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ABSTRACT
Listing all k-cliques in a graph is a fundamental graph mining
problem that finds many important applications in community
detection and social network analysis. Unfortunately, the problem
of k-clique listing is often deemed infeasible for a large k, as
the number of k-cliques in a graph is exponential in the size k.
The state-of-the-art solutions for the problem are based on the
ordering heuristics on nodes which can efficiently list all k-cliques
in large real-world graphs for a small k (e.g., k ≤ 10). Even
though a variety of heuristic algorithms have been proposed, there
still lacks a thorough comparison to cover all the state-of-the-art
algorithms and evaluate their performance using diverse real-world
graphs. This makes it difficult for a practitioner to select which
algorithm should be used for a specific application. Furthermore,
existing ordering based algorithms are far from optimal which
might explore unpromising search paths in the k-clique listing
procedure. To address these issues, we present a comprehensive
comparison of all the state-of-the-art k-clique listing and counting
algorithms. We also propose a new color ordering heuristics based
on greedy graph coloring techniques which is able to significantly
prune the unpromising search paths. We compare the performance
of 14 various algorithms using 17 large real-world graphs with up
to 3 million nodes and 100 million edges. The experimental results
reveal the characteristics of different algorithms, based on which
we provide useful guidance for selecting appropriate techniques for
different applications.
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1. INTRODUCTION
Real-world graphs, such as social networks, biological networks,

and communication networks often consist of cohesive subgraph
structures. Mining cohesive subgraphs from a graph is a fundamen-
tal problem in network analysis which has attracted much attention
in the database and data mining communities [2, 26, 37, 36, 25,
24]. Perhaps the most elementary cohesive substructure in a graph
is the k-clique structure which has been widely used in a variety of
network analysis applications [34, 17, 30, 6, 20, 11].
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Given a graph G, a k-clique is a subgraph with k nodes such
that each pair of nodes is connected with an edge. Listing all k-
cliques in a graph is a fundamental graph mining operator which
finds important applications in community detection and social
network analysis. In particular, Palla et al. [34] proposed a k-
clique percolation approach to detect overlapping communities
in a network, in which a k-clique listing algorithm is used for
computing all k-cliques. Mitzenmacher et al. [30] presented an
algorithm to find large near cliques which also requires to list all
k-cliques. Sariyüce et al. [37] developed a nucleus decomposition
method to reveal the hierarchy of dense subgraphs, in which listing
all k-cliques is an important building block. Tsourakakis [46]
investigated a k-clique densest subgraph problem which also makes
use of k-cliques as building blocks. In addition, algorithms for k-
clique listing have also been used for story identification in social
media [2] and detect the latent higher-order organization in real-
world networks [6].

Motivated by the above applications, several practical algorithms
have been developed for listing/counting all k-cliques in large
real-world graphs [9, 29, 32, 20, 11]. Chiba and Nishizeki [9]
developed the first practical algorithm (referred to as the Chiba-
Nishizeki algorithm) to solve such a problem, which can handle
many large real-world graphs. An appealing feature of the Chiba-
Nishizeki algorithm is that its running time relies mainly on the
arboricity [31] of the graph, which is typically very small for real-
world graphs [27, 13]. To improve the Chiba-Nishizeki algorithm,
Ortmann and Brandes [32] proposed a general ordering-based
framework to list triangles in a graph which can also be applied
to list k-cliques. Compared to the Chiba-Nishizeki algorithm, the
striking feature of the ordering-based framework is that it can be
easily parallelized. Danisch et al. [11] also developed a similar
ordering-based framework to list all k-cliques, with a particular
focus on a degeneracy-ordering based algorithm. They showed that
the degeneracy-ordering based algorithm is significantly faster than
the Chiba-Nishizeki algorithm. However, they did not compare
their algorithm with the other ordering-based algorithms, such as
the algorithm based on the degree ordering [32]. Another practical
algorithm is MACE [29]. Although MACE was initially proposed
to enumerate all maximal cliques, it can also be adapted to list k-
cliques [29]. Except for exact k-clique counting, there exist two
notable algorithms to approximate the number of k-cliques. Jain
and Seshadhri [20] developed an elegant randomized algorithm
called Turán-Shadow based on the classic Turán theorem [48]. The
Turán-Shadow algorithm is able to quickly estimate the number
of k-cliques, but it cannot output all k-cliques. ERS is also a
randomized algorithm for estimating k-clique counts which was
developed in the theory community [12]. ERS can achieve a
sublinear time complexity in theory, but its practical performance
is unknown.

Although the significance of the k-clique listing problem and
the many efforts devoted to investigating it, a comprehensive
experimental evaluation of various algorithms for the problem still
appears elusive, with existing studies being incomplete by only
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considering a subset of algorithms (e.g., [11]), or not applying
to list general k-cliques (e.g., [32]). This renders it difficult
for a practitioner to determine which algorithm should be used
for a specific application. Furthermore, existing ordering based
algorithms, such as [11] and [32], are far from optimal which
may explore many unpromising search paths in the k-clique listing
procedure. To address these issues, we carry out an extensive
experimental comparison of various algorithms for the k-clique
listing problem. We also propose a new color ordering heuristics
based on greedy graph coloring techniques [18, 49] which can
significantly prune unpromising search paths. Using a variety of
large real-world graphs with up to 3 million nodes and 100 million
edge, we systematically compare the performance of 14 different
algorithms (see Table 1). Our experimental results reveal the
characteristics of different algorithms, based on which we present
useful guidance for the selection of appropriate methods for various
scenarios (see Table 4 and Fig. 15). In summary, the contributions
of this paper are:
• We present a thorough experimental study of the known

algorithms for listing/counting k-cliques using a variety of
large real-world graphs. To the best of our knowledge, this
is the first work that compares all the practical k-clique
listing/counting techniques from an empirical viewpoint.
• We propose a new color ordering heuristics, based on which

we develop three color-ordering based algorithms for k-
clique listing. An appealing feature of the color-ordering
based algorithms is that they can significantly prune un-
promising search paths in the k-clique listing procedure,
which allows us to list k-cliques for a large k value. More-
over, our optimized color-ordering based algorithm can also
achieve the same time and space complexity as those of
the state-of-the-art algorithm. The experimental results
indicate that the optimized color-ordering based algorithm
outperforms all other algorithms for listing k-cliques.
• We also evaluate the parallel variants of all ordering-based

algorithms, and the results show a high degree of parallelism
of the ordering-based algorithms. The source codes of this
paper are publicly accessible at Github [1].

2. PRELIMINARIES
Let G = (V,E) be an undirected graph, where V (|V | = n)

and E (|E| = m) denote the set of nodes and edges respectively.
We denote with Nu(G) the set of neighbor nodes of u in G, and
du(G) = |Nu(G)| denotes the degree of u in G. A subgraph
H = (VH , EH) is called an induced subgraph of G if VH ⊆ V
and EH = {(u, v)|(u, v) ∈ E, u ∈ VH , v ∈ VH}. Below, we will
give three important concepts called degeneracy [13], arboricity
[31], and h-index respectively which are often used to design and
analyze k-clique listing algorithms [9, 27, 11].

Given a graph G and an integer k, a k-core, denoted by Ck, is a
maximal induced subgraph of G such that every node in Ck has a
degree no smaller than k, i.e., du(Ck) ≥ k for every u ∈ Ck [40].
The core number of a node u, denoted by cu, is the largest integer
k such that there exists a k-core containing u [40]. The maximum
core number of a graph G, denoted by δ, is the maximum value of
core numbers among all nodes in G. The maximum core number δ
is also referred to as the degeneracy of G [13].

The degeneracy of a graph is closely related to a classic concept
called arboricity [31], which is frequently used to measure the
sparsity of a graph. Specifically, the arboricity of a graph G,
denoted by α, is defined as the minimum number of forests into
which its edges can be partitioned. It is well known that the
degeneracy of G is a 2-approximation of the arboricity α, i.e.,
α ≤ δ ≤ 2α − 1. Note that the core numbers of nodes can
be computed in linear time using the classic core-decomposition
algorithm [4]. As a result, the degeneracy of a graph can be
efficiently determined. The arboricity of a graph, however, is hard
to compute [16], therefore practitioners often use the degeneracy to
approximate the arboricity of a graph [3].

Another related concept is called h-index of a graph G. The
h-index of G is defined as the maximum integer η such that the
graph contains η nodes of degree at least η [14]. More formally,
η , arg max

k
(|{u|du(G) ≥ k, u ∈ V }| ≥ k). As shown in

[27], η is an upper bound of α, and it is also bounded by
√

2m,
i.e., α ≤ η ≤

√
2m. Notice that the degeneracy, arboricity, and

h-index are often very small in real-world graphs [13].
Given a graphG and a parameter k, the k-clique listing/counting

problem is a problem of listing/counting all complete subgraphs
with size k in G. The state-of-the-art k-clique listing/counting
algorithms are based on a graph orientation framework [32, 15,
11]. Let π : V → {1, · · · , n} be a fixed total ordering on nodes
in G. Then, for any undirected graph G = (V,E), we are able to
obtain a directed graph, denoted by ~G = (V, ~E), by orienting each
edge e ∈ E from the lower numbered node to the higher numbered
node. More specifically, for each undirected edge (u, v) ∈ E, we
obtain a directed edge (u, v) ∈ ~E if π(u) < π(v) based on the
total order π. Clearly, the directed graph ~G obtained by such an
edge-orientation procedure is a directed acyclic graph (DAG), i.e.,
~G cannot contain a directed cycles. The algorithms on the basis
of such a graph orientation framework are referred to as ordering-
based algorithms. In the following section, we will describe all the
practical algorithms for k-clique listing/counting.

3. ALGORITHMS
Existing algorithms for k-clique listing and counting can be

classified in two categories: exact algorithms and approximation
algorithms. For the exact algorithms, we can further classify
them in two subcategories: non-ordering based algorithms and
ordering-based algorithms. Two representative non-ordering based
algorithms are the classic Chiba-Nishizeki algorithm [9] and the
MACE algorithm [29]. The ordering-based algorithms include
the degree-ordering based algorithm [32, 15] and the degeneracy-
ordering based algorithm [11], which are the two state-of-the-art
k-clique listing algorithms [11]. We find that existing ordering-
based algorithms can be optimized by a coloring-based pruning
technique, resulting in a set of color-ordering based algorithms.
Approximation algorithms for k-clique counting are often based on
smart sampling techniques. Notable examples include the Turán-
Shadow algorithm [20] and the ERS algorithm [12]. Table 1
describes our classification of different algorithms and summarizes
their detailed properties. Below, we first give a detailed description
for each algorithm, and then present a horizontal comparison of
different algorithms in terms of running time, memory usage,
parallelizability, and accuracy.

3.1 The Chiba-Nishizeki Algorithm
We start by describing the classic Chiba-Nishizeki algorithm [9],

denoted by Arbo, which is the first practical algorithm for listing
k-cliques. The algorithm first sorts the nodes in a non-increasing
order of degree (line 7 of Algorithm 1). Then, the algorithm
processes the nodes following this order (line 8 of Algorithm 1).
For each node v, the algorithm creates a subgraph Gv induced by
v’s neighbors, and then recursively executes the same procedure on
such an induced subgraph (lines 9-10 of Algorithm 1). It should be
noted that when handling an induced subgraph Gv , the algorithm
needs to reorder the nodes in Gv based on their degrees. After
processing a node v, the algorithm removes v from the current
graph to avoid that any k-clique containing v is repeatedly listed
(line 11 of Algorithm 1). Algorithm 1 shows the pseudocode of
the Chiba-Nishizeki algorithm. The striking feature of Algorithm 1
is that its time complexity is closely related to the arboricity of
the graph. More specifically, Algorithm 1 lists all k-cliques in
O(kmαk−2) time using linear space, where α is the arboricity of
the graph. For many real-world graphs, the arboricity is typically
very small, thus Arbo is efficient in practice.
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Table 1: Summary of different algorithms (“ × ” : no or not applicable; “X” : yes; “?” : no existing implementation; ω : the
maximum clique size; α : arboricity; η : h-index; ∆ : the maximum degree; δ : degeneracy; Ck : the number of k-clique)

Problem Category Algorithms Ordering Heuristics Time Complexity Space Complexity Parallel

k-clique listing
exact

Arbo [9] × O(kmαk−2) O(m+ n) ×
MACE [29] × O(knmαk−2) O(m+ n) ×

Degree [32, 15] X(degree ordering) O(km(η/2)k−2) O(m+ n) X
Degen [11] X(degeneracy ordering) O(km(δ/2)k−2) O(m+ n) X

DegCol (improved Degree) X(color ordering) O(km(∆/2)k−2) O(m+ n) X
DegenCol (improved Degen) X(color ordering) O(km(∆/2)k−2) O(m+ n) X
DDegCol (optimized DegCol) X(optimized color ordering) O(km(δ/2)k−2) O(m+ n) X
DDegree (optimized Degree) X(optimized degree ordering) O(km(δ/2)k−2) O(m+ n) X

approx. TuranSD [20] × O(nαk−1) O(nαk−2 +m) ×
ERS [12] × Õ(n/C

1/k
k +mk/2/Ck) O(m+ n) ?

triangle listing exact LDegree [32] X(degree ordering) O(αm) O(m+ n) ?
(k = 3) LDegen [32] X(degeneracy ordering) O(αm) O(m+ n) ?

maximum clique search exact RDS [33, 35] × O(n2n) O(m+ n) ×
(k = ω) MC-BRB [8] × O(n2n) O(m+ n) ×

Algorithm 1: The Chiba-Nishizeki Algorithm (Arbo)
Input: An graphG and an integer k
Output: All k-cliques

1 Arbo (G, ∅, k);
2 Procedure Arbo (G,R, l);
3 if l = 2 then
4 for each edge (u, v) inG do
5 output a k-cliqueR ∪ {(u, v)};

6 else
7 Sort the nodes inG such that dv1 (G) ≥ · · · ≥ dv|VG|

(G);

8 for i = 1 to |VG| do
9 LetGvi

be the subgraph ofG induced by the set of neighbors of vi;
10 Arbo (Gvi

, R ∪ {vi}, l− 1);
11 Delete vi fromG;

3.2 The MACE Algorithm
The MACE algorithm [29] was originally proposed to enumerate

maximal cliques in a graph, but it can also be adapted to k-clique
listing and counting. The main idea of the algorithm is very simple.
Since any subset of a k-clique is also a clique, we can obtain a
k-clique by recursively adding nodes to a sub-clique. Based on
this, a depth-first backtracking algorithm can be easily devised.
Specifically, in each recursion of the algorithm, for each node v
that is not in the current sub-clique C, if C ∪ v is a valid clique
and 1 + |C| < k, then the algorithm recursively invokes the
same procedure to list the k-cliques including C ∪ v. To avoid
duplications, the algorithm can process the nodes following a pre-
defined node ordering (e.g., lexicographic order of node IDs). More
specifically, in each recursion, the algorithm only considers the
nodes that are with ranks larger than those of the nodes in the sub-
clique C. The algorithm is shown to be polynomial delay which
takes at most O(n) time to list a k-clique [29]. Since the number
of k-clique can be bounded byO(kmαk−2)[9], the worst-case time
complexity of the algorithm is O(knmαk−2). As shown in [29],
the space complexity of MACE is O(m+ n). Similar to the Arbo
algorithm, MACE is also not easy to be parallelized, because it
involves a depth-first backtracking procedure.

3.3 Existing Ordering Based Algorithms
In this subsection, we describe two ordering based algorithms

which turn out to be the most efficient algorithms for the k-
clique listing problem [32, 11]. The ordering-based algorithms
was originally designed to list all triangles in an undirected graph
[32]. Recently, it is successfully extended to list all k-cliques in
an undirected graph [15, 11]. These algorithms start by computing
a total ordering on nodes, and then construct a DAG based on the
total ordering. After that, the algorithms list all k-cliques on the
DAG which can prevent that a same k-clique is listed more than
once. Specifically, by the ordering based algorithms, each k-clique
R is only listed once when the algorithm processes the node in R

Algorithm 2: The Ordering Based Framework
Input: An graphG and an integer k
Output: All k-cliques

1 Let π be a total ordering on nodes; /* degree ordering or degeneracy ordering */;
2 Let ~G be a DAG generated by π;
3 ListClique(~G, ∅, k);
4 Procedure ListClique(~G,R, l);
5 if l = 2 then
6 for each edge (u, v) in ~G do
7 output a k-cliqueR ∪ {(u, v)};

8 else
9 for each node v ∈ ~G do

10 Let ~Gv be the subgraph of ~G induced by all v’s out-going neighbors;
11 ListClique(~Gv, R ∪ {v}, l− 1);

with the smallest value in the total order. Algorithm 2 shows the
framework of the ordering based algorithms.

As indicated in [11], the running time of the ordering based algo-
rithms depends mainly on the orderings on nodes. Unfortunately,
finding the best ordering for the k-clique listing algorithms is a NP-
hard problem [11], thus we resort to seek good heuristic ordering
approaches in practice. Below, we discuss two existing ordering
heuristics which are the degree ordering [32] and the degeneracy
ordering [11].

The degree-ordering based algorithm. Given a graph G, we can
construct a total ordering by sorting the nodes in an non-decreasing
of degree (break ties by node identities). We refer to such a total
ordering as a degree ordering. Let πd be a degree ordering. Clearly,
for two nodes with identities u, v, and u < v, we have πd(u) ≺
πd(v) if du(G) ≤ dv(G).

Let ~Gd be a DAG generated by the degree ordering πd. Specif-
ically, for each undirected edge (u, v) ∈ G with πd(u) ≺ πd(v),
we creates a directed edge (u, v) in ~Gd. Let N+

u (~Gd) and d+u ( ~Gd)

be the set of outgoing neighbors of u in ~Gd and the out-degree of
u, respectively. An appealing feature of such a DAG is that the
out-degree of a node in ~Gd is bounded by the h-index of G.

LEMMA 1. For any u ∈ ~Gd, d+u ( ~Gd) ≤ η, where η is the h-
index of G.

Algorithm 2 equipped with a degree ordering heuristics is
referred to as a degree-ordering based algorithm, denoted by
Degree in Table 1. Since the out-degree of the nodes in ~Gd
is bounded by the h-index of the original undirected graph G
(Lemma 1), we are capable of deriving the time complexity of the
degree-ordering based algorithm as follows.

THEOREM 1. Given a graph G and an integer k, the degree-
ordering based algorithm lists all k-cliques in O(km(η/2)k−2)
time using O(m+ n) space, where η is the h-index of G.
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The degeneracy-ordering based algorithm. Given a graph G
with degeneracy δ, a node ordering is called a degeneracy ordering
if every node in G has δ or fewer neighbors that come later
in the ordering [13]. It is easy to derive that the classic core-
decomposition algorithm [4] that repeatedly deletes a node with
minimum degree can generate a degeneracy ordering. We refer
to such a ordering obtained by the core-decomposition algorithm
[4] as a core-based degeneracy ordering, and it will be abbreviated
as a degeneracy ordering in the rest of this paper. Obviously,
the degeneracy ordering πδ derived by the core-decomposition
algorithm is a total ordering, thus the directed graph induced by
πδ is a DAG. We denote such a DAG by ~Gδ . It is easy to show that
d+u (~Gδ) ≤ δ for any node u ∈ ~Gδ .

Algorithm 2 equipped with a degeneracy ordering (line 1 of Al-
gorithm 2) is referred to as a degeneracy-ordering based algorithm,
denoted by Degen in Table 1. Let δ be the degeneracy of a graph. It
was shown that Degen hasO(km(δ/2)k−2) time complexity using
O(m+n) space [11], which is slightly lower than that of the Arbo
algorithm (because δ ≤ 2α− 1).

3.4 The Color Ordering Based Algorithms
The main defects of existing ordering based algorithms are

twofold: (1) the algorithms are very costly for listing k-cliques
with a large k, especially when k is close to the size of a
maximum clique (denoted by ω); (2) the algorithms are unable
to prune unpromising search paths, in which no k-clique can
be found. To overcome these shortcomings, we propose a new
ordering heuristics, called color ordering, based on the greedy
graph coloring technique [18, 49].

Assume that the graph G can be colored using χ colors. Then,
we assign an integer color value taking from [1, · · · , χ] to each
node in G using any greedy coloring algorithm [18, 49] so that
no two adjacent nodes have the same color value. After that, we
sort the nodes in a non-increasing order based on their color values
(break ties by node identities). We refer to such a total ordering as a
color ordering, denoted by πχ. Let ~Gχ be the DAG induced by πχ.
Clearly, for each node v ∈ ~Gχ, the color value of v is no less than
the color values of its outgoing neighbors. A striking feature of the
color ordering is that the color values of the nodes can be used to
prune unpromising search paths in the k-clique listing procedure.
Algorithm 3 shows the pseudocode of the color-ordering based
algorithm.

In Algorithm 3, the algorithm first invokes a greedy coloring
algorithm [18, 49] to obtain a valid coloring for nodes (line 1).
Based on the color values, the algorithm constructs a total ordering
(line 2) and generates a DAG (line 3). After that, the algorithm
recursively lists all k-cliques using a similar procedure as used
in Algorithm 2. However, unlike Algorithm 2, Algorithm 3 is
able to use the color values to prune unpromising search paths.
Specifically, in line 11, when the algorithm explores a node v with
a color value (denoted by color(v)) smaller than l, the algorithm
can safely prune the search paths rooted at v. The reason is as
follows. By the color ordering heuristics, each out-going neighbor
of v has a color value strictly smaller than color(v) (because v’s
out-going neighbors cannot have the same color value as that of v).
Since color(v) < l, all v’s out-going neighbors have color values
strictly smaller than l − 1. As a result, v does not have l − 1 out-
going neighbors with different colors, indicating that v cannot be
contained in any l-clique. Note that such a pruning strategy not
only improves the performance of the algorithm, but it also enables
the algorithm to list large k-cliques if the value of k is near to the
maximum clique size. The traditional ordering-based algorithms
introduced in Section 3.3, however, cannot be used to list large k-
cliques.

Note that in Algorithm 3, the greedy coloring procedure colors
the nodes following a fixed node ordering. When processing a
node v, the greedy coloring procedure always selects the minimum

Algorithm 3: The Color-ordering Based Algorithm
Input: An graphG and an integer k
Output: All k-cliques

1 color [1, · · · , n]←GreedyColoring(G);
2 Let π be the total ordering on nodes generated by color values;
3 Let ~G be a DAG generated by π;
4 ColorListClique(~G, ∅, k);
5 Procedure ColorListClique(~G,R, l);
6 if l = 2 then
7 for each edge (u, v) in ~G do
8 output a k-cliqueR ∪ {(u, v)};

9 else
10 for each node v ∈ ~G do
11 if color(v) < l then continue;
12 Let ~Gv be the subgraph of ~G induced by all v’s out-going neighbors;
13 ColorListClique(~Gv, R ∪ {v}, l− 1);

14 Procedure GreedyColoring(G);
15 Let π′ be a total ordering on nodes; /* π′ is an inverse degree ordering or an

inverse degeneracy ordering */;
16 flag(i)← −1 for i = 1, · · · , χ;
17 for each node v ∈ π′ in order do
18 for u ∈ Nv(G) do
19 flag(color(u))← v;

20 k ← min{i|i > 0, flag(i) 6= v};
21 color(v)← k;

22 return color(v) for all v ∈ G;

color value that has not been used by v’s neighbors to color v
(lines 17-21). Clearly, various node orderings used in the greedy
coloring procedure will generate different color orderings (line 15).
Below, we introduce two color orderings based on an inverse
degree ordering [49] and an inverse degeneracy ordering [18].
The algorithms based on these two color orderings are denoted by
DegCol and DegenCol in Table 1 respectively.

The degree-based color ordering. This color ordering is gener-
ated by the following steps. First, we invoke the greedy coloring
procedure to color the nodes following a non-increasing ordering
of degree (break ties by node ID). Then, we sorts the nodes in a
non-increasing ordering of color value (break ties by node ID). The
following example illustrates the detailed procedure for generating
such a degree-based color ordering.

EXAMPLE 1. Consider the graph shown in Fig. 1(a). It is
easy to see that (v5, v4, v1, v3, v2, v8, v6, v7) is an inverse degree
ordering. Following this ordering, the algorithm first colors v5 with
the smallest color 1, and then colors v4 with a color 2, and the other
nodes are iteratively colored in a similar way. Fig.1(a) depicts the
results of this coloring approach. Based on the color values, we
can easily obtain the color ordering (v2, v3, v6, v1, v7, v4, v8, v5)
(break ties by node ID). The DAG generated by this color ordering
is shown in Fig. 1(b).

Unlike the traditional ordering heuristics shown in Section 3.3,
the out-degree of a node in the DAG generated by the degree-
based color ordering cannot be bounded by the h-index or the
degeneracy of the graph. In this case, we can only obtain a trivial
upper bound for the out-degree, which is the maximum degree
of the graph ∆. As a result, the worst-case time complexity of
Algorithm 3 is O(km(∆/2)k−2) based on a similar analysis in
Theorem 1. However, in practice, the running time of such a color-
ordering based algorithm can be much lower than the worst-case
time complexity as confirmed in our experiments. The reason is
as follows. By the inverse degree ordering, the node with a high
degree might be colored with a small color value, thus the high-
degree nodes tend to be having a low rank in the degree-based
color ordering. As a result, the high-degree nodes might have a
relatively small out-degree in the DAG generated by the degree-
based color ordering. Based on this, the real time consumption
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Figure 1: Illustration of the degree-based color ordering
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Figure 2: Illustration of the degeneracy-based color ordering

of the algorithm can be much lower than the worst-case time
complexity O(km(∆/2)k−2).

The degeneracy-based color ordering. Except the inverse degree
ordering, we can also use an inverse degeneracy ordering [18]
to color the nodes in Algorithm 3. Note that such an inverse
degeneracy ordering can be easily obtained by reversing the node-
deletion ordering of the core-decomposition algorithm [4]. The
color ordering generated by this approach is referred to as a
degeneracy-based color ordering. We use the following example
to illustrate such a greedy coloring procedure, as well as the
degeneracy-based color ordering.

EXAMPLE 2. Consider the graph shown in Fig. 2(a). The
ordering (v5, v4, v3, v2, v1, v8, v6, v7) is an inverse degeneracy
ordering. Following this ordering, we can obtain a colored graph
shown in Fig. 2(a) by the greedy coloring procedure. Based on the
color values, it is easy to derive that (v1, v2, v3, v6, v4, v7, v8, v5)
is a color ordering. Fig. 2(b) shows the DAG generated by this
color ordering.

Similar to the degree-based color ordering, the maximum out-
degree of the DAG generated by the degeneracy-based color
ordering could be equal to ∆ in the worst case. Thus, the worst-
case time complexity of Algorithm 3 with a degeneracy-based color
ordering is O(km(∆/2)k−2). However, in practice, the running
time of our algorithm is much lower than the worst-case time
complexity as verified in our experiments. The reasons are as
follows. By the inverse degeneracy ordering, a node with a large
core number may be assigned by a small color value, thus such a
node might have a low rank in the degeneracy-based color ordering.
As a result, the DAG generated by the degeneracy-based color
ordering might be similar to the DAG induced by the degeneracy
ordering, indicating that the real time cost of Algorithm 3 can be
much lower than O(km(∆/2)k−2). In addition, Algorithm 3 also
applies the color values to prune unpromising search paths, thus it
can be very efficient in practice.

The optimized color-ordering based algorithm. Here we present
a simple but effective strategy to reduce the worst-case time
complexity of our color-ordering based algorithms. In particular,
we can first generate a DAG ~G based on the degeneracy ordering.
Let N+

v (~G) be the set of out-going neighbors of v in ~G. Then, for
each v, we construct a subgraph Gv = (Vv, Ev) of the original
undirected G that is induced by the nodes in N+

v (~G) (Vv =

N+
v (~G)). After that, for each v with |Vv| ≥ k−1, we iteratively list

all k−1 cliques inGv using Algorithm 3. The pseudocode of such
an optimized algorithm is shown in Algorithm 4. The optimized
degree-based color ordering algorithm is denoted by DDegCol in
Table 1. An important feature of this algorithm is that its worst-
case time complexity is O(kmδk−2), which is the same as that of
the degeneracy-ordering based algorithm.

Algorithm 4: The Optimized Color-ordering Based Algorithm
Input: An graphG and an integer k
Output: All k-cliques

1 Let π be a degeneracy ordering;
2 Let ~G be a DAG generated by π;
3 LetN+

v (~G) be the set of out-going neighbors of v;
4 LetGv = (Vv, Ev) be the subgraph ofG induced by the nodes inN+

v (~G);
5 for each v ∈ G do
6 if |Vv| ≥ k − 1 then
7 Invoke Algorithm 3 on the subgraphGv with parameter k − 1;

THEOREM 2. Given a graph G and an integer k, Algorithm 4
lists all k-cliques in O(km(δ/2)k−2) time using linear space,
where δ is the degeneracy of G.

Optimized degree-ordering based algorithm. The above opti-
mization strategy can also be used to reduce the worst-case time
complexity of the degree-ordering based algorithm. Specifically,
instead of using Algorithm 3, we make use of the degree-ordering
based algorithm to list all (k − 1)-cliques on Gv in the line 7 of
Algorithm 4. Such an optimized degree-ordering based algorithm
is denoted by DDegree in Table 1. By a similar analysis in
Theorem 2, the time complexity of DDegree is O(km(δ/2)k−2).

3.5 Parallel Ordering Based Algorithms
In [11], Danisch et al. proposed two general parallel strate-

gies for ordering-based algorithms, namely, NodeParallel and
EdgeParallel respectively. Note that all the above ordering-based
algorithms can be parallelized using the NodeParallel or the
EdgeParallel strategy. Let ~Gv be the subgraph of ~G induced by
the outgoing neighbors of v. Recall that by the ordering-based
algorithm, the subgraph ~Gv for each node v can be processed
independently (see line 9 of Algorithm 2, line 10 of Algorithm 3,
and line 5 of Algorithm 4). The NodeParallel strategy processes
all of such Gv’s in parallel. However, since the k-cliques may not
be distributed uniformly in allGv’s, which gives rise to unbalanced
workloads on different CPUs. This shortcoming can be alleviated
by the EdgeParallel strategy. Let (u, v) be an edge in G, and ~Guv
be the subgraph of ~G induced by the common outgoing neighbors
of u and v (the subgraph induced by N+

u (~G) ∩ N+
v (~G)). The

EdgeParallel strategy processes all ~Guv’s in parallel. Specifically,
EdgeParallel invokes the ListClique(~Guv, {u, v}, k−2) procedure
(or the ColorListClique(~Guv, {u, v}, k − 2) procedure for color-
ordering based algorithm) for all ~Guv’s in parallel. Since the ~Guv’s
are generally smaller than the ~Gv’s, thus EdgeParallel can achieve
a higher degree of parallelism, which is also confirmed in our
experiments.

Remark. It is worth remarking that the EdgeParallel strategy can
also be used for parallelizing Algorithm 4. In particular, for each
directed edge (u, v) in the degeneracy-ordering DAG ~G, we can
obtain a set of common out-going neighbors N+

uv = N+
u ( ~G) ∩

N+
v (~G). Then, we construct a subgraph Guv of G that is induced

by the nodes inN+
uv . After that, the algorithm can process allGuv’s

in parallel.

3.6 Approximation Algorithms
The Tuŕan-Shadow algorithm. The Turán-Shadow algorithm
[20], denoted by TuranSD, is a randomized algorithm that is de-
signed to estimate the number of k-cliques in an undirected graph.
The algorithm involves two sub-procedures: ShadowConstruction
and Sampling (Algorithm 5). In the ShadowConstruction proce-
dure, the algorithm constructs a data structure called Turán Shadow
based on the classic Turán theorem [48]. Specifically, the Turán
theorem states that for any graphG, if the density ofG, denoted by
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Algorithm 5: The Turán-Shadow Algorithm (TuranSD)
Input: An graphG and an integer k
Output: An estimation of the number k-cliques

1 Procedure ShadowConstruction(G, k);
2 T ← {(V, k)}, S ← ∅;
3 while ∃(H, l) ∈ T s.t. ρ(H) ≤ 1− 1/(l− 1) do
4 LetGH be the subgraph ofG induced byH;
5 ~GH ← construct a DAG by the degeneracy ordering onGH ;
6 LetN+

v (~GH) be the set of out-going neighbors of v in ~GH ;
7 for each u ∈ H do
8 if l ≤ 2 or ρ(N+

v (GH)) > 1− 1/(l− 2) then
9 S ← S ∪ {(N+

v (GH), l− 1)};
10 else
11 T ← T ∪ {(N+

v (GH), l− 1)};

12 T ← T \ {(H, l)};

13 Procedure Sampling(S);
14 w(H)←

(|H|
l

)
for each (H, l) ∈ S;

15 p(H)← wH/
∑

(H,l)∈S w(H);
16 for r = 1 to t do
17 Independently sample (H, l) from S based on the probability p(H);
18 R← randomly picking l nodes fromH;
19 ifR forms a l-clique thenXr ← 1;
20 elseXr ← 0;

21 return
∑

r Xr
t

∑
(H,l)∈S w(H);

ρ(G) = m/
(|n|

2

)
, is larger than 1 − 1/(k − 1), then G contains a

k-clique [48].
For a given integer k, the Turán Shadow S consists of a set of

pairs (H, l), where H ⊆ V is a subset of nodes and l ≤ k is
an integer. For each pair (H, l) ∈ S, the density of the subgraph
induced byH , denoted by ρ(GH), is larger than the so-called Turán
threshold 1− 1/(l − 1). Therefore, for a pair (H, l), the subgraph
GH must contain a l-clique by Turán theorem.

Jain and Seshadhri [20] proposed an elegant refinement pro-
cedure to construct such a Turán Shadow. The pseudocode of
the refinement procedure is shown in Algorithm 5 (lines 1-12).
Initially, the algorithm sets T = {(V, k)} and the Turán Shadow
S = ∅ (line 2). Then, the algorithm iteratively picks a pair (H, l)
from T that does not satisfy the Turán threshold (line 3). With such
a pair (H, l), the algorithm constructs a DAG ~GH for H based
on the degeneracy ordering (lines 4-5). For each node v ∈ H ,
the algorithm creates an outgoing neighborhood N+

v (~GH) in ~GH
(line 6). Subsequently, the algorithm constructs a set of |H| pairs
{(N+

v (~GH), l − 1)|v ∈ H}. For any pair (N+
v (~GH), l − 1) that

meets the Turán threshold will go to the Turán Shadow S, otherwise
it goes to T (lines 7-11). After that, the algorithm deletes the pair
(H, l) from T (line 12), and recurses on the updated T (line 3). The
idea behind the ShadowConstruction procedure is that it iteratively
refines the pairs in T until all pairs satisfies the Turán threshold.

Based on the Turán Shadow S, Jain and Seshadhri [20] proved
that there exists a one-to-one mapping between a k-clique in G
and a l-clique in GH for a pair (H, l) ∈ S, where GH is a
subgraph induced by H . As a result, counting the number of
k-cliques in G is equivalent to compute the total number of l-
cliques in GH for each pair (H, l). To do this, a simple weighted
sampling procedure is sufficient to estimate the l-clique counts in
S [20]. The pseudocode of such a sampling procedure is detailed
in Algorithm 5 (lines 13-21). As shown in [20], Algorithm 5
can obtain a 1 + ε approximation with high probability using
O(nαk−1 +m) time and O(nαk−2 +m) space.

The ERS Algorithm. The ERS algorithm, proposed by Eden, Ron,
and Seshadhri [12], is a randomized algorithm for approximating
the number of k-cliques. Unlike the TuranSD algorithm, ERS is
based on a query model where a query algorithm can randomly
perform three queries on the graph: (1) degree queries (i.e., query
a node’s degree), neighbor queries (i.e., query a node’s neighbors),

and pair queries (i.e., query two nodes to determine whether they
form an edge). The general idea of the ERS algorithm is as follows.
First, ERS randomly samples a set of vertices S from the graph.
Let Ck be the number of k-cliques in the graph, and ck(v) be the
number of k-cliques that are incident to v. Then, the algorithm
estimates Ck by n/(k|S|) ×

∑
v∈S ck(v). Note that ck(v) can be

computed by using the query algorithm. However, for a random
v, ck(v) can have very large variance, resulting in the estimator is
inaccurate. The ERS algorithm makes use of a complicated clique
assignment technique to reduce the variance. In theory, the authors
prove that ERS can achieve a 1+ ε approximation of the number of
k-cliques with high probability. The total time complexity of ERS
is Õ(n/C

1/k
k +mk/2/Ck) where the notion Õ hides a poly(logn)

term [12], and the space complexity of the algorithm is O(m+n).
When Ck ≥ mk/2−1, the time complexity of the ERS algorithm is
sublinear with respect to the graph size.

3.7 Algorithms for Special k Values
In this subsection, we describe 4 state-of-the-art k-clique listing

algorithms for two special k values: k = 3 and k = ω (ω is the
maximum clique size).

Triangle listing and counting algorithms. Clearly, when k =
3, a k-clique is a triangle. The state-of-the-art triangle listing
algorithm is an ordering-based algorithm [32], which is similar to
Algorithm 2. Specifically, the algorithm first orients the edges of
the graph from the lower-ranked node to the higher-ranked node
based on a pre-defined node ordering (e.g., degree ordering and
degeneracy ordering). Then, for each directed edge (u, v) with
u ≺ v, the algorithm identifies every node w in the set N+(u) ∩
N−(v), where N+(u) denotes the set of outgoing neighbors of
u and N−(v) is the set of incoming neighbors of v. Obviously,
nodes u, v, and w form a triangle. Such an algorithm lists each
triangle only once and it can achieveO(αm) time complexity using
O(m + n) space. We implement and evaluate this state-of-the-art
algorithm using the degree ordering and the degeneracy ordering
respectively (denoted by LDegree and LDegen in Table 1).

Maximum clique search algorithms. When k = ω, existing
maximum clique search algorithms can also be used for k-clique
listing. In this paper, we evaluate two state-of-the-art maximum
clique search algorithms: RDS [33, 35] and MC-BRB [8]. The
RDS algorithm is a branch-and-bound algorithm which is based on
a Russian Doll Search paradigm [33]. Specifically, RDS first orders
the nodes as (v1, v2, · · · , vn). Let Si = {vi, vi+1, · · · , vn} be the
subset of V , and ωi be the maximum clique size of the subgraph
G[Si] induced by Si. Clearly, if ωi = ωi+1 + 1, the maximum
clique inG[Si] contains vi, otherwise ωi = ωi+1. RDS recursively
computes ωn, ωn−1, · · · , ω1 using backtracking. An interesting
pruning rule of RDS is that if we find a clique with size greater than
t, then we can prune the search when we consider vi to become the
(j + 1)-th candidate node and j + ωi ≤ t [33, 35]. It is easy
to see that RDS uses O(m + n) space and takes at most O(n2n)
time in the worst case, because the search space of the backtracking
procedure is bounded by O(2n). Note that although RDS has an
exponential time complexity, it is typically very efficient on real-
world sparse graphs as shown in [35].

A more recent maximum clique search algorithm MC-BRB
proposed by Chang [8] can be considered as another state-of-the-
art algorithm. The key idea of MC-BRB is that it first transforms
the maximum clique problem to a set of k-clique finding problems,
each working on an ego-network. Then, MC-BRB applies several
smart reduction techniques to reduce the size of the ego-network
while preserving the existence of a k-clique. With the reduction
techniques, a branch-reduce-and-bound framework is developed to
identify the k-clique [8] efficiently. Similar to RDS, MC-BRB
takes at most O(n2n) time in the worst case and uses O(m + n)
space. The practical performance of MC-BRB was shown to be
much better than the other algorithms on sparse graphs [8].
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3.8 Horizontal Comparison of Algorithms
Running time. As shown in Table 1, MACE has the highest worst-
case time complexity among all the exact k-clique listing algo-
rithms, followed by two color-ordering based algorithms (DegCol
and DegenCol), the degree-ordering based algorithm (Degree), the
Arbo algorithm, the degeneracy-ordering based algorithm (Degen),
and two optimized algorithms (DDegCol and DDegree). Note
that although Arbo has a lower time complexity than DegCol,
DegenCol, and Degree, all these ordering-based algorithms are
expected to be faster than Arbo in practice, because Arbo needs to
sort the nodes by their degrees in each recursion which is often very
costly. Compared to the other ordering-based algorithms, Degree
takes less time to compute the ordering, but it may consumes more
time in the recursive k-clique listing procedure due to the higher
time complexity. Compared to Degen, the two color-ordering
based algorithms DegCol and DegenCol have a slightly higher
time complexity, but it can significantly reduce the search space by
using color-based pruning technique. Although the two optimized
ordering-based algorithms DDegCol and DDegree achieve the best
time complexity, both of them use a size-based constraint for
pruning in the first recursion which is typically less effective than
the color-based pruning rule as used in DegCol and DegenCol.
With all these, there does not exist a clear winner among all
the exact algorithms, thus our experimental analysis is critical.
Additionally, for the approximation algorithms, the worst-case time
complexity of TuranSD is typically higher than that of ERS, but its
time overhead is still much lower than all the exact algorithms.

Memory usage. All the exact k-clique listing algorithms have
O(m + n) space complexity, thus their space overheads are
comparable. For a more subtle comparison, the degree-ordering
based algorithm (Degree) uses less space than the others. This
is because Degree only needs to maintain a degree array and the
input graph while the other algorithms require to store several other
additional information. Specifically, both the degeneracy-based
ordering algorithm (Degen) and the optimized degree ordering
algorithm (DDegree) have to store an additional O(n) array
to compute the degeneracy ordering. The color-based ordering
algorithms (DegCol, DegenCol,DDegCol) need an O(n) array to
maintain the colors of the nodes. Arbo uses O(n) additional
space to sort the degree array in linear time in each recursion,
and MACE also needs O(n) space to store several additional
information for pruning the backtracking procedure. For the
approximation algorithms, ERS is space-efficient which consumes
O(m + n) space, while TuranSD is more memory intensive as it
takes O(nαk−2 +m) space to maintain the Turán-Shadow.

Parallelizability. All the ordering-based k-clique listing algo-
rithms in Table 1 can be easily parallelized, because all these
algorithms independently list k-cliques on each node’s out-going
neighborhood. Arbo, however, is very hard to be parallelized.
This is because Arbo includes a sequential step in line 11 (see
Algorithm 1), which leads to that the current iteration on the
subgraph induced by vi’s neighbors (line 9 of Algorithm 1) depends
on the graph G \ {vi−1} obtained in the previous iteration. Such
a sequential step makes an efficient parallelization of the algorithm
non-trivial. MACE and TuranSD are also very difficult to be
parallelized, because both of them involve a procedure of depth-
first search, resulting in an efficient parallelization of the algorithm
not easy. For the ERS algorithm, the node sampling procedure
can be easily parallelized, but it is unclear whether the variance
reduction technique used in ERS is parallelizable.

Accuracy. Since all exact algorithms shown in Table 1 can obtain
the exact k-cliques count, we mainly compare the accuracy of
two approximation algorithms. Recall that TuranSD performs
sampling on the pre-computed Turán-Shadow structure S rather
than on the input graph. For each element (H, l) ∈ S, since the
node set H is often very dense (denser than the Turán threshold),
the successful rate of sampling a l-clique on H can be very

high, and therefore TuranSD is very accurate. ERS performs
node sampling on the input graph and then applies a complicated
variance reduction technique to cut the variance of the estimator.
Although ERS can achieve a 1 + ε approximation in theory, its
practical accuracy is generally much lower than that of TuranSD
as shown in our experiments.

3.9 Other Related Algorithms
k-clique listing and counting. Concurrently with our work,
Jain and Seshadhri [21] developed an elegant k-clique counting
algorithm, called PIVOTER, based on a classic pivoting technique,
which was originally proposed for reducing the recursion tree of
the maximal clique enumeration algorithm [7]. In particular, the
PIVOTER algorithm first constructs a succinct clique tree based
on the pivoting technique. Such an elegant tree structure maintains
a compressed unique representation of all cliques in the graph.
Then, PIVOTER can extract exact clique counts for all values
of k based on the succinct clique tree. In [21], PIVOTER was
shown to be faster than Degen [11]. An interesting question
is whether the color-ordering based heuristics developed in this
paper can be used to further optimize the PIVOTER algorithm.
Again, concurrently with our work, a recent technical report [41]
proposed a work-efficient parallel k-clique listing algorithm based
on a newly-developed parallel low-degree orientation technique. In
[41], such a parallel algorithm is shown to be faster than the parallel
version of Degen when using 60 threads. It is also interesting to
study whether the color-based pruning technique proposed in this
paper can be applied to further speed up the work-efficient parallel
algorithm [41]. We leave all the above mentioned issues for future
work. Additionally, the k-clique listing problem was also studied
in the MapReduce setting [15]. In particular, Finocchi et al. [15]
proposed a MapReduce algorithm for k-clique listing based on a
degree ordering heuristics, where the degree ordering heuristics has
already been evaluated in this paper.

Triangle listing and counting. Except the triangle listing and
counting algorithm described in Section 3.7, there exist several
other algorithms that do not evaluate in this paper, since those
algorithms are either less efficient than the algorithms evaluated
or cannot obtain the exact solution. Two notable exact algorithms
are Schank’s edge iterator algorithm [38] and Latapy’s compact-
forward algorithm [23]. The time complexity of these two exact
algorithms are O(αm)[38, 23]. Tsourakakis et al. [47] developed
an edge sampling algorithm to estimate the number of triangles
in a graph. Recently, several algorithms have been proposed to
handle the case when the graph does not fit into the main memory.
Becchetti et al. [5] devised a triangle counting algorithm in the
semi-streaming model. Chu and Cheng [10], and Hu et al. [19]
proposed I/O-efficient algorithms for triangle listing. Suri and
Vassilvitskii [42], and Kolda et al. [22] developed triangle listing
algorithms in the MapReduce setting.

Maximum clique search. There also exist several other maximum
clique search algorithms not evaluated in this paper. For example,
Lu et al. [28] proposed an efficient randomized algorithm which
can find a near maximum clique efficiently. Segundo et al. [39]
developed an efficient branch-and-bound algorithm based on bit-
parallel technique. Tomita [44, 45, 43] proposed a series of
maximum clique search algorithms based on the well-known Bron-
Kerbosch algorithm [7] for enumerating maximal cliques. As
shown in [8], all the above mentioned algorithms are either less
efficient than MC-BRB or cannot work on large sparse graphs.

4. EXPERIMENTS
4.1 Experimental Setup
Datasets. We collect 17 large real-world graphs obtained from (ht
tp://networkrepository.com/). We divide the datasets
into two groups based on the size of a maximum clique (ω): small-
ω graphs (the first 9 graphs in Table 2), for which we are capable
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Table 3: Runtime of different exact algorithms for listing all k-cliques (for all k ≥ 3, in second)
Dataset #Cliques Arbo MACE Degree Degen DegCol DegenCol DDegCol DDegree

Nasasrb 50,915,452,049 INF INF 9,872 9,965 1,346 1,464 1,307 1,950
FBWosn 87,432,996,809 INF INF INF INF 3,171 2,751 2,119 3,408
WikiTrust 12,652,027,321 11,568 INF 2,962 2,710 421 430 326 503
Youtube 44,272,612 65 320 20 19 12 12 17 14
Pokec 3,229,825,345 3,252 5,740 1,107 1,086 236 241 434 392
WikiCN 17,495,574,003 INF INF 4,636 4,566 519 526 598 790
Shipsec5 12,961,780,899 7,347 17,130 2,734 2,435 354 337 352 515
BaiduBK 7,968,788,787 6,559 19,920 2,167 2,107 390 398 492 543
SocFBa 13,238,147,662 13,899 INF 3,522 3,544 786 773 695 809

Table 2: Datasets (Nmax: #. maximum cliques, 1K=1,000)
Dataset n = |V | m = |E| ω Nmax δ ∆

Nasasrb 54,870 1,311,227 24 1,939 36 275
FBWosn 63,731 817,090 30 2 85 2K
WikiTrust 138,587 715,883 25 54 65 12K
Youtube 1,157,828 2,987,624 17 2 50 28.8K
Pokec 1,632,803 22,301,964 29 6 48 15K
WikiCN 1,930,270 8,956,902 33 2 128 30K
Shipsec5 179,104 2,200,076 24 744 30 75
BaiduBK 2,140,198 17,014,946 31 4 83 98K
SocFBa 3,097,165 23,667,394 25 35 75 5K
WebSK 121,422 334,419 82 3 82 590
Citeseer 227,320 814,134 87 1 87 1K
WebStan 281,904 1,992,636 61 10 87 39K
DBLP 317,080 1,049,866 114 1 114 343
Digg 770,799 5,907,132 50 192 237 17.6K
Orkut 2,997,166 106,349,209 47 7 254 27.5K
Skitter 1,696,415 11,095,298 67 4 112 35K

DielFilter 420,408 16,232,900 45 15,446 57 302

of listing all k-cliques (for all k), and large-ω graphs (the last 8
graphs in Table 2), for which we can only list k-cliques for small k
values (or large k-cliques with k values near to ω). This is because
if ω is large, the number of k-cliques in the maximum clique is
exponential large for a relatively large k, and thus any exact k-
clique listing algorithm is doomed to failure. For example, if ω =
60 and k = 20, then a 60-clique contains 4.2 × 1015 20-cliques.
For each graph dataset, we report its maximum clique size ω, the
number of maximum cliques Nmax, the maximum k-core number
δ, and the maximum degree ∆, which could affect the running time
of the k-clique listing/counting algorithms. Table 2 summarizes the
statistics of our datasets.

Algorithms. In our experiments, we evaluate all 14 algorithms
shown in Table 1. For Arbo, MACE, Degen, TuranSD, and
MC-BRB, we use the C++ implementation of these algorithms
provided by the original authors. We implement all the other 9
algorithms in C++. In addition, we also implement the parallel
variants of 6 ordering-based algorithms in C++ and OpenMP.

Experimental settings. We conduct our experiments on a Linux
machine equipped with 2 Intel Xeon 2.40GHz CPUs with 12 cores
(a total of 24 threads) and with 128 GB RAM. Unless otherwise
specified, we evaluate all algorithms with a varying k from 3 to
9. We also evaluate three color-ordering based algorithms and the
DDegree algorithm by varying k from ω − 8 to ω, where ω is
the size of a maximum clique. Note that except the color-ordering
based algorithms and DDegree, all the other exact algorithms
presented in Section 3 are intractable for listing large k-cliques
when k is varied from ω− 8 to ω. In addition, we also evaluate the
parallel implementations of all the ordering-based algorithms by
varying the number of threads from 1 to 24. In all our experiments,
we set the time limit to 8 hours for each algorithm. The running
time of any algorithm that exceeds 8 hours is recorded with a
special symbol “INF”.

4.2 Exact Algorithms on Small-ω Graphs
Runtime for listing all k-cliques. Table 3 reports the running
time of various exact algorithms for listing all k-cliques (k is
varied from 3 to ω) on 9 small-ω graphs. On these datasets, we
observe that the three color-ordering based algorithms (DegCol,
DegenCol, and DDegCol) achieve similar performance, and all of
them significantly outperform the other algorithms. For example,
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Figure 3: Runtime of exact algorithms on small-ω graphs

in the Nasasrb dataset, the running time of DegCol, DegenCol, and
DDegCol are 1,346, 1,464, and 1,307 seconds respectively. How-
ever, in the same dataset, the running time of DDegree, Degree and
Degen are 1,950, 9,872, and 9,965 seconds respectively. Arbo and
MACE perform even worse and they are intractable for listing all
k-cliques in this dataset (i.e., they cannot finish in 8 hours). This is
because all our color-ordering based algorithms are equipped with
a color-value based pruning strategy, which can largely prune the
search paths when listing large k-cliques. In general, the traditional
ordering-based algorithms (Degree and Degen) are significantly
faster than MACE and Arbo, which are consistent with the results
shown in [32, 11]. In addition, we can see that the optimized
degree-ordering based algorithm (DDegree) performs very well.
The running time of DDegree is slightly higher than those of
the color-ordering based algorithms, but it is considerably lower
than that of the traditional ordering based algorithms (Degree and
Degen). The reason could be that DDegree applies the out-degrees
to prune the nodes that are definitely not contained in any k-clique
(see line 6 of Algorithm 4); such a pruning rule might be very
effective when listing large k-cliques.

Runtime of various algorithms with varying k. We plot the
running time achieved by each algorithm as a function of k on
Nasasrb, WikiCN, BaiduBK, and SocFBa in Fig. 3. The results
on the other small-ω graphs are consistent. As can be seen, the
running time of Arbo, MACE, Degree, and Degen increases as k
increases. However, for the three color-ordering based algorithms
and the DDegree algorithm, the running time first increases as k
increases to ω/2, and then drops when k increases to ω. The reason
could be that the pruning performance of these four algorithms
becomes more effective for a larger k. The results also suggest
that the performance of the color-ordering based algorithms and
DDegree seems to match the number of outputs of the problem,
since the number of k-cliques of a graph also exhibits a similar
function of k. In addition, we observe that the three color-ordering
based algorithms are slightly faster than DDegree, and all of them
outperform the other competitors. We also note that both Degree
and Degen significantly outperform MACE and Arbo, which are
consistent with the previous results. In summary, for small-ω
graphs (e.g., ω ≤ 30), the color-ordering based algorithms are
clearly the winners, thus they are recommended to use in this case.
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Figure 4: Runtime of different exact algorithms on large-ω graphs with varying k from 4 to 9

4.3 Exact Algorithms on Large-ω Graphs
Fig. 4 shows the running time of various exact algorithms on 8

large-ω graphs, with varying k from 3 to 9. As desired, the running
time of each algorithm increases with an increasing k. All the
ordering-based algorithms achieve similar performance, and they
are significantly faster than Arbo and MACE. In addition, we can
also observe that both the optimized color-ordering based algorithm
(DDegCol) and the optimized degree-ordering based algorithm
(DDegree) seem to be slightly faster than the other ordering-based
algorithms (especially for a large k). Taking the Orkut dataset as
an example (Fig. 4(f)), DDegCol and DDegree consumes 17, 595
and 18, 902 seconds respectively when k = 9. However, under the
same parameter setting, Degree, Degen, DegCol, and DegenCol
takes 23, 200, 24, 827, 22, 610, 23, 467 seconds respectively. The
DDegCol algorithm, for example, improves the running time over
Degree, Degen, DegCol, and DegenCol by 24%, 29%, 25%, and
22%, respectively. The reason could be the pruning rule equipped
within the optimized algorithms (Algorithm 4) is effective for a
relatively large value of k.

We also plot the running time of DegCol, DegenCol, DDegCol,
and DDegree on large-ω graphs in Fig. 5, with varying k from
ω − 8 to ω. Note that Arbo, MACE, and the traditional ordering-
based algorithms (Degree and Degen) are intractable for listing
k-cliques if k is near to the maximum clique size. We observe
that the performance of the three color-ordering based algorithms
are significantly better than DDegree on most datasets, due to the
powerful color-value based pruning technique. As two exceptions,
on Digg and Orkut, the DDegree algorithm is faster than DegCol
and DegenCol, but it is considerably worse than DDegCol. The
reason could be that both the degeneracy and the maximum degree
of these two graphs are very large, thus the number of colors
obtained by the greedy coloring procedure in both DegCol and
DegenCol can also be very large, which reduces the color-value
based pruning performance in Algorithm 3.

In summary, all ordering-based algorithms perform very well
for listing small k-cliques on large-ω graphs. Arbo, MACE, and
the traditional ordering-based algorithms cannot be used to list k-
cliques when k is near to the maximum clique size. For both small
and large values of k, the overall performance of the optimized
color-ordering based algorithm (DDegCol) seems to be better than
the other algorithms. Hence, such an optimized color-ordering
based algorithm is recommended to use for large-ω graphs.
4.4 Memory Usage of Exact Algorithms

We evaluate the memory overheads of various exact algorithms
on Digg and Orkut for k = 4 and k = 8 respectively. The results
are shown in Fig. 6. Similar results can also be observed on the
other datasets and for the other values of k. As expected, the space
usage of each algorithm is only a few times larger than the graph
size, since all the exact algorithms presented in Section 3 have
linear space complexity. These results indicate that all the exact
algorithms are space-efficient for listing k-cliques in large real-
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Figure 5: Runtime of different exact algorithms on large-ω
graphs with varying k from ω − 8 to ω − 1
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Figure 6: Memory usage of exact algorithms
world graphs. In addition, for a more subtle comparison, we can
observe that Degree consumes less memory than the other exact
algorithms, which are consistent with our analysis in Section 3.8.

4.5 Evaluation of Parallel Algorithms
In this subsection, we carry out a set of experiments to evaluate

the performance of six ordering-based parallel algorithms. Note
that both Arbo and MACE cannot be parallelized, thus we preclude
it in these experiments.

NodeParallel vs. EdgeParallel strategies. We start by com-
paring the performance of the NodeParallel algorithms and the
EdgeParallel algorithms. Fig. 7 shows the results on Digg and
Orkut for k = 8 and k = 10 respectively. Note that for all
parallel algorithms, we are able to list all 10-cliques on all datasets
in 8 hours. Again, the results on the other datasets and for the
other values of k are consistent. From Fig. 7, we can see that
the performance of all algorithms with the NodeParallel strategy is
worse than that with the EdgeParallel strategy. This is because for
all algorithms, the EdgeParallel strategy achieves a relatively larger
degree of parallelism than the NodeParallel strategy. Additionally,
we observe that DDegCol with the EdgeParallel strategy signif-
icantly outperforms the other parallel algorithms, which further
demonstrates the superiority of the DDegCol algorithm.
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Figure 7: NodeParallel vs. EdgeParallel strategies
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Figure 8: Running time of various algorithms with the
EdgeParallel strategy (vary k)

Evaluation of EdgeParallel algorithms with varying k. Fig. 8
plots the running time of different EdgeParallel algorithms as a
function of k on the DBLP, Digg, Orkut, and Skitter datasets.
Similar results can be obtained on the other datasets. As desired,
the running time of each parallel algorithm increases as k increases.
All algorithms achieve similar running times. For a large value
of k, both the parallel DDegCol and DDegree algorithms slightly
outperform the other competitors. For example, in Skitter, the
running time of the parallel DDegCol and DDegree algorithms are
4,834 and 4,873 seconds respectively. In contrast, the running time
achieved by the parallel Degree, Degen, DegCol, and DegenCol
algorithms are slightly higher, which are 5,672, 5,155, 5,989, and
5,983 seconds, respectively. The results are consistent with what
we observe in Fig. 7.

Speedup of different parallel algorithms. We evaluate the
speedup of a variety of parallel algorithms, in which the speedup
is defined as the running time of the sequential algorithm divided
by the running time of the parallel algorithms when using t threads
(t is varied from 1 to 24). Figs. 9(a-d) and Figs. 9(e-h) show the
speedup of different NodeParallel and EdgeParallel algorithms,
respectively. We can see that the running time of the EdgeParallel
algorithms drops more quickly than those of the NodeParallel
algorithms on the same dataset, indicating that the EdgeParallel
strategy is better to balance the computational loads across the
threads than the NodeParallel strategy. We note that the speedup
of the NodeParallel algorithms becomes worse when the number
of threads is larger than 12, which suggests that the NodeParallel
strategy might be inappropriate for listing k-cliques in a massively
parallel setting. In addition, we can also observe that both the
parallel DDegCol and DDegree algorithms outperform the other
parallel algorithms, which are consistent with our previous results.
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Figure 9: Speedup of different parallel algorithms
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Figure 10: Comparison of triangle listing algorithms
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Figure 11: Comparison of maximum clique search algorithms

In summary, the EdgeParallel strategy is significantly better than
the NodeParallel strategy for all ordering-based algorithms. Gener-
ally, the former can achieve a good speedup on most datasets, while
the latter is inappropriate for listing k-cliques in the massively
parallel setting. The parallel variants of DDegCol and DDegree
are slightly faster than the other algorithms, thus we recommend to
use these parallel k-clique listing algorithms in practice.

4.6 Exact Algorithms for Special k
Comparison of triangle listing algorithms. We compare the
performance of 10 different algorithms for triangle listing on 12
datasets (4 small-ω graphs and 8 large-ω graphs). The results are
shown in Fig. 10. From Fig. 10(a), we can see that MACE performs
significantly worse than all the other algorithms. In general, all the
ordering-based algorithms have comparable running time. More
subtly, we can observe that (1) LDegen and DegenCol seem to
be slightly less efficient than the other ordering based algorithms;
and (2) Degree is slightly faster than all the other algorithms on
all datasets due to its simplicity and high efficiency. As shown in
Fig. 10(b), the space overhead of all algorithms are comparable
because all algorithms have the same space complexity. Again,
we can see that Degree uses slightly less space than all the other
competitors. As a result, we can conclude that Degree is the best
algorithm for triangle listing in practice.

Comparison of maximum clique search algorithms. Fig. 11
shows the results of 9 maximum clique search algorithms on 12
datasets (4 small-ω graphs and 8 large-ω graphs). As shown in
Fig. 11(a), Arbo, Degree, and Degen cannot work on all large-
ω graphs, because they cannot list k-cliques for large k values.
Generally, DegCol, DegenCol, DDegCol, DDegree, and MC-BRB
achieve similar performance; and all of them perform much better
than RDS on most datasets. More subtly, we can see that the
performance of both MC-BRB and DDegCol is more robust than
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Figure 12: Relative error (RE) of approximation algorithms

those of the others over all datasets. For example, on Digg, both
MC-BRB and DDegCol are at least one order of magnitude faster
than DegCol, DegenCol, and DDegree. The memory usage of
all algorithms are comparable as depicted in Fig. 11(b). We can
also observe that MC-BRB consumes slightly less space than the
other algorithms on most datasets. Based on these results, we
can conclude that the overall performance of MC-BRB is the best
among all the evaluated algorithms.

4.7 Evaluation of Approximation Algorithms
We evaluate two approximation algorithms (TuranSD and ERS)

in terms of the relative errors (RE), running time, and space usage.
The relative error is defined as |Nk − N̂k|/Nk, where Nk is the
true k-clique count and N̂k is an estimating count. To compute the
relative error, we run each approximation algorithm 100 times and
then take the average count over the 100 runs as the final estimating
count (in each run, we set the sample size for each algorithm as
suggested in its original paper).

Relative error. Fig. 12 shows the relative error of TuranSD and
ERS on four datasets (2 small-ω and 2 large-ω graphs). Similar
results can also be observed on the other datasets. From Fig. 12(a-
d), we can see that TuranSD is pretty accurate in most cases,
which has relative error lower than 1% for almost all k values on
all datasets. ERS, however, performs very bad for k ≥ 4 on all
datasets. More interestingly, we observe that the relative error of
TuranSD seems to increase as k increases on most datasets. Note
that this observation was not explicitly revealed in the previous
studies [20, 11]. The reason could be that the success probability
of the sampling procedure in TuranSD (see line 19 of Algorithm 5)
decreases when k increases, thus reducing the estimating precision
of the TuranSD algorithm. Additionally, as shown in Fig. 12(e-
f), both TuranSD and ERS perform extremely bad on all datasets
when k is near to ω. Specifically, the relative errors of both
TuranSD and ERS are no less than 1 which is clearly meaningless.
These results indicate that (1) TuranSD is very accurate to estimate
the k-clique count for small k values, but it might be unreliable for
estimating the count of large k-cliques; (2) ERS only works well
for k = 3 and it is unreliable for estimating k-clique counts when
k ≥ 4.

Running time. Fig. 13 shows the running time of TuranSD and
ERS with varying k on 4 datasets. Note that previous studies in [20,
12, 11] did not evaluate how the parameter k affects the running
time of TuranSD and ERS. As shown in Figs. 13, TuranSD is
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Figure 14: Memory usage of approximation algorithms

more efficient than ERS on small-ω graphs. On large-ω graphs,
however, ERS is much faster than TuranSD, because the Turán-
Shadow construction procedure is often very costly under this
scenario. Additionally, from Figs. 13(c-f), we can see that the
running time of TuranSD on large-ω graphs generally increases as
k increases for small k, but for large k, the running time decreases
when k increases. This is because for a small k (e.g., k ≤ 10), the
size of the Turán-Shadow on large-ω graphs generally increases
as k increases, thus the time for constructing the Turán-Shadow
increases. When k is near to ω, the Turán-Shadow size drops when
k increases. It should be noted that the running time of TuranSD is
much faster than all the exact k-clique listing algorithms on large-
ω graphs. For example, on Digg, TuranSD takes 5,583 seconds
when k = 9, while the best k-clique listing algorithm DDegCol
consumes 10,031 seconds. These results indicate that TuranSD
can quickly obtain good estimations of k-clique counts for small k
values on large-ω graphs. However, for a relatively large k (e.g.,
k ≥ 10), TuranSD is also very costly on large-ω graphs.
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Table 4: Summary and recommendation (@ stands for a half star; × means not applicable)
Methods k-clique listing and counting Triangle listing Maximum clique search

Runtime Memory Parallelizability Accuracy Runtime Memory Runtime Memory
Arbo 88 8888 8 88888 8888@ 8888@ 8 8888

MACE 8 888 8 88888 888@ 888@ 8 8888

Degree 888 88888 8888 88888 88888 88888 8 8888

Degen 888 8888 8888 88888 8888@ 8888@ 8 8888

DegCol 888@ 8888 8888 88888 8888@ 8888@ 8888 8888

DegenCol 888@ 8888 8888 88888 8888 8888@ 8888 8888

DDegCol 8888 8888 88888 88888 8888 8888@ 8888 8888

DDegree 888@ 8888 88888 88888 8888@ 8888@ 8888 8888

TuranSD 88888 88 8 8888 × × × ×
ERS 88888 88888 888 8 × × × ×

LDegree × 8888@ 8888 × ×
LDegen × 8888 8888 × ×
RDS × × × 888 8888

MC-BRB × × × 88888 88888

Memory usage. Fig. 14 shows the memory overheads of TuranSD
and ERS as a function of k on 4 datasets. Note that the effect of
the parameter k for the memory overheads of TuranSD and ERS
was also not systematically studied in [20, 12, 11]. As can be
observed in Figs. 14, the space usage of TuranSD is significantly
larger than that of ERS for almost all k values on all datasets. More
specifically, on the small-ω graphs, TuranSD consumes around
2−5 times more space than ERS. On the large-ω graphs, however,
the space usage of TuranSD is around two orders of magnitude
larger than that of ERS. In addition, we can see that on large-ω
graphs, the space overhead of TuranSD increases as k increases
from 3 to 10. These results indicate that for a relatively large k,
the space consumption of TuranSD is very high on large-ω graphs,
which may prevent it to handle real-world large-ω graphs.

5. SUMMARY AND RECOMMENDATION
Summary. In this paper, we studied 14 sate-of-the-art algorithms
for k-clique listing and counting (10 algorithms for general k
values and 4 algorithms for special k values), developed new
color ordering heuristics to further improve the performance of
the existing ordering-based algorithms, and conducted an extensive
experimental evaluation.

For efficiency, DDegCol is the fastest algorithm among all exact
k-clique listing algorithms for general k values. Overall, the
running times of all the other ordering-based algorithms (Degree,
Degen, DegCol, DegenCol, and DDegree) are comparable. Both
Arbo and MACE are significantly less efficient than the ordering-
based algorithms. The two approximation algorithms (TuranSD
and ERS) are generally much faster than all the exact algorithms,
but both of them cannot obtain the exact number of k-cliques. For
triangle listing, Degree outperforms all the other competitors due to
its simplicity and high efficiency. Arbo and all the ordering-based
algorithms exhibit similar efficiency. Again, MACE is slower than
all the other algorithms for triangle listing. For maximum clique
search, MC-BRB is slightly faster than all the other methods. In
general, DegCol, DegenCol, DDegCol, DDegree and RDS achieve
comparable running time, and Arbo, Degree, and Degen perform
very bad for maximum clique search.

For memory overheads, ERS and Degree consume the least
amount of memory among all k-clique listing algorithms for
general k values. All the other exact algorithms uses comparable
space, as they have the same space complexity. TuranSD, however,
consumes much more space than all the other approaches, since
it needs to store a Turán-Shadow structure which is significantly
larger than the graph size. For triangle counting, the memory usage
of Degree is also slightly less than all the other competitors. Again,
all the other algorithms use similar space. For maximum clique
search, the space usage of MC-BRB is the lowest compared to all
the other algorithms; and for all the other algorithms, they consume
similar space.

Figure 15: The decision tree for choosing a appropriate k-
clique listing algorithm under different scenarios

The parallelizability ranking for k-listing algorithms is:
DDegCol ≈ DDegree > Degree ≈ Degen ≈ DegCol ≈
DegenCol > ERS > Arbo ≈MACE ≈ TuranSD.

For accuracy, ERS performs very bad for estimating the k-clique
count given that k ≥ 3. TuranSD is pretty accurate for estimating
the number of k-cliques with a small k, but this comes at the cost
of considerable space overhead.

Recommendation. In Table 4, we summarize our recommendation
levels for all algorithms based on 4 different metrics. The scale is
from 1 to 5 stars, and the larger star number means higher ranking.
For general k-clique listing algorithms, there does not exist a
single winner. By considering different trad-offs, we recommend
DDegCol for k-clique listing, since it exhibits good performance
in running time, memory usage, parallelizability and accuracy. For
triangle listing, we recommend Degree, as it is a clear winner in
both running time and memory usage. Similarly, for maximum
clique search, MC-BRB is the best algorithm compared to all the
other methods in both running time and memory overhead.

The decision tree shown in Fig. 15 illustrates our suggested
approach to select a proper algorithm for general k-clique listing
under different constraints. Following the branch with red tick
on the decision tree, the better algorithm(s) under the current
constraint can be obtained. Clearly, we can see that the path
from the root to the leaf of DDegCol contains all red ticks which
indicates that DDegCol achieves the best trade-off capacity by
considering various factors among all algorithms.
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Finding the hierarchy of dense subgraphs using nucleus
decompositions. In WWW, 2015.

[38] T. Schank. Algorithmic Aspects of Triangle-Based Network
Analysis. PhD thesis, Universitat Karlsruhe (TH), 2007.

[39] P. S. Segundo, A. Lopez, and P. M. Pardalos. A new exact
maximum clique algorithm for large and massive sparse
graphs. Comput. Oper. Res., 66:81–94, 2016.

[40] S. B. Seidman. Network structure and minimum degree.
Social Networks, 5(3):269–287, 1983.

[41] J. Shi, L. Dhulipala, and J. Shun. Parallel clique counting and
peeling algorithms. CoRR, abs/2002.10047, 2020.

[42] S. Suri and S. Vassilvitskii. Counting triangles and the curse
of the last reducer. In WWW, 2011.

[43] E. Tomita. Efficient algorithms for finding maximum and
maximal cliques and their applications. In WALCOM, 2017.

[44] E. Tomita and T. Kameda. An efficient branch-and-bound
algorithm for finding a maximum clique with computational
experiments. J. Global Optimization, 44(2):311, 2009.

[45] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and
M. Wakatsuki. A simple and faster branch-and-bound
algorithm for finding a maximum clique. In WALCOM, 2010.

[46] C. E. Tsourakakis. The k-clique densest subgraph problem.
In WWW, 2015.

[47] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos.
DOULION: counting triangles in massive graphs with a
coin. In KDD, 2009.

[48] P. Turan. On an extremal problem in graph theory. Mat. Fiz.
Lapok, 48(137):436–452, 1941.

[49] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Effective
and efficient dynamic graph coloring. PVLDB,
11(3):338–351, 2017.

2548


