions.
These customer product descriptions are attractive to people due to
multiple reasons. First, they come from independent users who
have no personal connections with merchants. Second, they sum-
marize crucial facets concerning actual user experience. Third, they
introduce exceptions to avoid unnecessary orders when the product
is not applicable. For example, a buyer posted actual experience
after using a camera for several weeks. He described the actual per-
formance of the camera, such as the photo quality, the ergonomics
design, and the battery duration. He might also describe the return-
ing policy and experience if he did not like the camera. Therefore,
other customers can determine whether to buy a product according
to these customer reviews.

Tagging product description from reviews serves critical pur-
poses. A study [37] about eBay reported that official descriptions
were always lacking for new items (e.g., fashion products). For old
items, details were also frequently missing from official descrip-
tions. To solve this problem, the authors tagged user descriptions
from customer reviews and conducted a user study to see whether
customer descriptions could provide more information. The user
study showed that people believed customer descriptions were more
informative and objective than sentimental sentences such as “It
was the best socks ever”. One example of how authors tagging
customer descriptions is shown in Example 1. Some other studies
also showed how to tag customer descriptions and apply them to
industrial products. Rakesh et al. [43] proposed to tag and orga-
nize customer descriptions according to different aspects of a prod-
uct. They further presented a review visualizing tool empowered
by product-describing sentences based on their proposal. Mitchel-
tree et al. [32] distilled aspect-describing sentences of a user and
used these sentences to understand the tastes of this user. Zhang et
al. [57] detected defects of a product from customer reviews and
provided instructions for customers when using the corresponding
product. These studies have substantially simplified the purchase
decisions for customers.

User-written product descriptions help merchants and readers
better understand sentimental descriptions. This is especially im-
portant as pure sentiment words only provide none objective infor-
mation. Furthermore, merchants expect users to describe products
objectively instead of expressing sentiments that might expel po-
tential buyers. On the other hand, customer readers also look for
objective evidence to avoid being misled by sentiments. Therefore,
customer descriptions are complementary to sentimental comments
and necessary for customers to choose suitable products.

EXAMPLE 1. Perfect thickness for shoes or boots. Extra padd-
ing at toes. The quality is excellent. Easy to handle and very com-
fortable. No shrinkage in washer or dryer.

2.3 Humor
Humor has the power to bring people happiness. YELP [6]

started exploring humor in customer reviews and offered user in-
terfaces to label whether a review is funny or not. Example 2 and 3
show two examples of commenting “clean room” and “delicious
buffet”. Although informative online reviews can help us make
decisions, reading, and digesting these reviews are stressful and
unpleasant. Different from others, a humorous review can bring
happiness to the readers, even it can not provide more information.
Therefore, humorous reviews can attract more attention from users
for those apps who prioritize them than other reviews.

Tagging humorous text from a corpus attracts a broader discus-
sion recently. Yang et al. [53] studied humor extraction that clas-
sifies whether a given text contains humor or not. They identified
four types of features that could better classify humor. Morales and
Zhai [33] tried to tag humor from merchant reviews as the YELP
Challenge released a large annotated corpus. Each of the 6,685,900
reviews contains the number of votes from readers who thought the
review was funny. Cattle and Ma [5] emphasized that a humor
sentence expresses semantics that goes beyond human expectation.
Thus humor-expressing sentences tend to contain words that are se-
mantically different. Blinov et al. [3] prepared a dataset of funny
dialogues in Russian. They calculated the length distribution of
both jokes and non-jokes and found that a text with more than 100
characters is likely to be a joke than non-joke. Yu et al. [54] studied
how to generate pun with neural networks. Due to the prevalence
of humor, SEMEVAL 2017 held two tasks on humor detection [31,
40]. These studies reveal the essence of humor and also the unique
features of humorous comments among all types of sentences.

EXAMPLE 2. Restaurant so clean....you can eat off the floor!!!!

EXAMPLE 3. I usually am NOT a fan of buffets.. but this place
really puts other buffets to SHAME!

2.4 Argument
Arguments provide evidence to support or oppose an opinion

and are useful for explanations. Compared with pure sentimen-
tal comments such as “the room is uncomfortable”, argument sen-
tences usually contain factual details such as “the room has a smell
of mold”. Since arguments are generally different opinions to-
wards the same proposition, they often bring much information
from wide perspectives. Example 4 and 5 show how argument and
non-argument sentences pointing to the proposition “nuclear en-
ergy is good” from questia [42]. These two examples demonstrate
that argument sentences provide more explanatory information to-
wards a proposition.

Argument mining studied automatic tagging of argument express-
ing sentences that had caused extensive discussion in review min-
ing. Hua et al. [18] started exploring argument tagging in the do-
main of paper reviews, as they noticed paper reviewing takes ap-
proximately 63.4 million hours in 2015. They obtained public re-
views from ICLR and extracted argument sentences from these re-
views. Then they classified the argument sentences into five classes
(i.e. request, evaluation, reference, quote, or fact) to better under-
stand peer comments. Stab et al. [46] studied argument mining
for general text. They collected datasets from Questia and anno-
tated arguments for eight controversial-topics such as abortion and
marijuana. Kim and Hovy [22] started mining reasons depicting
the pros and cons of the targeted service or product. Poddar et al.

2551

[38] applied argument mining to customer reviews to tag support-
ing opinions for a given aspect. These studies provide us more
knowledge of argument sentences and show us their potential ap-
plications in actual products.

EXAMPLE 4. The entire nuclear fuel chain generates lots of
long-lasting radioactive waste.

EXAMPLE 5. Can truly green, renewable sources of energy re-
place nuclear power?

2.5 Spoiler
Spoiler commonly exists in the reviews of media works such as

TV series. In such reviews, audiences express their evaluations and
ideas towards media works, while they inevitably quote specific
plots to support their ideas. These spoilers might ruin the expecta-
tion and enjoyment of audiences who have not watched the media
works. Therefore, a spoiler alert is necessary to warn readers be-
fore they browse the reviews. For example, the movie encyclope-
dia website IMDB mandatorily requires reviewers to add an alert
message to the title if they are going to include spoilers in the com-
ments. Online wiki Lostpedia also banned spoilers since mid-2008.
Due to the broad necessity of spoiler alerts, automatic detection be-
comes more desirable so that reviewers can avoid writing spoilers,
and readers can avoid reading spoilers.

Spoiler detection is a field with little exploration, mainly due to
the shortage of datasets. There are only two open-source datasets
for spoiler detection. One is TV Tropes dataset released by Boyd-
Graber [4]. This dataset contains spoiler sentences that disclose
important TV show plots, such as the ending of main characters.
An example of TV Tropes is shown in Example 6. The other one
is a large dataset consisting of millions of book spoiler sentences
released by Wan et al. [49]. These authors found that spoiler sen-
tences tend to appear in the later part of a review and book spoilers
are much variable in words correspondingly to the book-specific
contents, such as characters’ names. Due to the ubiquitousness of
spoilers and the necessities of automatic detectors, this paper re-
ceived a number of media reports. An example of book spoilers is
shown at Example 7.

EXAMPLE 6. None of the Harmons survive.

EXAMPLE 7. This book had all the potential to be great: a po-
litical thriller with tons of twists including, but not limited to, killing
off the main character in the middle of the book .

3. REPRESENTATIVE MODELS
In the previous section, we saw a sentence can have five types

of tags. For each type, a binary classifier can be trained using ex-
ample data. We first formally define the semantic tagging problem
and describe the common training pipeline. We then describe the
representative sentence classification models for semantic tagging.

3.1 The Semantic Tagging Problem
The semantic tagging problem is generally solved by a binary

text classification solution. The solution enables people to classify
a text into one of the two classes: {desired, not-desired}. Based on
the classification results, the tagged sentences are essentially those
classified as “desired”.

The sentence classification problem is widely studied as text clas-
sification [24, 1] in the machine learning and natural language pro-
cessing community. To solve the supervised sentence classification
problem, people generally perform experiments at three steps: (1).

label data preparation; (2). input sentences representation; and (3).
model selection. The quality of each step can significantly affect
the accuracy of the classification.

Label data preparation. The first step is label preparation. A
label instance is in the format of (text, label), where text is the
raw sentence, and label is either 1 (positive training example) or
0 (negative example). After we have collected a number of labels,
we apportion the data into training and test sets, with a pre-specified
split (e.g., 80-20). The purpose of splitting data is to mimic actual
prediction, where the model training is performed on the training
set but the model evaluation is conducted on the testing set.

Input sentence representation. The second step is pre-processing
that raw sentences are converted into numeric representations by
classification models. At this step, a sentence is tokenized into
words. The purpose of tokenization is to represent each word using
a numeric word vector. By aggregating word vectors, we can ob-
tain the final numeric representation of the sentence. There are two
commonly used sentence representation methods: Bag-of-words
(BoW) and Word embeddings. The choice of a method heavily
depends on the choice of the classification model.

Model selection. Classification models include two sub-categories:
statistical models and neural network models. Compared with neu-
ral network models, statistical models are usually simpler (smaller
in size) and less computationally intensive. However, statistical
models require more domain knowledge in constructing a set of es-
sential features for each specific task. In contrast, neural network
models are larger in size (more parameters) and more computation-
ally intensive (usually trained on hardware accelerators like GPUs),
but they do not require feature engineering and can learn how to
represent the text directly from training data. Due to this trade-off,
people often select different models for different scenarios.

However, we are witnessing a rise in the popularity of neural net-
work models, such that they are considered best performing mod-
els for all semantic tagging tasks. We revisit this popular belief and
compare an array of statistical models (Logistic Regression (LR)
and Support Vector Machine (SVM)) and deep models (Convo-
lutional Neural Network (CNN) [23], Long Short-Term Memory
(LSTM) [17], Bidirectional Encoder Representations from Trans-
formers (BERT) [10]).

3.2 Simple Models (LR/SVM)
We use Bag-of-words (BoW) as the input representations for

simple models. First, BoW splits a text into tokens, each of which
can be a unigram (a single word) or a bigram (two consecutive
words). In our experiments, we found a combination of unigram
and bigram yields the best tagging quality. Second, BoW calcu-
lates the number of distinct tokens as vocabulary size (denoted as
d), so that each token has a unique position in a d-dimensional vec-
tor. Third, BoW represents a text as a d-dimensional vector, where
the i-th position records the count of the corresponding token in the
text. So there will be many 0 in the vector if the vocabulary size d
is large.

BoW also uses IDF (inverse document frequency) to weigh each
of the d tokens. IDF assumes that a token is more important if
it appears in less number of sentences, and the formula of IDF is
idf(t) = log[n/df(t)] + 1, where t is the corresponding token, n
is the total number of sentences, and df(t) is the number of sen-
tences that contain t. For example, “My advanced geometry class
is full of squares” is a pun-containing humorous sentence, in which
the word “my” is less informative than the word “geometry” and
“squares”.

2552

Logistic Regression (LR). A classical simple model is LR [12],
which is derived from linear regression and uses Sigmoid [12] func-
tion to scale the output into a real number between 0 and 1. This
real number indicates the probability of an instance belonging to
a class. LR is widely used in production to analyse large-scale
data [16, 2]. It has the advantages of low computational overhead
and high parallelism [19, 55].

Support Vector Machine (SVM). Another popular simple model
is SVM [47], which separates two classes by their border points.
We therefore use linear SVM, which adopts a straight line, to sep-
arate different classes. Linear SVM is known to be empirically
effective in high-dimensional space, where data become sparse and
tend to be linearly separable [47, 21, 41, 20]. Besides, linear SVM
scales to large number of labels better than its variants of using
non-linear kernels in training time [45, 7].

3.3 Deep Models (CNN/LSTM/BERT)
Convolutional Neural Network (CNN). CNN [23] has tradition-
ally been used for image classification but is now used for several
NLP tasks. CNN tokenizes a text into unigram words. Each word
is represented with a pre-trained k-dimensional vector. Two words
will have similar word vectors if they are semantically similar (e.g.,
synonyms). The text is represented as a m × k matrix, where m
is a predefined maximum sequence length. In this paper, we also
name the m×k matrix as feature matrix. CNN consists of multiple
convolutional layers and pooling layers. The convolutional layers
convert the consecutive elements (e.g., bi-grams like “please add”)
of the input matrix into a sequence of feature vectors with a slid-
ing window. Then the pooling layers aggregate the sequence into
a shortened one via a max aggregate function. The convolutional
and pooling layers are usually stacked to obtain a single vector that
represents the sentence meaning. Intuitively, when CNN is applied
on text sequences, the neural network first constructs low-level fea-
tures from local information like bi-grams and tri-grams, and then
constructs higher-level features (e.g., whether a span contains re-
lated information) from the low-level ones.

Long Short-Term Memory (LSTM). LSTM [17] is based on re-
current neural network (RNN) [14]. It has been shown to be effec-
tive for several tasks including classification, tagging, and transla-
tion. LSTM uses the same input representation as CNN, i.e. a ma-
trix of m word vectors. However, unlike CNN, LSTM sequentially
(left to right) processes the text over time and keeps its hidden state
through time. The hidden state can capture any meaningful features
that appeared in the prefix of the text up to the current timestamp.
This enables LSTM to capture arbitrary long-term dependencies.
Compared with vanilla RNN, LSTM (and its variants like GRU [9])
partially solves the gradient exploding and vanishing problem that
results in improved model performances with its specially designed
components (i.e. input/output/forget gates).

Bidirectional Encoder Representations from Transformers
(BERT). BERT [10] is an award-winning state-of-the-art model.
Similar to CNN and LSTM, BERT also uses a matrix of word vec-
tors to represent a text. BERT applies attention technique to rep-
resent a text with weighted word vectors, such that relevant tokens
have higher weights than irrelevant ones (e.g. “great” and “deli-
cious” as relevant tokens and “that” as irrelevant token in YELP
polarity classification). BERT derives its performance from lan-
guage representation pre-trained on a large corpus, Wikipedia. So
BERT can learn a default vector and the weight of a word in the

Table 3: Statistics of 21 Dataset. We obtained 19 datasets in 5
different application domains. We further created two additional
large datasets from FUNNY and BOOK by balancing their positive
and negative labels. Among all 21 datasets, 6 of them are large
datasets with more than 100K records (highlighted in gray). The
labels of FUNNY, BOOK, FUNNY*, and BOOK* are dirty due to
the existence of missing annotations.

Dataset Application #Record %Positive Vocabulary

Original Datasets

SUGG [36] Tip 9,092 26.2% 10K
HOTEL [35] Tip 7,534 5.4% 7K
SENT [51] Tip 11,379 9.8% 8K
PARA [51] Tip 6,566 16.8% 8K
FUNNY [33] Humor 4.75M 2.5% 571K
HOMO [31] Humor 2,250 71.4% 5K
HETER [31] Humor 1,780 71.4% 5K
TV [4] Spoiler 13,447 52.5% 20K
BOOK [49] Spoiler 17.67M 3.2% 373K
EVAL [18] Argument 10,386 38.3% 8K
REQ [18] Argument 10,386 18.4% 8K
FACT [18] Argument 10,386 36.5% 8K
REF [18] Argument 10,386 2.0% 8K
QUOTE [18] Argument 10,386 1.6% 8K
ARGUE [46] Argument 23,450 43.7% 21K
SUPPORT [46] Argument 23,450 19.4% 21K
AGAINST [46] Argument 23,450 24.3% 21K
AMAZON [58] Sentiment 3.6M 50.0% 1M
YELP [58] Sentiment 560,000 50.0% 232K

Additional Datasets

FUNNY* Humor 244,428 50.0% 171K
BOOK* Spoiler 1.14M 50.0% 112K

Wikipedia corpus. When applying BERT to domain-specific data,
these word vectors and weights are optimized according to labels,
such that domain-specific knowledge can be incorporated.

4. DATASETS
We curate a collection of 21 textual datasets to evaluate the qual-

ity of different models on the semantic tagging task. To the best
of our knowledge, our datasets have the best coverage of the real-
world datasets for semantic tagging. We focus on three charac-
teristics of the datasets that are crucial to a model’s performance:
size, label ratio, and label cleanliness. Datasets in our collection
have 1,700 to 17,000,000 examples. The ratio of positive instances
in our datasets ranges from 1.6% to 71.4%. 4 of the 21 datasets
use labels generated based on incomplete metadata, while the rest
use either human-annotated labels or labels which are derived from
complete metadata.
Source. We collected our datasets from various semantic tagging
applications that are surveyed in Section 2. We describe the collec-
tion process for each dataset below.
• Tip: We use the SUGG dataset from the 9th task of SEMEVAL

competition 2019 [36]. The labels are based on whether a user
comment can help improve windows software. The HOTEL [35]
dataset is based on hotel reviews. The labels are derived based on
whether a review sentence provides suggestions for future cus-
tomers. The SENT [51] and PARA [51] datasets also contain tip
sentences (customers’ recommendations for software updates)
and non-tip sentences (e.g., customers’ experience of using the
software).
• Humor: We use the FUNNY [33] dataset from the YELP Dataset

Challenge [6], in which a review received votes from readers if
they think this review is funny. Reviews with more than 5 votes
are annotated as positive and reviews with 0 votes are annotated
as negative [33]. We use the HOMO and HETER datasets from

2553

the 7th task of SEMEVAL competition 2019 [31]. A sentence is
labeled positive or negative depending on the occurrence of pun
words.
• Spoiler: The TV [4] and BOOK [49] datasets are obtained from

TV show comments and book comments, respectively. Each sen-
tence is labeled depending on whether the sentence contains a
spoiler. Having more than 17 million examples, BOOK is the
largest among all the datasets.
• Argument: We have 8 datasets for Argument application namely,

EVAL, REQ, FACT, REF, QUOTE, ARGUMENT, SUPPORT,
and AGAINST. Each dataset has been derived from two multi-
class tagging tasks. EVAL, REQ, FACT, REF, and QUOTE [18]
include examples of different types of sentences that make up
a paper review. ARGUMENT, SUPPORT, and AGAINST [46]
are obtained from online discussions of controversial topics and
contain sentences corresponding to argument opinion, support-
ive opinion, and opposed opinion, respectively.
• Sentiment: AMAZON [58] and YELP [58] are two Sentiment

datasets that are obtained from AMAZON and YELP reviews,
respectively. A review is annotated as positive if the writer gives
a rating of 3 or 4 and as negative if the rating is 1 or 2.

FUNNY* and BOOK* are 2 additional large datasets that we
obtained from FUNNY and BOOK by balancing the positive and
negative labels. We randomly drop a number of negative labels to
make the label ratio balanced. Overall, the datasets we collected
offer a good representation of real-world datasets and enable us to
understand the strengths and limitations of different models.

Dataset preparation. Since dataset preparation can directly influ-
ence tagging performance and model selection, it is a critical com-
ponent of the tagging pipeline. Our datasets come from different
papers and public competitions, and therefore, must be transformed
into the same format. A data record is in the format of (text, label),
with label 1 representing the text we wish to tag and 0 otherwise.
We calculate crucial information about these datasets in Table 3,
such as the application that a dataset belongs to, the number of
records, and the percentage of positive labels.

Dataset Characteristics. We next describe the characteristics of
the various datasets we collected/generated.
• Size: The scales of the datasets skew towards two ends. 15 out

of 21 datasets have a small number of records at the scale of
1,000 to 99,999 (small datasets), while the remaining 6 datasets
contain 100,000 to 20,000,000 records (large datasets). Small
datasets are more common than large datasets in actual cases.
This is because every record of a dataset requires human an-
notation. The high price of recruiting human annotators limits
the scale of datasets. However, accompanying the emergence of
experience-sharing websites such as Amazon and YELP, more
and more large datasets appear. Following this, numerous cus-
tomers share their opinions on these websites through sentence
annotation. For example, YELP users share their opinions on
YELP about whether a review is funny [6] or not. Given the
polarization of real-word datasets in scale, a practical tagging
model should be able to tag both small and large datasets accu-
rately.
• Label Ratio: Label imbalance is a common phenomenon in our

datasets. We observed 14 out of 21 datasets having fewer posi-
tive labels than negative labels. More specifically, 10 of the 14
datasets exhibit a ratio of positive labels smaller than 25% (con-
sidered as imbalance). For the remaining 7 datasets, 5 datasets
exhibit a balanced ratio of around 50% and 2 datasets exhibit
a ratio of positive labels larger than 70%. A higher percentage

Table 4: Dataset taxonomy

Category Datasets

Small-L HOTEL, SENT, PARA, REQ,
REF, QUOTE, SUPPORT, AGAINST

Small-H SUGG, HOMO, HETER, TV, EVAL, FACT, ARGUE

Large-L FUNNY, BOOK

Large-H AMAZON, YELP, FUNNY*, BOOK*

of positive labels is favorable due to two main reasons. First,
more positive instances can increase the size of effective train-
ing data, leading to better training quality. Second, more pos-
itive instances can minimize the misleading effects of negative
instances, increasing the accuracy of tagging results.
• Cleanliness: There are two common ways to obtain data labels:

rule generation and human annotation. Relying on rules can po-
tentially introduce dirty labels due to missing annotations. For
example, relying on number of votes to generate label FUNNY
can introduce dirty labels for new records which do not have
enough votes. Similarly, relying on spoiler alters to generate la-
bel BOOK can be dirty if writers do not leave any alert on their
reviews. Consequently, we consider FUNNY, BOOK, and their
derivatives (FUNNY* and BOOK*), based on rule generation,
as dirty datasets. The rest of the datasets, which are based on
human annotation, are categorized as clean datasets.

5. EMPIRICAL EVALUATION
In this section, we compare the tagging performance of represen-

tative models, including LR, SVM, CNN, LSTM, and BERT on the
datasets we collected. Experiments show that deep models do not
consistently outperform the simple models across all datasets. On
large datasets, in particular, deep models obtain similar or worse
performance, yet they take significantly more training time.

The section is organized as follows. We introduce experimental
settings in Section 5.1. We report detailed performance of different
models in Section 5.2. We focus on analyzing BERT in Section 5.3
since BERT consistently outperforms other deep models.

5.1 Experimental Settings
Dataset taxonomy. We had introduced the 21 datasets in Section 4.
We categorize the datasets into four groups based on size and label
ratio (whether the number of records is larger than 100,000 and the
percentage of positive labels is larger than 25%). The dataset tax-
onomy is shown in Table 4. It is based on 4 categories namely,
small size low percentage (Small-L), small size high percentage
(Small-H), large size low percentage (Large-L), and large size high
percentage (Large-H.). The taxonomy helps understand models’
performance in terms of characteristics of the datasets.

Dataset Preparation. We split each dataset into a train set and
a test set. Train set contains 80% records while test set contains
the remaining 20% records. We do not split SUGG, HOMO, and
HETER, since each of them already contains a separate test set for
SEMEVAL competitions [36, 31]. The train set ratio of SUGG,
HOMO, and HETER is 93%, 80%, and 80%, respectively.

Computing resource. We conduct experiments on an AMAZON
EC2 p3.8xlarge GPU server. Our instance is equipped with 4 Tesla
V100 GPUs. Each GPU has 16GB memory, 640 Tensor cores, and
5120 CUDA cores. The server is running on Linux Ubuntu 16.04.
The monetary cost is $3 US dollars per hour of using the GPUs.

2554

Hyper-parameters. We tune each model to the best performance
according to common practices. We found using a combination of
unigram and bigram in Bag-of-words representation yields the best
tagging quality for LR and SVM. We adopt the default setting for
BERT [10]. We set the batch size to 32, the max sequence length to
128, and the number of epochs to 3. For CNN and LSTM, we use
the same batch size as BERT but set the max sequence length to
256 and the number of epochs to 10. We do not observe clear per-
formance improvement when using larger batch size, longer max
sequence length, and more epochs for CNN and LSTM.

Evaluation Metric. We measure the quality as well as the training
cost of tagging positive instances. We use F1 and training time
accordingly. F1 is an averaged quality indicator and defined as
2·precision·recall
precision+recall

, where precision and recall are standard information
retrieval metrics. For example, if we assume that there are 10 posi-
tive instances and an algorithm tags 8 positive instances with 6 are
correct, the precision is 6/8 = 0.75 and recall is 6/10 = 0.6. In
this case, the F1 equals to 2 ∗ 0.75 ∗ 0.6/(0.75 + 0.6) = 0.66.

Macro- and Micro-average F1 When evaluating a set of datasets,
we report macro- and micro-average F1 to compare the overall per-
formance of simple and deep models. Macro F1 is the average F1
score, for which it is insensitive to the sizes of datasets. Given that
the 21 datasets are of various sizes, we also calculate micro-average
F1, the sum of weighted F1s, as a complement to macro-average
F1. Specifically, the weight of a dataset is the number of records
of this dataset divided by total number of records of all datasets.
Therefore, a larger dataset will have a higher weight than a smaller
dataset.

5.2 Result Analysis
We first describe the performance of each individual model. Next,

we compare the performance of different models on different dataset
categories. Lastly, we discuss their performance and training time
trade-offs.

5.2.1 Performance of individual models
Table 5 shows the macro- and micro- average F1 score of each

individual model on datasets grouped according to the taxonomy.
Figure 1 and Figure 2 show the F1 scores on each dataset. Figure 1
shows the F1 scores of individual model on the small and large
datasets with high positive label ratio (> 25%). On the other hand,
Figure 2 shows the F1 scores on the small and large datasets with
low positive label ratio (i.e. imbalance).

LR and SVM. LR and SVM achieve very similar F1 (difference
< ±0.03) on all the datasets except FUNNY. Both LR and SVM
achieve the lowest F1 (0.10 and 0.10) on QUOTE and the highest
F1 (0.94 and 0.96) on YELP. Compared with QUOTE, YELP has
a larger size (560,000 vs. 10,000) and a higher label ratio (0.5 vs.
0.02), indicating the size or the label ratio of a dataset has signif-
icant effect on the performance of simple models. As shown by
Figure 1 and Figure 2, LR achieves an average F1 of 0.79 on the
datasets with the positive label ratio > 25% and 0.46 on the posi-
tive label ratio < 25%. SVM shows a similar behavior on datasets
with different ratios of positive labels. This suggests that the tag-
ging quality of simple models is significantly affected by the ratio
of positive labels.

CNN and LSTM. The F1 score of CNN ranges from 0.08 to 0.94,
while the F1 score of LSTM ranges from 0.11 to 0.93. Interestingly,
these scores are lower than F1 scores of LR and SVM, indicating

Table 5: The (macro-/micro-) average F1 of LR, SVM, CNN,
LSTM, and BERT in dataset categories

LR SVM CNN LSTM BERT

Large-H 0.85/0.77 0.85/0.76 0.80/0.72 0.80/0.72 0.87/0.79

Small-H 0.77/0.73 0.76/0.72 0.75/0.70 0.75/0.71 0.85/0.82

Small-L 0.52/0.51 0.52/0.51 0.49/0.47 0.51/0.49 0.68/0.66

Large-L 0.23/0.20 0.27/0.20 0.07/0.06 0.12/0.11 0.24/0.19

that deep models do not always outperform simple models. Our
finding contradicts the popular belief that deep models are the best
choice for semantic tagging task. Furthermore, we find that CNN
and LSTM are also sensitive to positive label ratio. The average
F1 of CNN is 0.77 on datasets with a ratio > 25%, and 0.39 on
datasets with a ratio < 25%.

BERT. BERT gains wide-spread popularity in recent years and is
considered a de-facto model for semantic tagging tasks. Not sur-
prisingly, it does achieve highest F1 scores on most of the datasets
(19 of 21). This is perhaps because it is pre-trained on a large cor-
pus and hence is optimized for large datasets. However, our exper-
iments reveal that BERT does not show apparent advantages over
simple models on large datasets. The average F1 scores of BERT,
LR, and SVM on all the 6 large datasets are 0.66, 0.64, 0.66, re-
spectively. In fact, on 2 of the large datasets which are also im-
balanced, BERT performs worse than simple models. These results
suggest that deep models may not always perform better, especially
on large or imbalanced datasets.

Other industrial models. We also evaluate the performance of
more simple and deep models that are extensively used in industry.
The newly investigated simple models include Naive Bayes [30]
and XGBoost [8] (a ensemble/boosting model). The newly inves-
tigated deep models include ALBERT [25] and ROBERTA [29],
which are obtained from Huggingface transformers [48]. We re-
port average F1 scores of Naive Bayes and XGBoost in Figure 3a.
We also include the results of LR and SVM in the same figure for
comparison. The average F1 of LR, SVM, Naive Bayes, and XG-
Boost are overall similar, so we use LR and SVM as representative
simple models in our paper. We report average F1 of ALBERT and
ROBERTA in Figure 3b. We also include F1 of BERT in the same
figure for comparison. Overall, BERT shows slightly better F1 than
ALBERT and ROBERTA, so we take BERT as the representative
attention-based deep model in our paper. We report the results of
F1 scores for individual datasets in Appendix of the technical re-
port [26].

5.2.2 Comparison on different dataset categories
Next, we analyze the performance of the models by dataset cat-

egories. Table 5 shows the macro- and micro- average F1 scores of
different models.

Large and high datasets. Overall, all models perform the best on
datasets that are large in size and high in the ratio of positive labels.
This is reflected in higher F1 of every model on the Large-H dataset
category than on other categories.

Small and high datasets. The average F1 scores of different mod-
els on the Small-H datasets are slightly lower than F1 scores on
Large-H datasets. On the other hand, average F1 scores on Small-L
datasets are much lower. This suggests that the size of a dataset

2555

SUGG HOMO
HETER TV EVAL FACT

ARGUE
AMAZON YELP

FUNNY*
BOOK*

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

s

Small Large

LR SVM CNN LSTM BERT

Figure 1: F1 on Small-H and Large-H datasets with > 25% positive labels

HOTEL SENT PARA REQ REF
QUOTE

SUPPORT
AGAINST

FUNNY BOOK
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

s

Small Large

LR SVM CNN LSTM BERT

Figure 2: F1 on Small-L and Large-L datasets with < 25% positive labels

0

0.2

0.4

0.6

0.8

1

LR SVM Naive Bayes XGBoost

F1
 sc

or
e

(a) Simple models

0

0.2

0.4

0.6

0.8

1

BERT ALBERT ROBERTA

F1
 sc

or
e

(b) Deep models

Figure 3: The (macro) average F1 of industrial models on all 21
datasets

does not affect tagging quality significantly when the ratio of posi-
tive label is high.

Small and low datasets. The average F1 scores on Small-L datasets
are significantly lower than on Small-H datasets. This indicates that
a low ratio of positive labels (i.e. imbalance) can negatively affect
the tagging quality of models.

Large and low datasets. Intuitively, large number of labels offer
more training examples which should lead to high F1. However, we
find that F1 scores on Large-L datasets do not follow this intuition.
The average F1 scores of different models on Large-L datasets are
the lowest among the different dataset categories. There are two
reasons for low F1 scores. First, ratios of positive labels of the two
datasets are significantly lower compared with other datasets. Sec-
ond, labels of the two datasets are dirtier than other datasets, as we
mention in Section 4. Interestingly, simple models achieve even
better F1s than deep models on the two datasets that may due to
poor label cleanliness and/or severe imbalance. This suggests that
model selection should be done more carefully for Large-L datasets
with many dirty labels.

Multi-label datasets. We also perform comparison on multi-label
datasets. We find two datasets, BIO and DEF, from task 6 of the
SEMEVAL2020 competition [44]. BIO is a Named Entity Recog-
nition dataset while DEF is a Knowledge Graph Extraction dataset.
BIO contains around 470, 000 labels so the dataset is large. Each
label is associated with a word token, and is either B, I or O. The
best performing simple and deep models show similar F1s (same
regarding labels B and O, 0.02 difference regarding label I). The re-
sults indicate that simple models can achieve similar performance
as deep models when the number of labels is sufficiently large.
DEF contains around 18, 000 labels so the dataset is small. Each
label is associated with a sentence, and is either T or F. The best
performing deep model outperforms the best simple model on F1
(0.14 gap regarding label T and 0.04 improvement regarding la-
bel F). The results indicate that deep models achieve better per-
formance than simple models when the number of labels is small.
We present the detailed results and discussions in Appendix of the
technical report [26].

0

0.2

0.4

0.6

0.8

LR
SV
M

CN
N
LST
M

BE
RT

F1
sc
or
e

F1

(a) F1

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

LR SV
M

CNN
LST

M
BERT

Tr
ai

ni
ng

 ti
m

e
(s

)

Training time

(b) Time (log-scaled)

Figure 4: The (macro) average F1 score and average training time
(log-scaled) on all datasets

2556

0
0.2
0.4
0.6
0.8

1

SU
GG

SE
NT

PARA

FU
NNY*

HOMO
HETER TV

BOOK
EVAL

REQ
FA

CT
REF

QUOTE

ARGUE

SU
PPORT

AGAINST

Ta
gg

in
g

qu
al

ity
BERT SOTA

Figure 5: BERT compares with SOTA (the state-of-the-art). We
follow the quality metric in SOTA publications (F1 by default, Ac-
curacy for FUNNY [33], TV [49], and AUC for BOOK [49].)

5.2.3 Performance/Training time trade-off
Figure 4a shows the (macro) average F1 scores of different mod-

els across all the datasets. We find that not all deep models outper-
form simple models. While BERT achieves higher F1 (with a large
margin of 0.11) than LR/SVM, CNN and LSTM perform much
worse.

We report the training time of the models in Figure 4b. We would
like to remind the readers that all the deep models were trained on
GPU while the simple models were trained using a CPU. Although
some deep models achieve higher F1 than simple models, they also
take 30x-130x more time for training. LSTM is the slowest and
takes 13 hours on average for training and costs 39 dollars. CNN
and BERT are slightly faster but still take a lot of time. In prac-
tice, debugging and parameter tuning deep models also take up a
lot of time, adding to the overall cost. For example, BERT has a
number of tunable hyperparameters, such as maximum sequence
length, training batch size, number of training epochs, and learning
rate. Each hyper-parameter has multiple options. Even with only 3
options per hyper-parameter, there can be as many as 34 = 81 com-
binations that will cause significant overhead. On the other hand,
simple models take less than 500 seconds using a single CPU. This
suggests that simple models can bring more economic benefits to
users, especially to those who have no access to GPU’s but need to
train tagging models on large datasets.

5.3 Analysis of BERT
As shown in Figure 1 and Figure 2, BERT consistently achieves

higher F1 scores than other deep models. We, therefore, take a
closer look at BERT.

BERT versus domain SOTA. Our results indicate BERT as the
most accurate generic model. We, therefore, compare it with the
state-of-the-art (SOTA) models, which are considered as golden
standards for semantic tagging tasks, on individual datasets. These
SOTA results (e.g., 0.85 F1 on SUGG from SEMEVAL 2019 cham-
pion [28]) were obtained by leveraging domain-specific knowledge.
We follow the experimental settings and metrics given in published
materials. Specifically, we compute the F1 score for SUGG [28],
SENT [51], PARA [51], HOMO [60], HETER [11], EVAL [18],
FACT [18], REF [18], QUOTE [18], ARGUE [46], SUPPORT [46],
AGAINST [46], and Accuracy for FUNNY* [33], TV [49] and
AUC [49] for BOOK [49]. Following the computing process, we
directly take the published SOTA results from related publications
and perform comparison between SOTA and BERT.

As shown in Figure 5, BERT achieves comparable or even bet-
ter results compared with SOTA methods. Based on these findings,
practitioners should really consider using BERT as a base model
to replace existing solutions or develop new pipelines for semantic
tagging. We also notice that BERT does not outperform SOTA in

0.53

0.29

0.55

0.38

0.67

0.32

0.0

0.2

0.4

0.6

0.8

HOTEL FUNNY

F1

LR SVM BERT

Figure 6: F1s on a small/large dataset HOTEL/FUNNY

Table 6: F1 of LR and SVM without/with pre-trained BERT em-
beddings (eb.)

Dataset LR LR + eb. SVM SVM + eb.

HOMO 0.87 0.94 0.89 0.93
HETER 0.87 0.92 0.87 0.91
QUOTE 0.10 0.35 0.10 0.34

SENT, FUNNY*, and BOOK. Regarding SENT [51], we can only
obtain partial training set so the F1 scores of BERT and SOTA are
not comparable. For FUNNY* [33], the gap is pretty small (0.04).
For BOOK [49], domain tagging extensively leverages the names
of characters to identify spoilers, while these names are out of the
vocabulary of BERT. Except for these extreme cases, BERT is al-
ways the best tagging model on most datasets.

BERT on representative datasets. We choose HOTEL, FUNNY
as the representative datasets for small, large datasets, respectively,
and compare BERT with simple models. As shown in Figure 6,
BERT achieves higher F1 than LR (0.14) and SVM (0.12) on HO-
TEL, confirming that BERT indeed significantly improves tagging
F1 in some cases. However, in other cases, BERT does not out-
perform simple models. For example, BERT performs worse than
SVM by 0.06 F1 on FUNNY. Simple models can sometimes out-
perform BERT while taking significantly less time for training. For
example, BERT takes 1.4 days to train FUNNY that contains 4.75
million records. Therefore, if considering both F1 improvement
and time consumption as evaluation criteria, deep models are not
the best choice for semantic tagging in some cases.

Effect of pre-trained embeddings We conducted experiments to
evaluate how much simple models can benefit from pre-trained em-
beddings. Given that BERT is similar to Word2Vec and Glove that
use word vectors, for the convenience, we used BERT that was
pre-trained over Wikipedia corpus as the embedder. For each input
text, BERT outputs the last-layer [CLS] vector [10] as the featuriza-
tion vector. We then ran LR and SVM on all featurization vectors
and presented F1s of the most representative datasets (i.e. HOMO,
HETER, and QUOTE) in Table 6. The results show that LR can
achieve better F1s on small datasets with pre-trained embeddings.
F1 improvements of HOMO, Heter, and QUOTE are 0.07, 0.05,
and 0.25, respectively. Similarly, SVM also achieves better F1s on
these three datasets. The F1 improvements of HOMO, HETER, and
QUOTE are 0.04, 0.04, and 0.23, respectively. These results sug-
gest that simple models can benefit from pre-trained embeddings.
More results and discussions are in Appendix of the technical re-
port [26].

2557

Table 7: Comparison of the best DEEP model and the best SIM-
PLE model on different types of datasets

Datasets Avg F1 Avg train time (s)
DEEP SIMPLE ∆ DEEP SIMPLE

Small-L 0.68 0.52 0.16 308 <1
Small-H 0.86 0.78 0.08 324 <1

Large-L 0.24 0.27 -0.03 308,680 3,128
Large-H 0.87 0.85 0.02 38,466 318

6. ANALYSIS BY DATASET CHARACTER-
ISTICS

Our empirical evaluation suggests that model performance and,
thus, model selection is influenced by dataset characteristics. We,
therefore, investigate the effect of size, label ratio, and label cleanli-
ness on model’s performance. First, we compare BERT and simple
models by dataset types to find more insights in Section 6.1. Next,
we investigate the effects of dataset characteristics on model se-
lection in Section 6.2. Lastly, we summarize our findings to help
practitioners find the best model for their dataset in Section 6.3.

6.1 Comparison of best models by type
In this section, we summarize our key findings. We only com-

pare the best deep model (i.e. BERT, denoted as DEEP) and the
best simple model (denoted as SIMPLE) for simplicity. We report
the average F1 and average training time on each type of datasets
in Table 7.

Model selection. Our goal is to find out whether DEEP is better
than SIMPLE. Our results show: (1). DEEP outperforms SIMPLE
by a large margin on small datasets (0.16 on Small-L and 0.08 on
Small-H respectively). However, it does not win on large datasets
(-0.03 on Large-L and 0.02 on Large-H). (2). Training DEEP is
efficient on small datasets (in average 308/324 seconds for Small-L
/ Small-H), but inefficient on large datasets (in average 86/11 hours
for Large-L / Large-H). (3). SIMPLE becomes very competitive on
large datasets since it obtains F1 similar to DEEP yet takes much
less training time (on average 0.9/0.1 hours for Large-L / Large-H).
Therefore, DEEP will be a good choice for small datasets, but a
questionable choice for large datasets.

Dataset preference. We observed consistent dataset preference of
DEEP and SIMPLE regarding F1. Specifically, (1). both DEEP
and SIMPLE achieve the highest F1s on Large-H, the 2nd F1s on
Small-H, the 3rd F1s on Small-L, and the smallest F1s on Large-L.
The performance of a model subjects to the dataset taxonomy. (2).
Both DEEP and SIMPLE favor datasets with high percentages of
positive labels. They achieve higher F1 on Small-H than Small-L
(0.86 versus 0.68 for DEEP and 0.78 versus 0.52 for SIMPLE).
(3). Neither DEEP nor SIMPLE achieves satisfactory performance
on Large-L. The F1s of DEEP and SIMPLE are 0.24 and 0.27,
respectively, which are significantly smaller than F1s they obtained
on other types of datasets, such as 0.68 and 0.52 on Small-L.

Large imbalanced datasets. Our experiments show that SIMPLE
achieves better F1 scores than DEEP on larger imbalanced datasets.
Specifically, SVM outperforms BERT on FUNNY and LR outper-
forms BERT on BOOK. Considering that imbalance tackling tech-
niques potentially affect the comparisons, we conducted new ex-
periments to calibrate the classification threshold for each model (a
popular technique). Figure 7 shows comparison results after cali-

0.0	
0.1	
0.2	
0.3	
0.4	
0.5	

100	 200	 300	 400	

Th
e	
be

st
	F
1	

#	of	thresholds	

LR	 SVM	 BERT	

(a) FUNNY

0.0	
0.1	
0.2	
0.3	
0.4	
0.5	

100	 200	 300	 400	

Th
e	
be

st
	F
1	

#	of	thresholds	

LR	 SVM	 BERT	

(b) BOOK

Figure 7: The best F1 of LR, SVM, and BERT on FUNNY/BOOK
(1 million labels) by varying classification thresholds

bration. The results show that simple models still show better F1s
on FUNNY and similar F1s on BOOK, in comparison to BERT.
Notably, We observe that adding calibration improves F1s of all
models, especially BERT, but does not change the tendency that
simple models perform similar or even better than BERT. More ex-
periments are presented in Appendix of the technical report [26].

6.2 Effect of dataset characteristics
In this section, we conduct analyses to understand the effects of

dataset characteristics on the tagging quality. Our analyses consider
the size of training set, the skewness of label ratio, and the existence
of informative tokens.

6.2.1 Size of training set
To understand how the size of training set affects tagging quality,

we increase the number of training data for LR, SVM, and BERT
and measure their F1s. We use AMAZON, YELP, FUNNY, and
BOOK as representative datasets, given that they contain abundant
labels. We fix the number of test data to 100,000, since we do not
observe significant differences in tagging quality when using more
test data.

We plot the F1s of LR, SVM, and BERT with regard to the in-
creasing numbers of training data in Figure 8. As expected, all
models obtain F1 improvements when getting more training data,
especially for LR and SVM. Increasing the training size of AMA-
ZON from 2000 to 20,000 improves the F1 of LR (from 0.79 to
0.86), SVM (from 0.80 to 0.89), and BERT (from 0.90 to 0.93),
respectively. The F1 improvements of LR and SVM (0.07 and
0.09) are greater than BERT (0.03). Similarly, the F1 improve-
ments of LR and SVM on YELP (0.04 and 0.05) are higher than
BERT (0.02), suggesting that increasing training size to promote
F1 is more effective on simple models than deep models. In other
words, the performance gap between simple models and deep mod-
els narrows with increase in training size. On FUNNY and BOOK,
all models achieve smaller tagging F1s than that they achieve on
AMAZON and YELP. To better show the differences, we set the
maximal F1s to 0.3 as shown in Figure 8c and Figure 8d. No matter
whether the training size is small or large, BERT does not show a
superior F1 compared with LR and SVM. Along with the increase
of training size, BERT performs similarly to LR and even worse
than SVM on FUNNY, whereas it performs similarly to LR and
slightly better than SVM on BOOK.

Notably, although LR and SVM achieve similar or even better
F1s than BERT in some cases, they require numerous labels at the
scale of tens of thousands. This is a big concern since data labeling
may rely on human annotation rather than rule generation. Given
that most of real-world datasets are on a small scale, BERT is still
an appealing option.

Vocabulary size analysis. To explain that why enlarging the train-
ing set increases the tagging quality, we calculate the numbers of

2558

0.7

0.8

0.9

1

0 10 20 30 40

F1

training data (1000x)

LR SVM BERT

(a) AMAZON

0.7

0.8

0.9

1

0 10 20 30 40

F1

training data (1000x)

LR SVM BERT

(b) YELP

0

0.1

0.2

0.3

0 50 100 150 200

F1

training data (1000x)

LR SVM BERT

(c) FUNNY

0

0.1

0.2

0.3

0 50 100 150 200

F1

training data (1000x)

LR SVM BERT

(d) BOOK

Figure 8: F1 of LR, SVM, and BERT by increasing the size of training data

0

10

20

30

0 10 20 30 40

 d

is
tin

ct
 w

or
ds

 (1
00

0x
)

records (10000x)

AMAZON YELP FUNNY BOOK

Figure 9: The number of distinct words keeps increasing when
expanding the training set

distinct words (i.e. vocabulary size) as we feed more records to
expand a training set. We depict the increment of distinct words in
Figure 9. On each of AMAZON, YELP, FUNNY, and BOOK, the
number of distinct words keeps increasing, leading to more words
being included in training processes. This explains why F1 be-
comes higher when the training size increases. We also observed
that F1s of all three models change negligibly after the training size
reaches a certain number (e.g., 100,000 on YELP), indicating that
the promoting effects of training size on F1 are limited when the
sizes reach certain thresholds.

6.2.2 Label ratio
We evaluate how the ratio of positive instances affects the F1s of

tagging models. To perform the evaluation, we adopt AMAZON,
YELP, FUNNY, and BOOK as training datasets and adjust their ra-
tios of positive instances from 10% to 90%. For each ratio r, we
randomly sample 100,000 records from each dataset. Within these
100,000 records, the number of positive instances is r of 100,000
and the number of negative instances is 1 − r of 100,000. The
records are randomly split into two parts, of which 80% of the
records are devoted to training set and 20% are devoted to testing
set. As a result, all models obtain higher F1s on 4 datasets when the
ratios of positive instances increase, suggesting that higher ratios of
positive instances bring tagging models towards higher F1s. This
result is shown in Figure 10.

We find that F1 improvements regarding the increase in the ra-
tio of positive instances exhibit two trends. First, they are more
significant when the ratio of positive instances is small (< 25%),
while more flattened when the ratio is large (> 25%). For example,
F1 of BERT gains 0.06 improvement on AMAZON when the ratio
increases from 10% to 20%, but only 0.01 when the ratio changes
from 80% to 90%. Second, F1 improvements on AMAZON and
YELP are less obvious than those on FUNNY and BOOK. For ex-
ample, when the ratio increases from 10% to 20%, F1 improve-
ments of BERT on AMAZON and YELP are 0.05 and 0.04, while
F1 improvements on FUNNY and BOOK are 0.12 and 0.16. This

result suggests that increasing label ratio to promote F1 is more ef-
fective on dirty datasets (FUNNY and BOOK) than clean datasets
(AMAZON and YELP).

Besides F1 improvements, we also observe that the F1 gaps be-
tween LR/SVM and BERT decrease when the ratio of positive in-
stances increases. On AMAZON, F1 gap between LR and BERT
decreases from 0.16 to 0.03 when the ratio increases from 0.1 to
0.9. Similarly, F1 gap on YELP decreases from 0.06 to 0.01 when
the ratio goes up. The corresponding decreases in F1 gap may due
to more unseen positive instances that are brought by the dataset
with an increasing ratio. These unseen positive words have more
influences on LR and SVM than on BERT as LR and SVM rely
more on the occurrence of words for the tagging task.

6.2.3 Informative tokens
The F1s of a tagging model on different datasets can be signif-

icantly various, even when these datasets have the same training
size and label ratio. For example, both AMAZON and BOOK*
have more than 1 million labeled instances and present a percent-
age of positive instances of 50%. However, BERT achieves 0.96
F1 on AMAZON and 0.74 F1 on BOOK* (shown in Figure 1), be-
tween which the F1 gap is 0.22. We also observe similar behaviors
of other models on different datasets, such as the F1 gap of SVM
on YELP and FUNNY* is 0.15.

We assume that tagging labels on FUNNY* and BOOK* are
harder because these two datasets are dirtier in labels. To under-
stand what ingredients in a dataset make it hard to be tagged, we
analyze informative tokens that can separate positive records from
negative records. First, we try to identify such tokens from the
datasets. To perform the identification, we calculate the percentage
of positive instances containing token t (denoted as P) and the per-
centage of negative instances containing t (denoted as N). P and
N measure the occurrence of t in records concerning two differ-
ent types of labels. We then sort the P − N values of all tokens
in AMAZON, YELP, FUNNY*, and BOOK* in descending order.
Thereafter, we present the top 5 informative tokens and their fre-
quencies of occurrence in table 8. The result shows that top tokens
from AMAZON and YELP are all sentiment words that express
positive opinions, such as “great” and “love”. These words seman-
tically link to the task itself, i.e. tagging positive sentences. How-
ever, top tokens from FUNNY* and BOOK* contain some stop
words such as “that” and “on”. These stop words appear in high
frequencies in both positive and negative records.

6.3 Towards a higher F1
Our study can serve as a reference for practitioners to understand

how F1 is affected. To make sure that our study can be utilized, we
summarize and visualize our results as a heat map (Figure 11). We
select BERT and SVM as the representative deep model and simple
model, respectively. We describe their training size, ratio of posi-
tive instances, label quality of individual dataset, and tagging F1s

2559

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80 90

F1

% positive instance

LR SVM BERT

(a) AMAZON

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80 90

F1

% positive instances

LR SVM BERT

(b) YELP

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80 90

F1

% positive instances

LR SVM BERT

(c) FUNNY

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80 90

F1

% positive instances

LR SVM BERT

(d) BOOK

Figure 10: F1 of LR, SVM, and BERT on the 4 large datasets sub-sampled (100k) with different label ratios.

Table 8: Informative tokens regarding each dataset and their frequencies of occurrence in Positive and Negative instances. We sorted all
tokens by P− N descendingly and presented the top 5 tokens. Top tokens on AMAZON and YELP are all sentiment words. Top tokens on
FUNNY* and BOOK* include stop words such as “that”.

AMAZON P N YELP P N FUNNY* P N BOOK* P N

great 0.27 0.09 great 0.39 0.15 that 0.75 0.41 he 0.13 0.06
love 0.15 0.05 delicious 0.14 0.02 you 0.69 0.37 that 0.25 0.19
best 0.12 0.04 love 0.17 0.06 on 0.70 0.40 she 0.13 0.08
easy 0.08 0.02 friendly 0.16 0.06 of 0.87 0.58 her 0.13 0.08
well 0.16 0.11 best 0.19 0.09 at 0.60 0.31 him 0.06 0.03

Dataset Size Ratio Quality BERT SVM F1
SUGG 9K 0.26 clean 0.86 0.77 0.96
HOTEL 8K 0.05 clean 0.67 0.55 0.85
SENT 11k 0.10 clean 0.57 0.51 0.75
PARA 7K 0.17 clean 0.65 0.59 0.64
HOMO 2K 0.71 clean 0.95 0.89 0.53
HETER 2K 0.71 clean 0.93 0.87 0.42
TV 13K 0.53 clean 0.81 0.68 0.32
EVAL 10K 0.38 clean 0.81 0.73 0.21
REQ 10K 0.18 clean 0.84 0.69 0.10
FACT 10K 0.36 clean 0.82 0.69
REF 10K 0.02 clean 0.93 0.79

QUOTE 10K 0.02 clean 0.66 0.10
ARGUE 23K 0.44 clean 0.78 0.72
SUPPORT 23K 0.19 clean 0.54 0.45
AGAINST 23K 0.24 clean 0.62 0.51
FUNNY 5M 0.03 dirty 0.32 0.38
BOOK 18M 0.03 dirty 0.15 0.15

AMAZON 4M 0.50 clean 0.96 0.93
YELP 560K 0.50 clean 0.96 0.96
FUNNY* 244K 0.50 dirty 0.82 0.81
BOOK* 1M 0.50 dirty 0.74 0.7

Figure 11: F1s of BERT and SVM on 21 different datasets

in Figure 11. To visualize F1 values, we present small F1 (< 0.53)
as blue color and deepen color when values decrease, and present
large F1 (> 0.53) as red color and deepen color when values in-
crease. By retrieving our heat map, practitioners can estimate the
approximate tagging F1s for their datasets and choose the appro-
priate tagging model to obtain better tagging F1s.

Our study indicates that practitioners should try BERT if their
targeting datasets are small. They can expect F1 improvement as
much as 0.56. However, F1 improvement of BERT will be less sig-
nificant if a dataset has a large number of labels. When tagging
the datasets with both large sizes and high ratios of positive in-
stances, such as FUNNY, BOOK, AMAZON, YELP, FUNNY*,
and BOOK*, BERT does not show appealing F1 improvements
while taking plenty of training time (several days). In this case,

practitioners may consider simple models like SVM as an alterna-
tive choice, given that SVM can achieve a similar F1 value while
taking much less training time, in comparison to BERT.

In addition to choosing appropriate tagging models, practition-
ers should also pay attention to dataset selection. Our study shows
that AMAZON and YELP enable high F1s regardless of tagging
models. These two datasets own abundant training data, exhibit
balanced ratios, and include clean labels. HOMO and HETER also
allow tagging models to achieve high F1s. Although these two
datasets are smaller in size compared with AMAZON and YELP,
they have more positive instances (> 70%) than negative instances.
The higher label ratio makes the semantic tagging easier. In con-
trast, some datasets like FUNNY and BOOK can hinder tagging
models from obtaining high F1s. The reason is that their labels are
dirty and ratios of positive instances are small. Therefore, practi-
tioners should be cautious when preparing datasets and try to get
datasets with large size, high ratio of positive instances, and pure
cleanliness (e.g. no missing annotations).

7. CONCLUSION
Our study is the most comprehensive one that used the largest

number of real-world datasets to compare deep models and sim-
ple models. Our results reveal for the first time that dataset char-
acteristics are the key factors to determine whether deep models
can achieve better tagging quality than simple models. Given the
raw complexity of real-world datasets, choosing a suitable tagging
model for a specific dataset rather than sticking with deep models
should be the way of performing tagging tasks in the future. Our
study, especially the visualized heat map will be the most informa-
tive instruction for practitioners to choose a suitable tagging model
for their dataset, by considering its scale, label ratio, and cleanli-
ness.

8. ACKNOWLEDGMENTS
We thank Alon Halevy for his discussions in the early stages

of this work. We also thank Nikita Bhutani for giving numerous
comments that help significantly improve the paper.

2560

9. REFERENCES

[1] C. C. Aggarwal and C. Zhai. A survey of text classification
algorithms. In Mining Text Data, pages 163–222. 2012.

[2] M. J. A. Berry and G. Linoff. Data mining techniques - for
marketing, sales, and customer support. Wiley computer
publishing. Wiley, 1997.

[3] V. Blinov, V. Bolotova-Baranova, and P. Braslavski. Large
dataset and language model fun-tuning for humor
recognition. In ACL, pages 4027–4032, 2019.

[4] J. L. Boyd-Graber, K. Glasgow, and J. S. Zajac. Spoiler alert:
Machine learning approaches to detect social media posts
with revelatory information. In ASIST, pages 1–9, 2013.

[5] A. Cattle and X. Ma. Recognizing humour using word
associations and humour anchor extraction. In COLING,
pages 1849–1858, 2018.

[6] Y. D. Challenge.
https://www.yelp.com/dataset/documentation/main.

[7] Y. Chang, C. Hsieh, K. Chang, M. Ringgaard, and C. Lin.
Training and testing low-degree polynomial data mappings
via linear SVM. JMLR, 11:1471–1490, 2010.

[8] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting
system. In SIGKDD.

[9] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. CoRR, abs/1412.3555, 2014.

[10] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT:
pre-training of deep bidirectional transformers for language
understanding. In NAACL-HLT, pages 4171–4186, 2019.

[11] Y. Diao, H. Lin, L. Yang, X. Fan, D. Wu, D. Zhang, and
K. Xu. Heterographic pun recognition via pronunciation and
spelling understanding gated attention network. In WWW,
pages 363–371.

[12] J. Friedman, T. Hastie, and R. Tibshirani. The elements of
statistical learning, volume 1. Springer, 2001.

[13] GLUE Benchmark. https://gluebenchmark.com/leaderboard.
2019.

[14] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.
MIT Press, 2016.

[15] I. Guy, A. Mejer, A. Nus, and F. Raiber. Extracting and
ranking travel tips from user-generated reviews. In WWW,
pages 987–996, 2017.

[16] F. E. Harrell Jr. Regression modeling strategies: with
applications to linear models, logistic and ordinal
regression, and survival analysis. Springer, 2015.

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[18] X. Hua, M. Nikolov, N. Badugu, and L. Wang. Argument
mining for understanding peer reviews. In NAACL-HLT,
pages 2131–2137, 2019.

[19] J. H. Huggins, T. Campbell, and T. Broderick. Coresets for
scalable bayesian logistic regression. In NIPS, pages
4080–4088, 2016.

[20] O. Ivanciuc et al. Applications of support vector machines in
chemistry. Reviews in computational chemistry, 23:291,
2007.

[21] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
ECML-98, pages 137–142, 1998.

[22] S. Kim and E. H. Hovy. Automatic identification of pro and
con reasons in online reviews. In ACL, 2006.

[23] Y. Kim. Convolutional neural networks for sentence
classification. In EMNLP, pages 1746–1751, 2014.

[24] K. Kowsari, K. J. Meimandi, M. Heidarysafa, S. Mendu,
L. E. Barnes, and D. E. Brown. Text classification
algorithms: A survey. Information, 10(4):150, 2019.

[25] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and
R. Soricut. Albert: A lite bert for self-supervised learning of
language representations. arXiv preprint arXiv:1909.11942,
2019.

[26] J. Li, Y. Li, X. Wang, and W.-C. Tan. Deep or simple models
for semantic tagging? it depends on your data.
https://arxiv.org/abs/2007.05651. arXiv preprint 2007.05651,
2020.

[27] B. Liu. Sentiment Analysis and Opinion Mining. Synthesis
Lectures on Human Language Technologies. Morgan &
Claypool Publishers, 2012.

[28] J. Liu, S. Wang, and Y. Sun. Olenet at semeval-2019 task 9:
BERT based multi-perspective models for suggestion
mining. In SemEval@NAACL-HLT, pages 1231–1236, 2019.

[29] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A
robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019.

[30] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
information retrieval. Cambridge University Press, 2008.

[31] T. Miller, C. Hempelmann, and I. Gurevych. Semeval-2017
task 7: Detection and interpretation of english puns. In
SemEval@ACL, pages 58–68, 2017.

[32] C. Mitcheltree, V. Wharton, and A. Saluja. Using aspect
extraction approaches to generate review summaries and user
profiles. In NAACL-HLT, pages 68–75, 2018.

[33] A. Morales and C. Zhai. Identifying humor in reviews using
background text sources. In EMNLP, pages 492–501, 2017.

[34] S. Negi, K. Asooja, S. Mehrotra, and P. Buitelaar. A study of
suggestions in opinionated texts and their automatic
detection. In *SEM@ACL, 2016.

[35] S. Negi and P. Buitelaar. Towards the extraction of
customer-to-customer suggestions from reviews. In EMNLP,
pages 2159–2167, 2015.

[36] S. Negi, T. Daudert, and P. Buitelaar. Semeval-2019 task 9:
Suggestion mining from online reviews and forums. In
SemEval@NAACL-HLT, pages 877–887, 2019.

[37] S. Novgorodov, G. Elad, I. Guy, and K. Radinsky.
Generating product descriptions from user reviews. In
WWW, pages 1354–1364, 2019.

[38] L. Poddar, W. Hsu, and M. Lee. Author-aware aspect topic
sentiment model to retrieve supporting opinions from
reviews. In EMNLP, pages 472–481, 2017.

[39] M. Pontiki, D. Galanis, H. Papageorgiou,
I. Androutsopoulos, S. Manandhar, A.-S. Mohammad,
M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq, et al.
Semeval-2016 task 5: Aspect based sentiment analysis. In
Proceedings of the 10th international workshop on semantic
evaluation (SemEval-2016), pages 19–30, 2016.

[40] P. Potash, A. Romanov, and A. Rumshisky. Semeval-2017
task 6: #hashtagwars: Learning a sense of humor. In
SemEval@ACL, pages 49–57, 2017.

[41] S. S. Pradhan, W. H. Ward, K. Hacioglu, J. H. Martin, and
D. Jurafsky. Shallow semantic parsing using support vector
machines. In HLT-NAACL, pages 233–240, 2004.

2561

[42] Questia.
https://www.questia.com/library/controversial-topics. 2020.

[43] V. Rakesh, W. Ding, A. Ahuja, N. Rao, Y. Sun, and C. K.
Reddy. A sparse topic model for extracting aspect-specific
summaries from online reviews. In WWW, pages 1573–1582,
2018.

[44] SEMEVAL2020. International workshop on semantic
evaluation. 2020.

[45] Sklearn Linear SVM. https://scikit-
learn.org/stable/modules/generated/sklearn.svm.linearsvc.html.
2020.

[46] C. Stab, T. Miller, B. Schiller, P. Rai, and I. Gurevych.
Cross-topic argument mining from heterogeneous sources. In
EMNLP, pages 3664–3674, 2018.

[47] J. A. K. Suykens and J. Vandewalle. Least squares support
vector machine classifiers. Neural Processing Letters,
9(3):293–300, 1999.

[48] H. F. Transformers. https://huggingface.co/transformers/.
[49] M. Wan, R. Misra, N. Nakashole, and J. J. McAuley.

Fine-grained spoiler detection from large-scale review
corpora. In ACL, pages 2605–2610, 2019.

[50] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R.
Bowman. Glue: A multi-task benchmark and analysis
platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[51] S. Wang, N. Phan, Y. Wang, and Y. Zhao. Extracting API tips
from developer question and answer websites. In MSR, pages
321–332, 2019.

[52] I. Weber, A. Ukkonen, and A. Gionis. Answers, not links:
extracting tips from yahoo!answers to address how-to web
queries. In WSDM, pages 613–622, 2012.

[53] D. Yang, A. Lavie, C. Dyer, and E. H. Hovy. Humor
recognition and humor anchor extraction. In EMNLP, pages
2367–2376, 2015.

[54] Z. Yu, J. Tan, and X. Wan. A neural approach to pun
generation. In ACL, pages 1650–1660, 2018.

[55] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2012, San Jose, CA, USA, April
25-27, 2012, pages 15–28, 2012.

[56] L. Zhang and B. Liu. Sentiment Analysis and Opinion
Mining. 2017.

[57] X. Zhang, Z. Qiao, A. Ahuja, W. Fan, E. A. Fox, and C. K.
Reddy. Discovering product defects and solutions from
online user generated contents. In WWW, pages 3441–3447,
2019.

[58] X. Zhang, J. J. Zhao, and Y. LeCun. Character-level
convolutional networks for text classification. In NIPS, pages
649–657, 2015.

[59] D. Zhu, T. Lappas, and J. Zhang. Unsupervised tip-mining
from customer reviews. Decision Support Systems,
107:116–124, 2018.

[60] Y. Zou and W. Lu. Joint detection and location of english
puns. In NAACL-HLT, pages 2117–2123, 2019.

2562

