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ABSTRACT
Crowdsourcing is a challenging activity for many reasons,
from task design to workers’ training, identification of low-
quality annotators, and many more. A particularly subtle
form of error is due to confusion of observations, that is,
crowd workers (including diligent ones) that confuse items
of a class i with items of a class j, either because they are
similar or because the task description has failed to explain
the differences.

In this paper we show that confusion of observations can
be a frequent occurrence in many tasks, and that such con-
fusions cause a significant loss in accuracy. As a conse-
quence, confusion detection is of primary importance for
crowdsourced data labeling and classification. To address
this problem we introduce an algorithm for confusion detec-
tion that leverages an inference procedure based on Markov
Chain Monte Carlo (MCMC) sampling. We evaluate the al-
gorithm via both synthetic datasets and crowdsourcing ex-
periments and show that it has high accuracy in confusion
detection (up to 99%). We experimentally show that qual-
ity is significantly improved without sacrificing efficiency.
Finally, we show that detecting confusion is important as it
can alert task designers early in the crowdsourcing process
and lead designers to modify the task or add specific train-
ing and information to reduce the occurrence of workers’
confusion. We show that even simple modifications, such as
alerting workers of the risk of confusion, can improve per-
formance significantly.
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1. INTRODUCTION
Crowdsourcing is often used today to both solve AI-like

problems such as classification as well as to generate la-
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Figure 1: Examples of common confusions in flags and food
as well as actors - in this case intentionally trying to be
similar to a person.

beled training data for Machine Learning (ML) algorithms.
Crowd labeled data may and most often will be biased or
noisy [34], and abundant literature has proposed methods
for addressing such challenges, from task design method-
ologies, to ways of improving or coping with poor task de-
sign [7, 29, 13, 47], worker testing strategies (to exclude
low-quality annotators), and aggregation of annotations by
several workers. For example, truth finder methods have
been recently proposed [14, 27] to identify the correct anno-
tation based on dependencies between workers [10], hetero-
geneity of values [25], data correlation [33], or different types
of workers’ accuracy and similarity [46, 23, 12]. Similarly,
literature in crowdsourcing has proposed a number of algo-
rithms to collect and aggregate crowd votes with the goal
of minimizing errors in annotations, from simple Majority
Voting to variations of Expectation Maximization [28, 11,
43], to algorithms that focus specific classes of problems,
such as screening problems (identifying items that satisfy a
conjunction of predicates) [31, 21, 22].

A particularly subtle form of annotation errors is due to
confusion of observations, that is, crowd workers (including
diligent ones) that mistake items of a class i for items of
a class j (for example, confuse pictures of actresses Ellen
Barkin and Cameron Diaz, or Pancakes with Russian Blini)
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often because they are similar or because the task descrip-
tion has failed to explain the differences. This problem can
lead to a subset of workers consistently making errors, even
on tasks that are apparently easy. For example, in a Google
image search for “Monaco flag”, 3 of the top 6 results (50%!)
are wrong - and indeed, confused with the flag of Indonesia,
and, to a lesser degree, Poland. We get similar error rates in
many cases (e.g., Yams and Sweet potatoes, see Figure 1),
pointing to the fact that for some classes of objects it is very
likely to get erroneous ground truth labels, and that sources
one could consider reputable (such as flags shop) contribute
to the confusion. As we will show, confusion can also oc-
cur in cases where the overall workers accuracy is very high
and therefore likely to go unnoticed since it is not a problem
that surfaces across the board, but for some classes only. If
left undetected and uncorrected, this leads to consistently
wrong labeling for some classes, including the most popular
and widely used ones, from majority voting (MV) to Dawid-
Skene (D&S).

In this paper we define the problem and propose an algo-
rithm for detecting such confusions. Our primary goal is to
detect confusion early in the crowdsourcing process (that is,
after a small number of votes), so that we can alert the task
designers and improve the task. Our secondary goal is to
be able to process crowdsourced labels to detect and correct
confused labels. Once we do this we can then apply our fa-
vorite vote aggregation method to get class labels, from MV
to D&S to the many interesting variations of Expectation
Maximization proposed in the literature.

Specifically, we approach the problem by i) explicitly mod-
eling confusion of observations as random variables, separate
from workers’ accuracy, and ii) by introducing the notion of
clusters of confused items, i.e., groups of items which are
likely to be confused by the crowd. In other words, we sep-
arate errors due to confusion (which have to do with items
being similar) from errors due to low accuracy of workers
(which may be due to many different reasons), and this al-
lows us to better deal with datasets that have many items
at risk for confusion. Then, we propose a novel inference
algorithm based on Markov Chain Monte Carlo.

We evaluate the proposed algorithm over both synthetic
datasets and crowdsourcing experiments, aiming at collect-
ing datasets of different natures and difficulties. We show
how the proposed inference procedure can be integrated
with the main state-of-the-art aggregation techniques, that
it scales both in the number of items and in the number of
crowd workers, and that it significantly outperforms com-
monly used aggregation methods especially when the num-
ber of votes per item is relatively small (in the single digit
range), as is common in many crowdsourcing tasks. We
also analyze in which cases strong baselines such as D&S
become competitive even in the presence of confused labels.
We show that the accuracy of the proposed algorithm in de-
tecting confusions is high (up to 99%), and truth discovery
performance that results from correcting confusion errors is
significantly improved. We propose a simple but effective
automated method for modifying the crowdsourcing task
once confusion is detected to reduce the probability of con-
fusion occurring again as the crowdsourcing task proceeds.

2. RELATED WORK
The problem of truth discovery, i.e., integrating data from

sources which provide conflicting data, has been extensively

studied in the last decade. A number of approaches which
model the accuracy of sources and probability of facts, term-
ed truth finders, have been proposed [27]. Truth finders take
the information about observed item labels and output the
accuracy of sources as well as the probability of item labels
being true. There are several methods truth finders em-
ploy to do so, such as link based analysis [19, 6] (to identify
authoritative sources), optimization based methods [5, 24]
(that is, formulate the truth discovery as an optimization
problem), and finally, probabilistic graphical models [32,
41] (based on variables and their dependencies). Moreover,
modern truth finders also take into account various factors
such as dependency between sources [10], heterogeneity of
values [25], data correlation [33], different types of source
accuracy [46] and so on.

Truth discovery with confusion errors is a challenging pro-
blem both from the efficiency and effectiveness standpoints.
First, we need to extend the existing truth finders with the
ability to model and reason about possible confusion errors.
No existing truth finder solution is capable of doing that and
it is not trivial because we need to specify all probabilistic
dependencies between sources and items. Second, to detect
and take into account confusion errors we need to test all
possible confusions and see which of them are likely to ex-
ist. That is a computationally expensive operation which
requires a search over an exponential number of possibilities
(there are 2Nc states for Nc possible confused observations).

Crowdsourced classification has also been studied within
the Human Computation community, following the seminal
work of Dawid and Skene [8]. These studies cover a diver-
sity of probabilistic data models, estimate the labeling pro-
cedure in the presence of items of different difficulties [43,
44], consider the confidence of workers’ answers [39], apply
EM-based algorithms to labeling in the presence of confu-
sion matrix [28], discover truth of spatial events in mobile
crowdsourcing [36]. A survey [18] investigates the models
and algorithms on truth discovery inference in crowdsourc-
ing as well as summarizes existing datasets and available
tools [36]. An orthogonal thread of research focused on re-
ducing noise in the first place. In this context, guidelines
and practices for implementation and task design have been
proposed for high-quality label collection via crowd and AI
collaboration [3, 4].

The previous work in truth discovery falls short of find-
ing and repairing such confusions. A typical truth finder or
crowd classification algorithm would treat a confused label-
ing as workers’ errors and lower their accuracy estimate in
general, as opposed to recognizing that workers are gener-
ally accurate but on specific sets of labels. To the best of our
knowledge only few papers deal with the problem, besides
the above-mentioned Dawid-Skene on which we come back
in the experiments section as it is part of our baselines. Liu
and colleagues [28] study confusions and propose an efficient
way to derive a confusion matrix for each worker. Their ap-
proach is tailored to situations where the number of workers
is small (they focus on highly trained and skilled workers
who rate a large number of items and on cases where the
item-worker matrix is dense, testing the approach with three
workers). Giancola and colleagues [14] also focus on work-
ers’ confusion matrix and propose the use of worker style
matrices for every worker aiming at efficiently aggregating
labels that can be systematically confused by a worker in
text clustering and image segmentation tasks. The approach
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is focused on performing permutation-invariant inference of
class labels, in the sense that it is robust to worker-specific
class permutations (e.g., different workers assigning differ-
ent names to the class labels in a clustering problem). Our
problem is different in that we do not focus on permutations,
but on identifying confusions in labeling where class labels
are given and (from the perspective of the task designer)
clear, such as labeling picture with flags or food or names
of famous actors, based on whatever the task requires. We
also do not aim at learning parameters for workers’ confu-
sions (that is, at learning parameters for each worker) as our
interest is instead in groups of classes that can be confused.
Therefore the number and types of parameters of our model
that have to be learned from data are chosen both to do this
effectively and to be able to scale in the number of workers,
items, and labels.

The topic of confusion is also gaining popularity in the
context of machine learning, to identify and diagnose weak-
nesses of a ML model which often occurs in the presence of
easily “confusable” classes and in general of noisy training
data. For example, [17] propose a method to detect classes
with high probability of confusion based on the output of an
image classification ConvNet. The authors observe that the
problem often arises due to a combination of weaknesses of
the classifier and errors in the training data. Indeed, errors
in the training dataset are known to significantly hamper
the performance of the trained model [38], and the risk of
noisy crowdsourced labels increases with the complexity of
the problem and with the granularity of the classes [40]. The
solution proposed is essentially based on identifying cliques
of classes such that, for many items, classes in the cliques are
among the most likely in the opinion of the ML model. Our
problem is different as in crowdsourcing we have a crowd of
votes (without explicit confidence information) rather than
one voter (the ML model) that provides a distribution of
class probabilities for each item.

3. MODEL AND APPROACH

3.1 Modeling Confusions
We model the problem as a classification task that takes in

input a set (I, S, L) where I = {i1, . . . , im} is the set of items
to classify, S is the set of sources of information (in crowd-
sourcing, these are crowd workers), and L = {L1, .., Lm} is
the set of all possible labels. Each item i have a number
of possible labels (classes) we can assign Li = {l1i , . . . , lkii }
where ki is the total number of distinct labels about i. Ta-
ble 1 contains a summary of the notations used in this paper.

The votes of workers are denoted as Ψ = {ψis,l}, where

ψis,l = 1 if source s labeled item i with label l, and ψis,l = 0
otherwise. Therefore, once we collect the votes we have a
dataset D = 〈I, S,Ψ, L〉.

We extend this basic model by explicitly modeling con-
fusions. Specifically, we introduce the notion of clusters,
that group items that are at possible risk of confusion be-
cause they are “similar”. As we will see, clusters act like
hypothesis of confusions that inform the confusion detection
algorithm, which will then focus on inferring if there is con-
fusion among items in a cluster as well as which votes are
likely “confused”, and correct them. As we will see, clusters

I

Figure 2: The probabilistic graphical model of Latent Truth
Finder (MCMC-C).

Table 1: The summary of notations used in the paper.

Sign Specification

S = {s1, . . . , sn} set of workers (sources)
I = {i1, . . . , im} set of items
L = {L1, . . . , Lm} all observed labels in data
Li labels observed only on item i
l∗i true label for item i

Ψ = {ψis,l} set of all votes
Ψk observations on the items in Ck
Ψs observations of worker s

Ψ̂i observations on item i
including confused ones

C = {C1, . . . , Cnk} set of all clusters

C−ik set of items in Ck except i
As accuracy of worker s
Gk confusions of cluster Ck
Gi,s confusion of observation ψis
G−i,sk confusions in cluster k except Gi,s
πk probability of confusion in Ck
α, β, γ hyper-parameter

therefore help the algorithm in separating confusion errors
(which can occur even in attentive, competent and dedicated
workers) from other errors, and lead to a more effective es-
timation of workers’ accuracy.

If task designers are aware of possible confusions they can
formulate such hypotheses (define clusters) manually or via
rules. For example, we can state that pictures of “Monaco”
and “Indonesia” (Figure 1) are in the same cluster (manual
definition), or that, in crowdsourcing tasks about labeling
points of interest (i.e, reporting whether co-located restau-
rants are open or closed), neighboring points (restaurants in
the same building) are to be put in the same cluster (rule-
based definition). However, we expect that in many cases
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cluster identification may be onerous or difficult, and in the
experiment section we show how clustering methods can be
applied to allow a fully automated confusion detection pro-
cess. Regardless of the approach (manual, rule-based or au-
tomated), items with a risk of confusion are split into a set of
mutually exclusive clusters, denoted by C = {C1, . . . , Cnk}
where Ck = {i, j} is a group of items i and j whose labels
we believe can be confused.

3.2 Truth Finder with Confused Observations
We base our work on truth finder approaches. A truth

finder F is a function that takes the dataset D as input, and
outputs a set A of accuracy estimations (one per worker) and
the class probability distribution P for each item:

F : D → 〈P,A〉,

where for each item i ∈ I, P (l∗i = l) ∈ [0, 1] is the probability
that item i has label l, where l∗i is the ground truth label on
i. The probabilities of the distinct values of i sum up to 1.

The typical truth finder goal is to infer the unobserved
variables (the true labels) given the observable variables
(the crowd votes). Truth finders are typically based on the
Expectation-Maximization (EM) algorithm [15, 46]. EM it-
eratively computes the accuracy of a source given the cor-
rectness of the values it provides, and then computes the
correctness of a value given the accuracies of the sources
that support it [32, 46, 33, 41, 30, 26]. We extend the
basic Bayesian truth finder with the notion of clusters and
define its generative model based on the plate model shown
in Figure 2. In the figure, nodes indicate random variables,
parameters, and hyper-parameters, and dark-shaded nodes
denote observations made by workers. Specifically, I rep-
resents the true value of an item, G represents whether a
worker made a confusion on a particular item or not, i. e., if a
worker confused item i with item j during the measurement
of value. G, I are latent (or non observed) variables; A, π are
parameters that represent accuracy of a worker and a prob-
ability to make a confusion in a given cluster for an average
worker. Finally, α, β, γ are hyper-parameters that represent
our belief about corresponding distributions. The directed
edges show dependencies between the variables, e.g., A de-
pends on α and so on. To simplify the presentation, we limit
to the case where clusters are pairs of items where labels can
be confused, though the same approach can be extended to
larger clusters.

This is how the generative process works: for each worker
s we draw its accuracy from a Beta distribution:

As ∼ Beta(α0 +Ns
+, α1 +Ns

−),

where α0 and α1 represent our prior belief about the accu-
racy of workers. Ns

+ can be seen as the number of times a
worker gave the correct label, whereas Ns

− is the number of
incorrect labels.

For each cluster Ck ∈ C, we draw its probability πk of
confusion within the cluster from a Beta distribution:

πk ∼ Beta(γ0 +Nk
conf , γ1 +Nk

conf ),

where γ0 and γ1 represent our prior knowledge about confu-
sions in Ck. Nk

conf is the count of how many times workers

confused labels within that given cluster, and Nk
conf is the

number of not confused votes in the cluster.

For each crowd vote ψis in cluster Ck, i.e., ψis ∈ Ψk and
ψis ∈ Li, we draw a confusion binary label, denoted by Gi,s,
from a Bernoulli distribution with prior πk:

Gi,s ∼ Bernoulli(πk),

where Gi,s is 1 if worker s confused label on item i, and
0 otherwise. Notice that in the model we do not consider
the direction of the confusion, that is, whether in cluster Ck
the confusion is symmetric or not symmetric, for example,
workers confuse item i with j but not j with i. As we will
see, once confusion is detected by the inference procedure,
then identifying direction can be easily done.

Finally, we draw a true label l∗i for an item i from a multi-
nomial distribution with βi Dirichlet prior:

l∗i ∼ multi(βi),

where βi is a |Li|-dimensional parameter which specifies the
multinomial prior for item i.

4. INFERENCE
Based on the generative model presented in Section 3 we

propose an inference algorithm to detects confused observa-
tions. Once we have detected them, we can correct them
(the algorithm helps in finding the probabilities of true la-
bels) or prevent them, by modifying the crowdsourcing task
as discussed later. Our inference task is maximum a pos-
teriori (MAP) where we look for an assignment of model
parameters and hidden variables that maximize the likeli-
hood of the observed data. Given our model, the likelihood
is defined as follows (we denote it with LK to distinguish it
from labels):

LK(A, π : Ψ) =
∏
Ck∈C

∑
I,G

∏
ψi
s∈Ψk

P (ψis | A, π, I,G;α, β, γ)

(1)

In the above formula, for each cluster Ck we compute a prod-
uct of the probabilities of observed data (Ψk) marginalized
by the hidden variables, I and G. Note that we will omit
the hyper parameters α, β and γ in the following formulas.

Our task is to find Â and π̂ such that the likelihood func-
tion is maximized: Â, π̂ = argmax

A,π
LK(A, π : Ψ). Once we

found Â and π̂ we can easily compute the values of hidden
variables, i.e., I and G. We propose to employ an approxi-
mation inference procedure based on Markov Chain Monte
Carlo (MCMC) which samples from the joint probability dis-
tribution and use those samples to estimate the hidden vari-
ables and parameters. We refer to this algorithm MCMC-
C (the extra C is for confusion). In order to use MCMC
we need to specify all conditional probability distributions
(CPDs) for each variable of our model. Below we present
the CPDs we use for the inference.

First, we define a CPD for an item i ∈ I. According to
our data model, we estimate the probability of item i having
true label l∗i using a multinomial distribution:

P (l∗i | Ψk, C
−i
k , A,G−i,sk , πk) ∝∏

ψ
j
s∈Ψ̂i

A
δ(ψj

s,l
∗
i )

s (1−As)1−δ(ψj
s,l
∗
i ) (2)

where

• l∗i is true label for item i,
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• Ψ̂i is a set of observations on i including those which
were confused with item i (based on the current as-
signments G),

• ψjs is the observation from worker s on item j,

• δ(ψjs, l∗i ) =

{
1 ψjs = l∗i
0 ψjs 6= l∗i

is the Kronecker delta func-

tion that takes the value of either 0 or 1,

• C−ik is a set of items in cluster Ck except item i,

• G−i,sk is a set of confused observations Gk except con-
fusion Gi,s.

Intuitively, we sample a true value for i based on our current
knowledge of worker accuracy and observation confusions.
Each observation is independent and thus we compute a
product of either accuracy of worker As if the observation
coincides with the item label l∗i or (1−As) otherwise.

Similarly, we sample confusion variables from a Bernoulli
distribution using the following probabilities (if worker s
made a confusion during measuring the label of item i):

P (Gi,s = 0 | ψis, Ck, As, πk) ∝

(1− πk)A
δ(ψi

s,l
∗
i )

s (
1−As
|Li|

)1−δ(ψi
s,l
∗
i ) (3)

P (Gi,s = 1 | ψis, Ck, As, πk) ∝
πk

|Ck| − 1
(

∑
j∈Ck,i 6=j

A
δ(ψi

s,l
∗
j )

s (
1−As

|
⋃
j∈Ck

Li | −1
)1−δ(ψi

s,l
∗
j ))

The probability that there is no confusion, P (Gi,s = 0),
depends on the cluster no confusion probability 1−πk as well
as the worker accuracy As if the item predicted true label l∗i
the same as the vote ψis or 1−As

|Li|
otherwise (assuming each

false label is equally likely). In the case of P (Gi,s = 1) we
consider all possible confusions within the cluster Ck with
equal prior probabilities 1

|Ck|−1
and we add As if the vote

ψis coincides with l∗j or 1−As
|
⋃

i∈Ck
Li|−1

otherwise. In the latter

case we assume that if there is a confusion then the space
of false labels consists of all unique votes within a cluster
minus 1 (true label). We sample the accuracy of workers
from a Beta distribution with the following parameters:

As ∼ Beta(α0 +Ns
+, α1 +Ns

−) (4)

where

Ns
+ =

∑
ψi
s∈Ψs

(1−Gi,s)δ(ψis, l∗i ) +
Gi,s
|Ck| − 1

∑
j∈C−i

k

δ(ψis, l
∗
j )

(5)

Ns
− =

∑
ψi
s∈Ψs

(1−Gi,s)(1− δ(ψis, l∗i ))+

+
Gi,s
|Ck| − 1

∑
j∈C−i

k

(1− δ(ψis, l∗j ))
(6)

where Ψs is a set of votes given by worker s. Ns
+ is the

number of times a worker s gave the same votes as the cor-
responding item true label. In the case of a confusion we
assume that it measures any of the other |Ck| − 1 items at
the same probability. Ns

− is the count of worker s observa-
tions when it reported a false label (with the similar way of
counting confusions).

Algorithm 1: MCMC-C Inference Algorithm

Input: Ψ, α, β, γ
Output: {l∗i }, {Gi,s}, {πk}

(1) Initialize As, Gi,s, l
∗
i and πk by drawing from the priors

(2) for iter to iter num
(3) foreach i ∈ I
(4) draw l∗i∼multi(

∏
ψ

j
s∈Ψ̂i

A
δ(ψj

s,l
∗
i )

s (1−As)1−δ(ψj
s,l
∗
i ))

(5) foreach Gi,s ∈ G
(6) draw Gi,s ∼ πkA

δ(ψi
s,l
∗
i )

s (1−As)1−δ(ψi
s,l
∗
i )

(7) foreach πk ∈ π
(8) Nk

conf =
∑

Gi,s∈Gk

Gi,s

(9) Nk
conf =

∑
Gi,s∈Gk

(1−Gi,s)

(10) draw πk∼Beta(γ0+Nk
conf , γ1+Nk

conf )

(11) foreach As ∈ A
(12) Ns

+ =
∑

ψi
s∈Ψs

(1−Gi,s)δ(ψis, l∗i )+

(13) +
Gi,s

|Ck|−1

∑
j∈C−i

k
δ(ψis, l

∗
j )

(14) Ns
− =

∑
ψi
s∈Ψs

(1−Gi,s)(1− δ(ψis, l∗i ))+

(15) +
Gi,s

|Ck|−1

∑
j∈C−i

k
(1− δ(ψis, l∗j ))

(16) draw As ∼ Beta(α0 +Ns
+, α1 +Ns

−)

Finally, we sample the cluster confusions from a Beta dis-
tributions using the counts of confused and not confused
labels (i.e., using Gi,s):

πk ∼ Beta(γ0 +
∑

Gi,s∈Gk

Gi,s, γ1 +
∑

Gi,s∈Gk

(1−Gi,s)) (7)

Given all CPDs presented above the MCMC-C inference
algorithm is described in Algorithm 1. As input the algo-
rithm takes a set of observations Ψ and priors, and outputs
the probabilities of item labels to be true {l∗i } along with
estimates of confusion variables {Gi,s} and {πk}. First, we
randomly initialize all variables of our model by drawing
values from the respective prior distributions (line 1). (In
practice, we have found that the MV output is a good initial
guess for l∗i .) Lines 2-6 are sampling from the joint proba-
bility distribution of our model where iter is the iteration
number and iter num is the total number of iterations. We
sample labels for i ∈ I in lines 3-4. For each crowd vote
we updated G variables where we also incrementally update

count Nk
conf and Nk

conf (lines 7-9). We draw the cluster
confusion probabilities by using a posterior Beta with new
counts of confused and not confused observations as in For-
mula 7 (line 10). Then for each worker we initialize its pos-
itive and negative counts as they defined in Formula 5 and
6 (lines 11-15). Having Ns

+ and Ns
−, we draw the accuracy

of each worker from the corresponding posterior Beta distri-
butions (line 16).
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Notice that the complexity of Algorithm 1 is proportional to
the number of iterations, observations and items in clusters:
O(itern ∗ |Ψ| ∗ max(|Ck|)) The Algorithm 1 computation
overhead (with respect to non confusion aware methods)
comes from the necessity to visit all the items within a clus-
ter when we compute counts for As and i, i.e., for each
item, we take into account the crowd observations which
were switched from and to it. However, in practice the
max(|Ck|)) doesn’t affect the overall computational cost a
lot since there are not many items within a cluster and to-
tally not all items are involved into clusters.

5. EXPERIMENTS
We run experiments with the goal of assessing the algo-

rithms in terms of its ability to i) detect confusion and ii)
correct them. We then show a simple but effective way to
semi-automatically prevent confusions, once detected.

5.1 Datasets
We evaluate the model and algorithm first with a synthetic

dataset, to assess performances as we vary the characteris-
tics of the data, and then via nine crowdsourcing experi-
ments of different nature and difficulty. We make publicly
available the datasets in the following GitHub repository1.
We then run four crowdsourcing experiments asking workers
to label photos of flags, faces of celebrities, food images, and
to assign the title of a movie given the plot. The first three
datasets are based on images while the fourth is on text la-
beling. All tasks where run on the FigureEight platform.
Overall we collected more than 5100 votes in the tasks. Ta-
ble 2 shows task and data statistics such as number of items,
workers, votes, and proportion of confused votes with re-
spect to entire amount of collected crowd observations.

5.1.1 Synthetic dataset
The synthetic dataset is obtained via a custom synthetic

data generator that allows us to vary the number of items,
sources (workers), labels (classes), the average accuracy of
sources, the probability of confusion for the clusters as well
as other parameters. As an input we provide the number of
items (|I|), the number of sources (n), the number of distinct
values per item (V ), the average accuracy of sources (A), the
probability of confusion (π) and the density (ρ).

We start by generating a dataset without confusions. For
each item source pair we (i) run a Bernoulli trial with the
probability of ρ to decide whether a source provide an ob-
servation on item; if it so then we (ii) run another Bernoulli
trial with the probability of A to decide whether a source
provided a true value, if not then we choose a false value at
random (with the probability 1/(V − 1)). In the next, we
inject confusions into the dataset. We form clusters by pair-
ing all items at random (having |I|/2 clusters). We revisit
all observations and run a Bernoulli trial with the probabil-
ity of π to decide whether the given observation is confused.
If so, then we switch the item of the observation into some
other item in a cluster.

5.1.2 Faces
For this experiment, crowd workers were asked to fill out

a survey where they need to provide the names of celebrities

1https://github.com/Evgeneus/fuzzy-data-fusion

given their pictures. We built 24 binary clusters of looka-
like celebrities and created a survey which have the pictures
of celebrities with 6 options where one answer is correct,
one answer is from the other item in the cluster (a lookalike
celebrity), one answer is “I don’t know”, and three other
answers are just celebrities of the same gender, race and
age. Figure 3 is a screenshot of one of the questions in the
survey. The confusions were observed on 30 from 48 items,
or in 22 from 24 clusters. We found that between items
within the same cluster it might be different frequency rela-
tions in terms of confusions, i.e., one item might be confused
more often than others. In this regards, we revealed 14 one-
directed clusters (always the same item was confused) and 8
bi-directional clusters, where confusions were on both items.

Figure 3: Crowdsourcing task to collect labels on Faces.

5.1.3 Flags
In this job, workers were presented with photos of flags of

60 countries and multiple choice answers. For each picture
of a flag, the task is to select the country that has that flag
from the multiple-choice answers, in case if a worker is not
sure about a country name, he could look at the list of all
countries and their’ flags provided by us. For each picture
we collected 16 votes per image on average. 220 distinct
workers took part in the flags task, with an overall accuracy
of 90%. We used in a total of 8 test questions to screen
out not qualified workers and paid 1 cent per annotating an
image, overall contributors satisfaction was 4.4 out of 5.

We then selected initial hypotheses of pairs of labels that
we thought could be source of confusion, such as Moldova
and Romania. We selected 13 such clusters, and the er-
rors we define to be of confusions (that is, between items
that are in the same cluster) are 7.8% and involve 10 out of
the 13 clusters (notice that nearly all errors are confusions).
Some confusions are one-directed (e.g., Moldovan flags la-
beled as Romanian) and others bi-directional (Ireland and
Ivory coast labels are swapped).

5.1.4 Food
In this experiment, workers were given with 76 photos

of food/dishes and multiple choice answers. The task is to
select the right food/dish from the list of options provided.
We used in a total of 4 test questions to screen out not
qualified workers and paid 1 cent per annotating an image,
overall contributors satisfaction was 5 out of 5. As above,
we then selected initial hypotheses of pairs of food that we
thought could be source of confusion, such as Artichokes
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Table 2: The statistics for crowdsourced datasets.

Task Property Flags Faces Food Plots Review Adult Duck Sentiment Dogs

num. of classes 81 72 45 111 3 4 2 4 4
num. of workers 220 21 177 122 135 269 39 27 109
num. of items 100 48 76 100 1500 333 108 584 807
num. of votes 1600 349 1220 1937 7440 3324 4212 5242 8070
num. votes per item
(avg ± std) 16± 5 7± 3 16± 10 19± 1 7± 0 12± 3 41± 0 11± 17 12± 0
num. votes per worker
(avg ± std) 7± 5 16± 6 7± 4 16± 12 55± 171 12± 23 108± 0 194± 226 74± 88
% of confused votes 7.8% 19.2% 23.8% 6.1% Unknown Unknown Unknown Unknown Unknown
workers’ accuracy 90% 70.2% 68.8% 90.2% 57% 65% 64% 60% 70%

Figure 4: Crowdsourcing task to collect labels on Flags.

and Cardoons. In this experiment, we observed one- and bi-
directional clusters, such in Figure 5 we demonstrate that
people often confuse Cardoons with Artichokes (60% and
30% of crowd votes in our experiment), but not vice versa.

5.1.5 Plots
To create this dataset, we build 50 binary clusters of

movies with similar plots. Then we manually collected plots
of the selected 100 movies, thus workers were needed to an-
notate textual data. During the experiment, crowd workers
were presented with plots of movies (without movie titles)
and multiple choice answers of real movie titles. Workers
asked to select a correct movie described in the plot. The
instructions for this task is depicted in Figure 6. We used in
a total of 10 test questions to screen out not qualified work-
ers and paid 1 cent per annotating a movie plot, overall
contributors satisfaction was 4.2 out of 5.

5.1.6 Other public crowdsourcing datasets
We further employed five more open-sourced crowdsourc-

ing datasets (from papers published in major conferences)
for which we have no specific indication that they suffer from
possible confusions and where we have no prior knowledge
on confused items, if any. The main motivation for having
these datasets is to study if MCMC-C gets worse accuracy

Figure 5: Example of one-directional cluster in Food data

Figure 6: Crowdsourcing task to collect labels on Plots.

in absence of confusions or of well-formulated hypothesis of
confusion (clusters). Therefore, we have the following addi-
tional datasets (see Table 2 for statistics on these datasets):

Adult. Each task contains a website URL and workers
requested to provide the adult content level of the website
according to four categories: General Audience, Parental
Guidance, Restricted, and Porn [2].

Sentiment. The task is to identify the sentiment for a
given face image: neutral, happy, or angry [1]

Review. The task is to provide a sentiment label for a
movie review: positive, negative, or neutral review [37].

Dog. The task is to identify a breed of a dog given a
picture in one out of four categories [48].

Duck. Workers were asked to recognize whether the image
includes a duck or not [42].

5.2 Confusion Detection
We start by testing the ability of the algorithm to detect

confusions, our primary goal. Specifically, we are interested
in the average probability of confusion detection, that we call
Accuracy of confusion detection. It is computed as follows:

2528



0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Accuracy of workers

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
A

cc
u
ra

cy

confusion probability = 0.2

confusion probability = 0.3

confusion probability = 0.4

Figure 7: Accuracy of confusion detec-
tion for varying workers accuracy.
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Figure 8: Accuracy of confusion detec-
tion as the number of classes grows.
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Figure 9: Convergence of MCMC-C
with the growing number of iterations.
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Figure 10: Precision (straight) and Re-
call (dashed) of confusion detection as
Gamma prior of MCMC-C change.
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Figure 11: Aggregation Accuracy as
the number of votes per items change -
Food dataset.
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Figure 12: Aggregation Accuracy as
the number of votes per items change -
Plots dataset.

Table 3: Confusion detection results on real-world datasets.

All data
Dataset Accuracy Precision Recall
Plots 99+-0% 100+-0% 83+-6%
Flags 97+-1% 97+-8% 67+-8%
Faces 87+-1% 83+-6% 39+-6%
Food 86+-1% 98+-3% 40+-5%

5 votes per item
Dataset Accuracy Precision Recall
Plots 98+-1% 98+-6% 64+-11%
Flags 95+-2% 92+-9% 49+-13%
Faces 83+-2% 78+-8% 27+-7%
Food 85+-2% 88+-9% 32+-7%

Accuracy =

∑
Gi,s∈G

[Gi,s = G∗i,s]

| G | ,
(8)

where [Gi,s = G∗i,s] outputs 1 if the condition holds else
0, G∗i,s is a correct value for a confusion variable Gi,s, i. e.,
whether or not a confusion appeared, and | G | normalizes
the metric by the total number of votes given on items that
belong to the clusters, so that it is in the [0, 1] interval.

Figure 7 shows the results of applying MCMC-C while
varying the accuracy of workers A and probability of confu-
sion π. Our default parameters are 30 workers with average
accuracy 0.9, 5000 items, and 50 classes. As expected the
output accuracy grows linearly with the worker accuracy.

Moreover, the higher A and reasonably low π the MCMC-
C gives more accurate results, particularly, for A = 1 and
π = 0.2 the accuracy of identifying confusions is 98%. Fig-
ure 8 shows instead that accuracy grows with the number of
possible classes (here shown keeping π = 0.2), as it becomes
easier to separate confusions.

On crowdsourcing experiments (Table 3), confusion de-
tection accuracy is also fairly high especially in terms of
precision, what means we have just a few false positive de-
cisions about confusion identification. Numbers are lower
for Food dataset as the overall workers accuracy is lower for
that case. Along with the results based on full datasets (“All
data”), which include many votes per item (see Table 2) and
these numbers are much higher than typical crowdsourcing
tasks, Table 3 also shows results considering only 5 ran-
domly selected votes per item - and we discuss later how
performances vary with the number of votes per item.

The numbers reported in Table 3 are obtained by averag-
ing the results of 30 repetitions of the experiments.

5.3 The Effect of Hyperparameters
In this section, we study the effect of hyperparameter

(α, β, γ) choice for the resulting accuracy in confusion de-
tection. The γ hyperparameters represent our prior knowl-
edge about confusions in a cluster Ck. Assuming that the
proportion of confusions is small relative to all votes in the
cluster, we tested the following γ priors (the pairs denote
α and β parameters in a Beta distribution used to model
the a priori belief on confusion): (1, 5), (1, 10), (1, 20), (1,
50), corresponding to prior beliefs over the mean values of
confusions, respectively, 0.17, 0.09, 0.048, and 0.019.
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Figure 10 displays the resulting MCMC-C Precision and
Recall of confusion detection with respect to the different γ
priors. As the figure shows, the higher the prior γ0 value, the
higher is Precision and the lower is Recall of confusion iden-
tification. We are particularly interested in high Precision
since part of what the algorithm does is to correct confused
votes so we do not want to do erroneous corrections (i.e.,
we do not want to harm vote aggregation results). For all
of the priors above, the vote aggregation results after con-
fusion correction are better than the original data fusion al-
gorithms and with a 0-3% range in accuracy (depending on
the algorithm). For all the following experiments we report
results with γ prior of (1, 20) as this value yielded better
vote aggregation accuracy.

The other hyperparameters α and β, corresponding to
prior beliefs about the accuracy of workers and about the
distribution of labels, are common to many classification
algorithms and are not specific to confusion detection. In
absence of prior knowledge, they can be estimated using
test runs (see e.g., [20]) and we do not discuss them fur-
ther. In the following we set a fixed α prior values of (4, 1)
(µ = 0.8, std = 0.16) to all our experiments and other truth
discovery models (as it is reasonable to set α0 higher than
α1 [46]), and adopt a uniform prior for the β hyperparame-
ter, assuming no prior knowledge on the label distribution.

5.4 Confusion Correction
Our secondary goal is to leverage MCMC-C to improve

classification accuracy once votes have been collected. The
proposed MCMC-C attempts at identifying which votes in
a cluster are confused, therefore enabling error correction
(reassigning confused votes to correct items), at least in the
case of clusters of two labels discussed here. The impact
of error correction on the overall classification accuracy also
depends on the classification algorithm adopted. We there-
fore experiment with a set of common vote aggregation al-
gorithms and test the effect on adding confusion correction
on top. Specifically, first we correct confusions and then
run vote aggregation algorithms. We compare the follow-
ing algorithms: Majority Voting (MV), TruthFinder [45] as
well as with a base MCMC version such as MCMC Sam-
pling Algorithm (MCMC), Dawid-Skene (D&S) [8], Sums Hubs
and Authorities (SUMS) [19], Average Log (AvgLog) [16], In-
vestment, and PooledInvestment (Inv, PInv) [16], Learning
from Crowd (LFC) [35], CRH [5, 25], ZenCrowd [9], CATD [24],
GLAD [43]. Finally, the proposed MCMC with Confused Ob-
servations (MCMC-C) is an implementation of Algorithm 1
from Section 4.

To evaluate algorithms, we measure vote aggregation Ac-
curacy as assigned labels by an algorithm to the true class,
and average across all items with the presence of conflict-
ing votes (thus, we do not overestimate the performance
of algorithms). To assess the improvements after confusion
correction, we compare results before and after correcting
for what MCMC-C believes to be confusion errors.

Table 4 shows the improvement in vote aggregation Accu-
racy for the real-world crowdsourced datasets. The results
demonstrate that applying the correction has very large ef-
fects in terms of improving accuracy of aforementioned truth
discovery algorithms.

Figures 11 and 12 show how performances vary with the
number of votes per items for the datasets where D&S is
one of the best in the full dataset. The reason why D&S

does not give good results with low numbers of votes per
item is that in these datasets we have rather large number
of classes (from 45 in Food to 111 in Plots), and in this case
confusion matrices have a large number of cells (over 10K
for Plots), so that constructing such matrices (per worker)
accurately requires more data. In this case, as the number
of data points increases, D&S performs well in the plots
dataset despite the large number of classes also because the
workers’ accuracy is high and the confusion is low, the lowest
in our datasets. In general, we observe that with number of
votes that are in line with typical scenarios, correcting for
detected confusions before aggregating results in very much
improved accuracy with respect to performing aggregation
without correction.

Table 4 and Table 5 depict the results on all datasetas
and algorithms. The numbers reported are obtained by av-
eraging the results of 30 repetitions of the experiments.

5.5 Convergence and Scalability of MCMC-C
In this section, we present our study of the convergence

and scalability of MCMC-C on the synthetic data. Figure 9
shows the accuracy of confusion detection for the following
numbers of iterations: 3, 5, 10, 30, 50, 100. We found that
to achieve a sufficiently high accuracy we need only 10 itera-
tions and further increasing the number of iteration doesn’t
lead to a noticeable improvement in the accuracy.

We analyze the scalability of MCMC-C, where we aim to
study how the modeling of confusions affects the time need
for inference. To this end, we scale the number of confusions
by increasing the number of items which have confused ob-
servations (i.e., belong to the clusters). We observe that
as we scale the number of items the computational time of
MCMC-C stays almost the same with an increase at 10000
items (e.g., when TruthFinder takes 150 sec, MCMC-C con-
sumes 200 sec for the dataset of 1000 items and 500 clus-
ters). Note that the confusion-based algorithms take time
equal to its baselines plus the time needs to resolve confu-
sions. In practice, we envision that the number of items
with confusions will not be large and therefore we conclude
that MCMC-C easily scales up to millions of items.

5.6 Confusion Prevention
A main reason to detect confusion early in the process is

the possibility of preventing it. MCMC-C can detect con-
fusions even with a small number of votes per item. Once
confusion is detected between a pair of labels, a simple and
automated prevention mechanism is to modify the crowd-
sourcing task by pointing out the possibility of confusion
every time the worker selects a label in this pair.

We show an example of this in Figure 13, where once
the flag of Haiti or Liechtenstein is selected, a popup auto-
matically appears showing the similarity (and therefore the
possible confusion) and asking for verification. We run the
same crowdsourcing experiments over flags, plots and food
experiments with the prevention mechanism and reduction
in confused labels are from 6.1% to 2% for plots, 23.8% to
19.3% for food, 7.8% to 2.6% for flags.

6. CLUSTERING AND COMPARISON TO
CONFUSION MATRIX ESTIMATION

2530



Figure 13: Confusion prevention crowd task.

6.1 Iterative and Greedy Cluster Recognition
One of the challenges for MCMC-C is that it takes as

input predefined clusters of items. Previously we assumed
that clusters are defined by the task designer either manu-
ally or via rules that capture a potential confusion. In case
a task designer does not have prior opinion about clusters
we need to find a way to build them automatically. We also
need to analyze the impact of “bad” clusters on MCMC-
C confusion detection as well as vote aggregation accuracy.
Since MCMC-C is efficient, a trivial way to build clusters
is to iterate over possible pairs of labels, estimating confu-
sions at each iteration with MCMC-C, keep clusters of labels
identified as confused and re-cluster the others differently.
We tested this for our crowdsourced datasets and identify
confusions with a percentage very close to what reported
for manually selected ones. In the case of randomly created
clusters, we obtained accuracy from 96% to 99% on the dif-
ferent datasets (average of 30 repetitions). Note that such
high accuracy in confusion detection can be due to the fact
that randomly created clusters might have a few confusions
and MCMC-C easily handles it and especially in identifying
not confused votes. While this works fine in the majority
of real-life problems where the number of classes is in the
single or double digit range and we look for clusters of size
2, it becomes computationally expensive in other cases.

Therefore, we propose a simple MV-based greedy algo-
rithm for building clusters of items (Algorithm 2). It takes
crowdsourced votes and items as input, and outputs clusters
of items that are estimated to be at risk for confusion. First,
we run the Majority Voting algorithm over the input data
(line 2). Then, with the use of MV on results, for each item i
we search for the most likely label to be true and the second
likely label or None. The next step is to retrieve candidate
items to form a cluster with the current item i. To this

end, we select all items that have the true label (assigned
from MV) equal to the second likely label for the current
item i (line 6). Finally, we randomly choose an item from
candidates items and form a cluster with i (lines 7-8).

Table 5 shows the improvement in vote aggregation Ac-
curacy for the crowdsourced datasets with clusters built via
Algorithm 2. We observe that for DS we always improve ag-
gregation accuracy by a large margin, MCMC-C itself pro-
vides competitive or better results than original algorithms.

Algorithm 2: Greedy search for clusters

Input: Crowd votes Ψ, I
Output: Set of clusters C

(1) C = {}
(2) run MV over Ψ
(3) foreach i ∈ I
(4) l∗i = first most common label on i from MV

(5) lconfi = second most common label on i or None

(6) candidates =[j for All j ∈ I where l∗j = lconfi ]
(7) iconf =randomly sample item from candidates
(8) C.append([i, iconf ])
(9) return C

6.2 Cluster identification with Machine Learn-
ing algorithms

In this section, we aim at testing the effect of clusters
created via machine learning algorithms. To this end, we
adopt the unsupervised K-Means clustering algorithm on
our real-world datasets. For the Plots dataset, which is text-
based, we applied K-Means clustering on TF-IDF features
extracted from the textual description of the plots. In this
case, K-Means takes data (transformed items with TF-IDF
vectorizer) and the desired number of clusters, which we set
to 50. As a result, we received the clusters identical to the
manual ones.

Next, we investigate the effect of clustering image-based
datasets (Flags, Food, Faces) with K-Means algorithms. As
features for images, we tried i) colored image pixels, ii) col-
ored image pixels + identified edges in the image (using
the Prewitt operator2). As a result, for Food and Faces
datasets we only found some clusters that correspond to the
manually identified ones, while for Flags all clusters were
wrong. These results came from the fact that the algorithm
clustered images according to irrelevant information, e.g., in
Flags some clusters created based on the presence of sky in
photos. Therefore, for images, we need more sophisticated
algorithms or/and feature extractors.

Notice that what happens in the case of “bad” clusters
is that the algorithm does not detect confusions, but it
causes no “harm” in terms of crowdsourced classification
with respect to other algorithms such as D&S. Again, code,
datasets, detailed experiments results and additional charts
are available from the cited Github repo. Our future work
will include the application of pre-trained deep networks
aimed at assessing similarity.

2https://en.wikipedia.org/wiki/Prewitt operator
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Table 4: Accuracy (in %) of Original (Orig) and after confusion correction data fusion algorithms on real-world datasets.
(Man - correction with manually identified clusters, Grd - with clusters identified by Algorithm 2.)

Algorithm Faces Flags Plots Food Sentiment Review Duck Adult Dog
Orig Man Grd Orig Man Grd Orig Man Grd Orig Man Grd Orig Grd Orig Grd Orig Grd Orig Grd Orig Grd

MCMC-C - 81 79 - 90 89 - 99 98 - 76 74 - 55 - 72 - 77 - 68 - 78
MV 71 79 74 88 90 89 98 99 98 73 76 74 55 56 69 72 77 77 67 69 78 80
TruthFinder 79 82 80 89 90 89 98 99 98 74 76 74 53 55 71 72 58 77 68 68 81 78
D&S 43 53 47 74 81 89 98 98 98 78 82 75 55 55 74 73 90 77 71 68 83 79
GLAD 73 80 73 89 90 89 98 99 98 74 76 74 55 55 72 74 74 77 67 68 79 79
CRH 78 82 77 88 90 89 98 99 98 73 76 74 49 55 63 70 77 74 69 69 79 81
LFC 43 49 44 61 60 62 78 72 80 55 60 58 58 56 72 75 90 76 73 70 83 81
CATD 79 82 80 88 90 89 98 99 98 74 76 74 53 55 68 74 80 75 68 69 79 81
ZenCrowd 78 81 74 89 90 89 98 99 98 74 76 74 54 56 72 75 58 75 68 69 81 81
MCMC 80 82 79 89 90 89 98 99 98 74 76 74 53 55 71 72 72 77 68 68 80 78
SUMS 78 82 77 91 91 90 100 100 100 72 76 74 54 55 74 72 77 77 65 68 76 77
AvgLog 78 81 77 89 90 89 98 99 98 74 76 74 55 55 73 72 77 77 69 68 78 78
Inv 81 82 83 87 89 89 93 99 98 77 78 75 45 54 67 69 77 78 71 67 80 78
PInv 81 84 82 87 90 89 93 99 98 78 78 75 46 54 67 69 78 78 72 68 80 78

Table 5: Accuracy (in %) of Original and after confusion correction data fusion algorithms on real-world datasets with only
5 votes per item.

Data 5 votes item
Algorithm Faces Flags Plots Food

Orig Man Grd Orig Man Grd Orig Man Grd Orig Man Grd
MCMC-C - 77 77 - 80 78 - 94 90 - 71 66
MV 68 73 70 77 81 78 87 93 87 67 72 68
TruthFinder 77 78 78 77 80 78 89 94 89 65 69 66
D&S 41 49 44 51 63 54 33 59 41 45 57 48
GLAD 72 76 73 77 80 78 88 92 86 67 71 68
CRH 74 77 76 77 81 78 87 92 87 67 71 68
LFC 36 37 38 29 27 31 13 13 14 22 22 23
CATD 76 78 77 77 81 78 87 93 86 65 71 68
ZenCrowd 74 76 74 77 81 78 88 93 86 66 71 67
MCMC 75 77 76 78 80 78 89 93 90 66 70 66
SUMS 73 77 73 77 80 78 89 93 90 64 69 66
AvgLog 73 78 73 77 80 78 89 94 90 64 68 65
Inv 73 78 76 75 79 76 83 90 87 64 79 65
PInv 72 78 76 74 80 76 82 90 86 66 70 65

6.3 Comparison with D&S Confusion Matrix
We have shown that MCMC-C is an effective to detect

confusion over a variety of datasets, and that once confusion
is detected, it can then be prevented to a large extent with
simple modifications to the task. The algorithm scales well
to large datasets (both in items and workers).

Part of our work included a comparison with D&S as a
baseline, and of what happens when we preprocess confu-
sions and then apply D&S. We are specifically interested
in D&S as a main representative of algorithms that do aim
at identifying confusion matrices and therefore in a way do
deal with confusions. However, D&S per se does not output
classes that some workers may confuse, but it “simply” pro-
duces estimated labels and per-worker confusion matrices.

In principle it is possible to use such matrices to deter-
mine pairs (or cliques) of classes that can be source of fre-
quent confusions, and this requires a way to map the set of
worker-specific matrices into sets of possibly confused labels.
However, how to do this is not obvious and requires further
research. Simply taking matrix cells off the diagonal where
the average value is high (denoting that workers frequently
mistakes the estimated correct label - in the row - with the
voted label - in the column) often leads to poor results es-
pecially in the conditions discussed above (large number of
cells and relatively sparse matrices with workers votes). If
workers’ accuracy is also not very high, then D&S has a hard
time distinguishing errors and confusions.

To show how D&S behaves in the presence of classes that
some workers confuse, we plot in Figure 14 three confu-
sion matrices histograms obtained by D&S, corresponding

to three (simulated) experimental conditions. Each matrix
cell contains an histogram plotting the percentage of work-
ers (y axes) that have a specific confusion value for that cell
(the X axis is divided in buckets of size 0.1). So for exam-
ple, cell [1,2] (first row, second column) shows a histogram
denoting how many workers have a given confusion value
for that cell. The expectation is that cells on diagonal have
bars close to 1, and off-diagonal cells have most of the mass
towards zero. All matrices correspond to experiments with
5 classes, workers’ accuracy in the [0.7-0.9] range, and have
a varying percentage of workers that confuse class 1 and
2. Therefore, we assume to observe signals for confusions
in cells [1,2] and [2,1]. The dataset for the top matrix has
50% of workers confused, and has 5 votes per item, 25 votes
per worker. The one in the middle also has 50% of work-
ers confused, and 3 votes per item, while the bottom one
has 5 votes per item but only 10% of workers are confused
between classes 1 and 2.

What we can see is that while for the top matrix we
could infer confusions, for example by observing that the
histogram has mass close to both extreme and not just one
(see in particular cell [1,2]), when the number of votes per
items goes down (matrix in the center) or the percentage of
confused workers is a probably more realistic 10%, making
confusion determination becomes challenging. Things get
worse as the number of classes increase, as observed earlier.

7. CONCLUSIONS AND LIMITATIONS
The learning we take home from the experiments is that

the approach proposed is effective in detecting confusions
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across several datasets with different characteristics and is
robust to clustering methods and hyperparameters selection.

Figure 14: Dawid-Skene for Confusion Detection.

The approach helps in nearly all cases in improving the
quality of crowd classification and it does not negatively af-
fects accuracy for problems where there is no confusion. We
show that it improves over the “standard” D&S approach,
even with automatically generated confusion clusters.

A limitation of the approach so far is still in the num-
ber of datasets which, as much as we endeavored to select
a “diverse” sample, is still relatively small. We also foresee
that improvements are possible in the selection of the initial
clusters as well as hyperparameters, possibly leveraging iter-
ative or reinforcement learning based approaches that tune
the parameters as crowdsourcing progresses. Indeed, the
main limitation of the current work is for the case where the
problem is characterized by large number of classes and of
confusions among clusters of more than two classes (so that

brute force and iterative methods are not applicable), and
where the MV-based greedy approach is not effective and
task designers do not have intuitions or rules about possi-
ble confusions. This is not a frequent problem in practice in
crowdsourcing, but it is one for which further work is needed
in the cluster identification phase.
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