
Pushing Data-Induced Predicates Through Joins
in Big-Data Clusters

Srikanth Kandula, Laurel Orr, Surajit Chaudhuri
Microsoft

{Srikanth,SurajitC}@Microsoft.Com, LJOrr1@cs.washington.edu

ABSTRACT
Using data statistics, we convert predicates on a table into data in-
duced predicates (diPs) that apply on the joining tables. Doing so
substantially speeds up multi-relation queries because the beneûts
of predicate pushdown can now apply beyond just the tables that
have predicates. We use diPs to skip data exclusively during query
optimization; i.e., diPs lead to better plans and have no overhead
during query execution. We study how to apply diPs for complex
query expressions and how the usefulness of diPs varies with the
data statistics used to construct diPs and the data distributions. Our
results show that building diPs using zone-maps which are already
maintained in today’s clusters leads to sizable data skipping gains.
Using a new (slightly larger) statistic, 50% of the queries in theTPC-
H, TPC-DS and JoinOrder benchmarks can skip at least 33% of the
query input. Consequently, the median query in a production big-
data cluster ûnishes roughly 2× faster.
PVLDB Reference Format:
Srikanth Kandula, Laurel Orr, Surajit Chaudhuri. Pushing Data-Induced
Predicates _rough Joins in Big-Data Clusters. PVLDB, 13(3): 252-265, 2019.
DOI: https://doi.org/10.14778/3368289.3368292

1. INTRODUCTION
In this paper, we seek to extend the beneûts of predicate push-

down beyond just the tables that have predicates. Consider the fol-
lowing fragment of TPC-H query #17 [20].

SELECT SUM(l extendedprice)
FROM lineitem
JOIN part ON l partkey = p partkey
WHERE p brand=‘:1’ AND p container=‘:2’

_e lineitem table ismuch larger than the part table, but because
the query predicate uses columns that are only available in part,
predicate pushdown cannot speed up the scan of lineitem. How-
ever, it is easy to see that scanning the entire lineitem tablewill be
wasteful if only a small number of those rowswill joinwith the rows
from part that satisfy the predicate on part.

If only thepredicatewas on the columnused in the join condition,
partkey, then a variety of techniques become applicable (e.g., al-
gebraic equivalence [53],magic set rewriting [50, 72] or value-based

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 3
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3368289.3368292

Figure 1: Example illustrating creation and use of a data-induced
predicate which only uses the join columns and is a necessary con-
dition to the true predicate, i.e., σ ⇒ dpartkey.

pruning [81]), but predicates over join columns are rare,1 and these
techniques do not apply when the predicates use columns that do
not exist in the joining tables.

Some systems implement a formof sideways information passing
over joins [21, 68] during query execution. For example, they may
build a bloom ûlter over the values of the join column partkey

in the rows that satisfy the predicate on the part table and use this
bloom ûlter to skip rows from the lineitem table. Unfortunately,
this technique only applies during query execution, does not easily
extend to general joins and has high overheads, especially during
parallel execution on large datasets because constructing the bloom
ûlter becomes a scheduling barrier delaying the scan of lineitem
until the bloom ûlter has been constructed.

We seek a method that can convert predicates on a table to data
skipping opportunitieson joining tables even if thepredicate columns
are absent in other tables. Moreover, we seek amethod that applies
exclusively during query plan generation in order to limit overheads
during query execution. Finally, we are interested in amethod that
is easy to maintain, applies to a broad class of queries and makes
minimalist assumptions.

Our target scenario isbig-data systems, e.g., SCOPE [45], Spark[37,
85],Hive [80], F1 [76] or Pig [67] clusters that run SQL-like queries
over large datasets; recent reports estimate over amillion servers in
such clusters [1].
Big-data systems alreadymaintain data statistics such as themax-

imum andminimum value of each column at diòerent granularities
of the input; details are in Table 1. In the rest of this paper, for sim-
plicity, we will call this the zone-map statistic and we use the word
partition todenote the granularity atwhich statistics aremaintained.

Using data statistics, we oòer a method that converts predicates
on a table to data skipping opportunities on the joining tables at
queryoptimization time. _emethod, an exampleofwhich is shown
in Figure 1, begins by using data statistics to eliminate partitions on
tables thathavepredicates. _is step is already implemented in some
systems [7, 18, 45, 81]. Next, using the data statistics of the partitions
that satisfy the local predicates, we construct a new predicate which

1Over all the queries in TPC-H [26] and TPC-DS [24], there are
zero predicates on join columns perhaps because join columns tend
to be opaque system-generated identiûers.

252

Table 1: Data statistics maintained by several systems.

Scheme Statistic Granularity
ZoneMaps [14] max and min value per col-

umn
zone

Spark [9, 18] file
Exadata [64] max, min and null present or

null count per column
per table region

Vertica [59], ORC [2],
Parquet [16]

stripe, row-
group

Brighthouse [77] histograms, char maps per col data pack

Figure 2: Illustrating the need to move diPs past other opera-
tions (le�). On a 3-way joinwhen all tableshave predicates (middle),
the optimal schedule only requires three (parallel) steps (right).

captures all of the join column values contained in such partitions.
_isnew data-induced predicate (diP) is anecessary condition of the
actual predicate (i.e., σ ⇒ d) because there may be false-positives;
i.e., in the partitions that are included in the diP, not all of the rows
may satisfy σ . However, the diP can apply over the joining table be-
cause it only uses the join column; in the case of Figure 1, the diP
constructed on the part table can be applied on the partition statis-
tics of lineitem to eliminate partitions. All of these steps happen
during query optimization; our QO eòectively replaces each table
with a partition subset of that table; the reduction in input size o�en
triggers other plan changes (e.g., using broadcast joins which elim-
inate a partition-shuøe [47]) leading to more eõcient query plans.

If the abovemethod is implemented using zone-maps, which are
maintained by many systems already, the only overhead is an in-
crease in query optimization time which we show is small in §5.
For querieswith joins,we show that data-induced predicates oòer

comparable query performance atmuch lower cost relative tomate-
rializing denormalized join views [46] or using join indexes [5, 23].
_e fundamental reason is that these techniques use augmentary
data-structures which are costly to maintain; yet, their beneûts are
limited to narrow classes of queries (e.g., queries that match views,
have speciûc join conditions, or very selectivepredicates) [34]. Data-
induced predicates, we will show, are useful more broadly.

We also note that the construction and use of data-induced pred-
icates is decoupled from how the datasets are laid out. Prior work
identiûes useful data layouts, for example, co-partition tables on
their join columns [51, 62] or cluster rows that satisfy the same pred-
icates [73, 78]; the former speeds up joins and the latter enhances
data skipping. In our big-data clusters,many unstructured datasets
remain in the order that they were uploaded to the cluster. _e
choice of data layout can have exogenous constraints (e.g., privacy)
and is query dependent; that is, no one layout helpswith all possible
queries. In §5, we we will show that diPs oòer signiûcant additional
speedup when used with the data layouts proposed by prior works
and that diPs improve query performance in other layouts as well.

To the best of our knowledge, this paper is the ûrst to oòer data
skipping gains across joins for complex queries before query exe-
cution while using only small per-table statistics. Prior work either
only oòers gains during query execution [21, 50, 53, 68, 72, 81] or
usesmore complex structureswhich have sizablemaintenance over-
heads [5, 23, 46, 73, 78]. To achieve the above, we oòer an eõcient
method to compute diPs on complex query expressions (multiple
joins, join cycles, nested statements, other operations). _ismethod
works with a variety of data statistics. We also oòer a new statistic,

Figure 3: A work�ow which shows changes in red; using partition
statistics, our query optimizer computes data-induced predicates
and outputs plans that read less input.

range-set, that improves query performance over zone-maps at the
cost of a small increase in space. We also discuss how to maintain
statistics when datasets evolve. In more detail, the rest of this paper
has these contributions.

● Using diPs for complex queries leads to novel challenges.

– Consider TPC-H query#17 [20] in Figure 2(le�) which has a
nested sub-query on the lineitem table. Creating diPs for
only the fragment considered in Figure 1 still reads the entire
lineitem table for the nested group-by. To alleviate this, we
use new QO transformation rules to move diPs; in this case,
shownwithdotted arrows, thediP ispulled above a join,moved
sideways to a diòerent join input and thenpushed below a group-
by thereby ensuring that a shared scanoflineitemwill suõce.

– When multiple joining tables have predicates, a second chal-
lenge arises. Consider the 3-way join inFigure 2(middle)where
all tables have local predicates. _e ûgure shows four diPs:
one per table and per join condition. If applying these diPs
eliminates partitions on some joining table, then the diPs that
were previously constructed on that table are no longer up-to-
date. Re-creating diPs whenever partition subsets change will
increase data skipping but doing so näıvely can construct ex-
cessively many diPs which increases query optimization time.
We present an optimal schedule for tree-like join graphswhich
converges to ûxed point and hence achieves all possible data
skippingwhile computing the fewest number of diPs. Star and
snow�ake schemas result in tree-like join graphs. We discuss
how to derive diPs for general join graphs within a cost-based
query optimizer in §3.

● We show how diòerent data statistics can be used to compute diPs
in §4 and discuss why range-sets represent a good trade-oò be-
tween space usage and potential for data skipping.

● We discuss twomethods to copewith dataset updates in §4.1. _e
ûrst method taints partitions whose rows change and the second
approximately updates partition statistics when rows change. We
will show that both methods can be implemented eõciently and
that diPs oòer large gains in spite of updates.

● Fundamentally, data-induced predicates are beneûcial only if the
join column values in the partitions that satisfy a predicate con-
tain only a small portion of all possible join column values. In §2.1,
we discuss real-world use-cases that cause this property to hold
and quantify their occurrence in production workloads.

● We report results from experiments on production clusters atMi-
croso� that have tens of thousands of servers. We also report re-
sults on SQL server. See Figure 3 for a high-level architecture dia-
gram. Our results in §5 will show that using small statistics and a
small increase in query optimization time, diPs oòer sizable gains
on three workloads (TPC-H [26], TPC-DS [24], JOB [12]) under
a variety of conditions.

253

2. MOTIVATION
We beginwith an example that illustrateshow data-induced pred-

icates (diPs) can enhance data skipping. Consider the query expres-
sion, σyear (date dim)&date skR. Table 2a shows the zone-maps per
partition for the predicate and join columns. Recall that zone-maps
are themaximum andminimum value of a column in eachpartition,
andwe use partition to denote the granularity atwhich statistics are
maintained which could be a ûle, a rowgroup etc. (see Table 1). Ta-
ble 2b shows the diPs corresponding to diòerent predicates. _e
predicate column year is only available on the date dim table, but
the diPs are on the join column date sk and can be pushed onto
joining relations using column equivalence [53]. _e diPs shown
here are DNFs over ranges; if the equijoin condition has multiple
columns, the diPs will be a conjunction of DNFs, one DNF per col-
umn. Further details on the class of predicates supported, extending
to multiple joins and handling other operators, are in §3.2. Table 2b
also shows that the diPs contain a small portion of the range of the
join column date sk (which is [1000, 12000]); thus, they can oòer
large data skipping gains on joining relations.

It is easy to see that diPs can be constructed using any data statis-
tic that supports the following steps: (1) identify partitions that sat-
isfy query predicates, (2)merge the data statistic of the join columns
over the satisfying partitions, and (3) use the merged statistic to
extract a new predicate that can identify partitions satisfying the
predicate in joining relations. Many data statistics support these
steps [31], and diòerent stats can be used for diòerent steps.

To illustrate the trade-oòs in choiceof data statistics, considerFig-
ure 4a which shows equi-width histograms for the same columns
and partitions as in Table 2a. A histogram with b buckets uses b + 2
doubles2 compared to the two doubles used by zone maps (for the
min. and max. value). Regardless of the number of buckets used,
note that histogramswill generate the same diPs as zone-maps. _is
isbecausehistogramsdonot remember gapsbetweenbuckets. Other
histograms (e.g., equi-depth, v-optimal) behave similarly. More-
over, the frequency information maintained by histograms is not
useful here because diPs only reason about the existence of values.
Guided by this intuition, consider a set of non-overlapping ranges
{[l i , u i]} which contain all of the data values; such range-sets are
a simple extension of zone-maps which are, trivially, range-sets of
size 1. However, range-sets also record gaps that have no values. Fig-
ure 4b shows range-sets of size 2. It is easy to see that range-sets give
rise tomore succinct diPs3 . Wewill show that using a small number
of ranges leads to sizable improvements to query performance in §5.
We discuss how to maintain range-sets andwhy range-sets perform
better than other statistics (e.g., bloom ûlters) in §4.

To assess the overall value of diPs, for TPC-H query #17 [20]
from Figure 2(le�), Figure 5 shows the I/O size reduction from using
diPs. _ese results use a range-set of size 4 (i.e., 8 doubles per col-
umn per partition). _e TPC-H dataset was generated with a scale
factor of 100, skewedwith a zipf factor of 2 [29], and tableswere laid
out in a typical manner4 . Each partition is ∼ 100MBs of data which
is a typical quanta in distributed ûle systems [40] and is the default
in our clusters [88]. Recall that the predicate columns are only avail-
able in the part table. _e ûgure shows that only two partitions of

2b to store the frequency per bucket and two for min andmax.
3For year ≤ 1995, the diP using two ranges is date sk ∈ {[1K , 2K],
[3K , 3.5K], [4K , 6K]} which covers 30% fewer values than the diP
built using a zone-map (date sk ∈ [1K , 6K]) in Table 2b.
4lineitem was clustered on l shipdate and each cluster sorted
on l orderkey; part was sorted on its key; this layout is known
to lead to good performance because it reduces re-partitioning for
joins and allows date predicates to skip partitions [3, 22, 27].

Table 2: Constructing diPs using partition statistics.

Column Partition #
1 2 3

date sk [3000, 5000] [1000, 6000] [7000, 12000]
year [1995, 2000] [1990, 2002] [2005, 2018]

(a) Zonemaps [14], i.e., themaximum andminimum values, for two
columns in three hypothetical partitions of the date dim table.

Pred. (σ) Satisfying
partitions

Data-induced
Predicate

% total
range

year ≤ 1995 {1, 2} date sk ∈ [1000, 6000] 45%
year ∈ [2003, 2004] ∅ date sk ∈ [] 0%
year > 2010 {3} date sk ∈ [7000, 12000] 45%

(b) Data-induced predicates on the join column date sk corresponding
to predicates on the column year; built using stats from Table 2a.

(a) Equiwidth histograms for the dataset in Table 2a.
Range-set Partition #
(size 2) 1 2 3
date sk {[3000, 3500],

[4000, 5000]}
{[1000, 2000],
[5000, 6000]}

{[7000, 10000],
[11000, 12000]}

year {[1995, 1997],
[1998, 2000]}

{[1990, 1993],
[1998, 2002]}

{[2005, 2014],
[2015, 2018]}

(b) Range-set of size 2, i.e., two non-overlapping max andmin values,
which contain all of the data values.

Figure 4: Other data statistics (histograms, range-sets) for the same
example as in Table 2a; range-sets yieldmore succinct diPs.

Figure 5: For TPC-H query 17 in Figure 2 (le�), the table shows the
partition reduction from using diPs. On the right,we show the plan
generated using magic-set transformations which push group-by
above the join. diPs complement magic-set transformations;we see
here that magic-set tx cannot skip partitions of lineitem but be-
cause group-by has been pushed above the join, moving diPs side-
ways once is enough unlike the case in Figure 2(le�).

part contain rows that satisfy the predicate and the corresponding
diP eliminates many partitions in lineitem. We will show results
in §5 for many diòerent data layouts and data distributions. We dis-
cuss plan transformations needed tomove the diP, as shown in Fig-
ure 2 (le�), in §3.3. Overall, for the 100GB dataset, a 0.5MB statistic
reduces the initial I/O for this query by 20×; the query can speed up
by more or less depending on the work remaining a�er initial I/O.

2.1 Use-cases where data-induced predicates
can lead to large I/O savings

Given the examples thus far, it is perhaps easy to see that diPs
translate into large I/O savings when the following conditions hold.

C1 _e predicate on a table is satisûed by rows belonging to a
small subset of partitions of that table.

C2 _e join column values in partitions that satisfy the predicate
are a small subset of all possible join column values.

254

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1C
D

F
 (

o
v
e

r
p

re
d

ic
a
te

s)

Fraction

Rows satisfying predicate
Partitions satisfying predicate
JoinColValues in satisfying partitions

Figure 6: Quantifying how o�en the conditions that lead to large I/O
skipping gains from using diPs hold in practice by using queries and
datasets from production clusters at Microso�.

C3 In tables that receive diPs, the join column values are dis-
tributed such that diPs only pick a small subset of partitions.

We identify use-cases where these conditions hold based on our
experiences in production clusters at Microso� [45].
● Much of the data in production clusters is stored in the order

in which it was ingested into the cluster [37, 41]. A typical in-
gestion process consists of many servers uploading data in large
batches. Hence, a consecutive portion of a dataset is likely to con-
tain records for roughly similar periods of time, and entries from
a server are concentrated into just a few portions of the dataset.
_us, queries for a certain time-period or for entries from a server
will pick only a few portions of the dataset. _is helps with C1.
When such datasets are joined on time or server-id, this phe-
nomenon also helps with C2 and C3.

● A common physical design methodology for performant parallel
plans is to hash partition a table by predicate columns and range
partition or order by the join columns [3, 22, 27, 51] and vice-
versa. Performance improves since the shuøes to re-partition for
joins decrease [17, 47, 89] and predicates can skip data. Such data
layouts help with all three conditions C1–C3 and, in our experi-
ments, receive the largest I/O savings from diPs.

● Join columns are keys which monotonically increase as new data
is inserted and hence are related to time. For example, both the
title-id ofmovies and the name-id of actors in the IMDB dataset
[11] roughlymonotonically increase as each new title and new ac-
tor are added to the dataset. In such datasets, predicates on time
aswell as predicates that are implicitly related to time, such as co-
stars, will select only a small range of join column values. _is
helps with C1 and C2.

● Practical datasets are skewed; o�en times the skew is heavy-tailed
[32]. In skewed datasets, predicates and diPs that skip over the
heavy hitters are highly selective; hence, skew can help C1–C3.

Figure 6 illustrates how o�en conditions C1 and C2 hold for dif-
ferent datasets, query predicates and join columns from produc-
tion clusters at Microso�. We used tens of datasets and extracted
predicates and join columns from thousands of queries. _e ûg-
ure shows the cumulative distribution functions (CDFs) of the frac-
tion of rows satisfying each predicate (red squares), the fraction of
partitions containing these rows (green pluses) and the fraction of
join column values contained in these partitions (orange triangles).
We see that about 40% of the predicates pick less than 20% of par-
titions (C1)5 ; in about 30% of the predicates, the join column values
contained in the partitions satisfying the predicate are less than 50%
of all join column values (C2).

3. CONSTRUCTION AND USE OF DATA-
INDUCED PREDICATES

We describe our algorithm to enhance data skipping using data-
induced predicates. Given a query E over some input tables, our
5Read the value of green pluses line at x = 0.2 in Figure 6.

Table 3: Notation used in this paper.
Symbol Meaning
p i Predicate on table i
p i j Equi-join condition between tables i and j
q i A vector whose x ’th element is 1 if partition x of table i has to

be read and 0 otherwise.
d i→ j Data-induced predicate from table i to table j
partition granularity at which the store maintains statistics (Table 1)

goal is to emit an equivalent expression E ′ in which one or more of
the table accesses are restricted to only read a subset of partitions.
_e algorithm applies to a wide class of queries (see §3.2) and can
work with many kinds of data statistics (see §4).

_e algorithm has three building blocks: use predicates on in-
dividual tables to identify satisfying partitions, construct diPs for
pairs of joining tables and apply diPs to further restrict the subset
of partitions that have to be read on each table. Using the notation
in Table 3, these steps can be written as:

∀ table i , partition x , qx
i ← Satisfy(p i , x), (1)

∀ tables i , j, d i→ j ← DataPred(q i , p i j), (2)
∀ table j, partition x , qx

j ← qx
j ∏i≠ j Satisfy(d i→ j , x). (3)

We defer describing how to eõciently implement these equations
to §4 because the details vary based on the statistic and focus here
on using these building blocks to enhance data skipping.

Note that the ûrst step (Equation 1) executes once, but the lat-
ter two steps may execute multiple times because whenever an in-
coming diP changes the set of partitions that have to be read on a
table (i.e., q changes in Equation 3), then the diPs from that table
(which are computed in Equation 2 based on q) will have to be re-
computed. _is eòect may cascade to other tables.

If a join graph, constructed with tables as nodes and edges be-
tween tables that have a join condition, has n nodes and m edges,
then a näıve method will construct 2m diPs using Eq. 2, one along
each edge in each direction, and will use these diPs in Eq. 3 to fur-
ther restrict the partition subsets of joining tables. _is step repeats
until ûxpoint is reached (i.e., nomore partitions can be eliminated).
Acyclic join graphs can repeat this step up to n − 1 times, i.e., con-
struct up to 2m(n − 1) diPs, and join graphs with cycles can take
even longer (see [19] for an example). Abandoning this process be-
fore the partition subsets converge can leave data skipping gains un-
tapped. On the other hand, generating toomany diPs adds to query
optimization time. To address this challenge, we construct diPs in
a carefully chosen order so as to converge to the smallest partition
subsets while building theminimum number of diPs (see §3.4).
A second challenge ariseswhen applying the abovemethod,which

only accounts for select and join operations, to the general casewhere
queries contain many other interceding operations such as group-
bys and nested statements. One option is to ignore other operations
and apply diPs only to sub-portions of the query that exclusively
consist of selections and joins. Doing so, again, leaves data skipping
gains untapped; in some cases the unrealized gains can be substan-
tial as we saw for the query in Figure 2 (le�) where ignoring the
nested statement (that is, restricting diPs to just the portion shown
with a shaded background in the ûgure) may lead to no gains since
the group-by can require reading the lineitem table fully. To ad-
dress this challenge,wemove diPs around other relational operators
using commutativity. We list the transformation rules used in §3.3
which cover a broad class of operators. Using these transformations
extends the usefulness of diPs to complex query expressions.

3.1 Deriving diPs within a cost-based QO
Taken together, thepreviousparagraphs indicate two requirements

to quickly identify eõcient plans: (1) carefully schedule the order in

255

Figure 7: Illustrating the use of diPs in TPC-DS query #35. _e ta-
ble labels ss, cs, ws and d correspond to the tables store sales,
catalog sales, web sales and date dim.

which diPs are computed over a join graph and (2) use commutativ-
ity tomove diPs past other operators in complex queries. We sketch
our method to derive diPs within a cost-based QO here.

Let’s consider some alternative designs. (1) Could the user or a
query rewriting so�ware that is separate from the QO insert opti-
mal diPs into the query? _is option is problematic because the
user or the query rewriter will have to re-implement complex logic
such as predicate simpliûcation and push-down that is already avail-
able within the QO. Furthermore,moving diPs around other oper-
ators (see §3.3) requires plan transformation rules that are not im-
plemented in today’s QO; speciûcally rules that pull up diPs ormove
them sideways from one join input to another do not exist in typi-
cal QOs. As we saw with the case of the example in Figure 2(le�),
without suchmovement diPsmaynot achieve any data skipping. (2)
Could the change to QO be limited to adding some new plan trans-
formation rules? Doing so is appealing since the QO framework
remains unchanged. Unfortunately, as we saw in the case of Fig-
ure 2(middle), diPs may have to be exchanged multiple times be-
tween the same pair of tables, and to keep costs manageable, diPs
have to be constructed in a careful order over the join graphs; in
today’s cost-based optimizers, achieving such recursion and ûne-
grained query-wide ordering is challenging [53]. _us, we use the
hybrid design discussed next.

We add derivation of diPs as a new phase in the QO a�er plan
simpliûcation rules have applied but before exploration, implemen-
tation, and costing rules, such as join ordering and choice of join
implementations, are applied. _e input to this phase is a logical ex-
pression where predicates have been simpliûed and pushed down.
_e output is an equivalent expression which replaces one or more
tables with partition subsets of those tables. To speed up optimiza-
tion, this phase creates maximal sub-portions of the query that only
contain selections and joins; we do this by pulling up group-bys,
projections, predicates that use columns frommultiple relations, etc.
diPs are exchanged within these maximal select-join sub-portions
of the query expression using the schedule in §3.4. Next, using the
rules in §3.3, diPs are moved into the rest of the query. With this
method, derivation will be faster when the select-join sub-portions
are large because, by decoupling the above steps, we avoid propa-
gating diPs which have not converged to other parts of the query.
Note that this phase executes exactly once for a query. _e increase
in query optimization time is small, and by exploring alternative
plans later, the QO can ûnd plans that beneût from the reduced in-
put sizes (e.g., choose a diòerent join order or use broadcast join
instead of hashjoin).

Example: Figure 7 illustrates this process for TPC-DS query #35;
the SQL query is in [25]. As shown in the top le� of the ûgure, la-
beled 1 , diPs that are triggered by the predicate on date dim are
ûrst exchanged in maximal SJ portions: store sales& date dim,
catalog sales & date dim and web sales & date dim. _e
query joins these portions with another join expression a�er a few
setoperations. Hence, in 2 ,we buildnewdiPs for thecustomer sk

column and pull those up through the set operations (union and in-
tersection translate to logical or and and over diPs) and push down
to the customer (c) table. To do so,we use the transformation rules
in §3.3. In 3 , if the incoming diP skips partitions on the customer
table, anotherderivation ensueswithin the SJ expression on the le�.6

_e ûnal plan, shown in 4 , eòectively replaces each table with the
partition subset that has to be read from that table.

3.2 Supported Queries
Our prototype does not restrict the query class, i.e., queries can

use any operator supported by the underlying platform. Here, we
highlight aspects that impact the construction and use of diPs.
Predicates: Our prototype triggers diPs for predicates which are
conjunctions, disjunctions or negations over the following clauses:

● c op v: here c is a numeric column, op denotes an operation that
is either =, <, ≤, >, ≥, ≠ and v is a value.

● c i op c j : here c i , c j are numeric columns from the same relation
and op is either =, <, ≤, >, ≥, ≠.

● For string and categorical columns, equality check with a value.

Joins: Our prototype generates diPs for join conditions that are
column equality over one or more columns; although, extending to
some other conditions (e.g., band joins [4]) is straightforward. We
support inner, one-sided outer, semi, anti-semi and self joins.
Projections: diPs commute triviallywith anyprojection on columns
that are not used in the diP. On columns that are used in a diP,
only single-column invertible projections commute with that diP
because only such projects can be inverted through zone-maps and
other data statistics that we use to compute diPs (see [19]).
Other operations: Operators that do not commute with diPs will
block themovement of diPs. As we discuss in §3.3 next, diPs com-
mute with a large class of operations.

3.3 Commutativity of data-induced predicates
with other operations

We list some query optimizer transformation rules that apply to
data-induced predicates (diPs). _e correctness of these rules fol-
lows from considering a diP as a ûlter on join columns. Note that
some of these transformation are not used in today’s query optimiz-
ers. For example, pulling up diPs above a union and a join (rule #4,
#5, below) naively results in redundant evaluation of predicates and
are hence not used today; however, as we saw in the case of Fig-
ure 7, such movements are necessary to skip partitions elsewhere in
the query. We also note that diPs do not remain in the query plan;
the diPs directly on tables are replaced with a read of the partition
subsets of that table, and other diPs are dropped.

1. diPs commute with any select.
2. A diP commutes with any projection that does not aòect the
columns used in that diP. For projections that aòect columns
used in a diP, commutativity holds if and only if the projec-
tions are invertible functions on one column.

6A�er 3 , if the partition subset on the customer table becomes
further restricted, a new diP moves in opposite direction along the
path shown in 2 ; we do not discuss this issue for simplicity.

256

Figure 8: Schedules of exchanging diPs for diòerent join graphs;
numbers-in-circles denote the epoch; multiple diPs are exchanged
in parallel in each epoch. Details are in §3.4.

3. diPs commutewith a group-by if and only if the columns used
in the diP are a subset of the group-by columns.

4. diPs commute with set operations such as union, intersec-
tion, semi- and anti semi-joins, as shown below.

● d1(R1)∩d2(R2) ≡ (d1 ∧d2)(R1 ∩R2) ≡ (d1 ∧d2)(R1)∩
(d1 ∧ d2)(R2)

● d1(R1) ∪ d2(R2) ≡ (d1 ∨ d2)(d1(R1) ∪ d2(R2))
● d(R1) −R2 ≡ d(R1 −R2) ≡ d(R1) − d(R2)

5. diPs can move from one input of an equijoin to the other in-
put if the columns used in the diPmatch the columns used in
the equi-join condition. For outer-joins, a diP can move only
if from the le� side of a le� outer join (and vice versa). No
movement is possible with a full outer join.

● dc(R1)&c=eR2 ≡ dc(R1 &c=eR2) ≡ dc(R1)&c=e de(R2);
note here that c and e can be sets ofmultiple columns, then
c = e implies set equality.

6. As we saw in Figure 7 2 where a diP on the customer sk

column is being pushed down to the customer table, diPs on
an inner join can push onto one of its input relations, gener-
alizing the latter half of rule#5. _is requires the join input
to contain all columns used in the diP, i.e., d(R1 & R2) ≡
d(d(R1)&R2) iò all columns used by the diP d are available
in the relationR1 .

To see these rules in action, note that diPsmove in Figure 7 2 us-
ing rule#4 twice topulluppast aunion and an intersection, rule#5 to
move from one join input to another at the top of the expression and
rule#6 twice to push to a join input. _e example in Figure 2 (le�)
uses rule#5 at the joins and rule#3 to push below the group-by.

3.4 Scheduling the deriving of predicates
Given a join graphG where tables arenodes and edges correspond

to join conditions, the goal here is to achieve the largest possible data
skipping (which improves query performance) while constructing
the fewest number of diPs (which reduces QO time).
Consider the example join graphs in Figure 8. _e simple case

of two tables on the le� only requires a single exchange of diPs fol-
lowed by an update to the partition subsets q; proof is in [19]. _e
other two cases require more careful handling as we discuss next;
the join graph in themiddle is the popular star-join which leads to
tree-like join graphs and on the right is a cyclic join graph.

Our algorithm to hasten convergence is shown in Pseudocode 9,
Scheduler method at line#37. _e case of acyclic join graphs is an
important sub-case since it applies to querieswith star or snow�ake
schema joins. Here, we construct a tree over the graph (Treeify
in line#39 picks the root that has the smallest tree height and sets
parent–child pointers; details are in [19]). _en,we pass diPs up the
tree (lines#7–#9) and a�erwards pass diPs down the tree (lines#10–
#12). To see why this converges, note that when line#10 begins, the
partition subsets of the table at the root of the tree would have sta-
bilized; Figure 8 (middle) illustrates this case with t2 as root and
shows that convergence requires at most two (parallel) epochs and

Inputs: G, the join graph and ∀i , q i denoting partitions to be
read in table i (notation is listed in Table 3)
Output: ∀ tables i, updated q i re�ecting the eòect of diPs

1 Func: DataPred (q, {c}) // Construct diP for columns {c}
over partitions x having qx =1; see §4.

2 Func: Satisfy (d , x) // = 1 if partition x satisûes predicate d;
0 otherwise. See §4.

3 Func: Exchange(i , j) ∶ //send diP from table i to table j
4 d i→ j ← DataPred(q i ,ColsOf(p i j , i))
5 ∀ partition x ∈ table j, qx

j ← qx
j ∗ Satisfy(d i→ j , x)

6 Func: TreeScheduler(T , {q i}): // a tree-like join graph
7 for h ← 0 to height(T) − 1 // bottom-up traversal do
8 foreach t ∈ T ∶ height(t) = h do
9 Exchange(t, Parent(t, T))

10 for h ← height(T) to 1 // top-down traversal do
11 foreach t ∈ T ∶ height(t) = h do
12 ∀ child c of t in T , Exchange(t, c)
13 Func: ExchangeExt (G , u, v)//send diPs from node u to v
14 foreach t1 ∈ RelationsOf(u), t2 ∈ RelationsOf(v) do
15 if IsConnected(t1 , t2 ,G) then
16 d ← DataPred(qt1 ,ColsOf(pt1 t2 , t1));
17 ∀ partition x ∈ table t2 , qx

t2 ← qx
t2 ∗ Satisfy(d , x)

18 Func: ProcessNode (u) // exchange diPs within node
19 for i ← 0 to κ // repeat up to κ times do
20 change← false;
21 foreach tables t1 , t2 ∈ RelationsOf(u) do
22 if (t1 ≠ t2) ∧ IsConnected(t1 , t2 ,G) then
23 d ← DataPred(qt1 ,ColsOf(pt1 t2 , t1));
24 foreach partition x ∈ t2 ∶ qx

t2 = 1 do
25 qx

t2 ← Satisfy(d , x)
26 change← change ∨ (qx

t2 = 0)

27 if ¬ change then break// no new pruning;
28 Func: TreeSchedulerExt (V ,G , {q i})// for cyclic joins.
29 for h ← 0 to height(V) − 1 // bottom-up traversal do
30 foreach u ∈ V ∶ height(u) = h do
31 if IsNotSingleRelation(u) then ProcessNode(u);
32 ExchangeExt(G , u,Parent(u,V));

33 for h ← height(V) to 0 // top-down traversal do
34 foreach u ∈ V ∶ height(t) = h do
35 if IsNotSingleRelation(u) then ProcessNode(u);
36 ∀ child v of u in V , ExchangeExt(G , u, v);
37 Func: Scheduler(G , {q i}):
38 if IsTree(G) then
39 return TreeScheduler (Treeify(G), {q i});
40 else
41 V ←MaxWtSpanTree(CliqueGraph(Triangulate(G)))
42 return TreeSchedulerExt(Treeify(V),G , {q i});

Figure 9: Pseudocode to compute a fast schedule.

six diPs. A proof that this algorithm is optimal, i.e., can skip all skip-
pable partitions in all tables while constructing the fewest number
of diPs, is in [19].
We convert a cyclic join graph into a tree over table subsets. _e

conversion retains completeness; that is, all partitions that can be
skipped in the original join graph remain skippable by exchang-
ing diPs only between adjacent table subsets on the tree. Further-
more, on the resulting tree, we apply the same simple schedule that
we used above for tree-like join graphs with a few changes. For
example, the join graph in Figure 8(right) becomes the following
tree: t1 — {t2 , t3 , t5} — {t3 , t4 , t5} — {t4 , t5 , t6} — t7 . _e steps
to achieve this conversion are shown in line# 41 and follow from
the junction tree algorithm [13, 69, 82]; a step-by-step derivation is

257

in [19]. On the resulting tree we mimic the strategy used for tree-
like join graphs with two key diòerences. Speciûcally, at line#42,
Treeify picks a root with the lowest height as before. _en, diPs are
exchanged from children to parents (lines#29–#32) and from par-
ents to children (lines#33–#36). _e key diòerences between the
TreeSchedulerExt and the TreeScheduler methods are: (1) as the
ProcessNodemethod shows, diPs are exchanged until convergence
or at most κ times between relations that are contained in a node
and (2) we compute multiple diPs when exchanging information
between nodes (see ExchangeExt) whereas the Exchange method
constructs at most one diP. Figure 8 (right) illustrates the resulting
schedule; the root shown in blue is the node containing {t3 , t4 , t5};
epochs #2, #3 and #4 invokeProcessNode on the triangle subsets of
tableswhichhave the same colorwhereas epochs #1 and #5 exchange
at most one diP on the edges shown.
Properties of Algorithm 9: For tree-like join graphs, the method
shown is optimal (proof in [19]). For a tree-like join graph G with n
tables, this method computes at most 2(n − 1) diPs (because a tree
has n − 1 edges) and requires 2height(G) (parallel) epochs where
tree height can vary from ⌈ n

2 ⌉ to ⌈log n⌉. For cyclic join graphs
the method shown here is approximate; that is, it will not elimi-
nate all partitions that can be skipped. We show by counter-example
in [19] that the optimal schedule for a cyclic join graph can require
a very large number of diPs; the sub-optimality arises from limiting
how o�en diPs are exchanged between relations within a node (in
the ProcessNode method). In §5.4, we empirically demonstrate
that our method for cyclic join graphs is a good trade-oò between
achieving large data skipping and computing many diPs.

4. USING STATISTICS TO BUILD diPs
Data statistics play a key role in constructing data-induced pred-

icates; recall that the three equations 1— 3 use statistics; the speciûc
statistic used determines both the eòectiveness and the cost of these
operations. An ideal statistic is small, easy to maintain, supports
evaluation of a rich class of query predicates and leads to succinct
diPs. In this section,we discuss the costs and beneûts ofwell-known
data statistics including our new statistic, range-set, which our ex-
periments show to be particularly suitable for constructing diPs.
Zone-maps [14] consist of the minimum and maximum value per
column per partition and are maintained by several systems today
(see Table 1). Each predicate clause listed in §3.2 translates to a log-
ical operation over the zone-maps of the columns involved in the
predicate. Conjunctions, disjunctions and negations translate to an
intersection, an union or set diòerence respectively over the par-
tition subsets that match each clause. For string-valued columns,
zone-maps are typically built over hash values of the strings and so
equality check is also a logical equality, but regular expressions are
not supported.

Note that there can be many false positives because a zone map
has no information about which values are present (except for the
minimum andmaximum values).

_e diP constructed using zone-maps, as we saw in the example
in Table 2b, is a union of the zone-maps of the partitions satisfying
the predicate; hence, the diP is a disjunction over non-overlapping
ranges. On the table that receives a diP, a partition will satisfy the
diP only if there is an overlap between the diP and the zone-map of
that partition. Note that there can be false positives in this check as
well because no actual data row may have a value within the range
that overlaps between the diP and the partition’s zone map. It is
straightforward to implement these checks eõciently; our results
will show that zone-maps oòer sizable I/O savings (Figures 11, 13).

Figure 10: Illustrating the diòerence between range-sets, zone-maps
and equi-depth histogram; both histograms and range-sets have
three buckets. _e predicates shown in black dumbels below the
axes will be false positives for all stats except the range-set.

_e false positives noted above do not aòect query accuracy but
reduce the I/O savings. To reduce false positives, we consider other
data statistics.
Equi-depth histograms [48] can avoid some of the false positives
when constructed with gaps between buckets. For e.g., a predicate
x = 43may satisfy a partition’s zone-map because 43 lies between the
min andmax values for x but can be declared as not satisûed by that
partition’s histogram if the value 43 falls in a gap between buckets
in the histogram. However, histograms are typically built without
gaps between buckets [30, 48, 52], are expensive to maintain [52],
and the frequency information in histograms,while useful for other
purposes, is awaste of space here because predicate satisfaction and
diP construction only check for the existence of values.
Bloomûlters record setmembership [39]. However,we found them
to be less useful here because the partition sizes used in practical dis-
tributed storage systems (e.g., ∼ 100MBs of data [40, 88]) result in
millions of distinct values per column in each partition, especially
when join columns are keys. To record large sets, bloom ûlters re-
quire large space or they will have a high false positive rate; e.g.,
a 1KB bloom ûlter that records a million distinct values will have
99.62% false positives [39] leading to almost no data skipping.
Alternatives such as the count-min [49] and AMS [36] sketches

behave similarly to a bloom ûlter for the purpose at hand. _eir
space requirement is larger, and they are better at capturing the fre-
quency of values (in addition to set membership). However, as we
noted in the case of histograms, frequency information is not help-
ful to construct diPs.

Range-set: To reduce false-positiveswhile keeping the stat size small,
we propose storing a set of non-overlapping ranges over the column
value, {[l i , u i]}. Note that a zone-map is a range-set of size 1; us-
ing more ranges is hence a simple generalization. _e boundaries
of the ranges are chosen to reduce false positives byminimizing the
total width (i.e.,∑i u i − l i) while covering all of the column values.
To see why range-sets help, consider the range-set shown in green
dots in Figure 10; compared to zone-maps, range-sets have fewer
falsepositives because they record empty spaces or gaps. Equi-depth
histograms, as the ûgure shows, will choose narrow buckets near
more frequent values and wider buckets elsewhere which can lead
to more false positives. Constructing a range-set over r values takes
O(r log r) time7 . Re�ecting on how zone-maps were used for the
three operations in Equations 1– 3, i.e., applying predicates, con-
structing diPs and applying diPs on joining tables, note that a simi-
lar logic extends to the case of a range-set. SIMD-aware implemen-
tations can improve eõciency by operating on multiple ranges at
once. A range-set having n ranges uses 2n doubles. Merging two
unsorted range-sets as well as checking for overlap between them

7First sort the values, then sort the gaps between consecutive values
to ûnd a cutoò such that the number of gaps larger than cutoò is at
most the desired number of ranges; see [19] for proof of optimality.

258

Table 4: Greedily growing a range-set in the presence of updates.
Beginning range-set: {[3, 5], [10, 20], [23, 27]}, nr = 3

Update New range-set

or
de

r××××Ö

Add 6 {[3, 6], [10, 20], [23, 27]}
Add 13, Delete 20, Change 5 to 15 no change
Add 52 {[3, 6], [10, 27], [52, 52]}

uses O(n log n) time where n is the size of larger rangeset. Our re-
sults will show that small numbers of ranges (e.g., 4 or 20) lead to
substantial improvements over zone-maps (Figure 16).

4.1 Coping with data updates
When rows are added, deleted, or changed, if the data statistics are

not updated, partitions can be incorrectly skipped, i.e., false nega-
tives may appear in equations 1– 3. We describe two methods to
avoid false negatives here.
Tainting partitions: A statistic agnosticmethod to cope with data
updates is to maintain a taint bit for each partition. A partition is
marked as tainted whenever any row in that partition changes. Ta-
bles with tainted partitions will not be used to originate diPs (be-
cause that diP can be incorrect). However, all tables, even those
with tainted partitions, can receive incoming diPs and use them to
eliminate their un-tainted partitions.

Taint bits can be maintained at transactional speeds and can be
extremely eòective in some cases, e.g., when updates are mostly to
tables that do not generate data-reductive diPs. One such scenario is
queries over updateable fact tables that join with many unchanging
dimension tables; predicates on dimension tables can generate diPs
that �ow unimpeded by taint on to the fact tables. Going beyond
one taint bit per partition,maintaining taint bits at a ûner granular-
ity (e.g., per partition and per column) can improve performance
with a small increase in update cost. See results in §5.3.
Approximately updating range-sets in response to updates: _e
key intuition of this method is to update the range-set in the follow-
ing approximate manner: ignore deletes and grow the range-set to
cover the new values; that is, if the new value is already contained
in an existing range, there is nothing to do; otherwise, either grow
an existing range to contain the new value ormerge two consecutive
ranges and add the new value as a new range all by itself. Since these
options increase the totalwidth of the range-set, the process greedily
chooses whichever option has the smallest increase in total width.
Table 4 shows examples of greedily growing a range-set. Our results
will show that such an update is fast (Table 8), and the reduction in
I/O savings— because the range-sets a�er several such updates can
havemore false positives than range-sets that are re-constructed for
just the new column values— is small (Figure 14a).

5. EVALUATION
Using our prototypes in Microso�’s production big-data clusters

and SQL server, we consider the following aspects:

● Do data-induced predicates oòer sizable gains for a wide variety
of queries, data distributions, data layouts and statistic choices?

● Understand the causes for gains and the value of our core contri-
butions.

● Understand the gap from alternatives.

We will show that using diPs leads to sizable gains across queries
from TPC-H, TPC-DS and Join Order Benchmark, across diòerent
data distributions and physical layouts and across statistics (§5.2).
_e costs to achieve these gains are small and range-sets oòer more
gains inmore cases than zone-maps (§5.3). Both the careful ordering
of diPs and the commutativity rules tomove diPs are helpful (§5.4).

We also show that diPs are complementary to and sometimes bet-
ter than using join indexes, materializing denormalized views or
clustering rows in §5.5; these alternatives have much higher main-
tenance costs unlike diPs which work in-situ using small per-table
statistics and a small increase to QO time.

5.1 Methodology
Queries: We report results on TPC-H [26], TPC-DS [24] and the
join orderbenchmark (JOB) [60]. Weuse all 22 queries fromTPC-H
but becauseTPC-DS and JOB havemanymore querieswe pick from
them 50 and 37 queries respectively8 . We choose JOB for its cyclic
joinqueries. We chooseTPC-DSbecause ithas complexqueries (e.g.,
several non foreign-key joins,UNIONs andnested SQL statements).
Query predicates are complex; e.g., q19 from TPC-H has 16 clauses
over 8 columns from multiple relations. While inner-joins domi-
nate, the queries also have self-, semi- and outer joins.
Datasets: For TPC-H and TPC-DSwe use 100GB and 1TB datasets
respectively. _e default datagen for TPC-H, unlike that ofTPC-DS,
creates uniformly distributed datasetswhich is not representative of
practical datasets; therefore, we also use amodiûed datagen [29] to
create datasetswith diòerent amounts of skew (e.g.,with zipf factors
of 1, 1.5, 2). For JOB, we use the IMDB dataset from May 2013 [60].
Layouts and partitioning: We experimentwithmany diòerent lay-
outs for each dataset. _e tuned layout speeds up queries by avoid-
ing re-partitioning before joins and enhances data skipping9 . diPs
yield sizable gains on tuned layouts. To evaluate behavior more
broadly, we generate several other layouts where each table is or-
dered on a randomly chosen column. For each data layout, we par-
tition the data as recommended by the storage system, i.e., roughly
100MB of content in SCOPE clusters, [45, 88] and roughly 1M rows
per columnstore segment in SQL Server [8].
Systems: We have built prototypes on top of two production plat-
forms: SCOPE clusterswhich serve as theprimaryplatform forbatch
analytics atMicroso� and comprise tens of thousands of servers [45,
88] and SQL Server 2016. Both systems use cost-based query opti-
mizers [53]. A SCOPE job is a collection of tasks orchestrated by a
jobmanager; tasks read and write to a ûle system, and each task in-
ternally executes a sub-graph of relational operatorswhich pass data
through memory. _e servers are state-of-the-art Intel Xeons with
192GB RAM,multiple disks andmultiple 10Gbps network interface
cards. Our SQL server experiments ran on a similar server. A�er
each query executes in SQL server, we �ush various system buòer
pools to accuratelymeasure the eòects of I/O savings. SCOPE clus-
ters use a partitioned row store; for SQL server,we use both column-
stores and rowstores. SCOPE and SQL server implement several ad-
vanced optimizations such as semijoins [21], predicate pushdown to
eliminate partitions [7] andmagic-set rewrites [50].
Comparisons: In addition to the above production baselines, we
compare against several alternatives. By DenormView, we refer to
a technique that avoids joins by denormalization, i.e.,materializes a
join view over multiple tables. _e view is stored in column store
format in SQL server. Since the view is a single relation, queries
can skip partitions without worrying about joins. By JoinIndexes,
we refer to a technique that maintains clustered rowstore indexes
on the join columns of each relation; for tables that join on more
than one column, we build an index on the most frequently used

81 . . . 40, 90 . . . 99 from TPC-DS and ([1 − 9]∣10)* from JOB
9In short, dimension tables are sorted by key columns and fact tables
are clustered by a prevalent predicate column and sorted by columns
in the predominant join condition; details are in [19] .

259

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
D

F
o
v
e
r

q
u
e
ri

e
s

Performance Speedup

Query Latency
Total Compute Hours

(a) TPC-DS on SCOPE clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
D

F
o
v
e
r

q
u
e
ri

e
s

Performance Speedup

Latency (zipf 1.5)
Latency (zipf 2)

Tot. Comp. Hrs (zipf 1.5)
Tot. Comp. Hrs (zipf 2)

(b) TPC-H (skew=zipf 1.5 or 2) on SCOPE

 0

 0.2

 0.4

 0.6

 0.8

 1

0.8 1 2 4 8 10

C
D

F
o
v
e
r

q
u
e
ri

e
s

Performance Speedup

Latency (Zipf1)
Latency (Zipf2)

Latency (Zip2 w ZoneMaps)

(c) TPC-H (skew=zipf 1 or 2) on SQL server
Figure 11: Change in query performance from using data-induced predicates. _e ûgures show cumulative density functions (CDFs) of
speedups for diòerent benchmarks, on diòerent platforms for the tuned data layout (see §5.1). _e beneûts are wide-spread, i.e., almost all
queries improve; in some cases, the improvements can be substantial. More discussion is in §5.2.

join column. By FineBlock, we refer to a single relation workload-
aware clustering scheme which enhances data skipping by colocat-
ing rows that match or do-not-match the same predicates [78]. We
apply FineBlock on the above denormalized view.

We also compare with the following variants of our scheme: No
Transformsdoesnot use commutativity tomovediPs;Naive Sched-
ule constructs as many diPs as our schedule but picks at random
which diP to construct at each step. Preds uses the same statistics
but only for predicate pushdown, i.e., it does not compute diPs.
Statistics: Many systems already store zone-maps as noted in Ta-
ble 1. We evaluate various statistics mentioned in §4. Gap hist is
our own implementation of an optimal equi-depth histogram with
gaps between buckets. Unless otherwise stated,we use 20 ranges for
range-sets and 10 buckets for gap hists. Also, unless otherwise stated
the results use range-sets to construct diPs.
Metrics: We measure query performance (latency and resource
use), statistic size, maintenance costs, and increase in query opti-
mization time. Since diPs reduce the input size that a query reads
from the store,we also report InputCutwhich is the fraction of the
query’s input that is read a�er data skipping; if data skipping elimi-
nates half of a query’s input, InputCut = 2. When comparing two
techniques, we report the ratio of their metric values.

5.2 Benefits from using diPs
Figure 11 shows the performance speedup from using diPs on dif-

ferent workloads in SCOPE clusters and SQL server. Results are on
the tuned layout which is popular because it avoids re-partitioning
for joins and enhances data skipping [22, 27, 51]. _e results are
CDFs over queries; we repeat each query at least ûve times. All
of the results except one of the CDFs in Figure 11c use range-sets.
Figure 11a shows that themedian TPC-DS query ûnishes almost 2×
faster and uses 4× fewer total compute hours. Much larger speed-
ups are seen on the tail. Total compute hours improves more than
latency (higher speed-up in orange lines than in grey lines) because
some of the changes to parallel plans that result from reductions
in initial I/O add to the length of the critical path which increases
query latency while dramatically reducing total resource use; e.g.,
replacing pair joinswith broadcast joins eliminates shuøes but adds
a merge of the smaller input before broadcast [47]. We see that al-
most all queries improve. SCOPE clusters are shared by over hun-
dreds of concurrent jobs, and so query latency is subject to perfor-
mance interference; the CDFs use themedian value over at least ûve
trials, but some TPC-H queries in Figure 11b still have a small re-
gression in latency. Figures 11b and 11c show that TPC-H queries
receive similar latency speedup in SCOPE clusters and SQL server.
Unlike TPC-DS and real-world datasets which are skewed, the de-
fault datagen in TPC-H distributes data uniformly; these ûgures
show results with diòerent amounts of skew generated using [29].

Table 5: _e InputCut from diPs for diòerent benchmarks and
diòerent layouts; each query and data layout (see §5.1) contribute
a point to a CDF and the table shows values at various percentiles.

Benchmark InputCut at percentile
50th 75th 90th 95th 100th

TPC-H (zipf 2) 1.5× 6.5× 17.7× 32.1× 166.8×
TPC-DS 1.4× 4.1× 7.2× 12.0× 22.4×
JOB 1.9× 2.3× 3.1× 3.4× 115.1×

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100C
D

F
(o

v
e
r

q
u
e
ri

e
s,

 d
a
ta

 l
a
y
o
u
ts

)

InputCut on TPC-H

Uniform; tuned
Skew: zipf 1; tuned

Skew: zipf 1.5; tuned
Skew: zipf 2; tuned

Zipf 2; 7 diff. layouts

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10
InputCut on TPC-DS

tuned layout
3 diff. layouts

Figure 12: How input skew and data layouts aòect the usefulness of
diPs; see §5.2.

We see that diPs produce larger speed-ups as skew increases mainly
because predicates and diPs become more selective at larger skew.
Figure 11c shows sizable latency improvements when using zone-
maps. We have conûrmed that the query plans in the production
systems, SCOPE clusters and SQL server, re�ect the eòects of pred-
icate pushdown and bitmap ûlters for semijoins [7, 21, 50]; these
ûgures show that diPs oòer sizable gains for a sizable fraction of
benchmark queries on top of such optimizations.

Table 5 considers many diòerent layouts, and Figure 12 also con-
siders diòerent skew factors. _ese results show the InputCutmet-
ric which is the reduction in initial I/O read by a query. Across data
layouts, about 40% of the queries in each benchmark obtain an In-
putCut of at least 2×; that is, they can skip over half of the input.
Figure 12 shows that lower skew leads to a lower InputCut, but diPs
oòer gains even for a uniformly distributed dataset. _e tuned data
layout in both TPC-H and TPC-DS leads to larger values of Input-
Cut relative to the other data layouts; that is, diPs skip more data
in the tuned layout. _is is because the tuned layouts help with all
three conditions C1−C3 listed in §2; predicates skipmore partitions
on each table because tuned layouts cluster by predicate columns
and ordering by join column values helps diPs eliminatemore par-
titions on the receiving tables. We also observe several instances
where a query speeds up more in a diòerent layout than the tuned
layout; typically, such queries use diòerent join or predicate columns
than those used by the tuned layout.

260

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In
p

u
tC

u
t

TPC-H Query Number

diPs with range-set diPs with gap hist. diPs with zone map

Figure 13: _e ûgure shows the InputCut valueswhen using diòerent stats to construct diPs (for TPC-Hwith zipf 2 skew). Candlesticks show
variation across seven diòerent data layouts including the tuned layout; the rectangle goes from 25th to 75th percentile, the whiskers go from
min to max and the thin black dash indicates the average value. Zone-maps do quite well and range-sets are a sizable improvement.

Table 6: _e additional latency to derive diPs in seconds compared
to the baseline QO latency; see §5.3.

Latency(s)
%ile 10th 25th 50th 75th 90th

Baseline QO 0.145 0.158 0.176 0.188 0.218
to add diPs 0.032 0.050 0.084 0.107 0.280

Table 7: Additional results for experiments in Figure 11, Table 5
and Figure 12. _e table shows data from our SCOPE cluster.

TPC-H TPC-DS JOB
Input size 100GB 1TB 4GB
#Tables, #Columns 8, 61 24, 416 21, 108
Queries 22 50 37
Range-set size ∼ 2MB ∼ 35MB ∼ 30KB
Partitions ∼ 103

∼ 4 ∗ 104
∼ 200

Table 8: _e time to greedily update range-sets of various sizes (in
nanoseconds) measured on a desktop.

Size 2 4 8 16 20 32 64
Avg. 8.5 11.8 22.8 42.1 49.8 67.8 121.4
Stdev. 0.4 0.4 0.4 0.1 2.4 3.4 3.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10G
re

e
d

y
 g

a
p
 /

 O
p

t.
 g

a
p

Updated % of lineitem
(a) Greedy updates.

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

103 104 105 106 107 108

La
te

n
cy

 (
µ

s)

Number of rows

4 ranges, total
4 ranges, sort

20 ranges, total
20 ranges, sort

(b) Construction latency
Figure 14: (Le�) Eòectiveness of greedy-updates for range-sets; the
ûgure shows the average and stdev across columns. (Right) Cost to
construct range-sets measured on a desktop.

Figure 13 breaks-down the gains for each query in TPC-H when
using diòerent statistics. Notice that zone-maps are o�en as good as
the gap histograms to construct diPs; compare the third blue can-
dlestick in each cluster with the second green candlestick. Gap his-
tograms are better in predicate satisfaction than zone-maps but do
not lead to much better diPs. As the ûgure shows, range-sets (the
ûrst red candlestick in each cluster) oòer a marked improvement;
they oòer larger gains on more queries and in more layouts.

5.3 Costs of using diPs
_e costs to obtain this speed-up include storing statistics, an in-

crease to the query optimization duration (to determine which par-
titions canbe skipped), andmaintaining statisticswhendata changes.
In big-data clusters, queries are read-only and datasets are bulk ap-
pended; so building andmaintaining statistics is less impactful rel-
ative to the storage space and QO overhead. Table 6 shows that the

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

C
D

F
 (

o
v
e

r
q

u
e

ri
e

s)

InputCut

TPC-H

No Transforms
Naive Schedule

Our Algo.
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

TPC-DS

No Tx
Naive
Ours

Figure 15: How InputCut varies when diòerent methods are used
to derive diPs;we comparewithNo Transformswhich does not use
any transformation rules and Naive schedule which constructs the
same number of diPs in a naive manner. (Results are for TPC-H
skewed with zipf 2 and TPC-DS in the tuned layout.)

additional QO time to use diPs is rather small o�en, but it can be
large on the tail. We verify that these outliers exchange diPs be-
tween large tables which takes a long time because such diPs have
many clauses and are evaluated on many partitions. We note that
our derivation of diPs is a prototype, parts of which are in c# for
ease-of-debugging, and that evaluating diPs is embarrassingly par-
allel (e.g., apply diP to stat of each partition); we have not yet im-
plemented optimizations and believe that the extraQO time can be
substantially smaller. Regarding storage overhead, Table 7 shows
the size of range-sets which can be thought of as 20 “rows” per par-
tition (a partition is 100MB of data in SCOPE clusters and 1M rows
in a columnstore segment in SQL server [8]) and so the space over-
head for range-sets is ∼ 0.002%. Zone-maps use 10× less space be-
cause they only record the max and min value per column, i.e., 2
“rows” per partition. Although TPC-DS and JOB have more tables
andmore columns, their ratio of stat size to input size is similar.
Costs and gains when tainting partitions: Recall from §4 that a
statistic-agnosticmethod to copewith data updateswas to taint par-
titions. We evaluate this approach by using the TPC-H data gen-
erator to generate 100 update sets each of which change 0.1% of
the orders and lineitem tables. Figure 13 showed that diPs de-
liver sizable gains for 15 out of the 22 TPC-H queries; among these
queries, only six are unaòected by taints; speciûcally for {q2, q14,
q15, q16, q17, q19}, diPs oòer large I/O savings in spite of updates.
_e other queries see reduced I/O savings because updates in TPC-
H target the two largest tables, lineitem and orders; when both
these relations become tainted, diPs cannot �ow between these re-
lations, and so queries that require diPs between these tables lose
InputCut due to taints. As noted in §4, taints are more suitable
when updates target smaller dimension tables.
Greedily maintaining range-sets: Recall from §4 that our second
proposal to cope with data updates is to greedily grow the range-
set statistic to cover the new values. Table 8 shows that range-sets

261

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100C
D

F
o
f

In
p

u
tC

u
t

(o
v
e
r

q
u
e
ri

e
s)

Number of ranges in the range-set

TPC-H

#1
#2
#4
#6

#20
#100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

TPC-DS

#1
#2
#4
#8

#20
#100

Figure 16: How InputCut varies with the numbers of ranges used
in the range-set statistic. (Results are for TPC-H skewed with zipf 2
and TPC-DS in the tuned layout; other cases behave similarly.)

can be updated in tens of nanoseconds using one core on a desktop;
thus, the anticipated slowdown to a transaction system is negligible.
Figure 14a shows that the greedy update procedure leads to a reason-
ably high quality range-set statistic; that is, the total gap value (i.e.,
∑i(u i − l i) for a range-set {[l i , u i]}) obtained a�er many greedy
updates is close to the total gap value of an optimal range-set con-
structed over the updated dataset. _e ûgure shows that the greedy
updates lead to a range-set with an average gap value ≥ 80% of op-
timal when up to 10% of rows in the lineitem table are updated.
Range set construction time: Figure 14b shows the latency to con-
struct range-sets. Computing larger range-sets (e.g., 20 ranges vs.
4) has only a small impact on latency, and almost all of the latency
is due to sorting the input once (the ‘total’ lines are indistinguish-
able from the ‘sort’ lines). _ese results use std::sort from Microso�
VisualC++. Note that range-sets can be constructed during data in-
gestion in parallel per partition and column; construction can also
piggy-back on the ûrst query to scan the input.

5.4 Understanding why diPs help
Comparing diòerent methods to construct diPs: Figure 15 shows
that both the commutativity rules in §3.3 and the algorithm in §3.4
are necessary to obtain large gains using diPs. _e näıve schedule
has the same QO duration because it constructs the same number
of diPs, but by not carefully choosing the order in which diPs are
constructed, this schedule leaves gains on the table as shown in the
ûgure. Not using commutativity rules leads to a faster QO time but,
as the ûgure shows, can lead tomuch smaller performance improve-
ments because generating diPs only for maximal select-join por-
tions of a query graphwill not reduce I/Owhen queries have nested
statements and other complex operators. _emore complex queries
in TPC-DS suòer a greater falloò.
How many ranges to use? Figure 16 shows that a small number of
ranges achieve nearly the same amount of data skipping as much
larger range-sets. Each step in diP creation, as noted in §4, adds
false positives, and there is a limit to gains based on the joint dis-
tribution of join and predicate columns. We believe that achieving
more I/O skipping beyond that obtained by using just a few ranges
may requiremuch larger statistics and/ormore complex techniques.

5.5 Comparing with alternatives
Join Indexes: Figure 17 compares using diPs with the JoinIndexes
scheme described in §5.1. Results are on SQL server for TPC-H
skewed with zipf factor 1 and a scale factor of 100. We built clus-
tered rowstore indexes [6] on the key columns of the dimension
tables, and on the fact tables, we built clustered indexes on their
most frequently used join columns (i.e., l orderkey, o orderkey,
ps partkey). _e ûgure shows that using join indexes leads to
worse query latency than not using the indexes in 19/22 queries; we

0.5

1

2

4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

La
te

n
cy

 S
p
e
e
d
u
p

TPC-H Query Number

Using diPs
Using join indexes

Figure 17: Comparing diPs with join indices on SQL server.

InputCut for diPs / InputCut for Preds

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10C
D

F
 (

o
v
e

r
q

u
e

ri
e

s,
 d

a
ta

 l
a
y
o
u

ts
)

range-set

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10
hist

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10
max., min.

Figure 18: Comparing diPs versus using the same stats to only skip
partitions on individual tables.

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22S
p

e
e
d

-u
p

=
 B

a
se

lin
e
/

M
e
th

o
d

TPC-H Query Number

Denorm. latency
InputCut w FineBlock+Preds

FineBlock+Preds latency (proj.)

Figure 19: InputCut on TPC-H queries for FineBlock; box plots
show results for diòerent predicates.

believe that this is because: (1) the predicate selectivity in several
TPC-H queries is not small enough to beneût from an index seek
and somost plans use a clustered index scan, and (2) clustered index
scans are slower than table scans. diPs are complementary because
they reduce I/O before query execution.
diPs vs. predicate pushdown: Figure 18 shows the ratio of im-
provement over Preds which can only skip partitions on individual
tables. When queries have no joins or the selective predicates are
only on large relations, diPs do not oòer additional data skipping,
but the ûgure shows that diPs oòer a marked improvement for a
large number of queries and layouts.
diPs vs. DenormView: We use a materialized view (denormal-
ized relation)which subsumes 16/22 queries in TPC-H; the remain-
ing queries require information that is absent in the view and can-
not be answered using this view (details are in [19]). In colum-
nar (rowstore) format, this view occupies 2.7× (6.2×) more storage
space than all of the tables combined. Queries over the view are un-
hindered by joins because all predicates directly apply on a single
relation; however, because the relation is larger in size, queries may
or may not ûnish faster. We store this view in columnar format and
compare against a baseline where all tables are in a columnar lay-
out. Figure 19 (with + symbol) shows the speed-up in query latency
when using this view in SQL server (results are for 100G datasetwith
zipf skew 1). We see that all of the queries slow down (all + symbols
are below 1). Materialized views speed-up queries, in general, only
when the views have selections or aggregations that reduce the size
of the view [34]. Unfortunately, this does not happen in the case of
the view that subsumes all 16/22 TPC-H queries (see [19]).

262

diPs vs. clustering rows by predicates: A recent research pro-
posal [78] clusters rows in the above view tomaximize data skipping.
Training over a set of predicates, [78] learns a clustering scheme that
intends to skip data for unseen predicates. Figure 19 shows with ⨉
symbols the average InputCut obtained as a result of such cluster-
ing; the candlesticks around the ⨉ symbol show themin, 25th per-
centile, 75th percentile andmax InputCut for diòerent query pred-
icates. We see that most queries receive no InputCut (×marks are
at 1) due primarily to two reasons: (1) the chosen clustering scheme
does not generalize across queries; that is, while some queries re-
ceive gains the chosen clustering of rows does not help all queries,
and (2) the chosen clustering scheme does not generalize to unseen
predicates as can be seen from the large span of the candlesticks.
Figure 19 also shows with circle symbols the average query latency
when using this clustering. Only 5/22 queries improve (fastest query
is ∼ 100× faster) and 11/22 queries regress (slowest is 10× slower).
Hence, the practical value of such schemes is unclear.

We also note the rather large overheads to create and maintain
indexes and views [33, 70] and to learn clusterings [78]. Also, these
schemes require foreknowledge of queries and oòer gains only for
queries that are similar [34, 35, 78]. In contrast, diPs only use small
and easilymaintainable data statistics, require no apriori knowledge
of queries and oòer sizable gains for ad-hoc and complex queries.

6. RELATED WORK
To the best of our knowledge, this paper is the ûrst system to skip

data across joins for complex queries during query optimization.
_ese are fundamental diòerences: diPs rely only on simple per-
column statistics, are built on-the-�y in theQO, can skip partitions
of multiple joining relations, support diòerent join types and work
with complex queries; the resulting plans only read subsets of the
input relations and have no execution-time overhead.

Some research works discover data properties such as functional
dependencies and column correlations and use them to improve
query plans [10, 42, 56, 58]. Inferring such data properties is a sizable
cost (e.g., [56] uses student t-test between every pair of columns). It
is unclear if these properties can bemaintained when data evolves.
More importantly, imprecise data properties are less useful for QO
(e.g., a so� functional dependency does not preserve set multiplic-
ity and hence cannot guarantee correctness of certain plan trans-
formations over group-bys and joins). A SQL server option [10]
uses the fact that the l shipdate attribute of lineitem is between
0 to 90 days larger than o orderdate from orders [26] to con-
vert predicates on l shipdate to predicates on o orderdate and
vice versa. Others discover similar constraints more broadly [42,
58]. In contrast, diPs exploit relationships that may only hold con-
ditionally given a query and a data-layout. Speciûcally, even if the
predicate columns and join columns are independent, diPs can of-
fer gains if the subset of partitions that satisfy a predicate contain a
small subset of values of the join columns. As we saw in §2, such
situations arise when datasets are clustered on time or partitioned
on join columns [51].

Prior work moves predicates around using column equivalence
andmagic-set style reasoning [50, 61, 63, 72, 81, 83]. SCOPE clusters
and SQL server implement such optimizations, and aswe saw in §5,
diPs oòer gains over these baselines. Column equivalence does not
helpwhenpredicate columnsdonot exist in joining relations. Magic
set transformations help only 2/22 queries in TPC-H queries and
only when predicates are selective [72]. By inferring new predicates
that are induced by data statistics, diPs have a wider appeal.
Auxiliary data structures such as views [28], join indices [23], join

bitmap indexes [5], succinct tries [87], column sketches [54], and
partial histograms [84] can also help speed-up queries. Join zone

maps [15] on a fact table can be constructed to include predicate
columns from dimension tables; doing so eòectively creates zone-
maps on a larger denormalized view. Constructing andmaintaining
these data structures has overhead, and as we saw in §5, a particular
view or join index does not subsume all queries. Hence, many dif-
ferent structures are needed to cover a large subset of queries which
further increases overhead. Queries with foreign-key — foreign-
key joins (e.g., store sales and store returns in TPC-DS join
in six diòerent ways) can requiremaintaining many diòerent struc-
tures. diPs can be thought oò as a complementary approach that
helps with or without auxiliary structures.
While data-induced predicates are similar to the implied integrity

constraints used by [65], there are some key diòerences and addi-
tional contributions. (1) [65] only exchanges constraints between a
pair of relations; we oòer amethod which exchanges diPs between
multiple relations, handles cyclic joins and supports queries having
group-by’s, union’s and other operations. (2) [65] uses zone maps
and two bucket histograms; we oòer a new statistic (range-set) that
performs better. (3) [65] shows no query performance improve-
ments; we show speed-ups in both a big-data cluster and a DBMS.
(4) [65] oòers no results in the presence of data updates; we de-
sign and evaluate twomaintenance techniques that can be built into
transactional systems.
While a query executes, sideways information passing (SIP) from

one sub-expression to a joining sub-expression can prune the data-
in-�ight and speed up joins [38, 57, 63, 68, 72, 75]. Several systems,
including SQL server, implement SIP and we saw in §5 that diPs
oòer additional speed-up. _is is because SIP only applies during
query execution whereas diPs reduce the I/O to be read from the
store. SIP can reduce the cost of a join, but constructing the neces-
sary info at runtime (e.g., a bloom ûlter over the join column values
from one input) adds runtime overhead, needs large structures to
avoid false positives and introduces a barrier that prevents simul-
taneous parallel computation of the joining relations. Also, unlike
diPs, SIP cannot exchange information in both directions between
joining relationsnordoes it createnewpredicates that can bepushed
below group-bys, unions and other operations.
A large area of related work improves data skipping using work-

load aware adaptations to data partitioning or indexing [43, 44, 55,
62, 66, 71, 74, 78, 79, 86]; they co-locate data that is accessed to-
gether or build correlated indices. Some use denormalization to
avoid joins [78, 86]. In contrast, diPs require no changes to the data
layout and no foreknowledge of queries.

7. CONCLUSION
As dataset sizes grow, human-digestible insights increasingly use

queries with selective predicates. In this paper, we present a new
technique that extends the gains from data skipping; the predicate
on a table is converted into new data-induced predicates that can
apply on joining tables. Data-induced predicates (diPs) are possi-
ble, at a fundamental level, because of implicit or explicit cluster-
ing that already exists in datasets. Our method to construct diPs
leverages data statistics andworkswith a variety of simple statistics,
some of which are already maintained in today’s clusters. We ex-
tend the query optimizer to output plans that skip data before query
execution begins (e.g., partition elimination). In contrast to prior
work that oòers data skipping only in the presence of complex aux-
iliary structures, workload-aware adaptations and changes to query
execution, using diPs is radically simple. Our results in a large data-
parallel cluster and aDBMS show that large gains are possible across
a wide variety of queries, data distributions and layouts.

263

8. REFERENCES
[1] 2017 big-data and analytics forecast.

https://bit.ly/2TtKyjB.
[2] Apache orc spec. v1. https://bit.ly/2J5BIkh.
[3] Apache spark join guidelines and performance tuning.

https://bit.ly/2Jd87We.
[4] Band join. https://bit.ly/2kixJJn.
[5] Bitmap join indexes in oracle. https://bit.ly/2TLBBTF.
[6] Clustered and nonclustered indexes described.

https://bit.ly/2Drdb9o.
[7] Columnstore index performance: Rowgroup elimination.

https://bit.ly/2VFpljV.
[8] Columnstore indexes described.

https://bit.ly/2F7LZuI.
[9] Data skipping index in spark. https://bit.ly/2qONacb.
[10] Date correlation optimzation in sql server 2005 & 2008.

https://bit.ly/2VodSVN.
[11] Imdb datasets. https://imdb.to/2S3BzSF.
[12] Join order benchmark. https://bit.ly/2tTRyIb.
[13] _e junction tree algorithm. https://bit.ly/2lPHNtA.
[14] Oracle database guide: Using zonemaps.

https://bit.ly/2qMeO9E.
[15] Oracle: Using zonemaps. https://bit.ly/2vsUWKK.
[16] Parquet thri� format. https://bit.ly/2vm6D5U.
[17] Presto: Repartitioned and replicated joins.

https://bit.ly/2JauYll.
[18] Processing petabytes of data in seconds with databricks delta.

https://bit.ly/2Pryf2E.
[19] Pushing data-induced predicates through joins in bigdata

clusters; extended version. https://bit.ly/2WhTwP1.
[20] Query 17 in tpc-h, see page #57. https://bit.ly/2kJRV72.
[21] Query execution bitmap ûlters. https://bit.ly/2NJzzgF.
[22] Redshi�: Choosing the best sort key.

https://amzn.to/2AmYbXh.
[23] Teradata: Join index. https://bit.ly/2FbalDT.
[24] TPC-DS Benchmark. http://www.tpc.org/tpcds/.
[25] Tpc-ds query #35. https://bit.ly/2U0rIk6.
[26] TPC-H Benchmark. http://www.tpc.org/tpch.
[27] Vertica: Choosing sort order: Best practices.

https://bit.ly/2yrvPtG.
[28] Views in sql server. https://bit.ly/2CnbmIo.
[29] Program for tpc-h data generation with skew.

https://bit.ly/2wvdNVo, 2016.
[30] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms:

Building histograms without looking at data. In SIGMOD,
1999.

[31] P. K. Agarwal et al. Mergeable summaries. TODS, 2013.
[32] S. Agarwal et al. Blinkdb: Queries with bounded errors and

bounded response times on very large data. In EuroSys, 2013.
[33] D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek. Eõcient

view maintenance at data warehouses. In SIGMOD, 1997.
[34] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated

Selection ofMaterialized Views and Indexes in SQL
Databases. VLDB, 2000.

[35] S. Agrawal et al. Database tuning advisor for microso� sql
server 2005. VLDB, 2004.

[36] N. Alon, Y. Matias, andM. Szegedy. _e space complexity of
approximating the frequency moments. In STOC, 1999.

[37] M. Armbrust et al. Spark sql: Relational data processing in
spark. In SIGMOD, 2015.

[38] F. Bancilhon et al. Magic sets and other strange ways to
implement logic programs. In SIGMOD, 1985.

[39] B. Bloom. Space/time trade-oòs in hash coding with
allowable errors. CACM, 1970.

[40] D. Borthakur et al. Hdfs architecture guide. Hadoop Apache
Project, 2008.

[41] D. Borthakur et al. Apache hadoop goes realtime at facebook.
In SIGMOD, 2011.

[42] P. G. Brown and P. J. Haas. Bhunt: Automatic discovery of
fuzzy algebraic constraints in relational data. In VLDB, 2003.

[43] M. Brucato, A. Abouzied, and A. Meliou. A scalable execution
engine for package queries. SIGMOD Rec., 2017.

[44] L. Cao and E. A. Rundensteiner. High performance stream
query processing with correlation-aware partitioning. VLDB,
2013.

[45] R. Chaiken et al. SCOPE: Easy and Eõcient Parallel
Processing ofMassive Datasets. In VLDB, 2008.

[46] R. Chirkova and J. Yang. Materialized views. Foundations and
Trends in Databases, 2012.

[47] S. Chu,M. Balazinska, and D. Suciu. From theory to practice:
Eõcient join query evaluation in a parallel database system.
In SIGMOD, 2015.

[48] G. Cormode,M. Garofalakis, P. J. Haas, C. Jermaine, et al.
Synopses for massive data: Samples, histograms, wavelets,
sketches. Foundations and Trends in Databases, 2011.

[49] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications. J.
Algorithms, 2005.

[50] M. Elhemali, C. A. Galindo-Legaria, T. Grabs, andM. M.
Joshi. Execution strategies for sql subqueries. In SIGMOD,
2007.

[51] M. Y. Eltabakh et al. Cohadoop: Flexible data placement and
its exploitation in hadoop. In VLDB, 2011.

[52] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms. In VLDB, 1997.

[53] G. Graefe. _e cascades framework for query optimization.
IEEE Data Eng. Bull., 1995.

[54] B. Hentschel,M. S. Kester, and S. Idreos. Column sketches: A
scan accelerator for rapid and robust predicate evaluation. In
SIGMOD, 2018.

[55] S. Idreos,M. L. Kersten, and S. Manegold. Database cracking.
In CIDR, 2007.

[56] I. Ilyas et al. Cords: Automatic discovery of correlations and
so� functional dependencies. In SIGMOD, 2004.

[57] Z. G. Ives and N. E. Taylor. Sideways information passing for
push-style query processing. In ICDE, 2008.

[58] H. Kimura et al. Correlation maps: a compressed access
method for exploiting so� functional dependencies. In
VLDB, 2009.

[59] A. Lamb et al. _e vertica analytic database: C-store 7 years
later. VLDB, 2012.

[60] V. Leis et al. How good are query optimizers, really? In
VLDB, 2015.

[61] A. Y. Levy, I. S. Mumick, and Y. Sagiv. Query optimization by
predicatemove-around. In VLDB, 1994.

[62] Y. Lu, A. Shanbhag, A. Jindal, and S. Madden. AdaptDB:
Adaptive partitioning for distributed joins. In VLDB, 2017.

[63] I. S. Mumick andH. Pirahesh. Implementation ofmagic-sets
in a relational database system. In SIGMOD, 1994.

[64] A. Nanda. Oracle exadata: Smart scans meet storage indexes.
http://bit.ly/2ha7C5u, 2011.

264

https://bit.ly/2TtKyjB
https://bit.ly/2J5BIkh
https://bit.ly/2Jd87We
https://bit.ly/2kixJJn
https://bit.ly/2TLBBTF
https://bit.ly/2Drdb9o
https://bit.ly/2VFpljV
https://bit.ly/2F7LZuI
https://bit.ly/2qONacb
https://bit.ly/2VodSVN
https://imdb.to/2S3BzSF
https://bit.ly/2tTRyIb
https://bit.ly/2lPHNtA
https://bit.ly/2qMeO9E
https://bit.ly/2vsUWKK
https://bit.ly/2vm6D5U
https://bit.ly/2JauYll
https://bit.ly/2Pryf2E
https://bit.ly/2WhTwP1
https://bit.ly/2kJRV72
https://bit.ly/2NJzzgF
https://amzn.to/2AmYbXh
https://bit.ly/2FbalDT
http://www.tpc.org/tpcds/
https://bit.ly/2U0rIk6
http://www.tpc.org/tpch
https://bit.ly/2yrvPtG
https://bit.ly/2CnbmIo
https://bit.ly/2wvdNVo
http://bit.ly/2ha7C5u

[65] A. Nica et al. Statisticum: Data Statistics Management in SAP
HANA. In VLDB, 2017.

[66] M. Olma et al. Slalom: Coasting through raw data via
adaptive partitioning and indexing. In VLDB, 2017.

[67] C. Olston et al. Pig Latin: A Not-So-Foreign Language for
Data Processing. In SIGMOD, 2008.

[68] J. M. Patel et al. Quickstep: A data platform based on the
scaling-up approach. In VLDB, 2018.

[69] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, 1988.

[70] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view
maintenance and integrity constraint checking: Trading space
for time. In SIGMOD, 1996.

[71] F. M. Schuhknecht, A. Jindal, and J. Dittrich. _e uncracked
pieces in database cracking. In VLDB, 2013.

[72] P. Seshadri et al. Cost-based optimization for magic: Algebra
and implementation. In SIGMOD, 1996.

[73] A. Shanbhag et al. A robust partitioning scheme for ad-hoc
query workloads. In SOCC, 2017.

[74] A. Shanbhag, A. Jindal, Y. Lu, and S. Madden. Amoeba: a
shape changing storage system for big data. In VLDB, 2016.

[75] L. Shrinivas et al. Materialization strategies in the vertica
analytic database: Lessons learned. In ICDE, 2013.

[76] J. Shute et al. F1: A distributed sql database that scales. In
VLDB, 2013.

[77] D. Ślȩzak et al. Brighthouse: An analytic data warehouse for
ad-hoc queries. In VLDB, 2008.

[78] L. Sun et al. Fine-grained partitioning for aggressive data
skipping. In SIGMOD, 2014.

[79] L. Sun,M. J. Franklin, J. Wang, and E. Wu. Skipping-oriented
partitioning for columnar layouts. In VLDB, 2017.

[80] A. _usoo et al. Hive- a warehousing solution over a
map-reduce framework. In VLDB, 2009.

[81] N. Tran et al. _e vertica query optimizer: _e case for
specialized query optimizers. In ICDE, 2014.

[82] M. J. Wainwright andM. I. Jordan. Graphical models,
exponential families, and variational inference.
https://bit.ly/2yurPIS, 2008.

[83] B. Walenz, S. Roy, and J. Yang. Optimizing iceberg queries
with complex joins. In SIGMOD, 2017.

[84] J. Yu andM. Sarwat. Two birds, one stone: a fast, yet
lightweight, indexing scheme for modern database systems.
In VLDB, 2016.

[85] M. Zaharia et al. Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In NSDI, 2012.

[86] E. Zamanian, C. Binnig, and A. Salama. Locality-aware
partitioning in parallel database systems. In SIGMOD, 2015.

[87] H. Zhang et al. Surf: Practical range query ûltering with fast
succinct tries. In SIGMOD, 2018.

[88] J. Zhou et al. SCOPE: Parallel databases meet MapReduce. In
VLDB, 2012.

[89] J. Zhou, P.-A. Larson, and R. Chaiken. Incorporating
partitioning and parallel plans into the scope optimizer. In
ICDE, 2010.

265

https://bit.ly/2yurPIS

	Introduction
	Motivation
	Use-cases where data-induced predicates can lead to large I/O savings

	Construction and use of data-induced predicates
	Deriving diPs within a cost-based QO
	Supported Queries
	Commutativity of data-induced predicates with other operations
	Scheduling the deriving of predicates

	Using statistics to build diPs
	Coping with data updates

	Evaluation
	Methodology
	Benefits from using diPs
	Costs of using diPs
	Understanding why diPs help
	Comparing with alternatives

	Related Work
	Conclusion
	References

