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ABSTRACT
Finding the maximum independent set is a fundamental NP-
hard problem in graph theory. Recent studies have paid
much attention to designing efficient algorithms that find a
maximal independent set of good quality (the more vertices
the better). Kernelization is a widely used technique that
applies rich reduction rules to determine the vertices that
definitely belong to the maximum independent set. When
no reduction rules can be applied anymore, greedy strategies
including vertex addition or vertex deletion are employed to
break the tie. It remains an open problem that how to ap-
ply these reduction rules and determine the greedy strategy
to optimize the overall performance including both solution
quality and time efficiency. Thus we propose a scheduling
framework that dynamically determines the reduction rules
and greedy strategies rather than applying them in a fixed
order. As an important reduction rule, degree-two reduc-
tion exhibits powerful pruning ability but suffers from high
time complexity O(nm), where n and m denote the num-
ber of vertices and edges respectively. We propose a novel
data structure called representative graph, based on which
the worst-case time complexity of degree-two reduction is
reduced to O(m logn). Moreover, we enrich the naive ver-
tex addition strategy by considering the graph topology and
develop efficient methods (active vertex index and lazy up-
date mechanism) to improve the time efficiency. Extensive
experiments are conducted on both large real networks and
various types of synthetic graphs to confirm the effective-
ness, efficiency and robustness of our algorithms.
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1. INTRODUCTION
A wide variety of real-world data can be represented as

graphs, such as drug molecule [14], social networks and
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knowledge graphs. Graph problems have attracted much
attention these years, e.g., shortest path queries [2], reach-
ability computation [22], subgraph matching [5] and maxi-
mum clique [16]. Finding a maximum independent set (MIS
in short) is a fundamental NP-hard problem in graph theory
[11]. An independent set of a graph G denotes a vertex set
in which every two vertices are not adjacent, i.e., vertices u
and v cannot be included in the same independent set if G
contains the edge (u, v). The MIS is an independent set that
has the largest number of vertices. It is extremely challeng-
ing since finding an approximate solution within n1−ε for
any constant 0 < ε < 1 is NP-hard as well [12].

Applications. The maximum independent set can be ap-
plied in many real-world applications, e.g., collusion detec-
tion [3], social network coverage computation [19], wireless
network organization [4] and association rule mining [18].
It is also commonly used as one step of other graph algo-
rithms, e.g., clustering [9] and k-hop reachability query [7].
A recent study [24] has proposed a novel potential appli-
cation – eliminating duplicate paths on a condensed rep-
resentation of graph. Assume that there are two tables
TaughtCourse(tid, cid) and TookCourse(sid, cid) in a re-
lational database where tid, cid and sid denote the ID of
teachers, courses and students respectively. The target is
to construct a bipartite graph between teachers and stu-
dents where each edge represents a teaching relationship,
i.e., a teacher and a student are in the same course. It can
be formulated as a SQL query: SELECT tid, sid FROM
TaughtCourse, TookCourse WHERE TaughtCourse.cid =
TookCourse.cid. Let us consider the example as shown in
Figure 1. Compared to the target Teacher-Student graph,
the 3-layer Teacher-Course-Student graph contains enough
information but fewer edges, since each course represents
a full connection between its teachers and students on the
target graph. Therefore, the 3-layer graph is regarded as
a condensed representation. However, it may still contain
duplicate edges. For example, the two green paths in the
3-layer graph correspond to the same edge in the target bi-
partite graph. To eliminate such duplication, some of the
middle vertices (courses) must be expanded back to the full
connection, resulting in a combination of the 3-layer graph
and the bipartite graph. In other words, two middle ver-
tices cannot be kept at the same time if they share a pair of
teacher and student, which corresponds to the independent
set problem in essence.

Existing Algorithms. The existing algorithms are cate-
gorized as exact algorithms [23, 1, 10] and inexact (including
approximate and greedy) algorithms [6]. The former aims
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Figure 1: A Scenario of MIS Computation

to find an exact MIS. The latter delivers a near-maximum
one (within an approximation ratio or not) but is required
to consume much less time. In the latter case, the size of an
independent set is used to measure the solution quality, the
larger the better. Hence, each MIS is an optimal solution.
The existing techniques can be divided into three categories:
1) Kernelization. Construct a smaller kernel graph based
on some reduction rules, as long as the MIS on the original
and kernel graphs is equivalent. Therefore, it helps reduce
the problem size without sacrificing the solution quality.
Many useful reduction rules have been proposed in previ-
ous studies, such as the folding and mirroring rule in [10]
and the degree-two path reduction rule in [6].
2) Branch and Bound. Branch and bound methods ob-
tain exact solutions by exploring all possible cases. Each
vertex u can be either included in the independent set or
not [10]. As for an edge (u, v), there are three cases, picking
u, v or neither of them [23].
3) Greedy Strategy. Based on the fact that including a
vertex into the independent set leads to discarding all its
neighbors, a vertex that has more neighbors is less likely to
be included in an MIS. Hence, selecting the smallest-degree
vertex [15] and discarding the largest-degree vertex [6] are
two commonly used greedy strategies.

Actually, most of the existing algorithms can be regarded
as the combination of the above techniques. The state-of-
the-art exact algorithm [23] runs in O(1.1996nnO(1)) time
and polynomial space consumption by branching on edges
and largest-degree vertices. The state-of-the-art inexact al-
gorithm [6] applies the reducing and peeling framework,
which combines kernelization with greedy vertex deletion to
find a near-maximum independent set in near-linear time.
However, two questions have not been addressed:
Q1: How to evaluate and apply these reduction rules to
maximize the reduction ability? Currently, there have been
many reduction rules, e.g., degree-one reduction [10], degree-
two reduction [8, 10], and dominance reduction [6]. Gener-
ally, it is difficult to conclude that reduction R1 is better
than R2 even if R2 is dominated by R1, and vice versa. A
reduction is more efficient to compute but may exhibit a lim-
ited reduction ability. For instance, the degree-two reduc-
tion rule repeatedly contracts the neighbors of a degree-two
vertex, which results in the time cost O(nm) in the worst
case. It may be unacceptable on large graphs. The degree-
two path reduction rule proposed in [6] is actually a special
case of the degree-two reduction rule, but it is extremely
useful due to its linear time complexity. Traditionally, these
reduction rules are applied in a fixed order: the simple re-
ductions are adopted first. However, it may degrade the time
efficiency since a useless rule can be repeatedly examined.

Instead of applying these reduction rules in a fixed order,
we propose a novel scheduling framework to dynamically
apply the reduction rules based on the current graph.

Q2: How to determine the greedy strategy and cooperate
with the reduction rules? When no reduction rules can be
applied, the greedy strategies are invoked to break the tie. It
is known that there have been two kinds of greedy strategies
available – vertex addition and vertex deletion. The existing
addition strategy adds the vertex of the smallest degree into
the independent set. However, it may degrade the solution
quality, since the large number of smallest-degree vertices
makes it hard to include the correct one.

Therefore, we propose a more powerful vertex addition
strategy. Furthermore, these greedy strategies are expected
to be determined through the scheduling framework rather
than roughly specified.

In summary, we make four contributions in this paper:
1) A novel scheduling framework is devised to dynamically
apply different reduction rules and greedy strategies. In this
framework, we evaluate the reduction rules by a cost-and-
benefit estimation and determine the appropriate greedy
strategy according to the structure of the current graph.
2) We propose a novel notion representative graph, based
on which the worst-case time complexity of degree-two re-
duction is reduced from O(nm) to O(m logn).
3) We design a more powerful vertex addition strategy that
takes the degree of neighbors into consideration. Two tech-
niques active vertex index and lazy update mechanism
are developed to improve the time efficiency.
4) Extensive experiments are conducted on both large real
networks and various types of synthetic graphs. The results
confirm that our proposed algorithms Sch-standard and
Sch-extension outperform the state-of-the-art near-linear
time algorithm NearLinear [6] in terms of both solution
quality and time efficiency on most graphs.

2. PRELIMINARY AND OVERVIEW

2.1 Problem Definition
In this paper, we focus on finding a near-maximum inde-

pendent set on an unweighted undirected graph G = (V,E),
where V and E denote the vertex set and edge set respec-
tively. N(u) denotes vertex u’s neighbor set and N [u] =
N(u) ∪ {u}. We use d(u) to denote the degree of vertex u,
and we have d(u) = |N(u)|. Moreover, n and m are used to
denote |V | and |E| in the time complexity analysis.

Definition 1. Independent Set. Given a graph G =
(V,E), a set of vertices I ⊂ V forms an independent set of
G if it holds that ∀u, v ∈ I, (u, v) /∈ E.

Definition 2. Maximum Independent Set (MIS). An
independent set I that has the largest number of vertices
among all independent sets of G.

Generally, a graph may contain many independent sets,
among which the one with the largest number of vertices is
called the maximum independent set.

Problem Statement. Given a graph G = (V,E), we
aim to find a near-maximum independent set (Near-MIS for
short) as large as possible at very low time cost.

2.2 Reduction and Greedy Algorithms
As computing an MIS over a large graph suffers from ex-

pensive computation cost, several reduction rules [10, 1, 8]
have been proposed to reduce the size of the graph without
sacrificing the solution quality.
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2.2.1 Reduction Rules
If there is a vertex u whose degree is at most two in the

graph G, then one of the following rules works.

Definition 3. Degree-one Reduction [10] (d ≤ 1).

|MIS(G\N [u]) ∪ {u}| = |MIS(G)|

Definition 4. Degree-two Reductions [8, 10] (d = 2).

• Isolation Rule: If the vertices in N [u] form a triangle,
|MIS(G\N [u]) ∪ {u}| = |MIS(G)|;

• Folding Rule: If the vertices in N [u] do not form a tri-
angle, we could contract N [u] as a vertex x and denote
the resulting graph as G′. Then it holds that when
x ∈MIS(G′), |(MIS(G′)−{x})∪N(u)| = |MIS(G)|;
otherwise, |MIS(G′) ∪ {u}| = |MIS(G)|.

These reductions consider vertices whose degree is smaller
than 3. Thus they are called low-degree reductions. Dif-
ferent from them, another reduction rule, vertex dominance
reduction, is more likely to discard high-degree vertices.

Definition 5. Vertex dominance. For two arbitrary dif-
ferent vertices u and v, u dominates v ⇐⇒ N [u] ⊆ N [v].

Definition 6. Dominance Reduction [6]. If v is domi-
nated by any other vertex, then |MIS(G\{v})| = |MIS(G)|.

2.2.2 Reduction Algorithms
Based on these reduction rules, immediately we have the

following two reduction algorithms.
Algorithm 1 simply tries to apply the dominance reduc-

tion rule on each vertex in the non-ascending order of de-
gree. In line 3, actually we could skip the neighbors whose
degree is larger than d(u). Therefore, the time complexity
of Algorithm 1 is O(

∑
(u,v)∈E

min{d(u), d(v)}). This algorithm

cannot guarantee to delete all dominated vertices, as it does
not apply the dominance reduction rule recursively.

The low-degree reduction algorithm is presented in Al-
gorithm 2. To check whether there exists a degree-one or
degree-two vertex, there is no need to go through all ver-
tices in each loop. Instead, we could use two queues Q1 and
Q2 to maintain vertices whose degree is no greater than 1
and equal to 2 respectively. Therefore, when we update the
graph (e.g., deleting a vertex), it is necessary to push the
new low-degree vertices into Q1 and Q2 immediately.

The time complexity of Algorithm 2 is O(nm) accord-
ing to the analysis in [6], and it also proves a lower bound,
Ω(n logn + m). Using a traditional linear data structure,
e.g., adjacency list, the contraction operation takes the time
cost O(d(u) + d(v)) to traverse N(u) and N(v). A huge

Algorithm 1: Dominance Reduction

Input : a graph G = (V,E)
Output: the remaining graph G after reduction

1 Sort all vertices in non-ascending order of degree;
2 for each vertex u ∈ V in the above order do
3 if u is dominated by any neighbor then
4 delete u from G;

5 return G

a. Graph G Scheduler

b. Near-MIS

Reduction 
Algorithms

• Degree-one([9])
• Degree-two([7, 9])
• Dominance ([6])

Greedy 
Algorithms

• Add vertices ([14])
• Add vertices (Def. 8 by us)
• Delete vertices ([6])

c. the Log of Greedy 
Algorithms

input

output

Recover Greedily 
Deleted Vertices

d. Near-MIS 
(larger than b) output input

a

b

c

Figure 2: Overview of Our Approach

gap still remains between Ω(n logn + m) and O(nm), which
brings us two challenging questions:
1) Can we reduce the time complexity of contraction to
O(min{d(u), d(v)}) without affecting other operations?
2) If yes, can we derive an upper bound better than O(nm)?
These questions will be addressed in Section 3.

2.2.3 Greedy Algorithms
When no reduction rules can be applied, the greedy algo-

rithms will be invoked until the reduction rules can be used.
There are mainly two strategies, adding the vertex of the
smallest degree into the independent set [15] and deleting
the vertex of the largest degree [6].

2.3 Overview of Our Approach
Figure 2 shows the overview of our scheduler framework.

Basically, it consists of two parts, i.e., Near-MIS computa-
tion (scheduler) and Near-MIS recovery.

Different from existing algorithms that apply the reduc-
tion rules sequentially and adopt one of the greedy strate-

Algorithm 2: Low-degree Reduction

Input : a graph G = (V,E)
Output: independent set I, the remaining graph G

1 for each vertex u ∈ V do
2 if d(u) ≤ 1 then Q1.push(u);
3 else if d(u) = 2 then Q2.push(u);

4 while True do
5 if !Q1.empty() then /* d1 Reduction */

6 pop a vertex u from Q1;
7 if !del[u] and d(u) ≤ 1 then
8 add u into I and then delete N [u] from G;

9 else if !Q2.empty() then /* d2 Reduction */

10 pop a vertex u from Q2;
11 if del[u] or d(u) 6= 2 then continue;
12 let v and w be the two neighbors of u;
13 if (v, w) ∈ E then /* Isolation Rule */

14 add u into I and then delete N [u] from G;
15 else /* Folding Rule */

16 temporarily add u into I;
17 delete u from G;
18 contract v and w as a super vertex with

the contraction information (u, v, w);

19 else break;

20 trace back all super vertices:
21 if a super vertex (u, v, w) is in I then
22 replace it by v and w, and remove u from I;
23 return I and G
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Table 1: RGraph vs. Adjacency List

Time Complexity add an edge (u, v) delete a vertex u contract vertices u, v Low-degree Reduction Algorithm
RGraph O(1) O(d(u)) O(min{d(u), d(v)}) Θ(m logn)

Adjacency List O(1) O(d(u)) O(d(u) + d(v)) O(nm)

gies, we devise a scheduler to determine the techniques in-
cluding both reduction rules and greedy strategies dynam-
ically according to the graph in each step. Specifically, the
scheduler receives a graph G as input (as shown in block a),
and then dynamically schedules the reduction and greedy
algorithms. After iteratively applying these algorithms, the
size of graph G gradually decreases to zero and we get a
Near-MIS as output (as shown in block b). As greedy al-
gorithms take full responsibility for the gap between the
output Near-MIS and an MIS, the scheduler also records
the log of using greedy algorithms (as shown in block c).
Combining blocks a, b and c, we try to debug the mistakes
made by greedy algorithms and finally recover a much larger
Near-MIS (as shown in block d).

3. REPRESENTATIVE GRAPH
In this section, we introduce a new graph data structure,

representative graph (RGraph in short), to speed up the
low-degree reduction algorithm.

Adjacency lists do not support contraction efficiently as
duplicate vertices may be generated if two linked lists N(u)
and N(v) are spliced directly. Here, duplicate vertices de-
note the co-neighbors of u and v as each co-neighbor appears
twice in the splicing list. To remove these duplicate vertices,
it usually takes O(d(u) + d(v)) time to traverse both adja-
cency lists. Otherwise, many graph operations are restricted
since the degree of a vertex is not even known. Nevertheless,
in the low-degree reduction algorithm the exact degree of a
vertex is useless unless it decreases to 2 or less. This prop-
erty motivates us to deal with duplicate vertices in a more
flexible way so as to accelerate the contraction operation
without degrading other operations.

Specifically, we design a novel structure RGraph, where
each vertex’s neighbors are divided into two parts, repre-
sentative neighbors and backup neighbors. A major
difference between them is that the latter may contain du-
plicate vertices but the former not. When a vertex u is
deleted, denoted by deleted vertex, it is inefficient to re-
move it directly from each of its neighbor’s adjacency lists.
One better method is using a Boolean array del[n] to record
which vertices have been deleted, i.e., del[v] = True ⇐⇒ v
has been deleted. With the support of this array, deleted
vertices are allowed to stay in the backup neighbor lists.

Algorithm 3 shows the abstract data type definition of
RGraph. Instead of being involved in the low-degree reduc-
tion algorithm directly, it provides interfaces in the graph
operation level. Table 1 shows the time complexity compar-
ison between operations on RGraph and adjacency list.

3.1 Component and Property
For each vertex u, N(u) is divided into representative

neighbors (R-neighbors in short) and backup neighbors
(Bak-neighbors in short), stored in two linked lists and de-
noted by Nr(u) and Nbak(u) respectively.

Nr(u) is a subset of N(u) and it holds that:

• Size Constraint: Each vertex has no more than three
R-neighbors, i.e., |Nr(u)|≤3.

• Clean: For each vertex u, Nr(u) does not contain
duplicate or deleted vertices.

• Maximal: Each vertex should have R-neighbors as
many as possible within the size constraint.

Lemma 1 reveals the relation between |Nr(u)| and d(u). If
a vertex u has less than 3 neighbors, Nr(u) = N(u) holds;
Otherwise, Nr(u) consists of 3 distinct vertices arbitrarily
chosen from N(u).

Lemma 1. If |Nr(u)| = 3, it indicates that d(u) ≥ 3;
Otherwise, d(u) = |Nr(u)|.

In contrast, Nbak(u) stores the remaining neighbors of u
in a lazy way. Specifically, it may contain duplicate vertices
and deleted vertices. When a neighbor v of u is deleted, we
need to remove v from Nr(u) at once if it is a R-neighbor;
Otherwise, no operation is required.

3.2 Core Operation of RGraph: Touch
As aforementioned, RGraph consists of two linked lists

for each vertex. One major challenge is how to efficiently
update the graph for the reduction or peeling operations
while maintaining the above properties of R-neighbors.

As shown in Algorithm 3 we propose a touch operation to
connect high level graph operations and the bottom imple-
mentation of linked lists. Specifically, touch(u) is in charge
of keeping Nr(u) clean and maximal after the updating op-
erations (e.g., deleting a vertex). It first checks whether any
R-neighbor is deleted and removes the deleted ones (lines 6-7

Algorithm 3: ADT Definition of RGraph

Vertex Type: (Nr, Nbak)

1 Procedure init(u)
2 for v ∈ N(u) do
3 if |Nr(u)| < 3 then add v into Nr(u);
4 else add v into Nbak(u);

5 Procedure touch(u)
6 for v ∈ Nr(u) do
7 if del[v] then delete v from Nr(u);

8 while |Nr(u)| < 3 and |Nbak(u)| > 0 do
9 pop a vertex v from Nbak(u);

10 if !del[v] and v /∈ Nr(u) then
11 add v into Nr(u)

12 Procedure add edge(u, v)
13 add u into Nbak(v) and then touch(v);
14 add v into Nbak(u) and then touch(u);

15 Procedure delete(u)
16 del[u]← True;
17 for v ∈ Nr(u) ∪Nbak(u) do
18 if !del[v] then touch(v);

19 Procedure contract(u, v)
20 if |Nbak(u)| < |Nbak(v)| then swap u and v;
21 del[v]← True;
22 for w ∈ Nr(v) ∪Nbak(v) do
23 if !del[w] then add edge(u, w);
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in Algorithm 3). Then it tries to extend Nr(u) to be max-
imal by promoting some Bak-neighbors (lines 8-11). No-
tice that we just promote Bak-neighbors which meet the
clean requirement and discard the others (do not put back
to Nbak(u)). Theorem 1 shows the time complexity.

Theorem 1. If the function touch() is called k times in
the low-degree reduction algorithm, the total time complexity
of the touch operations is O(k + m).

The remaining part of Algorithm 3 presents three graph
operations based on the touch operation.

Lines 12-14: Add an edge between u and v. Add u
and v into each other’s Bak-neighbors and then touch them
to maintain the index. The time cost is O(1).

Lines 15-18: Delete u and update N(u). When u is
deleted, it is necessary to touch each neighbor of u to find
all newly generated low-degree vertices in O(d(u)) time.

Lines 19-23: Contract two vertices u and v. Let v
denote the vertex with less Bak-neighbors. If not, swap u
and v first in line 20. To contract u and v as a super vertex,
we delete v and pass N(v) to u (i.e., add edges between u
and v’s neighbors), so that u becomes the super vertex. It
is worth noting that the set of newly generated low-degree
vertices is a subset of N(u) ∩ N(v). Hence, updating ei-
ther N(u) or N(v) is enough. N(v) is chosen to ensure the
time complexity is O(d(v)) = O(min{d(u), d(v)}), and each
neighbor w of v is touched in add edge(u,w).

In conclusion, the contraction operation can be conducted
at the cost of O(min{d(u), d(v)}) by using RGraph. More-
over, the time complexity of other updating operations re-
mains unchanged.

3.3 Time Complexity Analysis
Theorem 2. The worst-case time complexity of RGraph-

based low-degree reduction algorithm is Θ(m logn).

Chang et al. [6] present a low-degree reduction algorithm
with the time complexity Ω(n logn + m), where Ω denotes
a lower bound of the time complexity. It constructs a graph
instance with only Θ(n) edges on which the algorithm runs
in Θ(n logn) time. Actually, it is quite easy to make an
extension: if we construct the graph instance with Θ(m)
edges, the algorithm will run in Θ(m logn) time. It means
that we find a tighter lower bound Ω(m logn).

In the following, we prove that the upper bound is also
O(m logn). One basic observation is that the total time
cost on deleting vertices can be covered by O(m). As the
contraction operation dominates the algorithm, we just need
to consider vertex contraction rather than vertex deletion.

Simple Merge Model. Assume that there are m apples
in n boxes. A non-negative integer di (i ∈ {0, 1, . . . , n− 1})
denotes the number of apples in boxi. We try to put all
apples in one box in n − 1 steps. In each step, we can
arbitrarily choose two boxes boxi and boxj to merge. Then
the merged box contains di+dj apples and the total number
of boxes decreases by one. After n−1 steps, there is only one
box left which contains all of the m apples. Moreover, we
define the cost of each step as min{di, dj} and use f(n,m)
to represent the total cost.

Lemma 2. f(n,m) = O(m logn).

Proof. Each apple in the box containing fewer apples
results in a cost of 1. In other words, if an apple contributes

a cost of 1, the number of apples in its box will at least
double. Therefore, the cost resulted from a box of x apples
is at most x

⌊
log2

m
x

⌋
. Immediately, we have:

f(n,m) ≤
n−1∑
i=0

di

⌊
log2

m

di

⌋
≤
n−1∑
i=0

di log2

m

di

It is easy to prove that the right side gets maximized when
all di’s are equal, i.e., d0 = d1 = . . . = dn−1 = m

n
. Then we

have f(n,m) ≤ m log2 n = O(m logn).

Now we can use the simple merge model to analyse the low-
degree reduction algorithm.
1) Each vertex u is regarded as a box. The number of apples
in the box is set as u’s degree d(u).
2) When boxu and boxv are merged, the merged box con-
tains d(u)+d(v) apples at the cost of min{d(u), d(v)}. It ex-
actly fits the situation of contracting two vertices on RGraph.
3) Although duplicate and deleted neighbors are allowed in
Nbak due to the lazy storage manner, some of them may be
removed during the update. By comparison, the setting of
the simple merge model considers the worst case, that no
apple is thrown away.

The simple merge model describes the worst case of run-
ning low-degree reduction algorithm on RGraph. According
to Lemma 2, f(n,m) is an upper bound of the time com-
plexity. Therefore, the correctness of Theorem 2 is proved.

3.4 RGraph and Adjacency Lists
Although Algorithm 3 does not maintain the exact degree

of a vertex unless its degree is less than 3, the low-degree
reduction algorithm is not affected at all. Moreover, it is
easy to build the RGraph and restore the adjacency lists
based on RGraph.
1) Build the RGraph based on Adjacency Lists.
A naive method is to apply the init() operation provided
by Algorithm 3 on each vertex. The time cost is Θ(m). A
more elegant way is that the RGraph itself can be used as
adjacency lists. Since each node of RGraph contains two
linked lists Nr and Nbak, we can just let Nr be empty and
use Nbak as adjacency lists. In this way, applying touch()
instead of init() on each node is enough to initialize the
RGraph. Hence, the time cost reduces to Θ(n).
2) Restore Adjacency Lists based on the RGraph.
When all contractions complete, a simple linear scan can re-
move all duplicate and deleted vertices from the RGraph. It
takes Θ(m) time to restore the RGraph to normal adjacency
lists.

Furthermore, the time complexity can be reduced to the
size of the subgraph affected. To initialize the RGraph, there
is no need to touch all vertices at the beginning but flexibly
touch a vertex when it is visited by the algorithm. As for
restoring, it just needs to traverse the neighbor lists of all
merged vertices as well. Obviously, the time cost of building
and restoring is always dominated by the low-degree reduc-
tion algorithm’s time complexity.

4. TIE BREAKING STRATEGY
As discussed above, reduction rules can reduce the graph

size by including vertices that definitely belong to the MIS.
Generally, not all the vertices can be reduced through these
reduction rules. When no reduction rules can be applied,
it is not easy to determine whether a vertex belongs to any
MIS of the remaining graph or not.
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4.1 Vertex Addition Framework
One straightforward idea of tie breaking is to choose a can-

didate vertex u and add it into the independent set. Then
vertex u and its neighbors will be deleted from the graph. If
there exists an MIS that contains the candidate vertex, this
greedy addition is exact and does not degrade the solution
quality. Thus it is very critical to determine how likely one
vertex could be in an MIS and then conduct selection under
this metric greedily. Specifically, the metric can be regarded
as a function which maps a vertex to an integer score rep-
resenting the likelihood. Without loss of generality, assume
that a higher score indicates a vertex is more likely to be
included in an MIS.

Algorithm 4 shows the pseudo code of the vertex addition
framework. Once there is no exact reduction rule to use, the
algorithm greedily chooses a vertex that has the largest score
as the candidate vertex and conducts reduction mentioned
above to break the tie. The key issue is that line 4 must
be implemented in a smart way, instead of enumerating all
vertices to select the best one. Therefore, we need to use an
efficient data structure to maintain the score, which supports
updating and finding the largest score efficiently. At the
same time, deleting a vertex (line 5) not only removes it
from the graph structure, but also updates the scores of all
affected vertices and maintains the related indexes.

Actually, many advanced data structures (e.g., balanced
binary search tree) can handle updates and maximum (min-
imum) queries with O(logN) time complexity where N rep-
resents the number of elements. Ignoring the details of im-
plementation, we define the abstract data type BST in Al-
gorithm 5. Except size() which takes O(1) time in line 1, all
member functions take O(logN) time. At the same time,
this structure only takes a linear space complexity O(N).

4.2 Vertex Addition Metric
As used in many previous studies, choosing the vertex of

the smallest degree is a natural idea. It means that we can
simply use the opposite of degree as the score of a vertex.

Definition 7. Naive Addition Metric

∀u ∈ V, u.Score = −d(u)

The intuition behind Definition 7 is that the vertex with a
lower degree is more likely to be included in an MIS. When
a vertex u is deleted from G, we only need to increase the
score of each neighbor by one, which takes O(d(u)) time and
can be covered by O(m) time complexity in total.

However, the demerit is also obvious. At the beginning,
there may be a large number of vertices with the lowest
degree (e.g., 3). Based on the naive addition metric, what

Algorithm 4: Vertex Addition Framework

Input : a graph G = (V,E)
Output: a maximal independent set I

1 Initialize the score of each vertex;
2 while G is not empty do
3 if there is no exact reduction to use then
4 Choose a vertex u with the maximum score;
5 Add u into I and then delete N [u] from G;

6 else apply exact reduction;

7 return I

Algorithm 5: ADT Definition of BST

Element Type: (key, value)

1 int size(): return the number of elements;
2 void insert(k, v): insert an element (k, v);
3 void delete(k): delete the element with key k;
4 void update(k, v′): (k, v)← (k, v′);
5 Element Type max(): return an element with the

maximum key value;

v1

v2v3

v4

v5 v6

v7 v8

v9 v10

v11 v12

Figure 3: An Example of Combined Addition Metric

we can do is just selecting one of them randomly, which is
basically useless. Therefore, we need to enrich this metric
by further selection.

Definition 8. Combined Addition Metric

∀u ∈ V, u.Score1 = −d(u), u.Score2 = min
v∈N(u)

d(v)

In Definition 8, the minimum degree of neighbors is de-
fined as the second key of the score. In other words, if there
is more than one vertex that has the maximum Score1 value,
we will choose the one whose Score2 value is the highest
among them. Based on this definition, all neighbors of the
chosen vertex have high degree, which implies that they are
unlikely to be in the maximum independent set.

Figure 3 gives an example, where different colors repre-
sent vertices of different degree. Blue, green and red denote
vertices of degree from 3 to 5 respectively. In this graph, ver-
tex v1 has the largest Score2 (v1.Score2 = 4) among all blue
vertices. Therefore, we add vertex v1 into the independent
set and delete v1 and its neighbors from the graph.

4.3 Score Maintenance
In this subsection, we discuss how to efficiently maintain

the score of each vertex under the combined addition metric
(Definition 8).

Table 2 summarizes the impact on the score by deleting
a vertex. When u is deleted, one direct impact is that each
neighbor’s Score1 increases by 1. Recall that Score1 is de-
fined as −degree. Another direct impact is that for each
v ∈ N(u), if u was the minimum degree neighbor of v, v
needs to find a new one now and therefore v.Score2 may get
larger. Assume that there is a path u−v−w, the deletion of
u may have an indirect impact on w due to d(v)’s decrease.
If v becomes the minimum degree neighbor of w, w.Score2
decreases by 1 as well. One more thing, a vertex v can re-
ceive both direct and indirect impacts if v ∈ N(u) ∩N2(u),
where N2(u) denotes u’s 2-hop neighbor set.

Algorithm 6 shows the pseudo code of a brute implemen-
tation which simply updates all affected vertices’ scores. To
be more specific, it first updates Score1 of 1-hop neighbors
in lines 1-3, and then updates Score2 of 1-hop and 2-hop
neighbors in lines 4-9. As the update operation on BST
takes O(logn) time, the time complexity of deleting vertex
u is O(d(u)2 logn).
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Table 2: Impact on Score when Deleting Vertex u

a path: u - v - w Score1 (degree) Score2

Direct Impact on v ∈ N(u) +1 (-1)
may get larger if d(u) = v.Score2,

otherwise stays unchanged

Indirect Impact on w ∈ N(v) stays unchanged
-1 if the latest d(v) < w.Score2,

otherwise stays unchanged

Active Vertex Index. It is easy to see that updating
Score2 is the bottleneck of score maintenance. As Score2 is
the second key, actually only the vertices with the highest
Score1 matter. Therefore, just inserting vertices with the
minimum degree into BST is a direct idea to reduce the
update cost. Specifically, we could regard them as active
vertices and only maintain them in BST instead of the
whole V . Moreover, there is no need to repeatedly update
the Score2 value of any inactive vertex. Instead, it merely
takes d(u) time to calculate u.Score2 once u becomes active.

As we only delete but not add vertices in this framework,
the degree of active vertices has no chance to increase. How-
ever, deleting an active vertex may produce one with a much
lower degree, which means that the minimum degree goes
down. In this circumstance, active vertices could become
inactive again, resulting in a waste of time on deleting them
from BST. To make sure that each vertex is inserted into
BST at most once, in Definition 9 we define the threshold
value as the largest minimum degree in history, which is
not decreasing. Moreover, in Lemma 3 we devise an upper
bound of the threshold value based on the coreness of graph.

Definition 9. Active Vertex. A vertex is active if and
only if its degree is no greater than a threshold value.

Here Gi = (Vi, Ei) denotes the graph in the i-th while loop
of Algorithm 4, so G0 and Gnow are the initial and current
graphs respectively. Then the threshold value is defined as
max0≤i≤now{minu∈Vi d(u)}.

Lemma 3. The threshold value of active vertex is never
greater than the biggest coreness value K of the initial graph.

Proof. Without loss of generality, we assume that the
final threshold value is k, the minimum degree of Gi. Ob-
viously each maximal connected subgraph of Gi is a k-core.
As Gi is also a subgraph of G0, we can say that G0 contains
at least one k-core. Therefore, the biggest coreness value of
G0 is no less than k.

Algorithm 6: Deleting a Vertex - Brute Method

Input : a graph G = (V,E) and a vertex u
Target: maintain score while deleting vertex u

// Array A stores affected vertices.

1 for each vertex v ∈ N(u) do
2 d(v) decreases by 1 (v.Score1 increases by 1);
3 add v into A;

4 for each vertex v ∈ N(u) do
5 v.Score2 ← N ;
6 for each vertex w ∈ N(v) and w 6= u do
7 v.Score2 ← min(v.Score2, d(w));
8 w.Score2 ← min(w.Score2, d(v));
9 add w into A;

10 update the score of each v ∈ A on BST;
11 remove u from the graph structure;

Lazy Update Mechanism. The lazy update mecha-
nism is commonly used in many traditional scenarios such
as deleting an element from a priority queue. Actually a
priority queue can only pop the best element but not sup-
port deleting an arbitrary element. Under the lazy update
mechanism, deleting an element u does not update the pri-
ority queue but simply marks u as deleted in constant time.
An extra job is that the original pop operation is replaced
by a loop, repeatedly popping the best element until it is
not deleted. In other words, we put off deleting an element
until it is popped. Back to score maintenance, the way we
delay updates on BST under the lazy update mechanism is
similar, but the circumstance is much more complicated due
to various types of updates. When BST reports a vertex u
that has the largest score, we need to double check whether
the score of u stored in BST is the latest. If not, delete it
from BST and insert the latest score into BST again. Other-
wise, u has the largest score indeed. However, this inference
is based on an assumption that all delayed updates do not
make score increase. If the score increases, we must update
it on BST at once. Otherwise, this update can be omitted.

Time Complexity Analysis. Algorithm 7 shows the
pseudo code of an advanced implementation equipped with
both accelerating techniques above. All indirect impact (Ta-
ble 2) is ignored (lazy update mechanism) and only the ac-
tive vertices’ scores are updated on BST (active vertex in-
dex). Noted that line 5 includes a case that v is a newly
active vertex due to u’s deletion. Whatever, it merely takes
O(K) time (Lemma 3) to calculate v.Score2 and logn time
to update it on BST. Therefore, the total time complexity
on deleting vertices is O(m(K + logn)).

5. ALGORITHM SCHEDULER
Although there have been many reduction rules and tie

breaking strategies, it is required to integrate them to maxi-
mize the solution quality and minimize the overall time cost.

5.1 Scheduling Reduction Rules
Instead of invoking reduction algorithms in a fixed or-

der, we introduce the novel framework which dynamically
schedules reduction algorithms based on a cost-and-benefit
model. Specifically, the scheduler iteratively conducts the

Algorithm 7: Deleting a Vertex - Advanced Method

Input : a graph G = (V,E) and a vertex u
Target: maintain score while deleting vertex u

1 for each vertex v ∈ N(u) do
2 d(v) decreases by 1 (v.Score1 increases by 1);
3 for each vertex v ∈ N(u) and v is active do
4 recalculate v.Score2 by traversing N(v);
5 update the score of v on BST;

6 remove u from the graph structure;
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following two operations until the graph is empty. 1) Esti-
mate the cost and benefit of each reduction rule, and then
choose the best one; 2) If the benefit is overwhelmed by the
corresponding cost (the reduction cannot even reduce any
vertex in the worst case), greedy algorithms are invoked to
break the tie.

Algorithm 8 shows the pseudo code. In each iteration of
the while loop (lines 1-8), it first estimates the benefit den-
sity of each reduction rule (line 2). If the best one (denoted
as ra) still has a poor performance, the scheduler chooses to
apply greedy algorithms (line 4). Otherwise, it applies ra on
the graph and updates G and I accordingly (line 6). In order
to avoid an infinite loop, the scheduler applies greedy algo-
rithms as well when the actual benefit of ra is poor (line 8).
The procedure of applying greedy algorithms is described in
lines 10-12.

Formally, we define the benefit density to evaluate the
performance of each reduction rule, and set a threshold on
the benefit density to determine poor performance. In our
experiments, the reduction rule has a poor performance if it
reduces less than 100 vertices per millisecond.

Definition 10. Benefit Density

BD =
reducing ability

processing time

where reducing ability represents the decrease of graph
size after applying the reduction rule. Specifically, it can be
defined as the number of reduced vertices, edges or a trade-
off. Processing time refers to the actual time consumed
by running the corresponding reduction algorithm. Thus,
it is critical to conduct fast and effective estimation of the
reducing ability and processing time of each reduction rule.

Estimation of Processing Time. We assume that the
processing time of an algorithm is linear to the graph size,
since the whole algorithm is supposed to run on extremely
large graphs and cannot contain any high time complexity
(e.g., O(n2)) reduction algorithm. Similar to the definition
of reducing ability, the size of graph could be either |V |
or |E| which depends on the characteristic of the specific

Algorithm 8: Scheduling Framework

Input : a graph G = (V,E), reduction algorithm
set RA and greedy algorithm set GA

Output: an independent set I

1 while G is not empty do
2 Estimate each reduction algorithm’s benefit

density, then choose the best one ra ∈ RA;
3 if ra’s estimated performance is poor then
4 Apply Greedy Algorithm()

5 else
6 (G, I)← ra(G, I);
7 if ra’s actual performance is poor then
8 Apply Greedy Algorithm()

9 return I

10 Procedure Apply Greedy Algorithm()

11 Choose a greedy algorithm ga ∈ GA which fits
the current graph best;

12 Repeatedly apply ga until the size of G reduces
significantly;

reduction algorithm. For a reduction algorithm ra, let ti
and sizei denote the processing time and graph size of the
i-th running of ra. Then, we have the following equation:

∀i ≥ 1, speedra =
sizei
ti

Initially, we assign the same large value to each speedra.
Then, we can use the above equation to estimate ti. After
the i-th running of ra, we can use the actual ti to update
speedra. Under this mechanism, the scheduler tends to ap-
ply all reduction algorithms in turn at the beginning, and
then each speedra will fall back to a normal range. More-
over, appropriately reducing the initial speed of a reduction
algorithm can make it applied much later. It is a useful
method to avoid applying a time-consuming reduction algo-
rithm to the initial large graph.

Estimation of Reducing Ability. In practice, we design
specific estimation methods for each reduction algorithm.
The number of degree-one and degree-two vertices is easy to
maintain and it gives a rough estimate on degree-one and
degree-two reduction respectively. As for dominance reduc-
tion, random sampling is an efficient and robust method.
Each time we randomly select a constant number (denoted
as c) of vertices and check whether each of them is domi-
nated by a neighbor. Assume that cdom vertices of them are
dominated and the current graph contains nnow vertices,
then the total number of vertices that are dominated in the
current graph is estimated to be nnow × cdom/c. The av-
erage time complexity of estimating degree-one, degree-two

and dominance reduction is O(1), O(1) and O(cd
2
) respec-

tively, where d denotes the average degree of vertices.

5.2 Scheduling Greedy Algorithms
Trigger Mechanism. Generally speaking, we change the

traditional trigger mechanism from “reduction algorithms
do not work” [6] to “they do not work well”. The traditional
method is not good enough due to the diminishing marginal
effect, that is the number of vertices reduced in each itera-
tion gradually decreases to zero (i.e., reduction rules do not
work) and then greedy algorithms are triggered. Therefore,
the reduction algorithms usually obtain quite limited ben-
efits in the last several iterations before triggering greedy
algorithms. Naturally, we want to trigger greedy algorithms
much earlier to avoid these inefficient iterations. As shown
in Algorithm 8, our novel mechanism invokes greedy algo-
rithms when the best reduction algorithm has a poor perfor-
mance, i.e., its benefit density is less than the given thresh-
old. Under this mechanism, the whole algorithm can keep
running efficiently.

Hybrid Tie Breaking Strategy. Currently, there are
mainly two kinds of tie breaking strategies: vertex deletion
(delete the vertex of the largest degree [6]) and vertex addi-
tion (add the vertex of the smallest degree [15]). As shown
in the experiments, we find that vertex deletion performs
better than vertex addition on most real networks. On the
contrary, they just show opposite performance on most ER
graphs. Generally, real networks have a power-law degree
distribution, which means that there are few high-degree
vertices but a large number of low-degree vertices. As for
ER graphs, the degree of vertices concentrates around the
average degree d, i.e., both the number of low-degree and
high-degree vertices are quite few. In essence, a strategy

2473



has a good performance when it gives a good partition, i.e.,
the gap between the chosen vertices and the others is large.

Based on the above analysis, we propose a hybrid strategy
as shown in Definition 11, which dynamically uses the dele-
tion and addition strategies depending on dmax (the maxi-
mum degree), dmin (the minimum degree) and d (the aver-
age degree) of the current graph.

Definition 11. Hybrid Tie Breaking Strategy. Apply
the addition strategy when d− dmin ≥ dmax − d, otherwise
apply the deletion strategy.

It is easy to further improve this strategy with the help of
detailed degree distribution information. However, we keep
this simple version since it clearly shows the idea of hybrid
strategy and also avoids overfitting on experimental graphs.

Batch Deletion Technique. Traditionally, once a ver-
tex is greedily deleted from the current graph or added into
the solution, the reduction algorithms will be invoked until
their benefit density becomes low again. However, the ben-
efit density stays almost unchanged due to several vertices’
deletion. The scheduler will apply greedy algorithms once
and once again, wasting a large amount of time in mean-
ingless estimation. Hence, we propose the batch deletion
technique: each time the greedy algorithm is invoked until
a percentage of edges are deleted. In our experiment, we
set the percentage to be 2%. Note that batch deletion can
improve the time efficiency without degrading the solution
quality obviously. The main reason is that if we do not force
to invoke greedy algorithms repeatedly, the scheduler will
also resort to greedy algorithms since reduction algorithms’
estimated benefit density is still low.

Delay Indexing. Note that the greedy algorithms are
not always used in the scheduling framework. In the extreme
case, a graph can be reduced to empty merely by applying
reduction algorithms, so that an exact solution is found.
However, when the index for greedy strategy is constructed,
there is always some update cost while deleting vertices.
Hence, a simple but effective idea is: the construction of
index can be delayed until the scheduler applies a greedy
algorithm. In this way, there is no cost on maintaining the
index when greedy algorithms are never used.

5.3 Recovery Technique
As shown in block b of Figure 2, the scheduler finally

outputs a Near-MIS (denoted as Ib). In this subsection, we
discuss how to further improve the solution quality.

A naive method proposed in [6] is simply extending the
solution independent set to be maximal. In the following
we propose an advanced recovery technique which resorts
to updating algorithms. Suppose that we remove all ver-
tices deleted by greedy algorithms from the original graph
G = (V,E) and then we have G′ = (V ′, E′). It is easy to
prove that Ib ∩ V ′ is an MIS on G′. Now, for each ver-
tex u ∈ V − V ′, we add it back into G′ and maintain Ib
to be an MIS at the same time. The above method may
be a potential exact algorithm of the MIS problem. How-
ever, we merely aim to find a Near-MIS within reasonable
time in this paper. Therefore, we adopt inexact updating
algorithms as well, which maintain a Near-MIS during graph
updating operations, such as LSTwo+LazySearch+ in [26]
and DGOracle in [25]. As shown at the bottom of Figure
2, the updating algorithm receives a, b and c as input, and
finally returns a Near-MIS Id which is larger than Ib.

Table 3: Statistics of Real Networks

Graph |V | |E| d dmax
Wiki-Vote 7,115 100,762 28 1,065

CA-AstroPh 18,771 198,050 21 504
Epinions 75,879 405,740 11 3,044

com-amazon 334,863 925,872 6 549
com-dblp 317,080 1,049,866 7 343

web-Google 875,713 4,322,051 10 6,332
Wiki-Talk 2,394,385 4,659,565 4 100,029
BerkStan 685,230 6,649,470 19 84,230
as-skitter 1,696,415 11,095,298 13 35,455

cit-Patents 3,774,768 16,518,947 9 793
soc-pokec 1,632,803 22,301,964 27 14,854

LiveJournal 4,846,609 42,851,237 18 20,333
com-orkut 3,072,441 117,185,083 76 33,313

Table 4: Statistics of ER and ER* Graphs

Graph |V | |E| d dmax d∗max
ER-1 100,000 751,263 15 34 37
ER-2 500,000 4,939,792 20 43 42
ER-3 1,000,000 24,585,034 49 88 89
ER-4 3,000,000 114,257,845 76 126 122

6. EXPERIMENTS

6.1 Data Sets
The proposed algorithms are evaluated on 13 real net-

works and three kinds of synthetic graphs. The statistics of
these graphs are listed in Tables 3 and 4, where |V |, |E|,
d and dmax denote the number of vertices and edges, the
average and maximum degree respectively. All of the real
networks in Table 3 are downloaded from the Stanford Net-
work Analysis Platform [13] and frequently used in previous
studies [1, 6, 25].

As shown in Table 4, four synthetic graphs ER-x gen-
erated by the Erdos-Renyi model are used to evaluate the
practical performance of the proposed algorithms in general
cases. The Erdos-Renyi (ER in short) model [20] is a clas-
sical random graph model for analyzing the average case of
graph algorithms [17], where each edge exists with probabil-
ity p independently. It can also be used to model different
graph structures such as communities [21]. In this paper,
the ER model receives two parameters, the number of ver-
tices n and expected average degree d. Then, each pair of
vertices generates an edge with the same probability d

n−1
.

Obviously, vertices tend to have a similar degree around the
average degree in an ER graph.

Since all ER graphs have similar topology, we generate
four graphs ER*-x by randomly updating 10% edges on
the above ER graphs. Specifically, each update operation
consists of four steps: 1) Randomly pick an existing edge;
2) Delete this edge; 3) Randomly pick a pair of vertices
without an edge; 4) Add an edge between them. In this
way, the number of vertices and edges remains unchanged.
Hence, a column d∗max is appended to Table 4, denoting
the maximum degree of the ER* graphs. Beyond that, six
Dense Graphs are used to test the robustness. Each of
them has 104 vertices but varies in the percentage of |E|
from 1% to 75%, compared with the complete graph.

6.2 Competitors
For ease of presentation, let Sch-standard and Sch-

extension denote our proposed scheduler-based methods.
We compare the following methods.
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Wiki-Vote Epinions CA-AstroPh com-amazon Wiki-Talk web-Google com-dblp LiveJournal BerkStan as-skitter soc-pokec cit-Patents com-orkut

4866 53599 6759 174632 2338222 529138 152131 2630941 408482 1170580 789207* 2089887* 833922*

LinearTime 0 0 1 21 0 150 2 379 762 170 200 2522 6007

NearLinear 0 0 0 3 0 4 0 36 426 39 57 2124 5256

Sch-standard 0 0 0 1 0 4 0 29 245 31 28 171 1362

Sch-extension 0 0 0 0 0 4 0 16 221 27 0 0 0

Gap to

GroundTruth(*)

Real Networks
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39 59 133 
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Figure 4: Overall Performance on Real Networks

Sch-standard: The standard version of our scheduling
framework. It applies the core technique proposed in this
paper, i.e., dynamically scheduling degree-one, degree-two
and dominance reduction algorithms based on the cost-and-
benefit estimation. It uses the basic tie breaking strategy
(i.e., deleting a max-degree vertex) in the batch manner and
the naive recovery method.

Sch-extension: The extension version of our scheduling
framework equipped with the hybrid tie breaking strategy,
delay indexing and advanced recovery technique. Specifi-
cally, we choose DGOracle [25] as the updating algorithm
for recovery. To improve the efficiency of recovery, we sim-
plify DGOracle by disabling the DFS procedure which aims
to find a valid swap.

LinearTime & NearLinear [6]: The state-of-the-art
methods for finding a Near-MIS in linear and near-linear
time respectively.

VCSolver [1]: The state-of-the-art implementation of the
exact MIS algorithm. If it can find an MIS within 1 hour,
we use the size of this MIS as ground truth.

All experiments are conducted on a 2012 Windows Server.
Our algorithms are implemented in C++ and compiled with
-O3 option. The existing algorithms’ codes are published by
their authors and we obtain them from public resources.

6.3 Experimental Results

6.3.1 Comparison with State-of-the-art Algorithms
Figures 4 and 5 present the overall performance on real

networks and three kinds of synthetic graphs respectively.
Each figure consists of two parts: solution quality and pro-
cessing time.

Evaluation of Solution Quality . GroundTruth in
Figure 4 denotes the size of an MIS. The gap between the
ground truth and the size of Near-MIS delivered by each al-
gorithm is computed, the smaller the better. Gap = 0 means
that the algorithm actually finds an MIS, i.e., the optimal
solution. Sch-standard and Sch-extension outperform
the competitors. As equipped with the hybrid tie breaking
strategy and advanced recovery technique, Sch-extension
finds larger solutions than Sch-standard on most graphs.

To further differentiate the solution quality of these al-
gorithms, they are evaluated on graphs which are too large
to compute the ground truth. In the last three columns of
Figure 4 and the whole Figure 5, we simply adopt the best

result of four algorithms as GroundTruth* which is used
to compute the gap accordingly. It is clear that the gap
gradually decreases to zero from top to bottom on almost
all graphs, i.e., Sch-extension > Sch-standard > Near-
Linear > LinearTime in terms of solution quality. Note
that Gap = 0 indicates that Sch-extension outperforms
the others but not necessary finds an MIS. Sch-extension
improves the quality of LinearTime and NearLinear by
3.7%− 7.0% on ER and ER* graphs.

Evaluation of Time Efficiency . In the lower part of
Figures 4 and 5, the y axis denotes the processing time in
millisecond. It is clear that LinearTime > Sch-standard
> Sch-extension > NearLinear�VCSolver in terms of
time efficiency on most graphs. Concretely, Sch-standard,
Sch-extension and NearLinear are at most 2, 5 and 65
times slower than LinearTime on real networks respec-
tively, and at most 2, 20, 50 times slower on ER and ER*
graphs respectively. LinearTime is the most efficient al-
gorithm as it adopts very simple techniques (a subset of
others’) and consumes Θ(n + m) time on any graph. Our
proposed algorithms are slower than LinearTime on large
graphs due to the near-linear time complexity, but run much
faster than NearLinear. NearLinear performs especially
poor on dense graphs, i.e., thousands of times slower than
LinearTime. The performance of Sch-standard and Sch-
extension is stable, which confirms the robustness of our
scheduler framework. Furthermore, the exact algorithm VC-
Solver is far more time-consuming than the others, and is
manually stopped if it does not terminate within 30 and 3
hours on real networks and synthetic graphs respectively.

6.3.2 Evaluation of Scheduling Framework
In order to study the performance of the scheduling frame-

work, we conduct extensive ablation test. The results are
presented in Figure 6, where the y axis denotes the time cost
and the x axis denotes the gap to the ground truth. Note
that com-orkut and ER-4 are hard cases on which the
maximum independent sets are not known. We have to use
the largest independent sets computed by Sch-extension
as the ground truth.

All compared algorithms are listed on the left side. Each
of Fixed Order, Single Deletion and Probability Es-
timation replaces dynamic order, batch deletion, and ran-
dom sample from Sch-standard, respectively. Therefore,
in the following we focus on the comparison between Sch-
standard and them to evaluate each specific technique. We
also include Sch-extension’s results for reference.
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ER-1 ER-2 ER-3 ER-4 ER*-1 ER*-2 ER*-3 ER*-4 Dense-1% Dense-5% Dense-10% Dense-25% Dense-50% Dense-75%

24445* 102042* 107382* 230267* 24853* 104145* 114837* 268362* 610* 159* 83* 36* 16* 9*

LinearTime 912 4240 6507 16163 875 3912 5533 13785 41 22 9 7 2 2

NearLinear 901 4247 6472 16146 872 3931 5520 13795 40 26 9 7 2 2

Sch-standard 467 2168 4365 11997 383 1811 3331 9663 38 15 11 5 3 2

Sch-extension 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 5: Overall Performance on Synthetic Graphs
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Figure 6: Ablation Test: Evaluate Specific Techniques of the Scheduling Framework

Fixed Order vs. Dynamic Order . Fixed Order rep-
resents the traditional method that applies degree-one re-
duction, degree-two reduction and dominance reduction in
a fixed order instead of making a decision by the scheduler.
Under Fixed Order, there are six different orders to sched-
ule the above three reductions, which are depicted by the six
points in Figure 6. However, we do not draw any point of
Fixed Order in the last two figures because it does not find
a result within an hour on com-orkut or ER-4.

The results show that different orders do lead to different
solutions and influence the processing time. However, the
difference is not obvious among the fixed orders. By com-
parison, Sch-standard schedules reduction algorithms in a
dynamic order and enhances the usage of greedy algorithms,
which results in a minor loss of solution quality but saves a
substantial amount of time. In other words, there is a better
trade-off between solution quality and time efficiency in our
scheduling framework.

Single Deletion vs. Batch Deletion. Single Deletion
deletes one vertex when applying the greedy algorithm. On
the contrary, Sch-standard adopts the batch deletion tech-
nique. It is clear that Single Deletion and Sch-standard
have almost the same solution quality. As for time effi-
ciency, their performance is still close on small real networks.
However, when it comes to more complicated graphs, Sch-
standard is two orders of magnitude faster than Single
Deletion. Therefore, we can conclude that the batch dele-
tion technique does not sacrifice solution quality but im-
proves the time efficiency especially in complicated graphs.

Probability Estimation vs. Random Sample. In Sch-
standard, we use random sampling to estimate the effect of
dominance reduction. By comparison, Probability Esti-
mation adopts a statistical method which roughly estimates
an expected number of reduced vertices in linear time. Fig-
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Gap to GroundTruth(*)
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Figure 7: Solution Quality of Three Strategies

ure 6 clearly shows that Sch-standard is superior to Prob-
ability Estimation in terms of both solution quality and
time efficiency, which confirms the effectiveness of random
sampling.

6.3.3 Evaluation of Tie Breaking Strategy
In this experiment, we still use Sch-standard as the con-

trol algorithm and vary in tie breaking strategies. Figure 7
depicts the performance of solution quality. We can see that
the comparison between Addition and Deletion is contin-
gent upon the type of graph. The deletion strategy performs
excellently on real networks due to the power-law degree dis-
tribution. In contrast, the addition strategy performs better
on ER graphs because the degree of vertices concentrates

Table 5: Processing Time of Three Strategies

Time(s)
Addition

Deletion Hybrid
Brute Advance

BerkStan 59.8 1.2 0.6 0.6
as-skitter 59.7 1.6 1.3 1.3
com-orkut 1415.3 14.3 10.9 15.6

ER-2 28.4 3.1 0.8 3.2
ER-3 196.4 22.7 2.4 20.0
ER-4 2240.4 179.1 12.9 147.9
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Table 6: Evaluate the Impact of Near-MIS on Kreach Construction

Graph
Near-MIS Computation Kreach Construction

Algorithm Size Time(s)
Index Time(s)

Size(GB) k = 2 k = 3 k = 4

BerkStan
LinearTime 407720 0.350 11.928 2003 2020 2816

Sch-standard 408237 0.571 11.906 1933 1983 2429
Sch-extension 408261 1.685 11.905 1747 1834 2157

cit-Patents*
LinearTime 447010 0.816 29.330 3876 3734 4439

Sch-standard 448208 1.273 29.260 3658 3595 4098
Sch-extension 448313 2.884 29.250 3490 3394 4026
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Figure 8: Sch-standard with vs. without RGraph

around d. Hybrid takes both features into consideration
and delivers larger independent sets than any single strat-
egy, which is especially obvious on ER graphs. Note that on
real networks the improvement is tiny, as the deletion strat-
egy fits this type of graph well and then Hybrid almost
degenerates into Deletion.

Table 5 reports the time efficiency. Compared to Sch-
standard, the brute implementation of Addition is too
time-consuming. Nevertheless, the time consumed by the
advanced implementation decreases by one order of magni-
tude. It is normal that Advance is still slower than Sch-
standard, as the deletion strategy is too simple. More-
over, combining these two strategies, Hybrid is also efficient
enough to be applied to large graphs.

6.3.4 Evaluation of Representative Graph
To evaluate the practical effect of RGraph, we com-

pare the performance of Sch-standard by enabling and
disabling RGraph on large real networks, ER-4 and ER*-4
graphs. Figure 8 reports the efficiency results. It is clear
that exploiting RGraph can reduce the time cost on all
graphs, e.g., it achieves 2.3x and 1.8x speedup on soc-pokec
and ER-4, respectively.

6.3.5 Evaluation of the Impact of Near-MIS on a
Downstream Task

In this experiment, we evaluate how the quality of a Near-
MIS affects a downstream task, k-hop reachability query [7].
Cheng et al. [7] design an index Kreach to efficiently pro-
cess k-hop reachability queries which ask whether there is a
path from a node to another within k hops. The construc-
tion of Kreach relies on computing the pair-wise distance
among nodes in a vertex cover (the complement of an in-
dependent set) of a graph, thus the first step of Kreach is
to compute a vertex cover (or a Near-MIS equivalently). A
smaller vertex cover (i.e., a larger Near-MIS) leads to more
efficient construction of Kreach.

Specifically, the Kreach index is constructed based on the
Near-MIS generated by different algorithms on two large real
networks Berkstan and cit-Patents, with the hop param-
eter k varying from 2 to 4. Note that the Kreach index

on cit-Patents is too large and exceeds the memory limit
of our server, so we select a connected component whose
node size is 1/4 of that of the original graph, denoted as
cit-Patents*, to conduct this experiment.

The experimental results are presented in Table 6. Al-
though the Near-MIS of Sch-extension is larger than that
of LinearTime by only 0.13% and 0.29% on BerkStan
and cit-Patents* respectively, it can significantly acceler-
ate the construction of Kreach by up to 23.4% and 10.0%
on the two networks respectively. Moreover, the time con-
sumed by Near-MIS computation is marginal compared to
that of building the Kreach index. For example, construct-
ing Kreach based on the Near-MIS of Sch-extension on
Berkstan saves 659 seconds when k = 4 compared to the
Near-MIS of LinearTime, but it only costs 1.335 seconds
more than LinearTime to compute the Near-MIS. These
results on the k-hop reachability task demonstrate that it
is valuable to further improve the Near-MIS quality by our
proposed methods at the expense of mild extra time cost.

7. CONCLUSIONS
In this paper, we study the inexact algorithms of MIS

computation, and focus on how to organise and improve ex-
isting techniques to obtain a more powerful algorithm. In
general, we propose a scheduling framework that dynami-
cally invokes various reduction and greedy algorithms based
on the benefit-and-cost estimation. Moreover, a novel data
structure called RGraph is devised to reduce the worst-case
time complexity of degree-two reduction from O(nm) to
O(m logn). As for greedy algorithms, we design a more
powerful vertex addition strategy which takes the degree
information of neighbors into consideration, and two tech-
niques active vertex index and lazy update mechanism are
developed to improve the time efficiency. Extensive experi-
ments on both large real networks and various types of syn-
thetic graphs confirm that our proposed algorithms Sch-
standard and Sch-extension outperform the state-of-the-
art near-linear time algorithm NearLinear [6] in terms of
both solution quality and time efficiency on most graphs.
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