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ABSTRACT
Organizations spend significant amounts of time and money
to manually fact check text documents summarizing data.
The goal of the Scrutinizer system is to reduce verification
overheads by supporting human fact checkers in translating
text claims into SQL queries on an database. Scrutinizer
coordinates teams of human fact checkers. It reduces verifi-
cation time by proposing queries or query fragments to the
users. Those proposals are based on claim text classifiers,
that gradually improve during the verification of a large doc-
ument. In addition, Scrutinizer uses tentative execution of
query candidates to narrow down the set of alternatives.
The verification process is controlled by a cost-based opti-
mizer. It optimizes the interaction with users and prioritizes
claim verifications. For the latter, it considers expected ver-
ification overheads as well as the expected claim utility as
training samples for the classifiers. We evaluate the Scruti-
nizer system using simulations and a user study with profes-
sional fact checkers, based on actual claims and data. Our
experiments consistently demonstrate significant savings in
verification time, without reducing result accuracy.
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1. INTRODUCTION
Data is often disseminated in the form of text reports,

summarizing the most important statistics. For authors of
such documents, it is time-consuming and tedious to en-
sure the correctness of each single claim. Nevertheless, er-
roneous claims about data are not acceptable in many sce-
narios as each mistake can have dire consequences. Those
consequences reach from retractions (in case of scientific pa-
pers [18]) to legal implications (in case of business or health
reports [3]). Besides the authors, erroneous claims can have
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Figure 1: Global Energy Demand history and es-
timates (GED), the full table has 22 rows and 70
attributes.

Index 2017 2018 ... 2030 2040
PGElecDemand 22 209 22 793 ... 29 349 35 526
PGINCoal 2 390 2 412 .. 2 341 2 353
TFCelec 21 465 22 040 ... 28 566 34 790
... ... ... ... ... ...

serious consequences for the target audience [4]. We present
Scrutinizer, a system that helps teams of fact checkers to
verify consistency of text and data efficiently [26].

Our work is inspired and motivated by two real-world use
cases. We describe those use cases in the following and use
them as examples and benchmarks throughout the paper.

Use Case 1. The International Energy Agency (IEA) is
a Paris-based intergovernmental organization. Every year
the agency produces a report of more than 600 pages about
the energy consumption and production in the world, cover-
ing historical facts and predictions both for individual coun-
tries and at the world level. We have been given access to the
2018 edition, which contains 7901 sentences with 1539 man-
ually checked statistical claims. IEA requires each claim to
be verified independently by three persons (beyond the claim
text author). Hence, verification takes months of work of a
team of domain experts. Scrutinizer is the first result of a
collaboration aimed at reducing time and financial overheads
of that verification process.

Consider the following example claim from that scenario.

Example 1. The IEA database contains hundreds of re-
lational tables with information about energy, pollution, and
climate. A fragment of a table is reported in Figure 1.
Consider the claim “In 2017, global electricity demand
grew by 3%, more than any other fuel besides solar ther-
mal, reaching 22 200 TWh.”. An expert validates the claim
in bold by identifying the relevant table(s) and by writing a
query over such table to collect the relevant information. In
the example (assuming unique values in the Index column):

SELECT POWER(

(SELECT 2017 FROM GED WHERE Index=‘PGElecDemand’)/

(SELECT 2016 FROM GED WHERE Index=‘PGElecDemand’),

1/(2017-2016)) -1
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Finally, the expert compares the output of the query with
the claim and either validates or updates the claim.

Unlike the first, our second use case assumes verification
by non-expert, anonymous crowd workers.

Use Case 2. The spread of the Coronavirus is accompa-
nied by a spread of misinformation. This “Infodemic” [29]
is testing manual verification capacities of large social me-
dia platforms [17], thereby motivating automated methods.
Some (even though not all) misclaims about the novel Coro-
navirus refer to numerical statistics, thereby falling within
the scope of the Scrutinizer system. For instance, mis-
claims about absolute or relative case counts for specific re-
gions and time ranges are common [45]. We therefore de-
cided to create a public Web interface [24], based on the
Scrutinizer system, that allows to verify statistical claims
on the Coronavirus. The database used for verification con-
sists of daily updated statistics from official sources such as
the World Health Organization (WHO) and the Center of
Disease Control (CDC). Our Web site, recently covered in
the press [8, 35, 40], has attracted over 12,000 distinct users
at the time of writing.

In both scenarios, we verify claims given as natural lan-
guage text. We verify or refute a claim by formulating a
query on an associated database. Of course, the primary
challenge is to translate natural language text into SQL
statements. This problem has been the focus of significant
prior work [1, 31, 21, 32, 47, 37, 44], inside and outside of the
database community. The scenarios we consider are however
specific and require a novel approach. First, prior work typi-
cally aims at automating text to query translations. Relying
on purely automated translation would however not be ac-
ceptable for IEA for instance, due to the high stakes and
limitations of current technology. Hence, we verify claims in
a mixed-initiative approach that integrates human feedback.
Second, prior work aims at translating queries instead of
claims. This matters, as we can rank queries based on how
close their results come to claimed values. Finally, prior
work typically considers single queries. E.g., in the case of
IEA, we rather deal with large documents that contain hun-
dreds of related claims. This can be exploited to reorder
claims for verification and minimize expected verification
overheads. Literature on data-driven claim verification [5,
20, 23], discussed in more detail in Section 7, is more sparse
at this point. In our experiments, we demonstrate that prior
work cannot address the use cases we consider.

When mapping claims to queries, Scrutinizer considers
a scenario-specific query search space. This search space is
defined by a domain expert with SQL training and knowl-
edge of the database schema (e.g., the head of the fact
checker team in case of IEA). The same person supplies text
snippets that allow Scrutinizer to formulate natural lan-
guage questions about query properties. The bulk of the
verification work is done by another group of fact check-
ers. Those can be domain experts without IT background
(e.g., the fact checker team at IEA) or a crowd of anony-
mous users (like in our second use case). To map claims
to queries, Scrutinizer introduces a scenario-specific set of
classifiers. Each classifier is associated with a choice point in
the query search space. This can be the choice between mul-
tiple query templates (e.g., selecting the arithmetic formula
in Example 1) or filling in a placeholder (e.g., the year 2016

in Example 1). Having the result of each classification for
a given claim can determine the associated query. However,
if classifier confidence is below a threshold, classification re-
sults must be verified by human workers.

Our goal is to minimize overheads for human workers.
Those overheads are determined by multiple factors. We
expect that verifying a correct option for a query prop-
erty (e.g., a proposition for an arithmetic formula) is typ-
ically faster, for workers, compared to suggesting the cor-
rect answer from scratch. We verify this intuition by a
user study in Section 6. Hence, verifying claims based on
high-quality classifier suggestions is cheaper than for low-
confidence claims. On the other side, obtaining the cor-
rect answer for low-confidence claims and using it as train-
ing data, may improve classifier accuracy for the remaining
claims. We take both factors into account when determining
the order in which claims are verified. Also, we optimize the
sequence of questions asked to workers about specific claims.
Here, we can exploit the fact that getting answers for certain
query properties implicitly prunes options for others.

Scrutinizer generates suggestions for query translations
via classifiers. In principle, various types of classifiers can
be used. Currently, we use pre-trained language models (in
particular, Facebook’s recently proposed XLM model [28])
with task-specific fine-tuning. Besides the claim text, we
also exploit query evaluation results to rank query candi-
dates. More specifically, to break draws between likely query
options, we rank queries higher if their numerical evaluation
results match numbers that appear in claim text. In our ex-
periments, we demonstrate that Scrutinizer outperforms
various baselines for all considered scenarios.

In summary, the original scientific contributions of this
paper are the following:

• We introduce the problem of mixed-initiative data-
driven fact checking and two corresponding real-world
use cases (Section 2).

• We describe the Scrutinizer system (Section 3), fea-
turing semi-automated claim to query translations (Sec-
tion 4) and planning modules for optimally interacting
with fact checkers (Section 5).

• We demonstrate experimentally that Scrutinizer per-
forms well in several complementary scenarios, improv-
ing over purely manual fact checking as well as auto-
mated baselines (Section 6).

2. PROBLEM MODEL
Scrutinizer aims at mixed-initiative verification (MIV)

of statistical claims from relational data. The term “mixed-
initiative” refers to the fact that our approach combines
feedback from human workers with automated verification.

Definition 1. One instance of the MIV Problem is de-
fined by a quadruple 〈T ,P,Q,L〉. Here, T is the verification
target. It describes the claims to verify and the database
used for verification. Parameters P are configuration pa-
rameters. They constrain verification and contain constants
used for cost-based planning. Q is the query template. It
describes complete SQL queries to consider during verifica-
tion. Finally, L maps template components to text snippets,
used for formulating associated questions to crowd workers.
A solution to MIV maps each input claim to a Boolean ver-
ification result and to an SQL query justifying that result.
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The goal is to reduce overheads for human fact checkers
in MIV. Optionally, the input also contains training data
mapping prior claims from the verification domain to corre-
sponding queries. This is however not required (“cold start
scenario”) as training data is dynamically collected during
verification. Queries can validate claims in different ways.
Claims may explicitly mention numbers that can be matched
against query results. We call this claim category “Explicit
Claims” (some prior work is specific to that category [23]).
Alternatively, claims may be verified by queries returning a
Boolean value, with the semantics that the claim holds if
that value is true (“Implicit Claims”). Next, we define the
four components from Definition 1.

Definition 2. A Verification Target T = 〈C,D, s〉 is
a set C of claims to verify, a relational database D used for
verification, and (optionally) a function s : C 7→ S mapping
claims to document sections. Each claim c ∈ C is defined
by a natural language description, containing the claim and
relevant context. Each claim can be verified or refuted by
running an associated query on database D.

Definition 3. Configuration Parameters P include
constants representing cost estimates for different types of
actions performed by human checkers. The specific parame-
ters and their semantics will be described in Section 5. Also,
they include a confidence threshold ρ for verification. Hu-
man workers are only used for claims where the confidence
of automated verification is below ρ. Finally, a parameter
determines the number of workers asked the same question.

Definition 4. A Query Template describes a space of
SQL queries to consider during verification. We distinguish
Complete Templates, describing complete SQL queries,
from Fragment Templates, describing query parts. We
define templates recursively. Any SQL query fragment, us-
ing schema elements from the target database, or an SQL
keyword alone, is a (constant) template. Assuming that
Q1, . . . ,Qn are templates then CAT (Q1, . . . ,Qn) is also a
template. It represents the concatenation of queries (or
query fragments) matching templates Q1 to Qn. Simi-
larly, CHC (Q1, . . . ,Qn) represents a choice among differ-
ent templates. A query matches the choice template if it
matches at least one of the templates Q1 to Qn. Finally,
if Q1 is a complete query template describing queries that
evaluate to scalar numerical results then EXP(Q1) is a tem-
plate as well. It matches all free arithmetic expressions that
can be formed using queries matching Q1 (and constants)
as operands, and logical and arithmetic operators (but no
other SQL keywords such as FROM or SELECT). Templates us-
ing concatenation (CAT), choice (CHC), or free expressions
(EXP) are Composite Templates. We call templates used
as operands for concatenation, choice, or free expressions
(here: Q1 to Qn) their Components.

Example 2. We instantiated Scrutinizer in a public
Web interface (“CoronaCheck”) for verifying single statisti-
cal claims about the novel Coronavirus, submitted by users,
using data from WHO and CDC. Data is represented as
tables, containing numbers (e.g., the number of confirmed
cases) for different time periods in different columns, and
data for different regions in different rows. For instance,
we support comparative claims about the number of con-
firmed cases. The corresponding query space is described by

a template of the form CAT (′SELECT′,SQ ,′>′,SQ) where
SQ is a template matching lookup queries, retrieving the
number of cases for specific regions and times. SQ is de-
fined as CAT (′SELECT′, T,′ FROMNrCases WHERE′,CP), where
T = CHC (′Jan ′,′ Feb′, . . .) is a choice over time periods (rep-
resented as column names) and CP = CAT (CN ,′= Cname ′)
models restrictions of the region (i.e., an equality predicate
on the country name column). E.g., the query

SELECT

SELECT Feb FROM NrCases WHERE Cname=’Germany’ >

SELECT Jan FROM NrCases WHERE Cname=’Germany’

matches that template. Overall, we use a choice template
for verification. Each component represents queries used to
verify one popular type of claim, including the one described
above.

Our goal is to map claims to queries. If automated veri-
fication fails, we solicit feedback from human fact checkers.
The labeling function allows us to formulate questions to
workers for narrowing down queries for a given claim.

Definition 5. The Labeling Function L maps query
template components to text for formulating questions. It
maps each choice element (CHC) to a question text, and,
optionally, each choice option to a human-readable label.
Also, it maps each formula element (EXP) to question text,
asking workers to select an appropriate formula. No labels
are needed for constant query fragments and concatenations.
We call choice and expression elements also choice points or
query properties as they entail claim-specific decisions.

Next, we show how to instantiate this model for our two
use cases: verifying IEA and Coronavirus claims.

Example 3. At IEA, claims are extracted from reports by
the head of the fact checker team (potentially adapting claim
text slightly to make claim context more apparent). Claims
are verified from a database containing hundreds of tables
containing historical data (e.g., on energy consumption and
production) as well as simulation results. Claims can be
verified using the query template CAT (′SELECT′,EXP(SQ)).
Component template SQ models data lookups and is of the
form CAT (′SELECT′,YR,′ FROM′,TB ,′ WHERE′,CD). YR de-
notes a specific year (generally modeled as columns by IEA),
TB the table name (associated with a scenario such as global
forecast of CO2 emissions), and CD=CAT(’Index=’,PV) a
condition fixing the primary key column (generally called
“Index”) to a specific value. We model formulas using the
year itself as numerical operand via a sub-query accessing
a special identity table (mapping each year to itself). The
labeling function assigns for instance Y R to the question
text “What is/are the corresponding year(s)?” that is shown
to crowd workers to solicit feedback (see Figure 3). Also,
L(EXP(SQ)) =“Enter a formula translating the claim”. For
highest accuracy, IEA requires manual verification of each
claim (a confidence threshold of ρ = 100%). The added
benefit of Scrutinizer lies in suggesting likely verification
options to save checking time. As final step for each claim,
workers are asked whether the associated query (with evalu-
ation result) validates or refutes the claim.

The query template above matches the query from Exam-
ple 1. Here, the free expression uses the POWER function and
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Figure 2: Architecture of Scrutinizer.

four instances of SQ (two lookups and two year values, inter-
nally modeled as lookups in the identity table). The current
CoronaCheck version (June 2020) does not yet introduce
new expressions on the fly, based on user feedback, while
we consider this possibility for the IEA scenario. Hence, we
use fixed formulas in the CoronaCheck templates but a free
expression (EXP) element for the IEA template.

Example 4. The query template for CoronaCheck was
described in Example 2. If classifier confidence is above a
threshold of ρ = 0.9, users are shown a Boolean verifica-
tion result. Clicking on the result reveals query and data
used for verification. If confidence is below the threshold,
users are shown a dialog soliciting them to select query and
data themselves (by selecting from given answer options).
Based on crowd feedback, Scrutinizer improves accuracy
over time.

3. SYSTEM OVERVIEW
Figure 2 shows a simplified overview of Scrutinizer. The

system encompasses two primary components. The auto-
mated translation component leverages machine learning to
identify the elements that define every claim, i.e., candidates
for datasets, attributes, rows, and comparison operations.
The question planning component interacts with human do-
main experts to verify such elements and the checking re-
sults, optimizing verification tasks for maximal benefit.

Verification comprises the following high-level steps. First,
based on the query template (Definition 4), we create a set
of text classifiers. We introduce classifiers for choice points
in the query template as detailed in Section 4.1. Those clas-
sifiers map claim text to query properties. If available, they
are trained with pairs of claims and queries from prior verifi-
cation sessions. Second, as an alternative to automatic clas-
sification, we generate a set of questions on query properties
about each claim. Those questions can be asked, option-
ally, to human fact checkers, if classification confidence is
below a threshold. Section 4.2 provides details on question
generation.

After those preparatory steps, an iterative verification
algorithm starts. It runs until all claims have been veri-
fied with sufficiently high confidence. The corresponding
pseudo-code in Algorithm 1 is simplified for readability and
contains only the most important parameters (e.g., we do
not explicitly refer to configuration parameters P).

In the simplest case, based on previous training data, we
are able to map each claim to a query with sufficiently high
confidence. Typically, this is not possible. For instance,

Algorithm 1 Main verification algorithm.

1: // Verify claims C using models M
2: // and return verification results.
3: function Verify(C,M)
4: // Initialize verification result
5: A← ∅
6: // While unverified claims left
7: while C 6= ∅ do
8: // Select next claims to verify
9: N ←OptBatch(C,M)

10: // Select optimal question sequence
11: S ←OptQuestions(N,M)
12: // Get answers from fact checkers
13: A← A∪GetAnswers(N,M,S)
14: // Retrain text classifiers
15: M ←Retrain(N,M,A)
16: // Remove high-confidence claims
17: C ← C\Verified(N,M,A)
18: end while
19: // Return verification results
20: return A
21: end function

IEA generally requires utmost precision in their reports. To
achieve an accuracy close to 100%, inspection by human
workers is generally required. Scrutinizer therefore inter-
acts with human workers, asking them to verify classifier
results or to suggest alternatives. Figure 3 shows an exam-
ple screen (the lower screen half, asking workers to enter
new years if needed, was cropped). We submit claims to
workers in batches. Optionally, the same claims are verified
by multiple workers (the number of workers can be config-
ured). If so, we take the majority vote in case of conflicting
answers. For free expressions, we use a simple normalization
method (e.g., we remove spaces and capitalize symbols) be-
fore comparing answers of different workers. Depending on
the scenario, we may be able to choose the order in which
claims are verified. For IEA for instance, we can choose
which out of hundreds of claims in a given report are verified
first. We prioritize claims in a principled manner, outlined
in Section 5.2, to minimize expected verification cost. We
take into account the expected verification cost (which is
lower if classifier suggestions are expected to be accurate)
as well as utility in improving classifier precision. The latter
point applies since answers from human workers can be used
immediately as additional training data, thereby benefiting
the verification of remaining claims.

Validating claims is easier for humans if the system sug-
gests correct answer options for questions on query proper-
ties. As described in detail in Section 4.3, we rank likely
queries (according to our classifiers) based on their query
evaluation results. If presenting workers with answer op-
tions, we show them in order of likelihood to minimize ex-
pected overheads. Section 5.1 contains more details on how
we select and prioritize questions asked about specific claims.

4. CLAIM TRANSLATION
We exploit three sources of information to translate claims

to queries. First, we introduce classifiers that use claim text
as features. Second, we request feedback from human fact
checkers. Third, we use evaluation results from candidate
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Figure 3: Screen soliciting workers to select relevant
years for marked up claim.

Algorithm 2 Initializing ML classifiers.

1: // Get classifiers for choice points in query template Q.
2: function InitML(Q)
3: // Distinguish type of query template
4: if Q is constant then
5: return ∅ // No classifiers needed
6: else if Q = CAT (Q1, . . . ,Qn) then
7: // Combine classifiers of components
8: return ∪1≤i≤n{InitML(Qi)}
9: else if Q = CHC(Q1, . . . ,Qn) then

10: // Classifiers for choice and components
11: return ∪1≤i≤n{InitML(Qi)} ∪ {MCHC(Q)}
12: else if Q = EXP (QS) then
13: // Classifiers for expression and component
14: return {InitML(QS)} ∪ {MEXP(Q)}
15: end if
16: end function

queries to rank them by likelihood. The following subsec-
tions discuss those mechanisms in more detail.

4.1 Claim Classification
For a given scenario, the query template (see Section 2)

defines the search space for queries. It defines degrees of
freedom in the form of choice points (i.e., one out of several
options is correct) and free expressions. We introduce one
classifier for each of those query properties. Those classifiers
exploit claim text as well as the claim location (e.g., the
claim section for IEA reports) as features. Different types
of classifiers can be used. We exploit pre-trained language
models that are fine-tuned by task-specific training [28].

Algorithm 2 illustrates which classifiers are created for a
given query template. This is done before the actual claim
verification starts. Algorithm 2 takes the query template
as input, the output is a set of classifiers linked to specific
choices in the query template. Function InitML decom-
poses input templates and collects classifiers for components
via recursive invocations. The behavior of the function de-
pends on the type of input. No classifiers are necessary for
constant query templates. For concatenations, we take the
union of the classifiers for the concatenation operands (the
components). Similarly, we union classifiers from compo-
nents for choice elements together with a new classifier (ini-
tialized with functionMCHC(Q)) in charge of selecting one
of the choice options. For free expressions, we collect clas-
sifiers for the component and introduce a new classifier to

Template Type CAT CHC EXP

Answer Multiplicity [l, u] [0, u] [0,∞]

Table 1: New bounds on answer multiplicity given
components with bounds [l, u].

determine the expression itself (functionMEXP (Q)). After
initialization, classifiers are trained during verification, us-
ing input from human fact checkers. Optionally, they can be
trained before verification starts if training data is available,
e.g, in case of IEA, labels from prior text versions.

Example 5. Consider the query template from Example 3
(IEA). The template is defined as concatenation between
a constant and a free expression. The free expression, in
turn, depends on a component that represents an SQL query.
Here, we introduce a classifier determining the free expres-
sion, a classifier determining the table TB within the sub-
query, one for the year Y R, and one for the row index PV .

4.2 Generating Questions
Classifier accuracy is limited as automated natural lan-

guage understanding is imperfect. Also, classes may be ini-
tially unknown, e.g., a claim whose associated query uses an
expression that has not appeared before. To make up for
the limitations of automated translation, we may request
feedback from human workers. We introduce questions for
each property of the query template. This means that each
classifier is complemented by a question. Its answer, for a
specific claim, replaces the classification result. Note that
all those questions are optional. We may not ask about a
query property if the confidence of the corresponding classi-
fier is sufficiently high. Also, the answer to one question may
prune possible answers for another question about the same
claim. We discuss in Section 5 how to select which ques-
tions/answers to expose in which order. Here, we discuss
how to generate the set of possible questions.

We omit the code for generating questions as it is similar
to the one for generating classifiers (Algorithm 2) and de-
scribe the differences instead. For each initialized classifier,
a corresponding question is introduced. The question uses
text snippets, given via the labeling function L (see Sec-
tion 2). For context, workers are shown the claim text along
with the question. Furthermore, workers can select between
multiple ranked answer options. In that context, we must
decide how many answers workers can select. For instance,
given a choice between constant query fragments, only one
single answer can be accepted. On the other side, free ex-
pressions may contain a number of symbols that is a-priori
unknown. Hence, unless the concrete expression is known,
an arbitrary number of selections can be made for any an-
swers that refer to the component template. We calculate
lower (l) and upper bounds (u) on allowed answer multi-
plicity in a bottom-up approach with the recursive rules in
Table 1. Given a question about a query template with an-
swer multiplicity in [l, u], it shows multiplicity after inserting
the template as component into a composite template.

Example 6. Consider the sub-query element (SQ) from
Example 3. It must contain exactly one year, hence we have
multiplicity bounds [1, 1] for questions on the year as long as
we consider SQ alone. However, SQ appears inside a free
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Algorithm 3 Generating candidate queries using classifiers.

1: // Generate most likely queries matching Q, using
2: // k most likely alternatives per choice according to
3: // ML classifiers M , for claim c.
4: function GQ(Q,M, k, c)
5: // Distinguish type of query template
6: if Q is constant then
7: return Q
8: else if Q = CAT (Q1, . . . ,Qn) then
9: // Combine most likely queries from components

10: return GQ(Q1,M, k, c)× . . .×GQ(Qn,M, k, c)
11: else if Q = CHC(Q1, . . . ,Qn) then
12: // Most likely queries for most likely choices
13: return {GQ(QS ,M, k, c)|QS ∈M(Q, k, c)}
14: else if Q = EXP (QS) then
15: // Get most likely operands
16: O ←GQ(QS ,M, k, c)
17: // Most likely expressions using operands
18: return {e.substitute(O)|e ∈M(Q, k, c)}
19: end if
20: end function

expression. This changes the multiplicity range to [0,∞]
according to Table 1. This means that, when asking workers
which years are relevant for a claim (see Figure 3), we allow
them to select arbitrarily many options.

Beyond questions on specific query properties, manual
verification of each claim ends with a question asking work-
ers to validate the query as a whole (i.e., all properties) and
to determine the final claim verification result.

4.3 Query Generation
Besides the claim text, we also use query evaluation results

to rank queries. This ranking determines the order in which
options are shown to workers (see Section 5). For Boolean
queries, a true result typically indicates that the query veri-
fies the claim. Hence, as a heuristic, we rank queries return-
ing “True” above queries returning “False” (or “Null”). This
assumes that accurate claims are more likely than inaccurate
claims, an assumption that has been used in prior work [23]
and holds for our test scenarios. Queries with numerical re-
sult typically validate a claim by calculating numbers that
appear in claim text. Hence, we heuristically rank queries by
the distance between query result and numbers that appear
in claim text (we use the number with minimum distance if
the claim contains multiple numbers).

Of course, we cannot evaluate all possible queries match-
ing the template. Instead, we focus on queries that are
likely according to classifiers and worker answers (if any).
Algorithm 3 shows how we derive the scope of queries for
evaluation. The pseudo-code is simplified, assuming that
only classifier results but no worker answers are considered.
Worker answers may prune classes further.

Algorithm 3 uses the scenario-specific query template, the
trained classifiers, the current claim, and an integer param-
eter k as input. Parameter k determines how many of the
most likely alternatives to consider for each query property.
Function M(Q, k, c) retrieves the k most likely alternatives
for the classifier associated with query template Q, consider-
ing the text and location (section) of claim c. The algorithm
composes likely queries for a template by combining likely

queries for its components (obtained via recursive invoca-
tions). For instance, for concatenation, likely queries are
formed via cross product between likely queries for compo-
nents. For free expressions, likely queries are created in two
steps. First, we retrieve a likely set of operands (Line 16)
via recursive invocation. For the k most likely operands, we
instantiate the k most likely expressions in all possible ways.
I.e., we substitute their symbols with most likely operators,
considering all possible permutations.

Example 7. Consider the query template from Example 3
again. Assume we obtained formula POWER(a/b,1/(c-d))-1

as free expression (either by classification with sufficiently
high confidence or by asking human workers). Furthermore,
assume that the most likely operands for the formulas are the
years 2016, 2017, and 2018, and two sub-queries retrieving
energy demand data for years 2016 and 2018, respectively.
We evaluate queries 5 · 4 · 3 · 2 = 120 queries, considering
all possible substitutions via likely operators. As the claim
text (see Example 1) contains the number 3%, we rank by
the distance between query result and that number. When
proposing answer options to workers, we order them accord-
ing to the rank of the query they appear in.

5. QUESTION PLANNING
Question planning consists of two tasks: determining opti-

mal questions to verify single claims, and determining an op-
timal verification order between claims. We discuss the first
problem in Section 5.1 and the second one in Section 5.2.

5.1 Single Claim Verification
For each claim, we generate a series of screens (Figure 3

shows an example). Each screen contains questions that are
answered by a worker. Each screen is associated with one
specific query property. On the upper part of each screen,
workers are shown a set of answer options with regards to the
current property. Those answer options are obtained from
our classifiers. On the lower part of each screen, workers
have the option to suggest new options, if the correct answer
is not on display. The final screen for each claim asks directly
for the query translating the current claim. Answers to prior
questions may have allowed us to narrow down the range of
possible queries. If so, the chances for confronting workers
with the correct query increase.

In this scenario, our search space for question planning is
the following. First, we need to decide how many screens to
show. Second, we need to determine what query properties
our questions should focus on. Third, we need to decide how
many answer options to display on each screen. Fourth, we
need to pick those answer options.

We make those decisions based on a simple cost model,
representing time overhead for crowd workers for verifying
the current claim. We assume that workers read screen con-
tent from top to bottom. For each answer option, a worker
needs to determine whether it is correct or not. We count
a per-option verification cost in our model, distinguishing
cost of verifying answers about query properties, vp, from
the cost of verifying the full query (on the final screen),
vf . We choose constants such that vp � vf to account for
the fact that full queries are significantly longer than their
fragments (which increases reading time and therefore ver-
ification cost). If none of the given options applies, crowd
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workers must suggest an answer themselves. We denote by
sp and sf the cost of suggesting answers for properties and
queries (again, sp � sf ).

First, we discuss how to choose the number of screens and
answer options. We denote the number of screens by nsc and
the number of options by nop. Predicting the precise veri-
fication cost for specific choices of those parameters is not
possible. Doing so would require knowing the right solution
to each question (as it determines how many options workers
will read). However, we can upper-bound verification cost in
relation to the cost of verifying claims without Scrutinizer
(the proofs for this and the following theorems can be found
in the extended technical report [25]).

Theorem 1. Compared to the baseline, relative verifica-
tion overhead of Scrutinizer is at most (nop · vf + nsc ·
(vp + sp))/sf .

Corollary 1. Setting nop = sf/vf and nsc = sf/(vp +
sp) limits verification overheads to factor three.

We will use the aforementioned setting for most of our
experiments. Having determined the number of screens and
options, we still need to pick specific screens and answers.
First, we discuss the selection of answer options. Note that
the worst-case verification cost of a property depends only
on the number of options shown (but not on the options
themselves). Hence, to pick options, we consider expected
verification cost instead.

We calculate expected verification cost based on our clas-
sifiers, assigning specific answer options to a probability. For
a fixed property, denote by A the set of all relevant answer
options. Also, denote by pa the probability that an answer
a ∈ A is correct. We calculate expected verification cost
when presenting users with an (ordered) list of answer op-
tions 〈a1, . . . , am〉 where ai ∈ A.

Theorem 2. The expected verification cost for answer
options 〈a1, . . . , am〉 is vp ·

∑
i=1..m(1−

∑
1≤j<i pai).

Corollary 2. Selecting answer options in decreasing or-
der of probability minimizes expected verification cost.

We illustrate screen design by an example.

Example 8. Consider the query from Example 1. Our
goal is to obtain feedback on the “Index” property. Our clas-
sifier ranks options in descending order of probability as fol-
lows: PGElecProd, PGElecDemand, and PGaccess. As-
suming that it takes workers two times longer to look up
the correct alternative themselves, compared to validating a
given option, we select the first two options to display on
screen (and a field to write the correct answer if not shown).

Finally, we discuss the selection of query properties. Our
goal is to select the best nsc properties to verify by creating
corresponding screens. We define the quality of a property
as follows. At any point, we consider a set of likely query
translations for a claim. A good property has high pruning
power with regards to the current set of candidates. This
means that it allows us to discard as many incorrect candi-
dates as possible. The following example illustrates pruning.

Example 9. Assume a worker selects year 2030 in Fig-
ure 3. Implicitly, this decision prunes all possible expres-
sions that use more (or less) than one symbol (to represent
the year). E.g., we prune formula a+1 since it contains too
few placeholders.

How many query candidates we can prune depends on
the correct property value. Depending on the answer we
obtain from the fact checkers, more or less queries can be
pruned. We do, of course, not know the correct answers
when selecting questions. Hence, we define the expected
pruning power of a set of properties as follows.

Definition 6. Given a set Q of query candidates, a set S
of query properties to verify, and trained models M predict-
ing a-priori probabilities for possible answers, we define the
pruning power P(S,Q,M) as the expected number of queries
that are excluded by obtaining answers for S.

Next, we provide a formula for pruning power, based on
simplifying assumptions. For that, we denote by ais the i-th
answer option for property s ∈ S and by Ei

s ⊆ Q queries
that are excluded if answer option ais turns out to be correct.
We assume independence between pruning probabilities for
different query properties. While this assumption is simpli-
fying, it allows us to use simple optimization algorithms (we
may consider extensions in the future). Also, we assume
that answer options are mutually exclusive (which holds for
most, even not for all, query properties).

Theorem 3. The pruning power P(S,Q,M) is given by∑
q∈Q(1−

∏
s∈S

∑
i:q/∈Ei

s
Pr(ais correct|M)).

Next, we discuss the question of how to find property
sets maximizing the above formula. Iterating over all pos-
sible property sets is possible but expensive (exponential
complexity in the number of properties). Instead, we select
properties according to a simple, greedy approach. At each
step, we add whichever property maximizes pruning power
to the set of selected properties (when comparing properties
to add, we calculate pruning power for the union between
the new and previously selected properties). We stop once
the number of selected properties has reached the threshold
determined before. An illustrative example follows.

Example 10. We consider two queries and three proper-
ties. Assume property one prunes query one with probability
0.7 and query two with probability 0.3. The corresponding
numbers are 0.5 and 0.9 for property two, and 0.1 and 0.95
for property three. We select screens for verifying two prop-
erties (i.e., nsc = 2). If selecting property one, the expected
number of remaining queries is 0.3+0.7 = 1. It is 0.5+0.1 =
0.6 for property two and 0.9+0.05 = 0.95 for property three.
Hence, we greedily select property two first. Assuming in-
dependence, selecting property one next leads to an expected
number of 0.5·0.3+0.1·0.7 = 0.22 queries remaining. Select-
ing property three yields 0.5 · 0.9 + 0.1 · 0.05 = 0.455 queries.
Hence, we select property one next.

While this algorithm may seem simple, it offers surpris-
ingly strong formal guarantees. Those guarantees are de-
rived from the fact that pruning power is a sub-modular
function [36]. We define sub-modularity below.

Definition 7. A set function f : S 7→ R is sub-modular
if, using ∆f (S, s) = f(S ∪ {s}) − f(S), it is ∆f (S1, s) ≥
∆f (S2, s) for any S1 ⊆ S2.

Intuitively, sub-modularity captures a “diminishing re-
turns” behavior. If adding more elements to a set, the util-
ity of new elements decreases as the set of previous elements
grows. The pruning power function is sub-modular as well,
according to the following theorem.
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Theorem 4. Pruning power is sub-modular.

Next, we show that the simple greedy algorithm produces
a near-optimal set of questions.

Theorem 5. Using the greedy algorithm, we select a set
of questions that achieve pruning power within factor 1−1/e
of the optimum.

Finally, we analyze time complexity (denoting by nsc the
number of screens, by npr the number of properties, and by
nqu the number of query candidates).

Theorem 6. Finding optimal question sequences for ver-
ifying single claims is in O(nsc · npr · nqu).

5.2 Claim Ordering
We consider two criteria when selecting the next claims

to verify. First, we consider the benefit of claim labels for
training our classifiers (for automated claim to query trans-
lation). Second, we consider the expected verification cost.

The first point relates to prior work on active learning.
Here, the goal is generally to select optimal training samples
to increase the quality of a learned model. In our case, veri-
fied claims correspond to training samples for classifiers that
translate claims to queries. We follow the popular heuristic
of picking training samples with maximal uncertainty and
define the training utility as follows.

Definition 8. Let m ∈ M be a model predicting specific
properties of the query associated with a text claim c. We
assume that m maps each claim to a probability distribution
over property values. Denote by e(m, c) the entropy of that
probability distribution. We define the training utility of c,
u(c) by averaging over all models (associated with different
query properties): u(c) =

∑
m∈M e(m, c).

The second point (verification cost) relates to the cost
model discussed in the previous subsection. However, this
cost model is incomplete. It neglects the cost of understand-
ing the context in which a certain claim is placed. Intu-
itively, verifying multiple claims in the same section is faster
than verifying claims that are far apart in the input docu-
ment. Our extended cost model takes this into account. It
calculates verification cost for claim batches.

Definition 9. Denote by C a batch of claims for ver-
ification. For each claim c ∈ C, denote by s(c) the sec-
tion in which this claim is located (instead of sections, a
different granularity such as paragraphs can be chosen as
well). Denote by v(c) the pure claim verification cost for c
defined in the last subsection. Further, denote by r(s) the
cost of reading (respectively skimming) section s. We de-
fine the total (combined verification and skimming) cost for
claim batch C as the sum of both verification cost over all
claims and reading cost over all associated sections: t(C) =
(
∑

c∈C v(c)) + (
∑

s∈{s(c)|c∈C} r(s)).

This cost model captures the desired property that ver-
ifying claims in the same section is faster. Our approach
to claim ordering is based on this model. It is not useful
to determine a global claim order before verification starts.
We cannot predict how the quality of classifiers (and there-
fore claim verification cost) will change over time. Instead,

we repeatedly select claim batches that are presented to the
checkers. Those claim batches are selected based on training
utility and the aforementioned cost model. To select claim
batches, we solve the following optimization problem.

Definition 10. Given a set of unverified claims C, the
goal of claim selection is to select a claim batch B ⊆ C such
that total cost of B remains below a threshold tm: t(B) ≤
tm. Additionally, the minimal and maximal batch size is
restricted by parameters bl and bu: bl ≤ |B| ≤ bu. Un-
der those constraints, the goal is to maximize accumulated
training utility

∑
c∈B u(c). Alternatively, as a variant, we

minimize the cost formula t(B)− wu ·
∑

c∈B u(c) where wu

is a weight representing the relative importance of selecting
claims with high uncertainty for classifier training.

Analyzing complexity, we find the following.

Theorem 7. Claim selection is NP-hard.

The fact that claim selection is NP-hard justifies the use
of sophisticated solver tools. We reduce the problem to in-
teger linear programming. This allows us to apply mature
solvers for this standard problem. Next, we discuss how we
transform claim selection into integer linear programming.

An integer linear program (ILP) is generally characterized
by a set of integer variables, a set of linear constraints, and
a (linear) objective function. The goal is to find an assign-
ment from variables to values that minimizes the objective
function, while satisfying all constraints.

We introduce binary decision variables of the form csi,
indicating whether the i-th claim was selected (csi = 1) or
not (csi = 0). Also, we introduce binary variables of the
form srj to indicate whether section number j needs to be
skimmed or not (to verify the selected claims). Next, we
express the constraints of our scenario on those variables.
First, we limit the number of selected claims to the range
[bl, bu] by introducing the linear constraints bl ≤

∑
i csi ≤

bu. Next, we represent the constraint that sections of se-
lected claims must be read. We introduce constraints of the
form srj ≥ csi if claim i is located within section j. Further-
more, we limit accumulated verification cost of the selected
claims by the constraint (

∑
i csi · v(ci)) + (

∑
j srj · r(sj)).

Finally, we set −
∑

i csi · u(ci) as objective function to min-
imize. We illustrate the transformation.

Example 11. We select up to two out of three claims for
verification (i.e., bu = 2) with a time limit of 4 minutes. The
first two claims are located within the same section while the
third one is in a separate section. We have uncertainties 0.3,
0.5, and 0.9 associated with the three claims. Each claim has
an estimated verification time of one minute. We estimate
one minute for skimming a section as well and set wu to
one. We introduce decision variables cs1 to cs3, represent-
ing claim selections, and rs1 and rs2, representing skimmed
sections. Verifying claims requires skimming their sections,
therefore cs1 ≥ sr1, cs2 ≥ sr1, and cs3 ≥ sc2. Under the
constraint

∑
i=1..3 csi ≤ 2 and (

∑
i=1..3 csi) + sr1 + sr2 ≤ 4,

we minimize −0.3 · cs1 − 0.5 · cs2 − 0.9 · cs2. The optimal
solution selects claims two and three.

The time complexity for solving a linear program generally
depends on the solver and the algorithm it selects to solve
a specific instance. However, the number of variables and
constraints often correlates with solution time.
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Table 2: Ratio of supported claims.

AggCheck Tapas TabFact Scrutinizer

IEAL 44.1% 22.7% 36.4% 100%

C19L 22% 22% 38% 100%

Theorem 8. The size of the ILP problem is in O(cc · sc)
where cc is the claim count and sc the section count.

6. EXPERIMENTS
We evaluated Scrutinizer using real data along four di-

mensions: (i) the accuracy and efficiency of the query gener-
ation from text w.r.t. state of the art methods, (ii) the end-
to-end effectiveness of the system in real verification tasks
with domain experts, (iii) the effectiveness and efficiency of
question scheduling, (iv) the impact of the quality of the user
feedback on the results. The code of the system is available
at https://github.com/geokaragiannis/statchecker.

Datasets. Our experiments are based on the two use cases
described in Examples 3 and 4. For the coronavirus claims,
we generated 3M true claims starting from the data (we de-
tail this process in the extended version of the paper [25]).
This synthetic corpus enabled us to bootstrap the classifiers
and we denote it as C19L. For testing the system with un-
seen claims, we analyzed the log of more than 30K claims
tested by users on the website. We found that around 60%
of the claims are statistical and, among those, we have the
datasets to verify 70%. From the claims that the system
can check, we manually annotated 55. For the IEA claims,
we obtained a document of 661 pages, containing 7901 sen-
tences, and the corresponding corpus of manually checked
claims, with check annotations for every claim from three do-
main experts. The annotations cover 2053 numerical claims,
out of which we identified 1539 having a formula that occurs
at least five times in the corpus. We denote the resulting
dataset as IEAL. After processing the claims, we identify
1791 relations, 830 row indexes, 87 columns, and 413 formu-
las. Around 50% of the values for all properties appear at
most 10 times in the corpus, with the top 5% most frequent
formulas appearing at least 8 times.

6.1 Statistical Claim to Query
We compare the performance of our query generator so-

lution against three state of the art systems. The first, Ag-
gCheck [23], translates statistical claims into SQL queries
for verification. The second, TabFact, exploits pre-trained
language models (LMs) to encode the linearized table (taken
as input) and a statement into continuous vectors for ver-
ification [6]. We fine-tuned the LM with the training ex-
amples in our experiments. The third, Tapas, is a ques-
tion answering system that extends BERT’s architecture to
encode tables as input [16]. Its pretrained semantic pars-
ing model takes as input a sentence and a table obtaining
state-of-the-art accuracy in several datasets. We tried au-
tomatically translating claims to questions as pioneered by
the ClaimBuster system [14]. The precision was however not
satisfactory (e.g., we did not obtain any questions for 7 out
of the 20 IEA claims considered next), upper-bounding the
precision of even a perfect natural language query interface.
Instead, we manually translated claims into questions.

Table 3: Verification accuracy on the small datasets.

Tapas TabFact AggCheck Scrutinizer

C19S 0.64 0.76 0.4 0.80

IEAS 0.07 0.5 0.5 0.65

Both natural language baselines have limitations on the
input data and on the query space. However, they report top
performance in semantic parsing datasets because the ma-
jority of examples in these are limited to one (small) relation
and simple operations [6, 16]. These limitations are reflected
in the smaller percentage of claims that the baselines can
handle with their set of functions, as reported in Table 2.
One of the reasons why Scrutinizer covers a much larger
number of claims is its ability to combine multiple functions
in the verification expression. More than 22% of the claims
in IEAL has a total of three or more variables and func-
tions (42% for log claims in C19L), we observed expressions
with up to 14 operators. To enable a comparison against
the baselines, we selected a subset of suitable claims from
our datasets. We automatically identified explicit claims
that require only one relation for the verification and with
mathematical operations supported by both baselines. We
denote these simpler datasets as C19S and IEAS. After the
selection, these small datasets contains 0.92% and 15.6% of
the claims in the original C19L and IEAL, respectively.

All baseline methods require the associated relation as in-
put, so we fed the same information also to Scrutinizer.
For Tapas, we limit the input to a sample of 11 tuples, in-
cluding the one needed to verify the claim, as the system
fails with the entire relation as input. For Scrutinizer
and TabFact, the training set contains 3000 claims, while
Tapas and AggCheck have no training step. Notice that
for Scrutinizer we use the top-10 output from the classi-
fiers without relying on the user feedback in this experiment.

Table 3 reports the results of the experiments with all
systems on the test claims filtered from the large datasets to
be supported by the baselines (25 test claims for C19S and
20 for IEAS). We observe that Scrutinizer outperforms all
the baselines. Moreover, only AggCheck and Scrutinizer
return a query to “explain” their decision, while the others
are not immediately interpretable. It is also evident that
Coronavirus claims are easier to handle as the number of
operations, rows and attributes is smaller than for the IEA
claims. For C19S, Scrutinizer fails only for claims which
requires formulas that it has not learnt yet. In terms of
execution times, Scrutinizer took a total of 0.03 seconds
to test all C19S claims (Tapas 991, TabFact 23) and 0.68
for all IEAS tests (Tapas 944, TabFact 18). For training,
Scrutinizer took 108 (C19S) and 164 (IEAS) seconds,
while TabFact took 4320 and 650, respectively.

6.2 User Study
In this experiment, we involved seven domain experts from

the institution to measure the benefit of our system com-
pared to the traditional manual workflow for verification.
We trained Scrutinizer with all the annotated statistical
claims and randomly selected 43 claims among the ones with
the 10 formulas that cover the majority of the claims. As
we only have access to the correct version of the claim, we
randomly selected 25% of them to inject errors.
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Figure 4: Number of claims verified in 20 minutes
by checkers with the manual process (M1–M3) and
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Figure 5: Average time to verify claims of increasing
complexity with the Manual and System processes.

Three experts have been randomly assigned to the Man-
ual process and the remaining four to the System-assisted
process. We gave them instructions to execute the test with-
out interruptions and without collaboration. Three claims
(two correct, one incorrect) have been used for training on
the new process and the remaining 40 for the study. The
task given to the experts was to verify as many claims as
possible in 20 minutes, given access to their traditional tools
in the manual process (spreadsheets and databases) and to
our system only in the second case. The order of the claims
has been fixed to allow comparison among experts and the
time for checking every claims has been registered.

We distinguish three cases: skipped claims, claims that
have been correctly labelled, and incorrect decisions. Re-
sults for each checker are reported in Figure 4. Consider-
ing correct and incorrect checks, on average a user verifies
7 claims manually and 23 claims with Scrutinizer in 20
minutes. Users tend to skip a comparable amount of claims
in both settings. In the System process, a few claims have
been incorrectly checked. Those are all correct claims la-
belled as incorrect. However, by using simple majority vot-
ing over three checkers, the accuracy of the aggregate an-
swers is 100% for both the Manual and the System groups.
There was only one claim where verification time using the
tool surpassed the traditional manual verification time. Af-
ter investigating this case, it turned out that this was due to
sequential checking. The user consulted a relation different
from what we were expecting him to choose. The different
relation led him to the correct answer, but such relation was
used also in the previous question with the same primary key
and attributes values, making this claim very fast to verify.

We also report in Figure 5 average verification time and
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Figure 6: Accumulated verification time over verifi-
cation period.

standard deviation for the two groups of checkers with claims
of increasing complexity. The claim complexity is the sum of
the elements in the query to verify it: number of key values,
attributes, operations, constants and variables. Checkers
using Scrutinizer take on average less than half the time
to verify claims of the same complexity. We report in the
plot claims for which at least two checkers have been able
to process it. We are therefore not showing in the plot a
checker using Scrutinizer who took on average 29 seconds
to verify two claims of complexity 14. We remark that for
one claim of complexity 6, it took 203 seconds for one of
the Manual users to verify it, while for the same claim the
slowest System user spent 66 seconds on the same task.

We conducted the study on a laptop (1.80GHz x 8 i7 CPU,
32 GB of memory). For any claim, testing a classifier took
less than 0.2 seconds and query generation took less than
half a second (0.35 seconds on average).

6.3 Simulation
In the previous subsection, we have demonstrated that

Scrutinizer decreases verification overheads for single claim
batches. Next, we study the efficiency of Scrutinizer when
verifying entire reports. Verification time for entire reports
is typically in the order of months for IEA. Hence, we can-
not use another user study. Instead, we created a simulator,
based on the results of our initial user study. We simulate
the verification of the 2018 IEA world energy outlook report,
using the original claims and original data. We assume a
team of three fact checkers (which is typical for IEA). We
simulate a “cold start” scenario, meaning that our classifiers
have no initial training data. Instead, they use claim labels
provided by simulated fact checkers. This corresponds to
the worst case for our system. It represents a scenario in
which the very first version of a new report is received and
verified. Our model for verification time per claim is based
on time measured in the user study. It takes into account re-
duced verification overheads once proposed query fragments
are accurate. We compare three baselines. First, we con-
sider manual verification (“Manual”) which is the current
default. Each claim is verified without any computational
support. Second, we consider a simplified version of Scru-
tinizer. This version (“Sequential”) does not optimally re-
order claims, as described in Section 5.2, but verifies them
sequentially (i.e., in document order) instead. We compare
those two approaches against the Scrutinizer system. For
Sequential and Scrutinizer, we assume that ten answer
options are shown per property. For Scrutinizer, we use
claim batches of size 100, after which we retrain classifiers
and select the next claims to verify via ILP. Our simulator is
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Figure 7: Evolution of Scrutinizer and sequential
average accuracy over verification period.

implemented in Python 3, using Gurobi 9.0.1 as ILP solver.
Experiments were executed on a MacBook Pro with 2.4 GHz
Intel Core i5 processor and 8 GB memory.

Table 4: Summary of simulation results.

Manual Sequential Scrut.

Time (Weeks) 4.1 2.1 1.7

% Savings - 49% 59%

Avg. Accuracy - 40% 47%

Max Accuracy - 46% 53%

Comp. (Mins) - 14 28

Table 4 summarizes simulation results. We report total
verification time for all three fact checkers, assuming an
eight hours work day and a five day week. We make the
following observations. First, using Scrutinizer reduces
verification overheads by more than factor two (circa 60%).
This is consistent with the results of our user study. At the
same time, it is remarkable since we consider a cold start sce-
nario. The results show that, given a sufficiently large doc-
ument to verify, the initial warmup period of the classifiers
does not impact overall performance by too much. Second,
we observe a positive impact due to claim ordering. While
using Scrutinizer without that feature is still helpful, cost
savings increase when claims are systematically prioritized.
We performed this evaluation also with classifiers with lower
accuracy and in all experiments Scrutinizer took less over-
all time than the baseline. Table 4 shows that, in the lat-
ter case, the average (and maximal) quality of classification
over the entire period improves. Figure 6 shows that Scru-
tinizer and the sequential baseline are near-equivalent at
the beginning of the classification process. Claim ordering
pays off more and more as verification proceeds. At the
same time, computational overheads are negligible for all
compared systems. Scrutinizer spends 15 minutes in total
to plan optimal question sequences, and for selecting opti-
mal claims via ILP. The remaining 13 minutes are due to
retraining classifiers.

Figure 7 analyzes classifier accuracy as a function of veri-
fication time. Scrutinizer has initially a lower accuracy as
it selects claims that have low classifier confidence (therefore
useful for learning) but are relatively cheap to verify. Soon,
active learning starts paying off and the accuracy of Scruti-
nizer dominates the baseline. Scrutinizer postpones veri-
fying particularly expensive claims that are associated with
low classifier confidence. Once running out of other options,
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Figure 8: Evolution of classifier accuracy over veri-
fication period.

1 5 10 15
0.2
0.4
0.6
0.8

Top k

A
cc

u
ra

cy
(%

)

Column Relation Row Index Formula

Figure 9: Top k accuracy for different Scrutinizer
classifiers as a function of k.

those claims are verified at the very end (leading to a drop
in accuracy).

Figure 8 shows accuracy for Scrutinizer (with claim or-
dering) according to classifier type. The effect discussed
in the last paragraph (a steep increase followed by a drop
towards the end) still hold when considering classifiers sepa-
rately. Further, we notice that certain properties are harder
to infer from text. For instance, inferring row indices is
among the hardest classification tasks. This is intuitive as
the classification domain (i.e., number of rows) is typically
larger than for other classifiers (e.g., columns).

Finally, in Figure 9, we analyze accuracy for the top-k
labels and for different classifiers. In most cases, classifiers
reach most of their potential with the first 10 entries.

6.4 Quality of User Feedback
We measure the impact of the quality of the annotations in

three experiments: by injecting synthetic errors, by varying
the size of the training data, and by training the models
with the noisy examples gathered from the Web users of
the system. We then repeat each experiment three times
and report the average accuracy. We report the results for
k = 5, as this is the default value in our experiments.

We start with the study of how the label error rate in the
IEAL training data affects the classifier accuracy. For each
property, we randomly split the annotated claims into train-
ing and test sets (0.9/0.1 ratio). We then select a percentage
of training claims at random and change their target label
with one of the possible labels (minus the correct one). Fig-
ure 10 shows how accuracy varies as a function of the error
rate for top-5 predictions. With an increasing number of
mislabelled data points, all classifiers show decreasing accu-
racy. However, even with up to 30% error rate, the results
are close to the case without noise. In our experiments, IEA
checkers error rate is below 10% and even Web site users do
not exceed the 30% rate. Finally, as expected, the accuracy
gets close to random guessing for very high ratio of error
injection (0.9) and classifiers with a small number of possi-
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Figure 10: Classifier accuracy as a function of the
percentage of erroneous training claims.

Table 5: Accuracy on C19L vs. training data quality.

Relation Column Row Index

Web crowd 0.84 0.04 0.74

Generated 1 0.98 0.96

ble outputs perform better at any rate. We observe similar
patterns also with top-1 results.
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Figure 11: Accuracy versus training set size.

In a second experiment, we vary the train/test ratio by
sampling increasing portions from the dataset and testing
on the others. Figure 11 shows how properties with high
number of classes (e.g., row index) perform poorly when the
training data is small compared to properties with a low
number of classes (e.g., column).

Finally, we report on an experiment conducted with clas-
sifiers trained with the 1388 answers collected from our Web
interface for the test dataset of C19L. Table 5 shows that,
even in a very noisy setting, without majority voting to fil-
ter out incorrect answers, the classifiers for Relation and
Row Index perform well, but accuracy for the Column clas-
sifier is very low. In C19L, the number of classes when
classifying relations, rows, and columns, are all comparable.
However, the semantics of claim text fragments tends to be
time-sensitive for the column classifier alone (e.g., semantics
of the expression “this month”). If re-training the column
classifier each month (using labels collected in that month
alone), accuracy varies between 0.12 to 0.49 for the months
January to June. Detailed results can be found in the ex-
tended technical report [25]. While we did not collect user
answers for the formula, we manually annotated 40 real ex-
amples from the log for the Formula classifier. We picked
two formulas that were not in the synthetic training data,
i.e., max(a) and max(a/b), with 20 labels each. We then
incrementally added them to the training data and tested
on the remaining claims. The results show that the system

is able to learn the two new formulas after 12 examples per
class. Also, in a small experiment described in more detail
in the technical report [25], we verified that classifier confi-
dence is significantly higher for claims translating to queries
that match the current template (confidence of 0.39 versus
0.94). We plan to integrate mechanisms to automatically
detect required expansions of the current template.

7. RELATED WORK
Scrutinizer targets the verification of numerical claims

from raw data. Our scope differs from prior work not fo-
cused on verification (e.g., work on identifying check-worthy
claims [14, 22] or on studying misinformation spread [38,
9]), from prior work verifying claims given as logical for-
mulae (e.g., for verifying claim robustness [46]), from work
on verifying claims from different types of data (e.g., Web
documents [34, 42, 43] or databases of previously checked
claims [41, 27, 15]), and from work focused on different claim
types (e.g., claims associating entities with non-numerical
properties [7, 39, 12, 11, 19]). Scrutinizer connects to
work on explainable fact checking [30, 10, 2] as it verifies
claims via queries whose structure can be explained to users.

Scrutinizer relates to prior efforts on data-driven analy-
sis of statistical claims. BriQ can map one explicit claim to
the input dataset and supports only 6 operations for a single
user [20]. StatSearch considers a corpus of relations, but
supports only SP queries (no functions) and can search (not
verify) one explicit claim with a single user [5]. The clos-
est work is the AggChecker system [23] in that it translates
statistical claims into SQL queries for verification. Scruti-
nizer supports however a richer query model (see Section 6),
it assumes verification by a crowd of fact checkers (instead of
single users), and it supports verification of long documents
(as opposed to short texts) by features such as question re-
ordering for active learning. Prior work on mixed-initiative
fact checking [13] does not translate claims to SQL queries.

We translate text to SQL queries, thereby connecting to
prior work on natural language query interfaces (NLQI) [1,
32, 47, 31, 37, 44, 21] and learning query interfaces [21, 33]
in general. Our scenario differs in multiple ways. First,
most prior work assumes that domain-specific training data
is either already available [47] or not required [31, 32, 1].
We propose methods for efficiently acquiring domain-specific
training data and show experimentally that generic methods
do not work for our use cases [6, 16]. Second, prior work [1,
32, 47, 31, 37, 44, 21, 33] typically considers translation
of single queries. Here, we consider large claim collections.
This motivates claim context as a feature (see Section 4)
or claim selection as a planning problem (see Section 5).
Finally, unlike prior work [21], we decompose query trans-
lation into sequences of simple questions (see Section 5.1)
as writing entire SQL queries is beyond the capabilities of
domain experts employed for verification.

8. CONCLUSION
We introduced Scrutinizer, the first system for crowd-

sourcing the verification of general statistical claims. Our
solution effectively minimizes the amount of work needed
by a group of domain experts to verify textual claims in a
document. We find that professional fact checkers from IEA
verify claims twice as fast using Scrutinizer, compared to
their traditional workflow.
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sur l’épidémie de covid-19. I’M Tech
(https://bit.ly/30EIk41), 2020.

[9] E. Ferrara, O. Varol, C. A. Davis, F. Menczer, and
A. Flammini. The rise of social bots. Commun. ACM,
59(7):96–104, 2016.

[10] M. H. Gad-Elrab, D. Stepanova, J. Urbani, and
G. Weikum. Exfakt: A framework for explaining facts
over knowledge graphs and text. In WSDM, pages
87–95, 2019.

[11] M. Gardner and T. M. Mitchell. Efficient and
expressive knowledge base completion using subgraph
feature extraction. In EMNLP, pages 1488–1498, 2015.

[12] M. Gardner, P. P. Talukdar, J. Krishnamurthy, and
T. Mitchell. Incorporating vector space similarity in
random walk inference over knowledge bases. In
EMNLP, 2014.

[13] W. Gatterbauer, M. Balazinska, N. Khoussainova, and
D. Suciu. Believe It or Not: Adding Belief Annotations
to Databases. Psychological science : a journal of the
American Psychological Society / APS, 16(7):17, 2009.

[14] N. Hassan, F. Arslan, C. Li, and M. Tremayne.
Toward automated fact-checking: Detecting
check-worthy factual claims by claimbuster. In KDD,
2017.

[15] N. Hassan, G. Zhang, F. Arslan, J. Caraballo,
D. Jimenez, S. Gawsane, S. Hasan, M. Joseph,
A. Kulkarni, A. K. Nayak, V. Sable, C. Li, and
M. Tremayne. Claimbuster: The first-ever end-to-end
fact-checking system. PVLDB, 10(12):1945–1948,
2017.

[16] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and
J. M. Eisenschlos. TAPAS: weakly supervised table

parsing via pre-training. In ACL, 2020.

[17] J. Horwitz. Facebook’s fact checkers fight surge in fake
Coronavirus claims, 2020.

[18] M. Hosseini, M. Hilhorst, I. de Beaufort, and
D. Fanelli. Doing the right thing: A qualitative
investigation of retractions due to unintentional error.
Science and engineering ethics, 24(1):189–206, 2018.

[19] V. Huynh and P. Papotti. Buckle: Evaluating fact
checking algorithms built on knowledge bases.
PVLDB, 12(12):1798–1801, 2019.

[20] Y. Ibrahim, M. Riedewald, G. Weikum, and
D. Zeinalipour-Yazti. Bridging quantities in tables and
text. In ICDE, pages 1010–1021, 2019.

[21] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and
L. Zettlemoyer. Learning a neural semantic parser
from user feedback. In ACL, pages 963–973, 2017.

[22] I. Jaradat, P. Gencheva, A. Barrón-Cedeño,
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