
Fair Task Assignment in Spatial Crowdsourcing

Zhao Chen †, Peng Cheng ∗, Lei Chen †, Xuemin Lin ∗,#, Cyrus Shahabi ‡
†The Hong Kong University of Science and Technology, Hong Kong, China

{zchenah, leichen}@cse.ust.hk
∗Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

pcheng@sei.ecnu.edu.cn
#The University of New South Wales, Australia

lxue@cse.unsw.edu.au
‡ University of Southern California, California, USA

shahabi@usc.edu

ABSTRACT
With the pervasiveness of mobile devices, wireless broadband and
sharing economy, spatial crowdsourcing is becoming part of our
daily life. Existing studies on spatial crowdsourcing usually focus
on enhancing the platform interests and customer experiences. In
this work, however, we study the fair assignment of tasks to work-
ers in spatial crowdsourcing. That is, we aim to assign tasks, con-
sidered as a resource in short supply, to individual spatial workers
in a fair manner. In this paper, we first formally define an online
bi-objective matching problem, namely the Fair and Effective Task
Assignment (FETA) problem, with its special cases/variants of it to
capture most typical spatial crowdsourcing scenarios. We propose
corresponding solutions for each variant of FETA. Particularly, we
show that the dynamic sequential variant, which is a generalization
of an existing fairness scheduling problem, can be solved with an
O(n) fairness cost bound (n is the total number of workers), and
give an O(n

m
) fairness cost bound for the m-sized general batch

case (m is the minimum batch size). Finally, we evaluate the effec-
tiveness and efficiency of our algorithm on both synthetic and real
data sets.

PVLDB Reference Format:
Zhao Chen, Peng Cheng, Lei Chen, Xuemin Lin and Cyrus Shahabi. Fair
Task Assignment in Spatial Crowdsourcing. PVLDB, 13(11): 2479-2492,
2020.
DOI: https://doi.org/10.14778/3407790.3407839

1. INTRODUCTION
Recently, with the rise of offline-to-online (O2O) and sharing

economy applications, spatial crowdsourcing has become a popu-
lar business model with plenty of applications emerging (e.g., Task
Rabbit [3], Seamless [5] and Eleme [4]). In these applications, spa-
tial crowdsourcing platforms assign workers to suitable tasks, then
the workers physically move to the target locations to perform the
tasks. Although there has been a lot of existing studies on spa-
tial crowdsourcing [13, 22, 28, 35], the fairness of task assignment
from the workers’ perspective (i.e., whether the workers are as-
signed with the same number of tasks if they work for the same
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407839

(a) Round 1 (b) Round 2 (c) Round 3

Figure 1: A Motivation Example.

amount of time), has not been well studied. The motivation of spa-
tial workers is usually to receive a monetary reward for performing
their assigned tasks. From the perspective of workers, tasks are one
type of resource and the distributions of tasks may change dramati-
cally at different locations/times. When many workers are compet-
ing for the short-supplied tasks during a time period, there should
be an appropriate approach to allocate tasks fairly to workers.

For example, on the online ride hailing platforms (e.g., Uber [7]
and Didi Chuxing [1]), passengers’ requests arrive dynamically
within the entire city and the platform assigns them to nearby drivers
(workers) round by round (e.g., every 2 seconds as a round [8]).
When there are fewer passengers than drivers in some region in a
given round, some drivers have to wait for the next round to be as-
signed a task. Task assignments are usually determined according
to some global objectives such as maximizing the throughput of
platforms (i.e., the number of matched task-worker pairs) [22] or
minimizing the total moving distance of all vehicles [36]. However,
the interest of individual worker is usually ignored during assign-
ment, resulting in some workers to wait for many rounds without
any tasks assigned in some extreme cases. It is an unfair situa-
tion that workers spending similar hours on the platform receive
inequitable incomes. What is worse, unfairly treated workers may
reduce working hours or permanently leave the platform, eventu-
ally harming the platform.

To illustrate, consider the following example.

Example 1 (An Example of Fair Task Assignment in Spatial Crowd-
sourcing). As shown in Figure 1, in the example of the fair task as-
signment in spatial crowdsourcing, three workers (drivers), w1 ∼
w3, and three tasks (requests) r1 ∼ r3 are arriving at the platform
in different rounds. Suppose the platform, to minimize the total
travel cost, utilizes the greedy strategy to assign each request to its
nearest driver. Specifically, as shown in Figure 1(a), driver w2 is
the closest worker to request r1, thus the platform assigns driver
w2 to r1. In round 2 as shown in Figure 1(b), one new driver w3

and one new request r2 appear, since w1 and w3 have the same
distance from r2, the platform randomly assigns w3 to r2. Sub-

2479

sequently, in round 3 as shown in Figure 1(c), the platform sends
w1 to a newly arrived request r3. We notice that w1 waits for 2
rounds to receive a task while other workers can serve riders in
one round from the time they join the platform, which is unfair for
w1. The platform can be more equitable by assigning r2 to w1 at
round 2 and r3 to w3 at round 3. In this case, no worker observes
a significantly longer waiting time than others.

In Example 1, we observe that worker w1 has chances to serve
all the three tasks r1 ∼ r3. However, as the greedy strategy is not
fair, w1 waits for 2 rounds until r3 arrives.

There are several challenges on how to perform fair assignment.
First, we need to formally define what is fairness in spatial crowd-
sourcing scenarios. Although the straightforward definition of fair-
ness is to treat everyone equally, the rigorous definition could be
quite diverse in different contexts. In this work we define the worker
fairness by extending a common concept, Fagin-Williams share
(FW-share), proposed in the existing study of Carpool Problem [18].
Specifically, FW-share is designed for one-to-many matching with
equal share, and we extend it to a generalized definition for many-
to-many matching with variable share.

With the definition of fairness, the next problem is how to com-
bine it with existing objectives such as minimizing total travel cost
or maximizing total revenue. In other words, the fair assignment
should optimize for the fairness cost without sacrificing other ob-
jectives. To address this, we formally define the Fair and Effec-
tive Task Assignment problem (FETA) with the optimization goal
of maximizing a linear combination of the minimum individual
worker fairness and the total utility. FETA is a bi-objective online
matching problem, and we show that its static version is NP-hard.

We further define several special cases of FETA to capture vari-
ous spatial crowdsourcing scenarios. Specifically, the single batch
case of FETA is a static bi-objective matching problem for which
we design a novel polynomial time exact algorithm for it. The dy-
namic sequential case of FETA is an online one-to-many matching
problem which generalizes the common Carpool Problem, and we
improve the existing Carpool algorithm to solve it with a similar
O(n) bound of fairness cost. Finally, for the general FETA with
dynamic many-to-many batches, we develop an algorithm by in-
tegrating the previous techniques, which can achieve a bound of
O(n

m
) for m-sized batches.

To summarize, we have the following contributions:

• We study the worker fairness problem in spatial crowdsourcing
and offer a formal problem definition in Section 2.

• We discuss the formal measurement of fairness cost in details
and give an example of fairness measure function for many-to-
many matching in Section 3.

• We study variants of FETA and design corresponding algorithms
for each variant in Sections 4, 5, 6 and 7.

• We conduct extensive experiments on real and synthetic data sets
to show the effectiveness and efficiency of our proposed algo-
rithm in Section 8.

Finally, Section 9 summarizes related works. Some supplemen-
tary proofs are included in the Appendix.

2. PROBLEM DEFINITION
In this section we introduce the basic concepts of spatial crowd-

sourcing, then give the formal definition and evaluation metric.

Table 1: Symbols and Descriptions

Symbol Description

G = 〈W,R,E〉 a bipartite graph representing one batch of con-
nected requests and workers.

Rwi the valid request set of worker wi

Wrj the valid worker set of request rj

F (G,wi) the deserved bonus of wi in G

cxwi the fairness cost of wi in batch x

λxw the cumulative fairness cost of wi at the xth batch

uij the utility score of i, j being matched

µxwi the cumulative utility of workerwi at the xth batch

2.1 Basic Concepts of Spatial Crowdsourcing

Definition 1 (Spatial Workers). Letwi denote a worker, and he/she
is active at location li on time bti.

Definition 2 (Spatial Requests/Tasks). A spatial request rj is a
three-tuple 〈lj , tj , bj〉, where tj is the creation time, lj is the re-
quest location, and bj ∈ [0, Bmax] is the request bonus.

Following existing studies [37], we also assume that each task
requires exactly one worker to accomplish and has no failure or
partial completion status. Spatial crowdsourcing usually has three
matching modes: the static mode, the online mode and the batched
mode [32, 33]. Without loss of generality, our definitions are based
on the batched mode settings, where available workers and unas-
signed tasks are matched for each successive time period. The
static mode, where all workers and tasks are given in advance, can
be considered as one huge batch with all the workers and tasks. The
online mode, where workers/tasks comes one-by-one, can be con-
sidered as a special case of batched mode with all 1-size matchings.
We use a weighted bipartite graph, namely worker-task graph, to
represent a batch.

Definition 3 (Worker-Task Graph). A graph G = 〈W,R,E〉 is
given at each spatial crowdsourcing batch, where the worker setW
and the request set R are the bipartite nodes at each side, and every
worker-and-task pair 〈wi, rj〉 ∈ E has a utility uij ∈ [0, Umax].

The utility is supposed to be a general indicator which repre-
sents overall interests of the platform/system. It can be any perfor-
mance representations that differ between assignments, such as the
task suitability and worker travel cost [14, 32], or a combination of
them. The cost of a worker to finish a task is not explicitly modeled
in Definition 2 and 3 because either they are negligible or can be
modeled as the utility penalty.

Due to the constraints of spatial distance and the worker ability
(such as the seat limit for ridesharing), not all workers and requests
can be matched together. If a worker wi and a request rj satisfies
all constraints, they are valid to be matched together with a certain
amount of utility. The utility can be any performance representation
such as the task suitability and worker travel cost [14,32]. Without
loss of generality, worker-task graphs are assumed to be complete,
as an invalid pair can be considered as one pair with 0 utility.

2.2 The Fair and Effective Task Assignment
Problem

Definition 4 (Worker Fairness Measure Function). Given a worker-
task graph G = 〈W,R,E〉, a worker fairness measure function

2480

(measure function for short) F (·) is a mapping from each worker
wi ∈W to their deserved bonus in G s.t.∑

wi∈W

F (G,wi) =
∑
rj∈R

bj

The deserved bonus of wi in G is the bonus of his/her assigned
tasks in the optimally fair assignment, which will be introduced in
Section 3. Following the convention in existing works [10, 18, 26],
we define the fairness cost of a worker as the difference between
his/her deserved bonus proportion and his/her actual allocated pro-
portion.

Definition 5 (Worker Fairness Cost). Given a worker-task graph
Gx = 〈Wx, Rx, Ex〉, a matching Mx ⊆ Ex on Gx and a measure
function F , the fairness cost cxwi

of each wi ∈Wx is:

cxwi
=


F (Gx, wi)− bj , ∃rj s.t. 〈wi, rj〉 ∈Mx

F (Gx, wi), ∀rj s.t. 〈wi, rj〉 /∈Mx

(1)

The intuition of Definitions 4 and 5 is that the discrete request
bonus can be divided arbitrarily into any amount of shares and each
worker deserves some portion of it. A worker wi is not matched
means that the allocated proportion to him/her is 0, then the fairness
cost should be his/her deserved bonus proportion, i.e., F (G,wi).
wi is matched with a task rj indicates that the allocated proportion
ofwi is bj , then the fairness cost is F (G,wi)−bj (can be negative).
More details about fairness principles are introduced in Section 3.

With the formal definition of worker fairness cost, we define the
fair and effective task assignment problem as below.

Definition 6 (Fair and Effective Task Assignment Problem, FETA).
Given a worker fairness measure function F and a series of X
worker-task graphs G = {G1, G2, ..., GX} arriving one by one,
where Gx = 〈Wx, Rx, Ex〉, FETA is to find a matching Mx for
each Gx such that the following objective is maximized

(1− α)
∑

x=1..X

µx

X
− α max

wi∈W
λX
wi

(2)

where:
µx =

∑
〈i,j〉∈Mx

uij

|Rx| is the x-th batch utility; and

λX
wi

=
∑

x=1..X

cxwi
is the cumulative fairness cost of wi; and

α ∈ [0, 1] is the fairness importance parameter.

There are two separated components in the goal of FETA: maxi-
mizing of the total utility and minimizing of the maximum fairness
cost. The weight parameter α determines how important fairness
cost is compared with utility. FETA can be categorized as a bi-
objective batch-based matching problem and its combined goal is
the linear weighted form of bi-goals [16]. A brief introduction of
multi-objective optimization is given in Section 4.1.

The general case of FETA is designed for the spatial crowdsourc-
ing in batch mode. When |Rx| = 1 and ∀x ∈ [1, 2, · · · , X], it be-
comes a dynamic sequential case FETA fitted for the online mode
of spatial crowdsourcing. When X = 1, it is a single batch case
FETA. When all batches are given in advance, it is the static case
FETA. In addition, FETA is calledm-sized when eachGx ∈ G has
at least m tasks.

2.3 Performance Evaluation Metric of FETA
FETA is essentially an online problem because the worker-task

graphs are given one by one dynamically. Usually the performance

of online algorithms are evaluated by the competitive ratio [11],
which represents how much the online result is worse than the static
optimal result. While the static version of FETA, with the whole
graph series given in advance, is an NP-hard problem (shown in
Section 5). Therefore, the competitive ratio is not appropriate for
FETA, thus we use the actual online result instead. In fact, us-
ing the online result directly for performance evaluation is also the
convention in most existing fairness scheduling works [15, 18, 26].

In our analysis, we assume that the input of FETA is given by
an adaptive adversary following the convention in the existing
studies [10, 15]. Briefly speaking, an adaptive adversary knows all
information about how the algorithm runs and can adjust its input
of future rounds accordingly. Adaptive adversaries can give those
worst case problem instances and thus are widely used to analyze
the upper bound of online algorithms. For a detailed introduction of
adversary types and the results of fairness scheduling with different
types of adversaries, please refer to the related works [10, 11].

3. WORKER FAIRNESS MEASUREMENT
In this section, we first review some existing works about fair-

ness measurement, i.e., FW-share proposed for the Carpool prob-
lem. The existing FW-share method, based on some intuitive fair-
ness principles, can handle one-to-many matching but is not suit-
able for many-to-many matching. We then discuss some fairness
measurement principles for the many-to-many matching scenario
and propose a new fairness measurement function.

3.1 Existing Studies for One-to-Many Match-
ing

Fagin and Williams proposed a simply defined fairness schedul-
ing problem named the Carpool Problem [18]. Given a carpool
with total n persons to go to work together in N days and only a
subset of them may appear. On each day, they need to choose a
driver as fairly as possible. They first designed a fairness measure-
ment, namely Fagin-Williams share (FW-share), and then formally
define the goal of minimizing the largest owed credit amount (i.e.,
fairness cost). We introduce their definition of FW-share here.

Definition 7 (FW-Share Fairness Measurement [18]). For an m-
sized subset among a n person carpool, everyone owes the same
credits as: FW (n,m) = lcm(1,2,...,n)

m
, and the driver earns lcm(1,

2, ..., n) credits (lcm means the least common multiple).

For example, if there are 5 persons in a carpool, for convenience,
we set the cost of each drive as lcm(1, 2, 3, 4, 5) = 60. For a day
with 3 persons, each of them share 60/3 = 20 of the cost and
the select driver earn 60 credits. After the day, the driver’s credit
will increase by 60−20 = 40, and the two passengers’ credits will
decrease by 20. Other people are not affected. The cumulative FW-
share based measurement indicates the ideal credit of each people
in a carpool.

The lcm in the original FW-share definition is used to convert all
shares to integers for easy calculation. Thus, for simplicity, we re-
move the lcm and rephrase it within our problem setting as below.

Definition 8 (FW-Share Worker Portion). Given one request rj and
its valid worker set Wrj in a one-to-many spatial crowdsourcing
matching problem, the deserved proportion of rj for each wi ∈
Wrj is mwi

rj =
bj
|Wrj

| .

The intuition of FW-share worker proportion is to find the de-
served amount of requests that each driver/worker should have.
Specifically, under the ideal fairness-guaranteed setting, each valid
worker should share a portion of the task. The difference between

2481

Figure 2: Example of one batch.

the ideal fair proportion and the actual matched result leads to the
fairness cost in a matching. To find the ideal proportion, we can as-
sume that one task can be split into small parts and finished by mul-
tiple workers together. For example, if the given batch has one task
r and n workers, each worker shares the 1/n proportion of the task
r. In online spatial crowdsourcing, as it is a one-to-many match-
ing mode, we can apply spatial crowdsourcing FW-share worker
proportion to measure the fairness for workers.

D. Coppersmith et al. proposed four simple principles [15] that
a fairness measurement for the Carpool problem should follow and
proved that FW-share, surprisingly, is the only one that satisfies all
of them.

Definition 9 (FW-share principles [15]). A fairness measurement
for the Carpool problem should satisfy the following principles:

• Full Coverage: The total shares of all persons in the whole
schedule should equal to the total number of trips (i.e., the to-
tal times of driving).

• Symmetry: People with the same schedule have the same shares.

• Dummy: Unscheduled people should have 0 share.

• Concatenation: The share of every person should remain the
same in either two separated schedules or the concatenated one.

3.2 Extension to Many-to-Many Matching
As discussed in Section 2, tasks and workers in spatial crowd-

sourcing can arrive batch by batch, and each batch is a many-to-
many matching problem. Although a many-to-many batch can be
separated into several one-to-many batches (as shown in Example
2), we cannot simply apply the FW-share method on the one-to-
many batches as the constraint of worker capacity may be violated.

Example 2. There are three tasks {r1, r2, r3} with correspond-
ing valid worker set Wr1 = {w1, w2},Wr2 = {w1, w2, w3} and
Wr3 = {w1, w2, w3, w4}. For simplicity, we assume that all task
payments are 1 in this example. A direct method to calculate the
proportional share of each worker is to separate the many-to-many
graph into three one-to-many sub-graphs as shown in Figure 2, and
then sum up the single task proportions as defined Definition 8. We
have the result that the ideal share of w1 is 13

12
= 1

2
+ 1

3
+ 1

4
and

the ideal share of w3 is 7
12

= 1
3

+ 1
4

.

In Example 2, the share of w1 is 13
12
> 1, which is not a reason-

able share. In most spatial crowdsourcing applications (e.g., online
car-hailing and food delivery), Once a worker is assigned with a
task, he/she will dedicate to the task for a while. Therefore, even a
worker is valid for more than one task in one batch, he/she can only
be assigned to at most one task. If we calculate the ideal share of
each worker in a batch through simply summing up the ideal shares
of all his/her valid tasks, some workers may have ideal shares larger
than their workload limitation. Thus, the principles for share mea-
surement in the many-to-many matching need to be revised.

We extend the four principles [19] to the many-to-many match-
ing in spatial crowdsourcing scenario as follows.

Definition 10. Principles for Many-to-Many Matching Fairness

• Batch Coverage: For each batch, the total ideal share of all
workers should equal to the total bonus of all tasks.

• Interchangeability: For any two workers w1, w2, if their as-
signments are always interchangeable with the same bonus, they
should have equal share.

• Limited Workload: The share of each worker should not exceed
the maximum bonus of the batch.

Specifically, Batch Coverage and Interchangeability are the nat-
urally extended versions of Full Coverage and Symmetry [19]. Lim-
ited Workload is a new constraint brought by the many-to-many
matching scenario. For example, in Example 2, the maximum
bonus is 1, thus the share of w1 violates the Limited Workload
principle (i.e., 13

12
> 1).

The principles of many-to-many matching is not easy to be fully
satisfied at the same time. For example the fairness calculation in
Example 2 violates the Limited Workload principle. If we adjust it
by scaling down all share to make the largest share equal to 1, then
it violates the Batch Coverage.

We propose a novel total matching count based measurement,
namely Matching Count Share (MC-share), for the many-to-many
spatial crowdsourcing scenario. MC-share satisfies all fairness prin-
ciples discussed in Definition 10. The detailed proof of its satisfac-
tion of the principles for many-to-many matching fairness is pre-
sented in the Appendix B.

Definition 11 (MC-Share). Given a worker-task graph
G = 〈W,R,E〉, for any wi ∈ W , let M be the set of all maxi-
mum matching over G and Mwi ⊆ M be the subset of matchings
including wi, then we define the MC-share fairness measure func-
tion for G as

MCFG(wi) =

∑
wi,rj∈Mwi

bj

|M|

For the bipartite graph in Figure 2, there are total 8 different
maximum matchings. w1, w2 and w3 are matched in 7 match-
ings and w4 is matched in 3 cases. Assuming all tasks have bonus
1, we have MCF (w1) = MCF (w2) = MCF (w3) = 7

8
and

MCF (w4) = 3
8

.
Note that, in one-to-many cases, MC-share is same with FW-

share. Thus, in the rest of this paper, we use MC-share as the fair-
ness measure function consistently.

Next, we analyze several special cases of the FETA problem,
namely the single-batch case of FETA (SBC-FETA), the static ver-
sion of FETA (SV-FETA), the dynamic sequential case of FETA
(DS-FETA) and the general case of FETA. The definitions of dif-
ferent cases are given in the corresponding sections respectively. A
summarized comparison of these cases is given in Table 2.

4. THE SINGLE-BATCH CASE OF FETA
We propose an exact matching algorithm with detailed analyses

for SBC-FETA, which is the foundation of other cases of FETA.
In SBC-FETA, there is one single batch of tasks and workers

only. We will first introduce some basis of bi-objective problem
and then present our solution for SBC-FETA.

4.1 Bi-objective Optimization Problems
Multi-objective problems are the ones having multiple optimiza-

tion goals [16]. The key challenge of multi-objective optimization
problem is to determine the superiority of solutions.

2482

Table 2: Comparison of Different Cases of FETA

Batch No. Batch Size Online

Single-Batch Case (SBC-FETA) 1 unlimited No

Static Version (SV-FETA) unlimited unlimited No

Dynamic Sequential (DS-FETA) unlimited 1 task Yes

General Case FETA unlimited unlimited Yes

For a single-objective problem, a solution s1 is better than an-
other one s2 simply means that the objective function value of s1
is larger/smaller than that of s2. However, in multi-objective opti-
mization problems, since there are more than one objective function
values for each solution, the dominance relationship determines the
goodness of solutions. A multi-objective solution m1 dominates
another one m2 means that m1 is not worse than m2 in all ob-
jectives and better than m2 in at least one objective. If m1 is not
dominated by any other solutions, it is a non-dominated solution.

All non-dominated solutions constitute the non-dominated set
(a.k.a the Pareto-optimal set), which must contain the optimal so-
lutions of any linear weighted goals. Therefore, the ideal result for
a multi-objective problem is to find the exact non-dominated set.
However, it is not easy (usually impossible in polynomial time),
since objectives are not related with each other. We need to tra-
verse through the whole solution space.

SBC-FETA is a bi-objective matching problem because it has
two objective components: maximizing the utility goal and min-
imizing the fairness cost. Although the two goals are not related
and the size of its solution space is O(n!) (all possible matchings),
we find that the problem can still be solved in polynomial time by
utilizing the min-max essence of fairness definition. In the next
part we present our method for SBC-FETA. Algorithm 1 returns
the whole non-dominated solution set, with which our α-balanced
goal in Definition 6 can be achieved by one-pass iterating.

4.2 A Polynomial Time Exact Algorithm
The key idea of Algorithm 1 is to find the maximum utility match-

ing for each min-max fairness cost matching. This can be done in
polynomial time mainly because the amount of all possible min-
max fairness cost values (at most n·(m+1), where n is the number
of workers and m is the number of requests) is much smaller the
size of the whole solution space. This amount is represented by the
number of edges in the fairness graph GF constructed by the pro-
cedure buildFairnessGraph, which takes the original task-worker
graph as the base structure and adds a dummy task for each worker
to represent the situation when the worker is left unmatched.

Next, we explain the main algorithm, namely singleBatchMatch-
ing. First we find a min max matching MF of GF , which can be
solved by any min max matching algorithm (e.g., Threshold [12]).
Note that, MFS prefers real tasks to dummy tasks because a min
max matching must choose an edge with a smaller weight and a real
task always has a lower weight than a dummy task. Then the max
edge weight, L(0), of MF is used to generate the graph GU , which
consists of only edges with weights lower than L(0). With GU we
can find a max sum matching MU (may be not unique) of it, which
must be the matching with the largest total utility and also with
maximum fairness cost L(0). Because there is no perfect matching
with fairness cost value smaller than L(0), we only check fairness
cost values larger than it. For each such value we repeat a similar
process as above to find the maximum utility matching accordingly.
The trick here is that we do not need to find the min max matchings
for these values because such a matching must contains the edge
with the max fairness cost and does not care how other edges with
smaller weights are picked. Thus, in Line 10, the matching M (l)

U is

Algorithm 1: The solution for Single-Batch FETA
Data: a task-worker graphs G = 〈W,R,EF , EU 〉
Result: the whole non-dominated set of matchings for G

1 Algorithm singleBatchMatching()
2 let GF = buildFairnessGraph() ;
3 find GF ’s min-max matching MF ;
4 let L(0) be the largest edge weight of MF ;
5 sort GF edges weights Li,j > L(0) in ascending order as

L = L(1), L(2), · · · , L(n) ;
6 let GU = 〈W,R,EU − {〈wi, rj〉|Li,j > L(0)}〉 ;

7 find GU ’s max sum matching M(0)
U ;

8 for each L(l) = Li,j in L do
9 remove wi, rj and their incident edges Ei, Ej from GU ;

10 find GU ’s max sum matching M(l)
U ;

11 add wi, rj and Ei, Ej back to GU ;

12 add 〈wi, rj〉 to GU and M(l)
U ;

13 return all 〈M(l)
U , L(l)〉 ;

1 Procedure buildFairnessGraph()
2 let GF = 〈G.W,G.R,G.EF 〉 ;
3 for each worker wi do
4 let Li,0 = F (G,wi);
5 add a dummy task node rwi ;
6 add a dummy edge 〈wi, rwi 〉 with weight Li,0;
7 for each task rj do
8 update edge weight of 〈wi, rj〉 as

Li,j = F (G,wi)−Bj ;

9 return GF ;

actually obtained with the edge 〈wi, rj〉 removed. The correspond-
ing perfect max utility matching can be constructed by adding the
edge 〈wi, rj〉 to M (l)

U and its fairness cost is Li,j .
With the traditional notations used for graph matching problem,

the time complexity of Algorithm 1 is O(V 3E) if the max sum
matching in Line 10 of singleBatchMatching is done by Hungarian
Algorithm which costs O(V 3).

5. THE STATIC VERSION OF FETA
For the static version of FETA (SV-FETA), the word static rep-

resents the opposite of the intrinsic online property of FETA. The
only difference of SV-FETA from Definition 6 is that all worker-
task graphs (batches) are given in advance. For most works of on-
line problems, the static version is studied to be a comparison with
the original online version. In this part, we give a brief analysis
of SV-FETA. Particularly, we first show the NP-hardness of it and
then introduce a min cost flow based algorithm which can solve
SV-FETA with a constant number of batches in polynomial time.

5.1 The NP-hardness of SV-FETA
SV-FETA is also a bi-objective optimization problem. However,

SV-FETA has a more complex problem space than SBC-FETA. In
Section 4, the key property we utilized is that the amount of all pos-
sible fairness cost values is at most equal to the number of edges
in the fairness graph of one single batch. While this property does
not hold for multiple batches because the fairness cost is a cumu-
lative value from all matching results. Actually, we find that even
to find one non-dominated solution of a required fairness cost is
NP-complete. The formal result is given in the below theorem.

Theorem 5.1. Given N batches of worker-task graphs and a re-
quired fairness cost λ, the problem of whether there is a matching
can give the fairness cost of λ is NP-complete.

2483

Proof. Our proof is achieved through a reduction from the subset
sum problem [20] to our problem. The subset sum problem is:
given a set S of n integers, is there a non-empty subset S′ ⊆ S
whose sum is equal to T (S′ 6= ∅ and

∑
s∈S′ s = T)?

Given a subset sum problem instance I with a set S of n integers
and a target sum T , we can transform it into our problem with the
following steps:

1. Let smax be the maximum integer in S. For each s ∈ S, we
transfer it to s′ = s

smax
. The new number set is noted as

S′. In addition, we update the target summation value T to
T ′ = T

smax
;

2. Add worker wi and 〈wi, ri〉 for each si ∈ S;
3. For each vi, add a graph Gi with w, wi and ri, and let
F (G,w) = vi, F (G,wi) = 0 and Bi = vi;

4. let the required fairness cost λ = T .
For each graph Gi, if a matching matches ri to w, the fairness

cost remain unchanged; if it matches ri to wi, the fairness cost is
increased by vi. If we can find such a matching s.t. fairness cost is
λ, we then find a subset V ⊆ {vi|i = 1..n} s.t.

∑
v∈V

v = T , which

represents a solution for the original subset sum problem.

Due to the NP-hardness of the above problem, we cannot de-
termine whether there is a non-dominated solution in polynomial
time, thus cannot achieve the exact non-dominated set for SV-FETA
or confirm the optimality of a linearly scaling result. However, the
batch size is the key parameter for the complexity, and we will
show an exact algorithm for those simple instances of SV-FETA
with limited batch size.

5.2 A Solution for SV-FETA
Inspired by the solution for the static Carpool Problem [25], we

design a min cost flow based algorithm for SV-FETA which can
retrieve the whole exact non-dominated set in polynomial time if
the number of batches is constant. The pseudocode is shown in
Algorithm 2.

First let’s check the sub procedure buildCostNetwork. The struc-
ture of the network is based on the existing approach for the static
Carpool Problem [25, 44]. Please refer to [43] for an illustration of
the network structure. The Carpool Problem only cares about the
fairness result but not any other properties such as the total utility.
A maximum flow over such a graph contains a matching with the
best fairness result, which has been proved to be a constant smaller
than 1 ([25]). Although the fairness definition in our problem gen-
eralizes that in the Carpool Problem, this does not affect the cor-
rectness of using this kind of networks. Because the capacity in
Line 8 of buildCostNetwork only cares about the total fairness al-
location but not those of individual edge weights. To handle the
utility goal while maintaining the fairness result, we use the same
network structure and add the flow costs to represent the reversed
utility of each work-task pair. Thus, a min cost flow over our net-
work will give a matching with the same minimum fairness cost
and with a maximum total utility.

The min cost flow over one network gives one non-dominated
solution only. To get the exact non-dominated set, we still need a
method to traverse the whole solution space. The key observation
here is that the total matched times of a worker wi is limited by the
capacity of edge 〈s, vwi〉. Thus, if we adjust these capacity values
1 by 1, the corresponding min cost flow will give the matching also
with maximum total utility but a progressively released minimum
fairness cost. The phrase progressively released means that this
process will finally enumerate all possible fairness costs. This is
because a fairness cost must be caused by a worker be matched less

Algorithm 2: The min cost flow based algorithm for SV-FETA
Data: task-worker graphs G = 〈G1, G2..., Gk〉
Result: the non-dominated set of matchings for G

1 Algorithm staticMatching()
2 let N = buildCostNetwork() ;
3 find N ’s min cost flow F0 from s to t ;
4 all 〈wx

i , r
x
j 〉 edges in F0 forms a matching M0;

5 for each worker wi do
6 let ai be the total appearance time of wi ;
7 let Ci = [0, ai] be the possible capacity set of wi ;

8 for each capacity combination ccy in ×
i=1..n

Ci do

9 update capacities from s to vwi for each wi according to ccy ;
10 find the min cost flow Fy of update capacities ;
11 form the matching My with Fy if My is perfect;

12 return M0 and all My ;

1 Procedure buildCostNetwork()
Data: task-worker graphs G1, G2..., Gk

2 init the cost network N with a source s and a sink t ;
3 for each Gx = 〈Wx, Rx, Ex〉 do
4 add a subnetwork Nx with the same strcture as Gx ;
5 add edge 〈wx

i , r
x
j 〉 in Nx be and with capacity as 1 and cost

as Umax − uij ;

6 for each worker wi do
7 create a worker node vwi ;
8 add an edge from the source s to vwi with capacity as∑

x∈[1,k]
F (Gx, wi) and cost as 0 ;

9 add an edge from vwi to its every appearance in
Nx, x ∈ [1, k] with capacity 1 and cost 0 ;

10 add an edge from each task to the sink t with capacity 1 and cost
0 ;

11 return N ;

than the time he/she deserves. Decreasing a worker’s capacity by 1
in the network while increasing the other’s by 1 will force a match-
ing belong to him/her goes to the other one. In the loop at Line 8
to Line 11 of staticMatching, the algorithm actually tries all possi-
ble fairness costs by enumerating over all capacity combinations of
all workers. The maximum matched times of a worker cannot be
larger than the times he appears in different batches and the total
batches is supposed to be a constant number k. In the mean time,
some such combinations have more decreases than increases, thus
do not satisfy the perfect matching constraint. Then, we know the
total amount of all capacity combination y ≤

(
n
k

)
.

With the notations for network flows, the time complexity of Al-
gorithm 2 is O(V k+1E log V log(V C)), where C is the largest
cost, if the min cost flow in done by the network simplex algo-
rithm [29, 44].

6. THE DYNAMIC SEQUENTIAL CASE OF
FETA

The Dynamic Sequential FETA problem (DS-FETA) is a spe-
cial case of FETA, where batches are all one-to-many graphs. DS-
FETA is a bi-objective online matching problem. Furthermore, as
discussed in Section 2, DS-FETA also has its applications for those
spatial crowdsourcing scenarios with instant assignments. There-
fore, we present the analysis and solution for it independently in
this part. We first briefly review some existing results, then pro-
pose our algorithm for DS-FETA with performance analysis.

6.1 Review of Existing Studies
DS-FETA can be considered as a generalization of the Carpool

Problem. When all utilities are equal or the fairness importance

2484

Algorithm 3: A Greedy Method for the DS-FETA
Data: the x-th batch Gx = 〈Wx, Rx = {rx}, Ex〉
Data: the current cumulative fairness cost of each worker λ(x−1)

wi

(the initial fairness cost λ(0)wi
= 0)

Result: a worker wi ∈Wx to be assigned
1 Algorithm ds-greedy()
2 for each wi ∈Wx do
3 let λx

′
wi

= λx−1
wi

+ F (Gx, wi) ;

4 let µx
′

wi
= uix ;

5 let wmax = argmax
wi∈Wx

λx
′

wi
;

6 if λx
′

wmax
breaks Inequation (3) then

7 return wmax and update all λxwi
;

8 else
9 let wmax = argmax

wi∈Wx

µx
′

wi
;

10 return wmax and update all λxwi
;

parameter α is 1, DS-FETA with FW-share as the measure function
is exactly the same as the Carpool problem. In existing studies, a
greedy method, namely FW-greedy [18], is proved to be a quite
effective online algorithm on solving the carpool problem [10, 15,
18]. Briefly, FW-greedy just choose the one with the largest owned
credit to drive at each day. It is proved that the performance of
FW-greedy is O(n), where n is the size of the carpool. It shows an
important insight that the result is only affected by the total number
of people involved but not the number of days. In addition, FW-
greedy nearly reaches the known lower bound of the problem [15].

Some other existing results of the Carpool Problem and FW-
greedy are reviewed in Section 9.

In the following, we will discuss how the generalization makes
differences between the carpool problem and DS-FETA, and intro-
duce our algorithm for DS-FETA.

6.2 A Greedy Method for the DS-FETA
DS-FETA has two major differences from the Carpool Problem.

First, the carpool fairness requires that 1 workload equally shared
by all workers and it is generalized in FETA as that tasks may
have different bonus and workers may have different share. Sec-
ond, other than to minimize the fairness cost, DS-FETA has the
additional total utility part to be considered. To handle these two
differences, we give Algorithm 3 which improves the greedy mech-
anism in FW-greedy and achieves a similar bound for the general-
ized problem.

Algorithm 3 is based on the same “greedy in each round” idea
of FW-greedy. The idea is simple yet effective because after all
we do not have any information other than the given batch and cu-
mulative result of previous batch. The major difference between
our algorithm and FW-greedy is that it does not always greedily
assign the task to the most unfair worker. Particularly, it prefers to
the largest utility (Line 9) instead of the local optimal fairness goal
(Line 5) in those batches when the maximum fairness cost may be
affected by the matching result.

The contribution of Algorithm 3 compared with existing works
of the Carpool Problem is two-folds. First, a similar bound is ob-
tained with the generalized fairness cost and, in the meantime, the
additional utility part is considered heuristically. Second, with the
Carpool Problem as a special case of DS-FETA, it shows that the
previous always-greedy mechanism used by FW-greedy is actually
not necessary here.

Next we show how the largest fairness cost is bounded in Algo-
rithm 3. Note that the utility goal can be as bad as possible under

the adaptive adversary setting (proof given in the Appendix part),
thus we focus on the fairness goal performance only.

Lemma 6.1. For any given batch of a DS-FETA, at least one of the
following situation happens with Algorithm 3:

1. The largest fairness cost remains unchanged;

2. The largest fairness cost decreases and the difference be-
tween the largest fairness cost and the second largest one
also decreases;

3. The difference remains smaller than Bmax.

Proof. Let the current worker with the largest fairness cost bew. If
w is not in the given batch, situation 1 happens. If w is in but does
not get assigned, supposing w′ gets assigned, we know F (w) +
λw < F (w′) + λw′ , so the largest fairness cost remains and the
new difference is |F (w′)+λw′−bj−(F (w)+λw)| < bj < Bmax.
If w is in and gets assigned, we know that F (w) + λw > F (w′) +
λw′ , so the largest fairness cost decreases and the new difference is
|(F (w) +λw − bj)− (F (w′) +λw′)| which is either smaller than
the previous difference F (w)− F (w′) or smaller than Bmax.

Lemma 6.1 shows that the largest fairness cost only increases
with the bounded difference. Based on this result, we have the
performance bound as below.

Theorem 6.1. For any DS-FETA instance with n workers, Algo-
rithm 3 achieves the upper bound O(n).

Proof. For simplicity, we omit the constant factor Bmax and as-
sume workers are always sorted by their fairness costs, then the
largest/first worker means the one with the largest fairness cost and
so for the 2nd, 3rd etc. We prove a stronger result as below.

For any n-worker DS-FETA, let w(k) be the kth worker with
fairness cost λ(k) and W(k) be the set of top k workers, Algorithm
3 ensures that the following relation holds at all batches:

λ(1) + λ(2) + ...+ λ(n−k) ≤ k(n− k) ∀k ∈ {0..n− 1} (3)

When k = 0, Inequality (3) is actually
∑

i=1..n

λ(i) ≤ 0. With all

initial fairness costs being 0, this is always true for any matching
results because the sum of all fairness costs is constant. In addition,
at the initial status, Inequality (3) is obviously true for k > 0.

Suppose the xth batch with rj s.t. (3) breaks for the first time
with k = K, which means λ(x)

(1) +λ
(x)

(2) + ...+λ
(x)

(n−K) > (K)(n−
K), i.e., λ(x)

(n−K) > K after matching.
Because (3) holds before xth batch, we know λ(1) +λ(2) + ...+

λ(n−K+1) ≤ (K − 1)(n − K + 1), i.e., λ(n−K+1) ≤ K − 1.
This means w(n−K+1), as well as other workers afterward, cannot
be in W x

(n−K) because of the increasing limit from Lemma 6.1.
So we know the largest n − K workers remains the same, i.e.,
W x

(n−K) = W(n−K). From the definition, the sum of all fairness
costs involved in one batch keeps the same, so there must be some
other worker be in the batch and get assigned. While, this is not
possible under our greedy matching so the assumption of such a
batch existing is wrong.

7. THE GENERAL CASE OF FETA
In this part we focus on the general case of FETA. Specifically,

we first present our solution which adopts the ideas from the previ-
ous section. And then give its correctness proof and performance
analysis.

2485

Algorithm 4: The Algorithm for General Case FETA
Data: the x-th batch Gx = 〈Wx, Rx, Ex〉
Data: fairness costs λx−1

wi
, total utility µx−1

Result: a matching Mx for Gx

1 Algorithm matchTogether()
2 let GF = buildCumulativeFairnessGraph() ;
3 initiate MF , L0, GU ,L as in Algorithm 1;
4 let Lb = {L|L ∈ L, L > λmax −Bmax} ;
5 if Lb = ∅ then
6 let Mx be Gx’s max-sum matching ;
7 return Mx and update all λxwi

and µx ;

8 for each L(l) = Li,j in Lb do
9 obtain M(l)

U as in Algorithm 1 ;

10 add 〈wi, rj〉 to GU for all Li,j ∈ L− Lb ;
11 find GU ’s max-sum matching Mb

U ;

12 pick Mx with the largest goal in all M(l)
U and Mb

U ;
13 return Mx and update all λxwi

and µx ;

1 Procedure buildCumulativeFairnessGraph()
2 let GF = 〈G.W,G.R,G.EF 〉 ;
3 for each worker wi do
4 let Li,0 = λx−1

wi
+ F (Gx, wi);

5 add a dummy task node rwi ;
6 add a dummy edge 〈wi, rwi 〉 with weight Li,0;
7 for each task rj do
8 update edge weight of 〈wi, rj〉 as

Li,j = λx−1
wi

+ F (G,wi)− bj ;

9 return GF ;

7.1 A General Solution for FETA
The general case of FETA can be considered as several single-

batches come dynamically. So, we utilize the solutions of the single-
batch case (Algorithm 1) and dynamic sequential case (Algorithm
3) in Section 6 and propose a combined algorithm, named Match-
Together (MT), for the general case as in Algorithm 4.

We summarize the steps of MT and explain some background
ideas first. The algorithm runs at every batch to do online spa-
tial crowdsourcing assignment. For each given task-work graph,
MT creates a corresponding fairness graph similar as Algorithm 1
does. While the only difference is that the fairness graph in MT is
based on cumulative fairness costs (Line 4 and Line 8 of the sub-
procedure) but not just fairness shares of the current graph. The key
step of Algorithm 4 is how to adopt the single-batch static method
Algorithm 1 dynamically in the greedy style of Algorithm 3. Un-
like the simple one-to-many graphs in the dynamic sequential case,
the graphs in the general case is many-to-many. Therefore, all pos-
sible fairness costs (L in Line 4) need to be checked to see whether
the largest fairness cost is safe from the current batch matching re-
sult. If so, MT will return the matching with utility maximized
(Line 7). If not, i.e., either the worker with the largest fairness
cost is in the given batch or some other worker’s fairness cost may
approach the largest one, MT will conduct similar steps as in Algo-
rithm 1 to return the matching that maximizes the α-parameterized
goal by iterating over the whole non-dominated solution set. The
time complexity of MT, the same as Algorithm 1, is O(V 3E).

7.2 Algorithm Analysis
In this part we show the analysis of theO(n

m
) performance bound

of fairness cost for FETA.

Theorem 7.1. For any n-worker FETA instance which is m-sized
and m ≥ 3, Algorithm 4 can achieve a result not worse than n

m−1
.

Proof. Similar as for Theorem 6.1, we prove a stronger result as
below:

λ(1) + λ(2) + ...+ λ(n−k) ≤
k(n− k)

m− 1
∀k ∈ {3..n− 1} (4)

We suppose the xth batch with rj s.t. (4) breaks for the first time
with k = K, which means λ(x)

(1) + λ
(x)

(2) + ...+ λ
(x)

(n−K) >
k(n−k)
m−1

,

i.e., λ(x)

(n−K) >
k

m−1
after matching.

Because (4) holds before xth batch, we know λ(1) +λ(2) + ...+
λ(n−K+1) ≤ (K− 1)(n−K+ 1)/m. In addition, the batch must
have at least m tasks. Thus, we have λ(n−K+1) ≤ (K − 1)/m.

This means w(n−K+1), as well as other workers afterward, can-
not be in W x

(n−K) because of the increasing limitation (the gen-
eral situation similar as Lemma 6.1 for dynamic sequential case).
So we know the largest n − K workers remains the same, i.e.,
W x

(n−K) = W(n−K). From the definition, the sum of all fairness
costs involved in one batch keeps the same, so there must be some
other worker be in the batch and get assigned. While, this is not
possible under our greedy matching so the assumption of such a
batch existing is wrong.

We can see that Theorem 6.1 is actually a special case of Theo-
rem 7.1 with m = 2.

8. EXPERIMENTS
In this section, we study the performance of all algorithms pro-

posed for the worker fairness aware assignment problem on a real
world taxi trip dataset and some synthetic data.

8.1 Experiment Setup
In this part, we first present the detailed setting of the synthetic

dataset and the real world dataset, then give the evaluation metric
and the implementation.

8.1.1 Datasets
Synthetic Datasets. To generate synthetic datasets, we first ini-

tiate a spatial space and a time range, then generate data with speci-
fied distributions. Spatial and temporal parameters are given in Ta-
ble 3 and 4. Specifically, Grid is a 100 ∗ 100 Manhattan space with
tasks and workers generated uniformly on each intersection point.
Euclidean is a 1000 ∗ 1000 continuous 2-dimensional Euclidean
space. Tasks and workers are generated following a Normal distri-
bution centered at the point (500, 500) with the variance of 1002.
Arriving timestamps are generated following distributions in Table
4 and rounded into discrete values in {0, 1, ..., 9999}. To reduce
the randomness of sampling, experiments with each space setting
are repeated for 10 times and the average results are reported.

The utility and task bonus distributions as well as other param-
eters are given in Table 5. For simplicity, we use MC-Share in
Definition 11 as the fairness measure function.

Real Datasets. We use the real taxi location and timestamp data
set from the widely used public taxi trip data in New York city pro-
vided by NYC Taxi and Limousine Commission [6]. Specifically,
we use the yellow taxi (one type of NYC taxis) data on Jan 2017
and Feb 2017. There are 18,878,953 taxi trip records in the dataset.
A taxi trip includes the pick-up and drop-off locations and their
timestamps. All locations are aligned to the road network provided
by OpenStreetMap. The whole city is separated into (2km∗2km)-
size grids as the spatial constraint (matchings are allowed only in-
side the same grid). The locations and timestamps of taxis are
utilized to initialize the locations and online timestamps of crowd
workers. The locations and timestamps of pick-ups of taxi trips are
used to configure the locations and timestamps of tasks. Once a

2486

Table 3: Synthetic data generation setting (locations)

space distribution parameters size

Grid Uniform None 100 ∗ 100

Euclidean Normal µ = 500, σ = 100 1000 ∗ 1000

Table 4: Synthetic data generation setting (timestamps)

name distribution settings

T1 Uniform [0, 9999]

T2 Exponential λ = 1, accumulated to 9999

T3 Normal µ = 5000, σ = 100, rounded to [0, 9999]

worker w finishes a task t, we assume that the worker w will be
available again at the drop-off location of t. Once k tasks appear
in a grid, a new batch is generated in the grid. The bonus of a task
is configured as the actual fare of its corresponding taxi trip in the
real dataset. Utility of matching between a task and a worker is de-
termined by the bonus minus the estimated pick-up price (the price
for the worker moving to the origin location of the task) according
to the NYC taxi price table [2]. MC-Share is used as the fairness
measure function.
8.1.2 Goals and Evaluation Methods

Compared Algorithms. We evaluate algorithms for the dy-
namic sequential case and those for the general batched case sepa-
rately because they apply to different types of spatial crowdsourc-
ing scenarios.

For the dynamic sequential case, we compare our DS-Greedy
(DSG) with the following baseline algorithms.
• FW-Greedy (FWG), the original greedy method proposed

in [18], which always picks the worker to minimize the cur-
rent fairness cost.
• Utility-Oriented Greedy (UOG), the greedy method that al-

ways chooses the matching pair with a maximum utility.
For the general batched case, our algorithm Match-Together

(MT) is compared with:
• Single Batch Greedy (SBG), the method utilizes the fair-

ness graph in Algorithm 1 to minimize the current fairness
cost for each batch.
• Utility-Oriented Bipartite Matching (UOM), the method

uses min-sum bipartite matching algorithm [12] to maximize
the total utility for each batch.

Evaluation Metrics. For both DSG and MT, the cumulative
fairness cost part shows whether the maximum fairness cost follows
the theory guarantee. Furthermore, we compare the actual utility
performance with the best utility result from UOG and UOM. For
the efficiency part, the time complexity of DSG is rather trivial and
therefore we evaluate the time cost of MT only. All programs are
implemented in Python 3.7, and run on a machine with a 6 core
CPU at 4.3GHz, 32G memory and Ubuntu 18.04.

8.2 Results on Synthetic Datasets

8.2.1 Overall Evaluation
The general case FETA. First we conduct the overall evaluation

for the general case on data generated with Grid, T3, and the default
settings are shown in Table 5 in italic. Figure 3(a) shows the overall
effectiveness result. The x-axis is the progress of the whole match-
ing process (i.e., the proportion of finished batches) and the y-axis
is the linear weighted goal of FETA with α = 0.5. At the begin-
ning of the process, some workers may not arrive, thus they do not
have any effect on the result. Usually most workers are involved

Table 5: Synthetic data parameters

factor settings

batch size |R| 2, 5, 10, 20, 50, 100

worker task ratio |W | : |R| 1 : 1, 2 : 1, 5:1, 10 : 1, 20 : 1

fairness importance α 0.1, 0.3, 0.5, 0.7, 0.9

utility U: Uniform [0, 2]
N: Normal(µ = 1, σ = 0.1)

task bonus N1: Normal(µ = 1, σ = 0.1)
N2: Normal(µ = 1, σ = 0.5)

before the process goes to 20%. After the startup stage (the first
20% progress), the performances of all algorithms become stable,
and we can see that MT achieves much better results than the two
baseline methods during the whole process. The results of UOM
decrease slightly till the end because it does not consider the fair-
ness issue. After more batches are finished, unassigned workers
always have chances to keep unassigned under UOM. Figure 3(b)
shows how the overall effectiveness (the linear weighted goal with
α = 0.5) varies with different batch sizes. The result shows that
MT outperforms the two baseline methods in experiments with dif-
ferent batch sizes. Figure 3(c) shows the running time of the com-
pared approaches. The y-axis is the average time cost of each 1000
batches. MT is the slowest one among all tested methods. The time
cost of MT and UOM is similar and both are much higher than
SBG. The time costs are acceptable for real world scenarios, since
spatial crowdsourcing applications usually do not have a burst of
tasks in a short time and from the same region (e.g., more than 1000
people calling for a ride in the same block in one second is nearly
impossible). Figure 3(d) shows the effectiveness result under dif-
ferent data distribution settings. MT outperforms baseline methods
in all settings, especially for those with T1 (the uniform distribu-
tion in Table 4). Uniformly distributed tasks are more sparse than
others, thus there are less chance to match unassigned workers in
following batches. Therefore, the fairness issue for T1 is more se-
vere and MT can perform better.

DS-FETA. The overall evaluation result for the dynamic sequen-
tial case with Grid, T3, and the default settings (italic font in Table
5) is given in Figure 4. The result is similar to the general case’s.
The effective result in Figure 4(a), 4(b) and 4(c) show that DSG
outperforms the two baseline methods. We can see that although
DSG cannot achieve the optimal fairness or utility result as shown
in Figure 4(b) and 4(c), its combined result shown in Figure 4(a) is
always much better than the baseline methods. The reason is that
when DSG compromises for fairness, it always achieves a better
utility as return. In addition, DSG trades utility for better fairness
compared with UOM as well. Figure 4(c) shows the running time
of all three algorithms. UOG is the fastest because it is a simple
greedy algorithm. Our maximum matching based algorithms, DSG
and FWG, are slower but still efficient.

8.2.2 Effects of Factors
Effect of relative sparsity of tasks and workers. Relative spar-

sity represents the ratio between the numbers of workers and re-
quests within a fixed area and time period. Spatial crowdsourcing
tasks in different areas or different time periods may have quite
different relative sparsity. For example, the taxi trip requests in a
metropolis highly fluctuates in one day. Usually the performance
of matching problems is stable when this ratio changes (e.g., the
total travel cost in [36]). To evaluate the effect caused by the rel-
ative sparsity, we check the utility and fairness parts separately for
different worker task ratios: [1 : 1, 2 : 1, 5 : 1, 10 : 1, 20 : 1].
The result is shown in Figures 5(a) and 5(b). We can see that the
fairness cost decreases slightly as the ratio increases because there

2487

0% 20% 40% 60% 80% 100%
finished batches proportion

0.00

0.05

0.10

0.15

0.20

0.25

0.30
ut

ilit
y

an
d

fa
irn

es
s g

oa
l

Grid, T3, k=10
MT
SBG
UOM

(a) Result In Progress

2 5 10 20 50 100
the batch size k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ut
ilit

y
an

d
fa

irn
es

s g
oa

l

Grid, T3
MT
SBG
UOM

(b) Overall Result

0 5 10 20 50 100
the batch size k

0

2

4

6

8

10

tim
e

co
st

 o
f 1

00
0

ba
tc

he
s (

se
co

nd
s)

Grid, T3
MT
SBG
UOM

(c) Time Cost

G-T1 G-T2-U G-T2-N E-T1 E-T3-N1E-T3-N2
data settings

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ut
ilit

y
an

d
fa

irn
es

s g
oa

l

k=20
MT
SBG
UOM

(d) Distributions

Figure 3: Overall result on synthetic data of the general case.

0% 20% 40% 60% 80% 100%
finished batches proportion

0.0

0.1

0.2

0.3

0.4

0.5

ut
ilit

y
an

d
fa

irn
es

s g
oa

l

Grid, T3, k=10
DSG
FWG
UOG

(a) Result In Progress

2 5 10 20 50 100
worker task ratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fa
irn

es
s g

oa
l

Grid, T3
DSG
FWG
UOG

(b) Fairness

2 5 10 20 50 100
worker task ratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ut
ilit

y
go

al

Grid, T3
DSG
FWG
UOG

(c) Utility

0 5 10 20 50 100
worker task ratio

0

2

4

6

8

10

tim
e

co
st

 o
f 1

00
0

ba
tc

he
s (

se
co

nd
s)

Grid, T3
DSG
FWG
UOG

(d) Time Cost
Figure 4: Overall result on synthetic data of the sequential case.

is more chance for a worker to be left unmatched. While the util-
ity result is better for a larger ratio because it has more matching
choices with a larger utility. This result also shows the importance
of such fairness aware algorithms.

Effect of batch size k. We want to check if the batch size k
affects the fairness performance as in Theorem 7.1. By fixing task
worker ratio to 1 : 5 and varying k from 2 to 100, we give the
results from MT and baseline methods. We expect that the result of
MT should be better when the batch size become larger. As shown
in Figures 5(c) and 5(d), the batch size effect is hard to see for
smaller ks and there is an obvious negative correlation relationship
between k and the fairness result for k ≥ 20. The reason is that
smaller batches have less chance to cover the unfair workers and
thus have less change to affect the final min-max fairness cost.

Effect of fairness importance parameter α. Because FETA is
a bi-objective problem, MT needs α to determine how to balance
the two goals. We show the results by varying α from 0.1 to 0.9 in
Figures 5(e) and 5(f). Note that, the two baseline methods do not
have this parameter, thus their results do not change. For the results
of fairness cost in Figure 5(e), we can see that the result of MT is
similar to the result of SBG when α ≤ 0.3 and similar to result of
UOM when α ≥ 0.7. Because changing α is supposed to regulate
the fairness importance for matching. For the utility result in Figure
5(e), MT performs better as α increases. The reason is that, as α
increases, it can always find larger utility matchings without hurting
the fairness goal a lot.

Effect of distribution of workers and requests. We check the
effects of different distributions for task bonus and matching util-
ity as shown in Table 5. For example, N-N1 means the data is
generated with normal distributed utility and normal distributed
(σ = 0.1) bonus. As shown in Figures 5(g) and 5(h), MT achieves
both good fairness and utility results on datasets with all distribu-
tions. All distributions lead to similar results, but we can still see a
slight difference between the normal distributed utility and uniform

distributed utility. This is because uniform distribution provides
more worker-task pairs with high utilities for algorithm to choose.

8.3 Results on Real Datasets
In the experiments on real data we mainly focus on the difference

from results on the synthetic result and the real data. We evaluate
the proposed algorithms on each daily data and use the average re-
sult as the final result. For each daily data, we group them by hours
and show the progress result of the whole day in Figure 6(a). The
taxi trip dataset does not have any obvious patterns or distributions.
The major difference between different hours is the data density.
We can see that MT has a better result on 12pm and 8pm. The task
density is higher during these hours due to the same reason as its
better performance on the synthetic data.

In Figures 6(b) and 6(c), we vary the batch size and separately
show the results of fairness cost and utility. In Figure 6(b), we can
see that all three methods have similar utility performance and the
result of MT is closer to the optimal result compared with UOM.
Compared with the result of synthetic data, the gap between UOM
and MT is more obvious. In Figure 6(c), UOM performs much
worse than SBG and MT for most batch sizes. The reason is that
the tasks in real dataset is relatively sparse in most time. Thus,
its fairness issue should be more serious. This is similar to the
synthetic result in Figure 3(d) where MT performs better for sparse
data distributions.

In addition, we compare the time costs of three methods and give
the result in Figure 6(d). We group tasks be different time spans (2
seconds, 10 seconds, ...) as shown in the x-axis and record the max
time cost among all batches. The time cost of MT is at most around
5 seconds for the 100 seconds batch with 623 tasks. For normal
batch timespans, such as 2 seconds and 10 seconds, the time cost is
always smaller than 100 milliseconds. Thus, its efficiency is good
enough for industry level spatial crowdsourcing applications.

2488

1:1 2:1 5:1 10:1 20:1
worker task ratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0
fa

irn
es

s g
oa

l
Grid, T3

MT
SBG
UOM

(a) Fairness of varying |W | : |R|

1:1 2:1 5:1 10:1 20:1
worker task ratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ut
ilit

y
go

al

Grid, T3
MT
SBG
UOM

(b) Utility of varying |W | : |R|

2 5 10 20 50 100
the batch size k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fa
irn

es
s g

oa
l

Grid, T3, 1:5
MT
SBG
UOM

(c) Fairness of varying k

2 5 10 20 50 100
the batch size k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ut
ilit

y
go

al

Grid, T3, 1:5
MT
SBG
UOM

(d) Utility of varying k

0.1 0.3 0.5 0.7 0.9
the fairness importance parameter

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fa
irn

es
s g

oa
l

Grid, T3, 1:5
MT
SBG
UOM

(e) Fairness result, vary α

0.1 0.3 0.5 0.7 0.9
the fairness importance parameter

0.0

0.5

1.0

1.5

2.0

2.5

3.0
ut

ilit
y

go
al

Grid, T3, 1:5
MT
SBG
UOM

(f) Utility result, vary α

N1-N1 N1-N2 U-N1 U-N2
the utility distributions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fa
irn

es
s g

oa
l

Grid, T3, 1:5
MT
SBG
UOM

(g) Fairness of varying distribution

N1-N1 N1-N2 U-N1 U-N2
the utility distributions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ut
ilit

y
go

al

Grid, T3, 1:5
MT
SBG
UOM

(h) Utility of, varying distribution
Figure 5: Result on synthetic data with different factors.

4am 8am 12pm 4pm 8pm 12am
finished batches proportion

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ut
ilit

y
an

d
fa

irn
es

s g
oa

l

Grid, T3, k=10
MT
SBG
UOM

(a) Result In Progress

2 5 10 20 50 100
the batch size k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ut
ilit

y
go

al

Grid, T3
MT
SBG
UOM

(b) Utility

2 5 10 20 50 100
the batch size k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fa
irn

es
s g

oa
l

Grid, T3
MT
SBG
UOM

(c) Fairness

0 2s 10s 20s 50s 100s
the batch time span

0

2

4

6

8

10

tim
e

co
st

 o
f o

ne
 b

at
ch

 (s
ec

on
ds

)

Grid, T3
MT
SBG
UOM

(d) Time Cost
Figure 6: Overall result on real data.

8.4 Summary of Experiment Results
We summarize our major findings as follows:
• Compared to all baseline methods, MT has a better and more

stable effectiveness result as well as a competitable efficiency
result.
• The batch size does not affect MT performance a lot as expected

in most cases. The reason is that the extreme unfair cases that
lead to the lower bound in Theorem 7.1 is very rare or nearly
impossible in most datasets.
• The relative worker task ratio in a batch can slightly affect both

the fairness and the utility.

9. RELATED WORKS
Task Assignment in Spatial Crowdsourcing. In recent years,
with the fast development of smart phones and other mobile de-
vices, spatial crowdsourcing becomes more and more popular in
various applications such as Offline-to-Online (O2O) service and
car-hailing service. Task assignment is the core problems in spatial
crowdsourcing [28,30,32–34,36,38–41,45,46]. The task allocation
problem on spatial crowdsourcing is first proposed in [22]. They
try to maximize the platform’s throughput with batch-based algo-
rithms, i.e., the total number of assigned tasks. Some follow up
studies also focused on how to do better batch-based assignment
for spatial tasks and propose additional constraints and goals, such

as the crowd worker reliability [23], the maximum assigned util-
ity goal [32] and the additional spatial temporal diversity goal [13].
Privacy issues in spatial task assignment are also studied in [27,31].
All of them consider the task assignment as a batch based matching
problem aiming to maximize the total throughput.

In the real world scenario, both workers and tasks come dynam-
ically. Thus, the spatial task assignment is essentially an online
problem. An online model is first used in [21] to describe the as-
signment process, and they also proposed a novel method for one-
side online task assignment. A two-side online matching problem
with the total utility maximization goal and a well-performed on-
line algorithm under the random order evaluation model is intro-
duced in [35]. Then, a further generalized online model as well as
an assignment algorithm with better performance under i.i.d eval-
uation model (both tasks and workers) is given in [36]. A very
recent work [47] also proposed a stable marriage matching based
optimization goal in the online manner.
Fairness Scheduling. The first related fairness aware scheduling
problem named the “Carpool Problem” is proposed in [18]. They
proposed an intuitive fairness measurement (named FW share af-
terward) and an online greedy algorithm (named FW-greedy) based
on it. They gave a linear N/3 fairness lower bound for FW-greedy.

Several related fairness scheduling problems, including the edg-
ing orientation problem (EOP) and the vector rounding problem
(VRP) is studied in [10]. They proved that VRP can be transformed

2489

to EOP with double expected cost and the Carpool Problem is a spe-
cial case of VRP. They showed that a randomized algorithm, named
local-greedy, achieved upper bound O(

√
n logn) and lower bound

Ω(3
√

logn) for the Carpool Problem.
A short yet comprehensive work [26] showed that the bound of

local-greedy holds for the group of people interact with each other
but no need for all people in the carpool. They proposed four self-
evident principles that a fairness measure should follow and proved
that FW-share is the only valid measurement for the principles.

The Carpool Problem is a special case of our FETA problem. To
be specific, it is a DS-FETA without the utility goal and with all
equal-bonus task and equal-share fairness measure. VRP is also a
DS-FETA special case without the utility goal and with all equal-
bonus task and arbitrary fairness measure.
Bi-objective Online Matching. Traditionally, the online property
of online matching problems means that (only one side of) nodes
of the graph for matching is revealed gradually one by one. Our
problem is different from this kind of problems because we assume
that graphs not node are revealed one by one. While, from another
perspective, nodes come batch by batch can be considered as a spe-
cial case of one by one. Thus, our problem can be considered as a
variant of online matching problems.

Among these works about online matching, [9,17,24] studied the
bi-objective problems. Several types of objective functions have
been studied. [9] proposed the online bi-objective problem of max-
imizing both weight and cardinality. [17, 24], with a more popular
setting in advertising applications, assume there are two types of
edges and aims to find a matching that maximize either the cardi-
nality or the total matched weight. To our best knowledge, there
is no existing online bi-objective matching works about both min-
max and min-sum goals.

10. CONCLUSION
In this paper, we proposed and studied the worker fairness issue

in spatial crowdsourcing. We first define the fairness of workers
in many-to-many bipartite graphs and proposed the fair and effec-
tive task assignment problem formally. We design well-bounded
algorithms for the different cases of FETA for different scenarios
in spatial crowdsourcing. Our work shows that the fairness issue
brings some interesting problems, and we believe that these prob-
lems deserve more studies in the future.

Acknowledgment
Zhao Chen and Lei Chen’s work is partially supported by the Hong
Kong RGC GRF Project 16209519, CRF Project C6030-18G, C10
31-18G, C5026-18G, AOE Project AoE/E-603/18, China NSFC
No. 61729201, Guangdong Basic and Applied Basic Research
Foundation 2019B151530001, Hong Kong ITC ITF grants ITS/044/
18FX and ITS/470/18FX, Microsoft Research Asia Collaborative
Research Grant, Wechat and Webank Research Grants, and Didi-
HKUST joint research lab project. Peng Cheng’s work is supported
by Shanghai Pujiang Program 19PJ1403300. Xuemin Lin’s work is
supported by National Key R&D Program of China
2018AAA0102502, NSFC61672235, 2018YFB1003504,
ARC DP180103096 and DP200101338. Cyrus Shahabi’s work is
funded in part by NSF grants IIS-1910950 and CNS-2027794. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the sponsors. Corresponding Author: Peng
Cheng.

APPENDIX
A. LOWER BOUNDS OF FETA

We first give a worst-case adversary example inspired by the ad-
versary firstly described in [10], then propose a proof for the O(n)
lower bound for fairness goal and arbitrary worst bound for the
utility goal.

Example 3 (Adaptive adversarial worst case in sequential model).
The adversary acts at each round as: (a) if there exists workers
wa, wb with λwa = λwb , give the next task rj to wa and wb with
equal share; (b) if not, give rj to the most unfair worker w with 1
share and 0 utility, and to arbitrary other worker with 0 share and
Umax utility.

Theorem A.1 (Lower Bound of deterministic algorithms for ada-
pative adversary). In (the sequential case of) FETA, no algorithm
can achieve result better than O(n), where n is the number of all
workers.

Proof. For the adversary in Example 3, no matter which wa or wb

gets matched, the new fairness scores will be F+1/2 and F−1/2.
Since this is the only possible score changes, at any round the dis-
tance between different scores must be times of 1/2. In addition,
for any continuous rounds with such score changes, the maximum
score among all affected workers must increase. The adversary
must stop at some round otherwise the process will lead to unlim-
ited maximum score. When the adversary stops, there are not any
two same scores. Then there will not be two neighbor scores hav-
ing a difference larger than 1/2 because such scores pattern cannot
get from the −1/2,+1/2 score change. Therefore, all workers are
with different scores and their gaps are all 1/2. In addition, the
summation of all scores is 0, thus the largest score is bnc

4
. When

the fairness bound is reached, the utility can be any worse by given
repeated such tasks.

B. PROPERTY OF MC-SHARE
Lemma B.1. Given any work-task graph G, MCFG(wi) in Def-
inition 11 follows 1) Limited Workload, 2) Interchangeability, and
3) Batch Coverage, for any wi.

Proof. Because |Mwi | ≤ |M|, MCFG(wi) cannot exceed the
largest bonus in batch Bmax. So 1) is satisfied.

2) implies that |Mw1 | = |Mw2 |, they are always be matched
together, and for any matchings they have the same bonus Thus,
two interchangeable workers must have equal MC-share.

For 3), similar to the definition of Mwi , for each rj ∈ R, we
define Mrj as the set of maximum matchings with rj matched and
Mwi,rj be the set of those with both wi and rj matched. Wlog,
we assume all bj = 1 for simplicity. For each wi, let Rwi be the
set of tasks wi is assigned with in Mwi , then, because |Mwi | =∑
rj∈Rwi

|Mwi,rj |, we have

∑
wi

|Mwi
| =

∑
wi,rj

|Mwi,rj
| = |M||M|

∑
wi∈W

f(wi) =

∑
wi∈W

|Mwi
|

|M|
= |M|

Calculation of MC-share values involve enumerating over all
maximum matchings in a graph. An efficient enough enumeration
method for small bipartite graphs (e.g., with less than 100 nodes in
each side) is introduced in [42].

2490

C. REFERENCES
[1] [online] didi chuxing.

https://www.didichuxing.com.
[2] [online] nyc taxi fare. https://www1.nyc.gov/site/

tlc/passengers/taxi-fare.page.
[3] [online] taskrabbit. https://www.taskrabbit.com.
[4] [online] Eleme. https://www.ele.me.
[5] [online] Seamless. https://www.seamless.com/.
[6] [online] trip record data from nyc taxi and limousine

commission. http://www.nyc.gov/html/tlc/
html/about/trip_record_data.shtml.

[7] [online] uber. https://www.uber.com.
[8] [online] uber: How does uber match riders with drivers?

https://marketplace.uber.com/matching.
[9] G. Aggarwal, Y. Cai, A. Mehta, and G. Pierrakos.

Biobjective online bipartite matching. In International
Conference on Web and Internet Economics, pages 218–231.
Springer, 2014.

[10] M. Ajtai, J. Aspnes, M. Naor, Y. Rabani, L. J. Schulman, and
O. Waarts. Fairness in scheduling. Journal of Algorithms,
29(2):306–357, 1998.

[11] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis. cambridge university press, 2005.

[12] R. E. Burkard, M. Dell’Amico, and S. Martello. Assignment
problems, revised reprint, volume 125. Siam, 2009.

[13] P. Cheng, X. Lian, Z. Chen, et al. Reliable diversity-based
spatial crowdsourcing by moving workers. PVLDB,
8(10):1022–1033, 2015.

[14] P. Cheng, H. Xin, and L. Chen. Utility-aware ridesharing on
road networks. In SIGMOD, pages 1197–1210, 2017.

[15] D. Coppersmith, T. Nowicki, G. Paleologo, C. Tresser, and
C. W. Wu. The optimality of the online greedy algorithm in
carpool and chairman assignment problems. ACM
Transactions on Algorithms (TALG), 7(3):37, 2011.

[16] M. T. Emmerich and A. H. Deutz. A tutorial on
multiobjective optimization: fundamentals and evolutionary
methods. Natural computing, 17(3):585–609, 2018.

[17] H. Esfandiari, N. Korula, and V. Mirrokni. Bi-objective
online matching and submodular allocations. In Advances in
Neural Information Processing Systems, pages 2739–2747,
2016.

[18] R. Fagin and J. H. Williams. A fair carpool scheduling
algorithm. IBM Journal of Research and development,
27(2):133–139, 1983.

[19] M. Furuhata, M. Dessouky, F. Ordóñez, M. E. Brunet,
X. Wang, and S. Koenig. Ridesharing: The state-of-the-art
and future directions. Transportation Research Part B:
Methodological, 57:28–46, 2013.

[20] M. R. Garey and D. S. Johnson. Computers and
intractability, volume 174. freeman San Francisco, 1979.

[21] U. U. Hassan and E. Curry. A multi-armed bandit approach
to online spatial task assignment. In UTC-ATC-ScalCom.
IEEE, 2014.

[22] L. Kazemi and C. Shahabi. Geocrowd: enabling query
answering with spatial crowdsourcing. In SIGSPATIAL.
ACM, 2012.

[23] L. Kazemi, C. Shahabi, and L. Chen. Geotrucrowd:
trustworthy query answering with spatial crowdsourcing. In
SIGSPATIAL. ACM, 2013.

[24] N. Korula, V. S. Mirrokni, and M. Zadimoghaddam.
Bicriteria online matching: Maximizing weight and

cardinality. In International conference on web and internet
economics, pages 305–318. Springer, 2013.

[25] S. Mneimneh and S. Farhat. The offline carpool problem
revisited. In International Symposium on Mathematical
Foundations of Computer Science, pages 483–492. Springer,
2015.

[26] M. Naor. On fairness in the carpool problem. Journal of
Algorithms, 55(1):93–98, 2005.

[27] L. Pournajaf, L. Xiong, V. Sunderam, and S. Goryczka.
Spatial task assignment for crowd sensing with cloaked
locations. In MDM, volume 1, pages 73–82. IEEE, 2014.

[28] T. Song, Y. Tong, and et al. Trichromatic online matching in
real-time spatial crowdsourcing. ICDE, pages 1009–1020,
2017.

[29] R. E. Tarjan. Dynamic trees as search trees via euler tours,
applied to the network simplex algorithm. Mathematical
Programming, 78(2):169–177, 1997.

[30] H.-F. Ting and X. Xiang. Near optimal algorithms for online
maximum edge-weighted b-matching and two-sided
vertex-weighted b-matching. Theoretical Computer Science,
607:247–256, 2015.

[31] H. To, G. Ghinita, and C. Shahabi. A framework for
protecting worker location privacy in spatial crowdsourcing.
PVLDB, 7(10):919–930, 2014.

[32] H. To, C. Shahabi, and L. Kazemi. A server-assigned spatial
crowdsourcing framework. ACM TSAS, 1(1):2, 2015.

[33] Y. Tong, L. Chen, and C. Shahabi. Spatial crowdsourcing:
Challenges, techniques, and applications. PVLDB,
10:1988–1991, 2017.

[34] Y. Tong, L. Chen, Z. Zhou, H. V. Jagadish, L. Shou, and
W. Lv. SLADE: A smart large-scale task decomposer in
crowdsourcing. IEEE Trans. Knowl. Data Eng.,
30(8):1588–1601, 2018.

[35] Y. Tong, J. She, and et al. Online mobile micro-task
allocation in spatial crowdsourcing. ICDE, pages 49–60,
2016.

[36] Y. Tong, L. Wang, and et al. Flexible online task assignment
in real-time spatial data. PVLDB, 10:1334–1345, 2017.

[37] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye.
Dynamic pricing in spatial crowdsourcing: A
matching-based approach. SIGMOD, pages 773–788, 2018.

[38] Y. Tong, Y. Zeng, B. Ding, L. Wang, and L. Chen. Two-sided
online micro-task assignment in spatial crowdsourcing. IEEE
Transactions on Knowledge and Data Engineering, 2019.

[39] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu. A
unified approach to route planning for shared mobility.
PVLDB, 11(11):1633–1646, 2018.

[40] Y. Tong and Z. Zhou. Dynamic task assignment in spatial
crowdsourcing. SIGSPATIAL Special, 10(2):18–25, 2018.

[41] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi. Spatial
crowdsourcing: a survey. The VLDB Journal, 29(1):217–250,
2020.

[42] T. Uno. Algorithms for enumerating all perfect, maximum
and maximal matchings in bipartite graphs. In International
Symposium on Algorithms and Computation, pages 92–101.
Springer, 1997.

[43] D. P. Williamson. [online] section 3.1.1, lecture notes on
network flow algorithms.
https://people.orie.cornell.edu/dpw/
techreports/cornell-flow.pdf, 2004.

2491

[44] D. P. Williamson. Network Flow Algorithms. Cambridge
University Press, 2019.

[45] Y. Zeng, Y. Tong, and L. Chen. Last-mile delivery made
practical: An efficient route planning framework with
theoretical guarantees. PVLDB, 13(3):320–333, 2019.

[46] Y. Zeng, Y. Tong, L. Chen, and Z. Zhou. Latency-oriented
task completion via spatial crowdsourcing. In ICDE, pages
317–328, 2018.

[47] B. Zhao, P. Xu, Y. Shi, Y. Tong, Z. Zhou, and Y. Zeng.
Preference-aware task assignment in on-demand taxi
dispatching: An online stable matching approach. In AAAI
Conference on Artificial Intelligence (AAAI 2019), 2019.

2492

