
Cloudburst: Stateful Functions-as-a-Service

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, Joseph M. Hellerstein, Alexey Tumanov†

U.C. Berkeley, †Georgia Tech

{vikrams, cgwu, charles.lin, jssmith, jegonzal, hellerstein}@berkeley.edu,
atumanov3@gatech.edu

ABSTRACT
Function-as-a-Service (FaaS) platforms and “serverless” cloud
computing are becoming increasingly popular due to ease-of-use
and operational simplicity. Current FaaS o�erings are targeted
at stateless functions that do minimal I/O and communication.
We argue that the bene�ts of serverless computing can be
extended to a broader range of applications and algorithms while
maintaining the key bene�ts of existing FaaS o�erings. We
present the design and implementation of Cloudburst, a stateful
FaaS platform that provides familiar Python programming with
low-latency mutable state and communication, while maintaining
the autoscaling bene�ts of serverless computing. Cloudburst
accomplishes this by leveraging Anna, an autoscaling key-value
store, for state sharing and overlay routing combined with mu-
table caches co-located with function executors for data locality.
Performant cache consistency emerges as a key challenge in this
architecture. To this end, Cloudburst provides a combination of
lattice-encapsulated state and new de�nitions and protocols for
distributed session consistency. Empirical results on benchmarks
and diverse applications show that Cloudburst makes stateful
functions practical, reducing the state-management overheads
of current FaaS platforms by orders of magnitude while also
improving the state of the art in serverless consistency.
PVLDB Reference Format:
Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-
Smith, Jose M. Faleiro, Joseph E. Gonzalez, Joseph M. Hellerstein, Alexey
Tumanov. Cloudburst: Stateful Functions-as-a-Service. PVLDB, 13(11):
2438-2452, 2020.
DOI: https://doi.org/10.14778/3407790.3407836

1. INTRODUCTION
Serverless computing has become increasingly popular in

recent years, with a focus on autoscaling Function-as-a-Service
(FaaS) systems. FaaS platforms allow developers to write func-
tions in standard languages and deploy their code to the cloud
with reduced administrative burden. The platform is responsible
for transparently autoscaling resources from zero to peak load
and back in response to workload shifts. Consumption-based
pricing ensures that developers’ cost is proportional to usage

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407836

Cloudburst
Dask

SAND
λ

λ+Dynamo
λ+S3

Step-Fns
CB (Single)

λ (Single)

10

102

103

La
te

nc
y 
(m

s)
Figure 1: Median (bar) and 99th percentile (whisker) latency
for square(increment(x: int)). Cloudburst matches the
best distributed Python systems and outperforms other
FaaS systems by over an order of magnitude (§6.1).

of their code: there is no need to overprovision to match peak
load, and there are no compute costs during idle periods. These
bene�ts have made FaaS platforms an attractive target for
both research [26, 44, 4, 43, 37, 47, 10, 81, 28, 25] and industry
applications [7].

The hallmark autoscaling feature of serverless platforms is en-
abled by an increasingly popular design principle: the disaggrega-
tion of storage and compute services [32]. Disaggregation allows
the compute layer to quickly adapt computational resource allo-
cation to shifting workload requirements, packing functions into
VMs while reducing data movement. Similarly, object or key-value
stores can pack multiple users’ data storage and access workloads
into shared resources with high volume and often at low cost. Dis-
aggregation also enables allocation at multiple timescales: long-
term storage can be allocated separately from short-term compute
leases. Together, these advantages enable e�cient autoscaling.
User code consumes expensive compute resources as needed and
accrues only storage costs during idle periods.

Unfortunately, today’s FaaS platforms take disaggregation to an
extreme, imposing signi�cant constraints on developers. First, the
autoscaling storage services provided by cloud vendors—e.g., AWS
S3 and DynamoDB—are too high-latency to access with any fre-
quency [84, 37]. Second, function invocations are isolated from
each other: FaaS systems disable point-to-point network commu-
nication between functions. Finally, and perhaps most surpris-
ingly, current FaaS o�erings have very slow nested function calls:
argument- and result-passing is a form of cross-function commu-
nication and exhibits the high latency of current serverless o�er-
ings [4]. We return these points in §2.1, but in short, today’s popu-
lar FaaS platforms only work well for isolated, stateless functions.

As a workaround, many applications—even some that were ex-
plicitly designed for serverless platforms—are forced to step out-

2438



side the bounds of the serverless paradigm altogether. For exam-
ple, the ExCamera serverless video encoding system [26] depends
upon a single server machine as a coordinator and task assign-
ment service. Similarly, numpywren [74] enables serverless linear
algebra but provisions a static Redis machine for low-latency ac-
cess to shared state for coordination. These workarounds might
be tenable at small scales, but they architecturally reintroduce the
scaling, fault tolerance, and management problems of traditional
server deployments.

1.1 Toward Stateful Serverless via LDPC
Given the simplicity and economic appeal of FaaS, we are inter-

ested in exploring designs that preserve the autoscaling and opera-
tional bene�ts of current o�erings, while adding performant, cost-
e�cient, and consistent shared state and communication. This
“stateful” serverless model opens up autoscaling FaaS to a much
broader array of applications and algorithms. We aim to demon-
strate that serverless architectures can support stateful applica-
tions while maintaining the simplicity and appeal of the serverless
programming model.

For example, many low-latency services need to autoscale
to handle bursts while dynamically manipulating data based
on request parameters. This includes webservers managing
user sessions, discussion forums managing threads, ad servers
managing ML models, and more. Similarly, many parallel and
distributed protocols require �ne-grained messaging, from quan-
titative tasks like distributed aggregation [46] to system tasks like
membership [20] or leader election [6]. These protocols forms
the backbone of parallel and distributed systems. As we see in §6,
these scenarios are infeasible on today’s stateless FaaS platforms.

To enable stateful serverless computing, we propose a new
design principle: logical disaggregation with physical colocation
(LDPC). Disaggregation is needed to provision, scale, and bill stor-
age and compute independently, but we want to deploy resources
to di�erent services in close physical proximity. In particular, a
running function’s “hot” data should be kept physically nearby
for low-latency access. Updates should be allowed at any function
invocation site, and cross-function communication should work
at wire speed.

Colocation of compute and data is a well-known method to
overcome performance barriers, but it can raise thorny correct-
ness challenges at the compute layer. For locality, each compute
node should be able to independently update its copy of the data.
However, given that a single composition of multiple functions
may run across multiple nodes, we need to preserve a consistent
“session” [80] that is distributed across those nodes. Distributed
session consistency is a challenge we must address in this context.

1.2 Cloudburst: A Stateful FaaS Platform
In this paper, we present a new Function-as-a-Service platform

called Cloudburst that removes the shortcomings of commercial
systems highlighted above, without sacri�cing their bene�ts.
Cloudburst is unique in achieving logical disaggregation and
physical colocation of computation and state, and in allowing
programs written in a traditional language to observe consistent
state across function compositions. Cloudburst is designed to be
an autoscaling Functions-as-a-Service system—similar to AWS
Lambda or Google Cloud Functions—but with new abstractions
that enable performant, stateful programs.

Cloudburst achieves this via a combination of an autoscaling
key-value store (providing state sharing and overlay routing) and
mutable caches co-located with function executors (providing
data locality). The system is built on top of Anna [85, 86], a low-

1 from cloudburst import *
2 cloud = CloudburstClient(cloudburst_addr, my_ip)
3 cloud.put(’key’, 2)
4 reference = CloudburstReference(’key’)
5 def sqfun(x): return x * x
6 sq = cloud.register(sqfun, name=’square’)
7
8 print(’result: %d’ % (sq(reference))
9 > result: 4
10
11 future = sq(3, store_in_kvs=True)
12 print(’result: %d’ % (future.get())
13 > result: 9

Figure 2: A script to create and execute a Cloudburst func-
tion.

latency autoscaling key-value store designed to achieve a variety
of coordination-free consistency levels by using mergeable mono-
tonic lattice data structures [75, 17]. For performant consistency,
Cloudburst takes advantage of Anna’s design by transparently
encapsulating opaque user state in lattices so that Anna can
consistently merge concurrent updates. In addition, we present
novel protocols that ensure consistency guarantees (repeatable
read and causal consistency) across function invocations that run
on separate nodes. We evaluate Cloudburst via microbenchmarks
as well as two application scenarios using third-party code,
demonstrating bene�ts in performance, predictable latency, and
consistency. In sum, this paper’s contributions include:

1. The design and implementation of an autoscaling serverless
architecture that combines logical disaggregation with physical
co-location of compute and storage (LDPC) (§4).
2. Identi�cation of distributed session consistency concerns and
new protocols to achieve two distinct distributed session consis-
tency guarantees—repeatable read and causal consistency—for
compositions of functions (§5).
3. The ability for programs written in traditional languages to
enjoy coordination-free storage consistency for their native
data types via lattice capsules that wrap program state with
metadata that enables automatic con�ict APIs supported by
Anna (§5.2).
4. An evaluation of Cloudburst’s performance and consistency
on workloads involving state manipulation, �ne-grained com-
munication and dynamic autoscaling (§6).

2. MOTIVATION AND BACKGROUND
Although serverless infrastructure has gained traction recently,

there remains signi�cant room for improvement in performance
and state management. In this section, we discuss common pain
points in building applications on today’s serverless infrastructure
(§2.1) and explain Cloudburst’s design goals (§2.2).

2.1 Deploying Serverless Functions Today
Current FaaS o�erings are poorly suited to managing shared

state, making it di�cult to build applications, particularly latency-
sensitive ones. There are three kinds of shared state management
that we focus on in this paper: function composition, direct com-
munication, and shared mutable storage.
Function Composition. For developers to embrace serverless
as a general programming and runtime environment, it is neces-
sary that function composition work as expected. Pure functions
share state by passing arguments and return values to each other.
Figure 1 (discussed in §6.1), shows the performance of a simple
composition of side-e�ect-free arithmetic functions. AWS Lambda

2439



imposes a latency overhead of up to 20ms for a single function
invocation, and this overhead compounds when composing func-
tions. AWS Step Functions, which automatically chains together
sequences of operations, imposes an even higher penalty. Since
the overheads compound linearly, the overhead of a call stack as
shallow as 5 functions saturates tolerable limits for an interac-
tive service (∼100ms). Functional programming patterns for state
sharing are not an option in current FaaS platforms.
Direct Communication. FaaS o�erings disable inbound net-
work connections, requiring functions to communicate through
high-latency storage services like S3 or DynamoDB. While
point-to-point communication may seem tricky in a system
with dynamic membership, distributed hashtables (DHTs) or
lightweight key-value stores (KVSs) can provide a lower-latency
solution than deep storage for routing messages between migra-
tory function instances [67, 78, 72, 71]. Current FaaS vendors
do not o�er autoscaling, low-latency DHTs or KVSs. Instead, as
discussed in §1, FaaS applications resort to server-based solutions
for lower-latency storage, like hosted Redis and memcached.
Low-Latency Access to Shared Mutable State. Recent stud-
ies [84, 37] have shown that latencies and costs of shared autoscal-
ing storage for FaaS are orders of magnitude worse than under-
lying infrastructure like shared memory, networking, or server-
based shared storage. Worse, the available systems o�er weak data
consistency guarantees. For example, AWS S3 o�ers no guarantees
across multiple clients (isolation) or for inserts and deletes from a
single client (atomicity). This kind of weak consistency can pro-
duce very confusing behavior. For example, simple expressions
like f(x, g(x)) may produce non-deterministic results: f and g
are di�erent “clients”, so there is no guarantee about the versions
of x read by f and g.

2.2 Towards Stateful Serverless
Logical Disaggregation with Physical Colocation. As a prin-
ciple, LDPC leaves signi�cant latitude for designing mechanisms
and policy that co-locate compute and data while preserving
correctness. We observe that many of the performance bottle-
necks described above can be addressed by an architecture with
distributed storage and local caching. A low-latency autoscaling
KVS can serve as both global storage and a DHT-like overlay
network. To provide better data locality to functions, a KVS
cache can be deployed on every machine that hosts function
invocations. Cloudburst’s design includes consistent mutable
caches in the compute tier (§4).
Consistency. Distributed mutable caches introduce the risk of
cache inconsistencies, which can cause signi�cant developer con-
fusion. We could implement strong consistency across caches (e.g.,
linearizability) via quorum consensus (e.g., Paxos [51]). This of-
fers appealing semantics but has well-known issues with latency
and availability [14, 15]. In general, consensus protocols are a
poor �t for the internals of a dynamic autoscaling framework:
consensus requires �xed membership, and membership (“view”)
change involves high-latency agreement protocols (e.g., [12]). In-
stead, applications desiring strong consistency can employ a slow-
changing consensus service adjacent to the serverless infrastruc-
ture.

Coordination-free approaches to consistency are a better �t to
the elastic membership of a serverless platform. Bailis, et al.[8]
categorized consistency guarantees that can be achieved without
coordination. We chose the Anna KVS [85] as Cloudburst’s
storage engine because it supports all these guarantees. Like
CvRDTs [75], Anna uses lattice data types for coordination-free

consistency. That is, Anna values o�er a merge operator that
is insensitive to batching, ordering and repetition of requests—
merge is associative, commutative and idempotent. Anna uses
lattice composition [17] to implement consistency; Anna’s lattices
are simple and composable as in Bloom [17]; we refer readers
to [85] for more details. Anna also provides autoscaling at the
storage layer, responding to workload changes by selectively
replicating frequently-accessed data, growing and shrinking the
cluster, and moving data between storage tiers (memory and disk)
for cost savings [86].

However, Anna only supports consistency for individual
clients, each with a �xed IP-port pair. In Cloudburst, a request
like f(x, g(x)) may involve function invocations on separate
physical machines and requires consistency across functions—we
term this distributed session consistency. In §5, we provide
protocols for various consistency levels.
Programmability. We want to provide consistency without
imposing undue burden on programmers, but Anna can only
store values that conform to its lattice-based type system. To
address this, Cloudburst introduces lattice capsules (§5.2), which
transparently wrap opaque program state in lattices chosen
to support Cloudburst’s consistency protocols. Users gain the
bene�ts of Anna’s con�ict resolution and Cloudburst’s distributed
session consistency without having to modify their programs.

We continue with Cloudburst’s programmer interface. We re-
turn to Cloudburst’s design in §4 and consistency mechanisms in
§5.

3. PROGRAMMING INTERFACE
Cloudburst accepts programs written in vanilla Python1. An

example client script to execute a function is shown in Figure 2.
Cloudburst functions act like regular Python functions but trigger
remote computation in the cloud. Results by default are sent di-
rectly back to the client (line 8), in which case the client blocks syn-
chronously. Alternately, results can be stored in the KVS, and the
response key is wrapped in a CloudburstFuture object, which
retrieves the result when requested (line 11-12).

Function arguments are either regular Python objects (line 11)
or KVS references (lines 3-4). KVS references are transparently
retrieved by Cloudburst at runtime and deserialized before invok-
ing the function. To improve performance, the runtime attempts
to execute a function call with KVS references on a machine that
might have the data cached. We explain how this is accomplished
in §4.3. Functions can also dynamically retrieve data at runtime
using the Cloudburst communication API described below.

To enable stateful functions, Cloudburst allows programmers to
put and get Python objects via the Anna KVS API. Object serial-
ization and encapsulation for consistency (§5.2) is handled trans-
parently by the runtime. In the common case, put and get are fast
due to the presence of caches at the function executors.

For repeated execution, Cloudburst allows users to register arbi-
trary compositions of functions. We model function compositions
as DAGs in the style of systems like Apache Spark [88], Dryad [42],
Apache Air�ow [2], and Tensor�ow [1]. This model is also similar
in spirit to cloud services like AWS Step Functions that automati-
cally chain together functions in existing serverless systems.

Each function in the DAG must be registered with the system
(line 4) prior to use in a DAG. Users specify each function in
the DAG and how they are composed—results are automatically

1There is nothing fundamental in our choice of Python—we chose
it simply because it is a commonly used high-level language.

2440



Table 1: The Cloudburst object API. Users can interact with
the key value store and send and receive messages.

API Name Functionality
get(key) Retrieve a key from the KVS.
put(key, value) Insert or update a key in the KVS.
delete(key) Delete a key from the KVS.
send(recv, msg) Send a message to another executor.
recv() Receive outstanding messages for this function.
get_id() Get this function’s unique ID

passed from one DAG function to the next by the Cloudburst
runtime. The result of a function with no successor is either
stored in the KVS or returned directly to the user, as above.
Cloudburst’s resource management system (§4.4) is responsible
for scaling the number of replicas of each function up and down.
Cloudburst System API. Cloudburst provides developers an in-
terface to system services— Table 1 provides an overview. The API
enables KVS interactions via get and put, and it enables message
passing between function invocations. Each function invocation
is assigned a unique ID, and functions can advertise this ID to well-
known keys in the KVS. These unique IDs are translated into phys-
ical addresses and used to support direct messaging.

Note that this process is a generalization of the process that is
used for function composition, where results of one function are
passed directly to the next function. We expose these as sepa-
rate mechanisms because we aimed to simplify the common case
(function composition) by removing the hassle of communicating
unique IDs and explicitly sharing results.

In practice this works as follows. First, one function writes its
unique ID to a pre-agreed upon key in storage. The second func-
tion waits for that key to be populated and then retrieves the �rst
thread’s ID by reading that key. Once the second function has the
�rst function’s ID, it uses the send API to send a message. When
send is invoked, the executor thread uses a deterministic map-
ping to convert from the thread’s unique ID to an IP-port pair.
The executor thread opens a TCP connection to that IP-port pair
and sends a direct message. If a TCP connection cannot be estab-
lished, the message is written to a key in Anna that serves as the
receiving thread’s “inbox”. When recv is invoked by a function,
the executor returns any messages that were queued on its local
TCP port. On a recv call, if there are no messages on the local
TCP port, the executor will read its inbox in storage to see if there
are any messages stored there. The inbox is also periodically read
and cached locally to ensure that messages are delivered correctly.

4. ARCHITECTURE
Cloudburst implements the principle of logical disaggregation

with physical colocation (LDPC). To achieve disaggregation, the
Cloudburst runtime autoscales independently of the Anna KVS.
Colocation is enabled by mutable caches placed in the Cloudburst
runtime for low latency access to KVS objects.

Figure 3 provides an overview of the Cloudburst architecture.
There are four key components: function executors, caches,
function schedulers, and a resource management system. User re-
quests are received by a scheduler, which routes them to function
executors. Each scheduler operates independently, and the system
relies on a standard stateless cloud load balancer (AWS Elastic
Load Balancer). Function executors run in individual processes
that are packed into VMs along with a local cache per VM. The
cache on each VM intermediates between the local executors and
the remote KVS. All Cloudburst components are run in individual

Figure 3: An overview of the Cloudburst architecture.

Docker [21] containers. Cloudburst uses Kubernetes [49] simply
to start containers and redeploy them on failure. Cloudburst
system metadata, as well as persistent application state, is stored
in Anna which provides autoscaling and fault tolerance.

4.1 Function Executors
Each Cloudburst executor is an independent, long-running

Python process. Schedulers (§4.3) route function invocation
requests to executors. Before each invocation, the executor re-
trieves and deserializes the requested function and transparently
resolves all KVS reference function arguments in parallel. DAG
execution requests span multiple function invocations, and after
each DAG function invocation, the runtime triggers downstream
DAG functions. To improve performance for repeated execution
(§3), each DAG function is deserialized and cached at one or more
executors. Each executor also publishes local metrics to the KVS,
including the executor’s cached functions, stats on its recent CPU
utilization, and the execution latencies for �nished requests. We
explain in the following sections how this metadata is used.

4.2 Caches
To ensure that frequently-used data is locally available, every

function execution VM has a local cache, which executors con-
tact via IPC. Executors interface with the cache, not directly with
Anna; the cache issues requests to the KVS as needed. When a
cache receives an update from an executor, it updates the data lo-
cally, acknowledges the request, and asynchronously sends the re-
sult to the KVS to be merged. If a cache receives a request for data
that it does not have, it asynchronously retrieves it from the KVS.

Cloudburst must ensure the freshness of data in caches. A naive
(but correct) scheme is for the Cloudburst caches to poll the KVS
for updates, or for the cache to blindly evict data after a timeout.
In a typical workload where reads dominate writes, this gener-
ates unnecessary load on the KVS. Instead, each cache periodically
publishes a snapshot of its cached keys to the KVS. We modi�ed
Anna to accept these cached keysets and incrementally construct
an index that maps each key to the caches that store it; Anna uses
this index to periodically propagate key updates to caches. Lattice
encapsulation enables Anna to correctly merge con�icting key up-
dates (§5.2). The index itself is partitioned across storage nodes
following the same scheme Anna uses to partition the key space,
so Anna takes the index overhead into consideration when making
autoscaling decisions.

4.3 Function Schedulers
A key goal of Cloudburst’s architecture is to enable low latency

function scheduling. However, policy design is not a main goal of
this paper; Cloudburst’s scheduling mechanisms allow pluggable
policies to be explored in future work. In this section, we describe
Cloudburst’s scheduling mechanisms, illustrating their use with

2441



policy heuristics that enable us to demonstrate bene�ts from data
locality and load balancing.
SchedulingMechanisms. Schedulers handle requests to register
or invoke functions. New functions are registered by storing them
in Anna and updating a shared KVS list of registered functions. For
new DAGs, the scheduler veri�es that each function in the DAG
exists before picking an executor on which to cache it.

For single function execution requests, the scheduler picks an
executor and forwards the request to it. DAG requests require
more work: The scheduler creates a schedule by picking an ex-
ecutor for each DAG function—which is guaranteed to have the
function stored locally—and broadcasts this schedule to all partic-
ipating executors. The scheduler then triggers the �rst function(s)
in the DAG and, if the user wants the result stored in the KVS,
returns a CloudburstFuture.

DAG topologies are the scheduler’s only persistent metadata
and are stored in the KVS. Each scheduler tracks how many calls
it receives per DAG and per function and stores these statistics
in the KVS. Finally, each scheduler constructs a local index that
tracks the set of keys stored by each cache; this is used for the
scheduling policy described next.
Scheduling Policy. Our scheduling policy makes heuristic deci-
sions using metadata reported by executors, including cached key
sets and executor load. We prioritize data locality when schedul-
ing both single functions and DAGs. If the function’s arguments
have KVS references, the scheduler inspects its local cached key
index and picks the executor with the most data cached locally—to
take advantage of locality, the user must specify KVS references
(§3). Otherwise, the scheduler picks an executor at random.

Hot data and functions are replicated across many executor
nodes via backpressure. The few nodes initially caching hot keys
will quickly be saturated with requests and report high utilization
(above 70%). The scheduler tracks this utilization and avoids
overloaded nodes, picking new nodes instead. The new nodes
will then fetch and cache the hot data, e�ectively increasing the
replication factor and hence the number of options the scheduler
has for the next request containing a hot key.

4.4 Monitoring and Resource Management
An autoscaling system must track system load and performance

metrics to make e�ective decisions. Cloudburst uses Anna as a
substrate for metric collection. Each thread independently tracks
an extensible set of metrics (described above) and publishes them
to the KVS. The monitoring system asynchronously aggregates
these metrics from storage and uses them for its policy engine.

For each DAG, the monitoring system compares the incoming
request rate to the number of requests serviced by executors. If the
incoming request rate is signi�cantly higher than the request com-
pletion rate of the system, the monitoring engine will increase the
resources allocated to that DAG function by pinning the function
onto more executors. If the overall CPU utilization of the execu-
tors exceeds a threshhold (70%), then the monitoring system will
add nodes to the system. Similarly, if executor utilization drops
below a threshold (20%), we deallocate resources accordingly. We
rely on Kubernetes to manage our clusters and e�ciently scale
the cluster. This simple approach exercises our monitoring mech-
anisms and provides adequate behavior (see §6.1.4).

When a new node is allocated, it reads the relevant data and
metadata (e.g., functions, DAG metadata) from the KVS. This al-
lows Anna to serve as the source of truth for system metadata and
removes concerns about e�ciently scaling the system.

The heuristics that we described here are based on the existing
dynamics of the system (e.g., node spin up time). We discuss po-

tential advanced auto-scaling mechanisms and policies as a part of
Future Work (§8), which might draw more heavily on understand-
ing how workloads interact with our infrastructure.

4.5 Fault Tolerance
At the storage layer, Cloudburst relies on Anna’s replication

scheme for k-fault tolerance. For the compute tier, we adopt the
standard approach to fault tolerance taken by many FaaS plat-
forms. If a machine fails while executing a function, the whole
DAG is re-executed after a con�gurable timeout. The program-
mer is responsible for handling side-e�ects generated by failed
programs if they are not idempotent. In the case of an explicit
program error, the error is returned to the client. This approach
should be familiar to users of AWS Lambda and other FaaS plat-
forms, which provides the same guarantees. More advanced guar-
antees are a subject for future work (§8).

5. CACHE CONSISTENCY
As discussed in Section 3, Cloudburst developers can register

compositions of functions as a DAG. This also serves as the
scope of consistency for the programmer, sometimes called a
“session” [80]. The reads and writes in a session together expe-
rience the chosen de�nition of consistency, even across function
boundaries. The simplest way to achieve this is to run the entire
DAG in a single thread and let the KVS provide the desired
consistency level. However, to allow for autoscaling and �exible
scheduling, Cloudburst may choose to run functions within a
DAG on di�erent executors—in the extreme case, each function
could run on a separate executor. This introduces the challenge
of distributed session consistency: Because a DAG may run across
many machines, the executors involved in a single DAG must
provide consistency across di�erent physical machines.

In the rest of this section, we describe distributed session consis-
tency in Cloudburst. We begin by explaining two di�erent guar-
antees (§5.1), describe how we encapsulate user-level Python ob-
jects to interface with Anna’s consistency mechanisms (§5.2), and
present protocols for the guarantees (§5.3).

5.1 Consistency Guarantees
A wide variety of coordination-free consistency and isolation

guarantees have been identi�ed in the literature. We focus on two
guarantees here; variants are presented in §6.2 to illustrate proto-
col costs. In our discussion, we will denote keys with lowercase
letters like k; kv is a version v of key k.

We begin with repeatable read (RR) consistency. RR is adapted
from the transactions literature [11], hence it assumes sequences
of functions—i.e., linear DAGs. Given a read-only expression
f(x, g(x)), RR guarantees that both f and g read the same
version xv . More generally:

Repeatable Read Invariant: In a linear DAG, when any func-
tion reads a key k, either it sees the most recent update to k within the
DAG, or in the absence of preceding updates it sees the �rst version
kv read by any function in the DAG2.

The second guarantee we explore is causal consistency, one of
the strongest coordination-free consistency models [54, 56, 8]. In
a nutshell, causal consistency requires reads and writes to respect
Lamport’s “happens-before” relation [50]. One key version ki in-
�uences another version lj if a read of ki happens before a write
of lj ; we denote this as ki → lj . Within a Cloudburst DAG, this
2Note that RR isolation also prevents reads of uncommitted ver-
sion from other transactions [11]. Transactional isolation is a topic
for future work (§8).

2442



means that if a function reads lj , subsequent functions must not
see versions of k that happened before ki: they can only see ki,
versions concurrent with ki, or versions newer than ki. Note that
causal consistency does not impose restrictions on key versions
read by concurrent functions within a DAG. For example, if func-
tion f calls two functions, g and h (executed in parallel), and both
g and h read key k, the versions of k read by g and h may diverge.
Prior work introduces a variety of causal building blocks that we
extend. Systems like Anna [85] track causal histories of individual
objects but do not track ordering between objects. Bolt-on causal
consistency [9] developed techniques to achieve multi-key causal
snapshots at a single physical location. Cloudburst must support
multi-key causal consistency that spans multiple physical sites.

Causal Consistency Invariant: Consider a function f in DAG
G that reads a version kv of key k. Let V denote the set of key
versions read previously by f or by any of f ’s ancestors inG. Denote
the dependency set for f at this point as D = {di|di → lj ∈ V }.
The version kv that is read by f must satisfy the invariant kv 6→
ki ∈ D. That is, kv is concurrent to or newer than any version of k
in the dependency setD.

5.2 Lattice Encapsulation
Mutable shared state is a key tenet of Cloudburst’s design (§3),

and we rely on Anna’s lattices to resolve con�icts from concurrent
updates. Typically, Python objects are not lattices, so Cloudburst
transparently encapsulates Python objects in lattices.

By default, Cloudburst encapsulates each bare program value
into an Anna last writer wins (LWW) lattice—a composition of an
Anna-provided global timestamp and the value. The global times-
tamp is generated by each node in a coordination-free fashion by
concatenating the local system clock and the node’s unique ID.
Anna merges two LWW versions by keeping the value with the
higher timestamp. This allows Cloudburst to achieve eventual
consistency: All replicas will agree on the LWW value that corre-
sponds to the highest timestamp for the key [82]. It also provides
timestamps for the RR protocol below.

In causal consistency mode, Cloudburst encapsulates each key
k in a causal lattice—the composition of an Anna-provided vector
clock [68] that identi�es k’s version, a dependency set that tracks
key versions that k depends on, and the value. Each vector clock
consists of a set of 〈id, clock〉 pairs where the id is the unique ID
of the function executor thread that updated k, and the clock is
a monotonically-growing logical clock. Upon merge, Anna keeps
the causal consistency lattice whose vector clock dominates. Vec-
tor clock vc1 dominates vc2 if it is at least equal in all entries and
greater in at least one; otherwise, vc1 and vc2 are concurrent. If
two vector clocks are concurrent, Anna merges the keys by: (1)
creating a new vector clock with the pairwise maximum of each
entry in the two keys’ vector clock; and (2) merging the depen-
dency sets and values via set union. In most cases, an object has
only one version. However, to de-encapsulate a causally-wrapped
object with multiple concurrent versions, Cloudburst presents the
user program with one version chosen via an arbitrary but deter-
ministic tie-breaking scheme. Regardless of which version is re-
turned, the user program sees a causally consistent history; the
cache layer retains the concurrent versions for the consistency
protocol described below. Applications can also choose to retrieve
all concurrent versions and resolve updates manually.

5.3 Distributed Session Protocols
Distributed Session Repeatable Read. To achieve repeatable
read, the Cloudburst cache on each node creates “snapshot” ver-
sions of each locally cached object upon �rst read, and the cache

Algorithm 1 Repeatable Read
Input: k, R
1: // k is the requested key; R is the set of keys previously read

by the DAG
2: if k ∈ R then
3: cache_version = cache.get_metadata(k)
4: if cache_version == NULL ∨ cache_version ! =

R[k].version then
5: return cache.fetch_from_upstream(k)
6: else
7: return cache.get(k)

8: else
9: return cache.get_or_fetch(k)

Figure 4: An illustration of a scenario in which two func-
tions executing on separate machines might unwittingly
read causally inconsistent data.

stores them for the lifetime of the DAG. When invoking a down-
stream function in the DAG, we propagate a list of cache addresses
and version timestamps for all snapshotted keys seen so far.

In order to maintain repeatable read consistency, the down-
stream executor needs to read the same versions of variables as
read by the upstream executor. Algorithm 1 shows pseudocode
for the process that downstream executors follow to ensure this.
When such an executor in a DAG receives a read request for key
k, it includes the prior version snapshot metadata in its request to
the cache (R in Algorithm 1). If k has been previously read and the
exact version is not stored locally, the cache queries the upstream
cache that stores the correct version (line 5 in Algorithm 1). If the
exact version is stored locally (line 7), we return it directly to the
user. Finally, if the key has not been read thus far, we return any
available version to the client (line 9). If the upstream cache fails,
we restart the DAG from scratch. Finally, the last executor in the
DAG (the “sink”) noti�es all upstream caches of DAG completion,
allowing version snapshots to be evicted.
Distributed Session Causal Consistency. To support causal
consistency in Cloudburst, we use causal lattice encapsulation and
augment the Cloudburst cache to be a causally consistent store,
implementing the bolt-on causal consistency protocol [9]. The
protocol ensures that each cache always holds a “causal cut”: For
every pair of versions ai, bj in the cache, 6 ∃ak : ai → ak, ak →
bj . Storing a causal cut ensures that key versions read by func-
tions executed on one node (accessing a single causal cut) satisfy
the causal consistency invariant discussed in Section 5.1.

However, maintaining a causal cut within each individual cache
is not su�cient to achieve distributed session causal consistency.
Consider a DAG with two functions f(k) and g(l), which are ex-
ecuted in sequence on di�erent machines—Figure 4 illustrates the
following situation. Assume f reads kv and there is a dependency
lu → kv . If the causal-cut cache of the node executing g is un-

2443



Algorithm 2 Causal Consistency
Input: k, R, dependencies
1: // k is the requested key; R is the set of keys previously read

by the DAG; dependencies is the set of causal dependencies
of keys in R

2: if k ∈ R then
3: cache_version = cache.get_metadata(k)
4: // valid returns true if k ≥ cache_version
5: if valid(cache_version,R[k]) then
6: return cache.get(k)
7: else
8: return cache.fetch_from_upstream(k)

9: if k ∈ dependencies then
10: cache_version = cache.get_metadata(k)
11: if valid(cache_version, dependencies[k]) then
12: return cache.get(k)
13: else
14: return cache.fetch_from_upstream(k)

aware of the constraint on valid versions of l, g could read an old
version lw : lw → lu, thereby violating causality. The follow-
ing protocol solves this challenge: In addition to shipping read-set
metadata (as in RR), each executor ships the set of causal depen-
dencies (pairs of keys and their associated vector clocks) of the
read set to downstream executors. Caches upstream store version
snapshots of these causal dependencies.

For each key k requested, the downstream cache �rst checks
whether the locally-cached key’s vector clock is causally concur-
rent with or dominates that of the version snapshot stored at the
upstream cache (lines 2-3 of Algorithm 2). If so, the cache re-
turns the local version (line 5); otherwise, it queries the upstream
cache for the correct version snapshot (line 7). We perform the
same check if the key being requested is in the set of dependen-
cies shipped from the upstream cache—if we have a valid version
locally, we return it, and otherwise, we fetch a snapshot from the
upstream cache (lines 8-13 of Algorithm 2). This protocol guaran-
tees that key versions read by functions executed across di�erent
nodes (i.e., di�erent causal cuts) follow the causal consistency in-
variant, guaranteeing distributed session causal consistency.

6. EVALUATION
We now present a detailed evaluation of Cloudburst. We �rst

study the individual mechanisms implemented in Cloudburst
(§6.1), demonstrating orders of magnitude improvement in
latency relative to existing serverless infrastructure for a variety
of tasks. Next we study the overheads introduced by Cloudburst’s
consistency mechanisms (§6.2), and �nally we implement and
evaluate two real-world applications on Cloudburst: machine
learning prediction serving and a Twitter clone (§6.3).

All experiments were run in the us-east-1a AWS availability
zone. Schedulers were run on AWS c5.large EC2 VMs (2 vCPUs,
4GB RAM), and function executors were run on c5.2xlarge EC2
VMs (8 vCPUs, 16GB RAM); 2 vCPUs comprise one physical core.
Function execution VMs used 3 cores for Python execution and 1
for the cache. Clients were run on separate machines in the same
AZ. All Redis experiments were run using AWS Elasticache, using
a cluster with two shards and three replicas per shard.

6.1 Mechanisms in Cloudburst
In this section, we evaluate the primary individual mechanisms

that Cloudburst enables—namely, low-latency function composi-

tion (§6.1.1), local cache data accesses (§6.1.2), direct communica-
tion (§6.1.3), and responsive autoscaling (§6.1.4).

6.1.1 Function Composition
To begin, we compare Cloudburst’s function composition over-

heads with other serverless systems, as well as a non-serverless
baseline. We chose functions with minimal computation to iso-
late each system’s overhead. The pipeline was composed of two
functions: square(increment(x:int)). Figure 1 shows median
and 99th percentile measured latencies across 1,000 requests run
in serial from a single client.

First, we compare Cloudburst and Lambda using a “stateless”
application, where we invoke one function—both bars are labelled
stateless in Figure 1. Cloudburst stored results in Anna, as dis-
cussed in Section 3. We ran Cloudburst with one function execu-
tor (3 worker threads). We �nd that Cloudburst is about 5× faster
than Lambda for this simple baseline.

For a composition of two functions—the simplest form of state-
fulness we support—we �nd that Cloudburst’s latency is roughly
the same as with a single function and signi�cantly faster than all
other systems measured. We �rst compared against SAND [4], a
new serverless platform that achieves low-latency function com-
position by using a hierarchical message bus. We could not deploy
SAND ourselves because the source code is unavailable, so we used
the authors’ hosted o�ering [73]. As a result, we could not repli-
cate the setup we used for the other experiments, where the client
runs in the same datacenter as the service. To compensate for this
discrepancy, we accounted for the added client-server latency by
measuring the latency for an empty HTTP request to the SAND
service. We subtracted this number from the end-to-end latency
for a request to our two-function pipeline running SAND to esti-
mate the in-datacenter request time for the system. In this setting,
SAND is about an order of magnitude slower than Cloudburst both
at median and at the 99th percentile.

To further validate Cloudburst, we compared against Dask, a
“serverful” open-source distributed Python execution framework.
We deployed Dask on AWS using the same instances used for
Cloudburst and found that performance was comparable to Cloud-
burst’s. Given Dask’s relative maturity, this gives us con�dence
that the overheads in Cloudburst are reasonable.

We compared against four AWS implementations, three of
which used AWS Lambda. Lambda (Direct) returns results
directly to the user, while Lambda (S3) and Lambda (Dynamo)
store results in the corresponding storage service. All Lambda
implementations pass arguments using the user-facing Lambda
API. The fastest implementation was Lambda (Direct) as it
avoided high-latency storage, while DynamoDB added a 15ms
latency penalty and S3 added 40ms. We also compared against
AWS Step Functions, which constructs a DAG of operations
similar to Cloudburst’s and returns results directly to the user in
a synchronous API call. The Step Functions implementation was
10× slower than Lambda and 82× slower than Cloudburst.

Takeaway: Cloudburst’s function composition matches state-of-
the-art Python runtime latency and outperforms commercial server-
less infrastructure by 1-3 orders of magnitude.

6.1.2 Data Locality
Next, we study the performance bene�t of Cloudburst’s caching

techniques. We chose a representative task, with large input data
but light computation: our function returns the sum of all ele-
ments across 10 input arrays. We implemented two versions on
AWS Lambda, which retrieved inputs from AWS ElastiCache (us-
ing Redis) and AWS S3 respectively. ElastiCache is not an au-

2444



80KB 800KB 8MB 80MB

10

100

1000

10000
La
te
nc

y 
(m

s)
Cloudburst (Hot)
Cloudburst (Cold)

Lambda (Redis)
Lambda (S3)

Figure 5: Median and 99th percentile latency to calculate
the sum 10 arrays, comparing Cloudburst with caching and
without and AWS Lambda over Redis and AWS S3. We vary
array lengths from 1,000 to 1,000,000 by multiples of 10 to
demonstrate the e�ects of increasing data retrieval costs.

toscaling system, but we include it in our evaluation because it
o�ers best-case latencies for data retrieval for AWS Lambda. We
compare two implementations in Cloudburst. One version, Cloud-
burst (Hot) passes the same array in to every function execution,
guaranteeing that every retrieval after the �rst is a cache hit. This
achieves optimal latency, as every request after the �rst avoids
fetching data over the network. The second, Cloudburst (Cold),
creates a new set of inputs for each request; every retrieval is
a cache miss, and this scenario measures worst-case latencies of
fetching data from Anna. All measurements are reported across
12 clients issuing 3,000 requests each. We run Cloudburst with 7
function execution nodes.

The Cloudburst (Hot) bars in Figure 5 show that system’s per-
formance is consistent across the �rst two data sizes for cache hits,
rises slightly for 8MB of data, and degrades signi�cantly for the
largest array size as computation costs begin to dominate. Cloud-
burst performs best at 8MB, improving over Cloudburst (Cold)’s
median latency by about 10×, over Lambda on Redis’ by 25×, and
over Lambda on S3’s by 79×.

While Lambda on S3 is the slowest con�guration for smaller
inputs, it is more competitive at 80MB. Here, Lambda on Redis’
latencies rise signi�cantly. Cloudburst (Cold)’s median latency is
the second fastest, but its 99th percentile latency is comparable
with S3’s and Redis’. This validates the common wisdom that S3
is e�cient for high bandwidth tasks but imposes a high latency
penalty for smaller data objects. However, at this size, Cloudburst
(Hot)’s median latency is still 9× faster than Cloudburst (Cold)
and 24× faster than S3’s.

Takeaway: While performance gains vary across con�gurations
and data sizes, avoiding network roundtrips to storage services en-
ables Cloudburst to improve performance by 1-2 orders of magnitude.

6.1.3 Low-Latency Communication
Another key feature in Cloudburst is low-latency communica-

tion, which allows developers to leverage distributed systems pro-
tocols that are infeasibly slow in other serverless platforms [37].

As an illustration, we consider distributed aggregation, the sim-
plest form of distributed statistics. Our scenario is to periodically
average a �oating-point performance metric across the set of func-
tions that are running at any given time. Kempe et al. [46] devel-
oped a simple gossip-based protocol for approximate aggregation
that uses random message passing among the current participants
in the protocol. The algorithm is designed to provide correct an-
swers even as the membership changes. We implemented the al-
gorithm in 60 lines of Python and ran it over Cloudburst with 4
executors (12 threads). We compute 1,000 rounds of aggregation

0

250

500

750

1000

La
te
nc

y 
(m

s) Cloudburst (gossip)
Cloudburst (gather)
Lambda+Redis (gather)
Lambda+S3 (gather)

Figure 6: Median and 99th percentile latencies for dis-
tributed aggregation. The Cloudburst implementation uses
a distributed, gossip-based aggregation technique, and the
Lambda implementations share state via the respective
key-value stores. Cloudburst outperforms communication
through storage, even for a low-latency KVS.

with 10 actors each in sequence and measure the time until the
result converges to within 5% error.

The gossip algorithm involves repeated small messages, mak-
ing it highly ine�cient on stateless platforms like AWS Lambda.
Since AWS Lambda disables direct messaging, the gossip algo-
rithm would be extremely slow if implemented via reads/writes
from slow storage. Instead, we compare against a more natural
approach for centralized storage: Each lambda function publishes
its metrics to a KVS, and a predetermined leader gathers the pub-
lished information and returns it to the client. We refer to this
algorithm as the “gather” algorithm. Note that this algorithm, un-
like [46], requires the population to be �xed in advance, and is
therefore not a good �t to an autoscaling setting. But it requires
less communication, so we use it as a workaround to enable the
systems that forbid direct communication to compete. We imple-
ment the centralized gather protocol on Lambda over Redis for
similar reasons as in § 6.1.2—although serverful, Redis o�ers best-
case performance for Lambda. We also implement this algorithm
over Cloudburst and Anna for reference.

Figure 6 shows our results. Cloudburst’s gossip-based proto-
col is 3× faster than the gather protocol using Lambda and Dy-
namoDB. Although we expected gather on serverful Redis to out-
perform Cloudburst’s gossip algorithm, our measurements show
that gossip on Cloudburst is actually about 10% faster than the
gather algorithm on Redis at median and 40% faster at the 99th
percentile. Finally, gather on Cloudburst is 22× faster than gather
on Redis and 53× faster than gather on DynamoDB. There are two
reasons for these discrepancies. First, Lambda has very high func-
tion invocation costs (see §6.1.1). Second, Redis is single-mastered
and forces serialized writes, creating a queuing delay for writes.

Takeaway: Cloudburst’s low latency communication mecha-
nisms enable developers to build fast distributed algorithms with
�ne-grained communication. These algorithms can have notable
performance bene�ts over workarounds involving even relatively
fast shared storage.

6.1.4 Autoscaling
Finally, we validate Cloudburst’s ability to detect and respond

to workload changes. The goal of any serverless system is to
smoothly scale program execution in response to changes in
request rate. As described in § 4.4, Cloudburst uses a heuristic
policy that accounts for incoming request rates, request execution
times, and executor load. We simulate a relatively computation-
ally intensive workload with a function that sleeps for 50ms. The
function reads in two keys drawn from a Zip�an distribution with
coe�cient of 1.0 from 1 million 8-byte keys stored in Anna, and
it writes to a third key drawn from the same distribution.

2445



0 2 4 6 8 10
Time (minutes)

0

2

4

6
Th

ro
ug

hp
ut Throughput

0

100

200

300

Num
ber of Replicas

Number of Replicas

Figure 7: Cloudburst’s responsiveness to load changes. We
start with 180 executor threads, issue requests from 60
clients, and measure throughput. Cloudburst quickly de-
tects load spikes and allocate more resources. Plateaus in
the �gure are the wait times for EC2 instance startup.

The system starts with 60 executors (180 threads) and one
replica of the function deployed—the remaining threads are all
idle. Figure 7 shows our results. At time 0, 400 client threads si-
multaneously begin issuing requests. The jagged curve measures
system throughput (requests per second), and the dotted line
tracks the number of threads allocated to the function. Over the
�rst 20 seconds, Cloudburst takes advantage of the idle resources
in the system, and throughput reaches around 3,300 requests per
second. At this point, the management system detects that all
nodes are saturated and adds 20 EC2 instances, which takes about
2.5 minutes; this is seen in the plateau that lasts until time 2.67.
As soon as resources become available, they are allocated to our
task, and throughput rises to 4.4K requests a second.

This process repeats itself twice more, with the throughput ris-
ing to 5.6K and 6.7K requests per second with each increase in
resources. After 10 minutes, the clients stop issuing requests, and
by time 10.33, the system has drained itself of all outstanding re-
quests. The management system detects the sudden drop in re-
quest rate and, within 20 seconds, reduces the number of threads
allocated to the sleep function from 360 to 2. Within 5 minutes,
the number of EC2 instances drops from a max of 120 back to the
original 60. Our current implementation is bottlenecked by the la-
tency of spinning up EC2 instances; we discuss that limitation and
potential improvements in Section 8.

We also measured the per-key storage overhead of the index in
Anna that maps each key to the caches it is stored in. We observe
small overheads even for the largest deployment (120 function ex-
ecution nodes). For keys in our working set, the median index
overhead is 24 bytes and the 99th percentile overhead is 1.3KB, cor-
responding to keys being cached at 1.6% and 93% of the function
nodes, respectively. Even if all keys had the maximum overhead,
the total index size would be around 1 GB for 1 million keys.

Takeaway: Cloudburst’s mechanisms for autoscaling enable
policies that can quickly detect and react to workload changes.
We are mostly limited by the high cost of spinning up new EC2
instances. The policies and cost of spinning up instances can be
improved in future without changing Cloudburstś architecture.

6.2 Consistency Models
In this section, we evaluate the overheads of Cloudburst’s

consistency models. For comparison, we also implement and
measure weaker consistency models to understand the costs
involved in distributed session causal consistency. In particular,
we evaluated single-key causality and multi-key causality, which
are both weaker forms of causal consistency than the distributed
session causality supported by Cloudburst. Single-key causality
tracks causal order of updates to individual keys (omitting

Median 99th Percentile0

50

100

150

La
te
nc
y 
(m

s) LWW
DSRR
SK

MK
DSC

Figure 8: Median and 99th percentile latencies for Cloud-
burst’s consistency models, normalized by the depth of
the DAG. We measure last-writer wins (LWW), distributed
session repeatable read (DSRR), single-key causality (SK),
multi-key causality (MK), and distributed session causal
consistency (DSC). Median latency is uniform acrossmodes,
but stronger consistency levels have higher tail latencies
due to increased data and metadata overheads.

the overhead of dependency sets). Multi-key causality is an
implementation of Bolt-On Causal Consistency [9], avoiding the
overhead of distributed session consistency.

We populate Anna with 1 million keys, each with a payload
of 8 bytes, and we generate 250 random DAGs which are 2 to 5
functions long, with an average length of 3. We isolate the la-
tency overheads of each consistency mode by avoiding expensive
computation and use small data to highlight any metadata over-
heads. Each function takes two string arguments, performs a sim-
ple string manipulation, and outputs another string. Function ar-
guments are either KVS references—which are drawn from the set
of 1 million keys with a Zip�an coe�cient of 1.0—or the result of a
previous function execution in the DAG. The sink function of the
DAG writes its result to the KVS into a key chosen randomly from
the set of keys read by the DAG. We use 8 concurrent benchmark
threads, each sequentially issuing 500 requests to Cloudburst. We
ran Cloudburst with 5 executor nodes (15 threads).

6.2.1 Latency Comparison
Figure 8 shows the latency of each DAG execution under �ve

consistency models normalized by the longest path in the DAG.
Median latency is nearly uniform across all modes, but perfor-
mance di�ers signi�cantly at the 99th percentile.

Last-writer wins has the lowest overhead, as it only stores the
8-byte timestamp associated with each key and requires no re-
mote version fetches. The 99th percentile latency of distributed
session repeatable read is 1.8× higher than last-writer wins’. This
is because repeated reference to a key across functions requires
an exact version match; even if the key is cached locally, a version
mismatch will force a remote fetch.

Single-key causality does not involve metadata passing or data
retrieval, but each key maintains a vector clock that tracks the
causal ordering of updates performed across clients. Since the size
of the vector clock grows linearly with the number of clients that
modi�ed the key, hot keys tend to have larger vector clocks, lead-
ing to higher retrieval latency at the tail. Multi-key causality forces
each key to track its dependencies in addition to maintaining the
vector clock, adding to its worst-case latency. We observe that the
median per-key causal metadata (vector clock and dependency set)
storage overhead is 624 bytes and the 99th percentile overhead is
7.1KB. Techniques such as vector clock compression [59] and de-
pendency garbage collection [54] can be used to reduce the meta-
data overhead, which we plan to explore in future work.

2446



Table 2: The number of inconsistencies observed across
4,000DAGexecutions underCloudburst’s consistency levels
relative to what is observed under LWW. The causal levels
are increasingly strict, so the numbers accrue incrementally
left to right. DSRR anomalies are independent.

Inconsistencies Observed
LWW Causal DSRR

SK MK DSC
0 904 939 1043 46

Distributed session causal consistency incurs the cost of pass-
ing causal metadata along the DAG as well as retrieving version
snapshots to satisfy causality. In the worst case, a 5-function DAG
performs 4 extra network round-trips for version snapshots. This
leads to a 1.7× slowdown in 99th percentile latency over single-
and multi-key causality and a 9× slowdown over last-writer wins.

Takeaway: Although Cloudburst’s non-trivial consistency mod-
els increase tail latencies, median latencies are over an order of mag-
nitude faster than DynamoDB and S3 for similar tasks, while pro-
viding stronger consistency.

6.2.2 Inconsistencies
Stronger consistency models introduce overheads but also pre-

vent anomalies that would arise in weaker models. Table 2 shows
the number of anomalies observed over the course of 4000 DAG
executions run in LWW mode, tracking anomalies for other levels.

The causal consistency levels have increasingly strict criteria;
anomaly counts accrue with the level. We observe 904 single-key
(SK) causal inconsistencies when the system operates in LWW
mode. With single-key causality, two concurrent updates to the
same must both be preserved and returned to the client. LWW
simply picks the largest timestamp and drops the other update,
leading to a majority of observed anomalies. Multi-key (MK)
causality �agged 35 additional inconsistencies corresponding
to single-cache read sets that were not causal cuts. Distributed
session causal consistency (DSC) �agged 104 more inconsisten-
cies where the causal cut property was violated across caches.
Repeatable Read (DSRR) �agged 46 anomalies.

Takeaway: A large number of anomalies arose naturally in our
experiments and the Cloudburst consistency model was able to detect
and prevent these anomalies.

6.3 Case Studies
In this section, we discuss the implementation of two real-world

applications on top of Cloudburst. We �rst consider low-latency
prediction serving for machine learning models and compare
Cloudburst to a purpose-built cloud o�ering, AWS Sagemaker.
We then implement a Twitter clone called Retwis, which takes
advantage of our consistency mechanisms, and we report both
the e�ort involved in porting the application to Cloudburst as
well as some initial evaluation metrics.

6.3.1 Prediction Serving
ML model prediction is a computationally intensive task that

can bene�t from elastic scaling and e�cient sparse access to large
amounts of state. For example, the prediction serving infrastruc-
ture at Facebook [34] needs to access per-user state with each
query and respond in real time, with strict latency constraints.
Furthermore, many prediction pipelines combine multiple stages

0

500

1000

La
te
nc
y 
(m

s) Python
Cloudburst
Lambda (Mock)
AWS Sagemaker
Lambda (Actual)

Figure 9: Cloudburst compared to native Python, AWS Sage-
maker, and AWS Lambda for serving a prediction pipeline.

10 20 40 80 160
Number of Threads

0

200

400

600

800

La
te
nc

y 
(m

s)

0 40 80 120 160
Number of Threads

50

100

150

Th
ro
ug

hp
ut

Figure 10: A measure of the Cloudburst’s ability to scale a
simple prediction serving pipeline. The blue whiskers rep-
resent 95th percentile latencies, and the black represent the
99th percentile.

of computation—e.g., clean the input, join it with reference data,
execute one or more models, and combine the results [18, 52].

We implemented a basic prediction serving pipeline on Cloud-
burst and compare against a fully-managed, purpose-built predic-
tion serving framework (AWS Sagemaker) as well as AWS Lambda.
We also compare against a single Python process to measure seri-
alization and communication overheads. Lambda does not support
GPUs, so all experiments are run on CPUs.

We use the MobileNet [41] image classi�cation model imple-
mented in Tensor�ow [1] and construct a three-stage pipeline:
resize an input image, execute the model, and combine features
to render a prediction. Qualitatively, porting this pipeline to
Cloudburst was easier than porting it to other systems. The native
Python implementation was 23 lines of code (LOC). Cloudburst
required adding 4 LOC to retrieve the model from Anna. AWS
SageMaker required adding serialization logic (10 LOC) and a
Python web-server to invoke each function (30 LOC). Finally,
AWS Lambda required signi�cant changes: managing serializa-
tion (10 LOC) and manually compressing Python dependencies
to �t into Lambda’s 512MB container limit3. The pipeline does
not involve concurrent modi�cation to shared state, so we use
the default last writer wins for this workload. We run Cloudburst
with 3 workers, and all experiments used a single client.

Figure 9 reports median and 99th percentile latencies. Cloud-
burst is only about 15ms slower than the Python baseline at the
median (210ms vs. 225ms). AWS Sagemaker, ostensibly a purpose-
built system, is 1.7× slower than the native Python implementa-
tion and 1.6× slower than Cloudburst. We also measure two AWS
Lambda implementations. One, AWS Lambda (Actual), computes
a full result for the pipeline and takes over 1.1 seconds. To better
understand Lambda’s performance, we isolated compute costs by
removing all data movement. This result (AWS Lambda (Mock))
3AWS Lambda limits disk space to 512MB. Tensor�ow exceeds this
limit, so we removed unnecessary components. We do not report
LOC changed as it would arti�cially in�ate the estimate.

2447



0.0

2.5

5.0

7.5

10.0
La

te
nc

y 
(m

s) Cloudburst (LWW)
Cloudburst (Causal)

Redis

Figure 11: Median and 99th percentile latencies for Cloud-
burst in LWW and causal modes and Retwis over Redis.

10 20 40 80 160
Number of Threads

0

5

10

La
te
nc

y 
(m

s)

0 40 80 120 160
Number of Threads

5

10

15

20

25

Th
ro
ug

hp
ut
 (K

 o
ps
/s
)

Figure 12: Cloudburst’s ability to scale the Retwis workload
up to 160 worker threads.

is much faster, suggesting that the latency penalty is incurred by
the Lambda runtime passing results between functions. Nonethe-
less, AWS Lambda (Mock)’s median is still 44% slower than Cloud-
burst’s median latency and only 9% faster than AWS Sagemaker.

Figure 10 measures throughput and latency for Cloudburst
as we increase the number of worker threads from 10 to 160
by factors of two. The number of clients for each setting is set
to bworkers

3
c because there are three functions executed per

client. We see that throughput scales linearly with the number of
workers. We see a climb in median and 99th percentile latency
from 10 to 20 workers due to increased potential con�icts in the
scheduling heuristics. From this point on, we do not a signi�cant
change in either median or tail latency until 160 executors. For
the largest deployment, only one or two executors need to be slow
to signi�cantly raise the 99th percentile latency—to validate this,
we also report the 95th percentile latency in Figure 10, and we see
that there is a minimal increase between 80 and 160 executors.

Takeaway: An ML algorithm deployed on Cloudburst delivers
both smooth scaling and low, predictable latency comparable to na-
tive Python, out-performing a purpose-built commercial service.

6.3.2 Retwis
Web serving workloads are closely aligned with Cloudburst’s

features. For example, Twitter provisions server capacity of up to
10x the typical daily peak in order to accommodate unusual events
such as elections, sporting events, or natural disasters [33]. Fur-
thermore, causal consistency is a good model for many consumer
internet workloads because it matches end-user expectations for
information propagation: e.g., Google has adopted it as part of a
universal model for privacy and access control [64].

To this end, we considered an example web serving workload.
Retwis [69] is an open source Twitter clone built on Redis and
is often used to evaluate distributed systems [77, 40, 91, 19, 87].
Conversational “threads” like those on Twitter naturally exercise
causal consistency: It is confusing to read the response to a post
(e.g., “lambda!”) before you have read the post it refers to (“what

comes after kappa?”). We adapted a Python Retwis implementa-
tion called retwis-py [70] to run on Cloudburst and compared
its performance to a vanilla “serverful” deployment on Redis. We
ported Retwis to our system as a set of six Cloudburst functions.
The port was simple: We changed 44 lines, most of which were
removing references to a global Redis variable.

We created a graph of 1000 users, each following 50 other users
(zipf=1.5, a realistic skew for online social networks [60]) and pre-
populated 5000 tweets, half of which were replies to other tweets.
We compare Cloudburst in LWW mode, Cloudburst in causal
consistency mode, and Retwis over Redis; all con�gurations used
10 executor threads (webservers for Retwis), 1 KVS node, and 10
clients. Each client issues 5000 requests—10% PostTweet (write)
requests and 90% GetTimeline (read) requests.

Figure 11 shows our results. Median and 99th percentile laten-
cies for LWW mode are 27% and 2% higher than Redis’, respec-
tively. This is largely due to di�erent code paths; for Retwis over
Redis, clients communicate directly with web servers, which inter-
act with Redis. Each Cloudburst request interacts with a scheduler,
a function executor, a cache, and Anna. Cloudburst’s causal mode
adds a modest overhead over LWW mode: 4% higher at the median
and 20% higher at the tail. However, causality prevents anomalies
on over 60% of requests—when a timeline returns a reply without
the original tweet—compared to LWW mode.

Figure 12 measures throughput and latency for Cloudburst’s
causal mode as we increase the number of function executor
threads from 10 to 160 by factors of two. For each setting, the
number of clients is equal to the number of executors. From 10
threads to 160 threads, median and the 99th percentile latencies
increase by about 60%. This is because increased concurrency
means a higher volume of new tweets. With more new posts,
each GetTimeline request forces the cache to query the KVS for
new data with higher probability in order to ensure causality—for
160 threads, 95% of requests incurred cache misses. Nonetheless,
these latencies are well within the bounds for interactive web
applications [35]. Throughput grows nearly linearly as we
increase the executor thread count. However, due to the increased
latencies, throughput is about 30% below ideal at the largest scale.

Takeaway: It was straightforward to adapt a standard social net-
work application to run on Cloudburst. Our implementation adds a
modest overhead to the serverful Redis baseline and scales smoothly
as the workload increases.

7. RELATED WORK
Architecture. Client-side caching and consistency has a long his-
tory in the database literature [27] that bears similarity to our
LDPC principal. In more recent examples, [13] describes client-
side techniques for a database built on S3, and [89] uses caching in
a distributed transactional system based on RDMA over dedicated
memory nodes. This line of work primarily focuses on strong
transactional consistency for static or slowly-changing con�gura-
tions. Cloudburst explicitly chooses to pursue coordination-free
techniques for serverless computing, for the reasons described in
Section 2.2. The serverless setting also drives our need to han-
dle consistency when a single transaction moves across multiple
caches, which is not seen in prior work.
Serverless Execution Frameworks. In addition to commercial
o�erings, there are many open-source serverless platforms [38, 63,
62, 48] which provide standard stateless FaaS guarantees. Among
research platforms [39, 4, 58], SAND [4] is most similar to Cloud-
burst, reducing overheads for low-latency function compositions.
Cloudburst achieves better latencies (§6.1.1) and adds shared state
and communication abstractions.

2448



Recent work has explored faster, more e�cient serverless plat-
forms. SOCK [61] introduces a generalized-Zygote provisioning
mechanism to cache and clone function initialization; its library
loading technique could be integrated with Cloudburst. Also com-
plementary are low-overhead sandboxing mechanisms released by
cloud providers—e.g., gVisor [31] and Firecracker [24].

Other recent work has demonstrated the ability to build data-
centric services on top of commodity serverless infrastructure.
Starling [65] implements a scalable database query engine on
AWS Lambda. Similarly, the PyWren project [44] and follow-on
work [74] implemented highly parallel map tasks on Lambda,
with a focus on linear algebra applications. The ExCamera
project [26] enabled highly e�cient video encoding on FaaS.
These systems explored what is possible to build on stateless
serverless infrastructure By contrast, our work explores the
design of a new architecture, which raises new challenges for
systems issues in distributed consistency.

Perhaps the closest work to ours is the Archipelago system [76],
which also explores the design of a new serverless infrastructure.
They also adopt the model of DAGs of functions, but their focus
is complementary to ours. They are interested in scheduling tech-
niques to achieve latency deadlines on a per-request basis.
Serverless IO Infrastructure. Pocket [47] is a serverless stor-
age system that improves the e�ciency of analytics (large read
oriented workloads). Locus [66] provides a high-bandwidth shuf-
�e functionality for serverless analytics. Neither of these systems
o�ers a new serverless programming framework, nor do they con-
sider issues of caching for latency or consistent updates.

Finally, Shredder [92] enables users to push functions into stor-
age. This raises fundamental security concerns like multi-tenant
isolation, which are the focus of the research. Shredder is cur-
rently limited to a single node and does not address autoscaling or
other characteristic features of serverless computing.
Language-Level Consistency Programming languages also
o�er solutions to distributed consistency. One option from
functional languages is to prevent inconsistencies by making
state immutable [16]. A second is to constrain updates to be
deterministically mergeable, by requiring users to write associa-
tive, commutative, and idempotent code (ACID 2.0 [36]), use
special-purpose types like CRDTs [75] or DSLs for distributed
computing like Bloom [17]. As a platform, Cloudburst does not
prescribe a language or type system, though these approaches
could be layered on top of Cloudburst.
Causal Consistency. Several existing storage systems provide
causal consistency [54, 59, 3, 55, 23, 22, 5, 90]. However, these
are �xed-deployment systems that do not meet the autoscaling
requirements of a serverless setting. In [59, 3, 5, 22, 23], each
data partition relies on a linear clock to version data and uses a
�xed-size vector clock to track causal dependencies across keys.
The size of these vector clocks is tightly coupled with the system
deployment—speci�cally, the shard and replica counts. Correctly
adjusting this metadata requires an expensive coordination proto-
col, which we rejected in Cloudburst’s design (§ 2.2). [54] and [55]
reveal a new version only when all of its dependencies have been
retrieved. [90] constructs a causally consistent snapshot across an
entire data center. All of these systems are susceptible to “slow-
down cascades” [59], where a single straggler node limits write
visibility and increases the overhead of write bu�ering.

In contrast, Cloudburst implements causal consistency in the
cache layer as in Bolt-On Causal Consistency [9]. Each cache cre-
ates its own causally consistent snapshot without coordinating
with other caches, eliminating the possibility of a slowdown cas-

cade. The cache layer also tracks dependencies in individual keys’
metadata rather than tracking the vector clocks of �xed, coarse-
grained shards. This comes at the cost of increased dependency
metadata overhead. Various techniques including periodic depen-
dency garbage collection [54], compression [59], and reducing de-
pendencies via explicit causality speci�cation [9] can mitigate this
issue, though we do not measure them here.

8. CONCLUSION AND FUTURE WORK
In this paper we demonstrate the feasibility of general-purpose

stateful serverless computing. We enable autoscaling via logical
disaggregation of storage and compute and achieve performant
state management via physical colocation of caches with compute
services. Cloudburst demonstrates that disaggregation and colo-
cation are not inherently in con�ict. In fact, the LDPC design pat-
tern is key to our solution for stateful serverless computing.

The remaining challenge is to provide performant correct-
ness. Cloudburst embraces coordination-free consistency as the
appropriate class of guarantees for an autoscaling system. We
confront challenges at both the storage and caching layer. We
use lattice capsules to allow opaque program state to be merged
asynchronously into replicated coordination-free persistent
storage. We develop distributed session consistency protocols
to ensure that computations spanning multiple caches provide
uniform correctness guarantees. Together, these techniques
provide a strong contract to users for reasoning about state—far
stronger than the guarantees o�ered by cloud storage that backs
commercial FaaS systems. Even with these guarantees, we
demonstrate performance that rivals and often beats baselines
from inelastic server-centric approaches.

The feasibility of stateful serverless computing suggests a vari-
ety of potential future work.
Isolation and Fault Tolerance As noted in §5.1, storage
consistency guarantees say nothing about concurrent e�ects
between DAGs, a concern akin to transactional isolation (the “I”
in ACID). On a related note, the standard fault tolerance model
for FaaS is to restart on failure, ignoring potential problems
with non-idempotent functions. Something akin to transactional
atomicity (the “A” in ACID) seems desirable here. It is well-known
that serializable transactions require coordination [8], but it is
interesting to consider whether su�cient atomicity and isolation
are achievable without strong consistency schemes.
Auto-Scaling Mechanism and Policy. In this work we present
and evaluate a simple auto-scaling heuristic. However, there are
opportunities to reduce boot time by warm pooling [83] and more
proactively scale computation [29, 45, 79] as a function of variabil-
ity in the workloads. We believe that cache-based co-placement
of computation and data presents promising opportunities for re-
search in elastic auto-scaling of compute and storage.
Streaming Services Cloudburst’s internal monitoring service re-
quires components to publish metadata to well-known KVS keys.
In essence, the KVS serves a rolling snapshot of an update stream.
There is a rich literature on distributed streaming that could o�er
more, e.g. as surveyed by [30]. The autoscaling environment of
FaaS introduces new challenges, but this area seems ripe for both
system internals and user-level streaming abstractions.
Security and Privacy. As mentioned brie�y in §4, Cloudburst’s
current design provides container-level isolation, which is suscep-
tible to well-known attacks [53, 57]. This is unacceptable in multi-
tenant cloud environments, where sensitive user data may coin-
cide with other user programs. It is interesting to explore how
Cloudburst’s design would address these concerns.

2449



9. REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al.
Tensor�ow: A system for large-scale machine learning. In
12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pages 265–283, 2016.

[2] Apache air�ow. https://airflow.apache.org.
[3] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain,

A. Bieniusa, N. Preguiça, and M. Shapiro. Cure: Strong
semantics meets high availability and low latency. In 2016
IEEE 36th International Conference on Distributed Computing
Systems (ICDCS), pages 405–414. IEEE, 2016.

[4] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, and V. Hilt. SAND: Towards high-performance
serverless computing. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 923–935, 2018.

[5] S. Almeida, J. a. Leitão, and L. Rodrigues. Chainreaction: A
causal+ consistent datastore based on chain replication. In
Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, pages 85–98, New York, NY,
USA, 2013. ACM.

[6] B. Awerbuch. Optimal distributed algorithms for minimum
weight spanning tree, counting, leader election, and related
problems. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 230–240. ACM,
1987.

[7] Aws Lambda - case studies. https://aws.amazon.com/
lambda/resources/customer-case-studies/.

[8] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Highly available transactions:
Virtues and limitations. PVLDB, 7(3):181–192, 2013.

[9] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on
causal consistency. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’13, pages 761–772, New York, NY, USA, 2013. ACM.

[10] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, et al.
Serverless computing: Current trends and open problems.
In Research Advances in Cloud Computing, pages 1–20.
Springer, 2017.

[11] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ANSI SQL isolation levels. In ACM
SIGMOD Record, volume 24, pages 1–10. ACM, 1995.

[12] K. Birman and T. Joseph. Exploiting virtual synchrony in
distributed systems. SIGOPS Oper. Syst. Rev., 21(5):123–138,
Nov. 1987.

[13] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and
T. Kraska. Building a database on s3. In Proceedings of the
2008 ACM SIGMOD international conference on Management
of data, pages 251–264, 2008.

[14] E. Brewer. Cap twelve years later: How the “rules” have
changed. Computer, 45(2):23–29, Feb 2012.

[15] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made
live: an engineering perspective. In Proceedings of the
twenty-sixth annual ACM symposium on Principles of
distributed computing, pages 398–407. ACM, 2007.

[16] M. Coblenz, J. Sunshine, J. Aldrich, B. Myers, S. Weber, and
F. Shull. Exploring language support for immutability. In
Proceedings of the 38th International Conference on Software
Engineering, pages 736–747. ACM, 2016.

[17] N. Conway, W. R. Marczak, P. Alvaro, J. M. Hellerstein, and
D. Maier. Logic and lattices for distributed programming. In

Proceedings of the Third ACM Symposium on Cloud
Computing, SoCC ’12, pages 1:1–1:14, New York, NY, USA,
2012. ACM.

[18] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E.
Gonzalez, and I. Stoica. Clipper: A low-latency online
prediction serving system. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17),
pages 613–627, Boston, MA, 2017. USENIX Association.

[19] N. Crooks, Y. Pu, N. Estrada, T. Gupta, L. Alvisi, and
A. Clement. Tardis: A branch-and-merge approach to weak
consistency. In Proceedings of the 2016 International
Conference on Management of Data, pages 1615–1628. ACM,
2016.

[20] A. Das, I. Gupta, and A. Motivala. Swim: Scalable
weakly-consistent infection-style process group
membership protocol. In Proceedings International
Conference on Dependable Systems and Networks, pages
303–312. IEEE, 2002.

[21] Enterprise application container platform | docker.
https://www.docker.com.

[22] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe:
Scalable causal consistency using dependency matrices and
physical clocks. In Proceedings of the 4th Annual Symposium
on Cloud Computing, SOCC ’13, pages 11:1–11:14, New
York, NY, USA, 2013. ACM.

[23] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel.
GentleRain: Cheap and scalable causal consistency with
physical clocks. In Proceedings of the ACM Symposium on
Cloud Computing, pages 1–13. ACM, 2014.

[24] Announcing the �recracker open source technology: Secure
and fast microVM for serverless computing.
https://aws.amazon.com/blogs/opensource/
firecracker-open-source-secure-fast-microvm
-serverless/.

[25] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee,
C. Kozyrakis, M. Zaharia, and K. Winstein. From laptop to
Lambda: Outsourcing everyday jobs to thousands of
transient functional containers. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 475–488, 2019.

[26] S. Fouladi, R. S. Wahby, B. Shacklett, K. V.
Balasubramaniam, W. Zeng, R. Bhalerao, A. Sivaraman,
G. Porter, and K. Winstein. Encoding, fast and slow:
Low-latency video processing using thousands of tiny
threads. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 363–376,
Boston, MA, 2017. USENIX Association.

[27] M. J. Franklin and M. J. Carey. Client-server caching
revisited. Technical report, University of
Wisconsin-Madison Department of Computer Sciences,
1992.

[28] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki,
A. Bruno, J. Hu, B. Ritchken, B. Jackson, et al. An
open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems.
In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 3–18. ACM, 2019.

[29] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.
Kozuch. Autoscale: Dynamic, robust capacity management
for multi-tier data centers. ACM Transactions on Computer
Systems (TOCS), 30(4):14, 2012.

[30] M. Garofalakis, J. Gehrke, and R. Rastogi. Data stream

2450



management: processing high-speed data streams. Springer,
2016.

[31] Open-sourcing gVisor, a sandboxed container runtime.
https://cloud.google.com/blog/products/gcp/
open-sourcing-gvisor-a-sandboxed-container
-runtime.

[32] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and
S. Shenker. Network support for resource disaggregation in
next-generation datacenters. In Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks, page 10. ACM,
2013.

[33] M. Hashemi. The infrastructure behind Twitter: Scale.
https://blog.twitter.com/engineering/en_us/
topics/infrastructure/2017/
the-infrastructure-behind-twitter-scale.html.

[34] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law,
K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong, and
X. Wang. Applied machine learning at facebook: A
datacenter infrastructure perspective. In 2018 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), pages 620–629, Feb 2018.

[35] Y. He, S. Elnikety, J. Larus, and C. Yan. Zeta: Scheduling
interactive services with partial execution. In Proceedings of
the Third ACM Symposium on Cloud Computing, pages 1–14,
2012.

[36] P. Helland and D. Campbell. Building on quicksand. CoRR,
abs/0909.1788, 2009.

[37] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu. Serverless computing:
One step forward, two steps back. In CIDR 2019, 9th Biennial
Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 13-16, 2019, Online Proceedings, 2019.

[38] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Serverless
computation with OpenLambda. In 8th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 16), Denver,
CO, 2016. USENIX Association.

[39] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Serverless
computation with OpenLambda. Elastic, 60:80, 2016.

[40] B. Holt, I. Zhang, D. Ports, M. Oskin, and L. Ceze. Claret:
Using data types for highly concurrent distributed
transactions. In Proceedings of the First Workshop on
Principles and Practice of Consistency for Distributed Data,
page 4. ACM, 2015.

[41] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets:
E�cient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017.

[42] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building
blocks. In Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys
’07, pages 59–72, New York, NY, USA, 2007. ACM.

[43] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai,
A. Khandelwal, Q. Pu, V. Shankar, J. Menezes Carreira,
K. Krauth, N. Yadwadkar, J. Gonzalez, R. A. Popa, I. Stoica,
and D. A. Patterson. Cloud programming simpli�ed: A
Berkeley view on serverless computing. Technical Report
UCB/EECS-2019-3, EECS Department, University of
California, Berkeley, Feb 2019.

[44] E. Jonas, S. Venkataraman, I. Stoica, and B. Recht. Occupy
the cloud: Distributed computing for the 99%. CoRR,
abs/1702.04024, 2017.

[45] V. Kalavri, J. Liagouris, M. Ho�mann, D. Dimitrova,
M. Forshaw, and T. Roscoe. Three steps is all you need: fast,
accurate, automatic scaling decisions for distributed
streaming data�ows. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18),
pages 783–798, 2018.

[46] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003.
Proceedings., pages 482–491. IEEE, 2003.

[47] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfe�erle, and
C. Kozyrakis. Pocket: Elastic ephemeral storage for
serverless analytics. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18),
pages 427–444, 2018.

[48] Kubeless. http://kubeless.io.
[49] Kubernetes: Production-grade container orchestration.

http://kubernetes.io.
[50] L. Lamport. Time, clocks, and the ordering of events in a

distributed system. Commun. ACM, 21(7):558–565, July 1978.
[51] L. Lamport et al. Paxos made simple. ACM Sigact News,

32(4):18–25, 2001.
[52] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio,

M. Weimer, and M. Interlandi. PRETZEL: Opening the black
box of machine learning prediction serving systems. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 611–626, Carlsbad, CA,
2018. USENIX Association.

[53] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security
Symposium (USENIX Security 18), 2018.

[54] W. Lloyd, M. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: Scalable causal consistency for
wide-area storage with cops. In SOSP’11 - Proceedings of the
23rd ACM Symposium on Operating Systems Principles, pages
401–416, 10 2011.

[55] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency
geo-replicated storage. In Presented as part of the 10th
{USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 13), pages 313–328, 2013.

[56] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency,
availability, convergence. Technical Report TR-11-22,
Computer Science Department, University of Texas at
Austin, May 2011.

[57] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici. My vm is lighter (and
safer) than your container. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 218–233.
ACM, 2017.

[58] G. McGrath and P. R. Brenner. Serverless computing:
Design, implementation, and performance. In 2017 IEEE 37th
International Conference on Distributed Computing Systems
Workshops (ICDCSW), pages 405–410. IEEE, 2017.

[59] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and
W. Lloyd. I can’t believe it’s not causal! scalable causal
consistency with no slowdown cascades. In 14th USENIX

2451



Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 453–468, Boston, MA, Mar.
2017. USENIX Association.

[60] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online social
networks. In Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, IMC ’07, pages 29–42,
New York, NY, USA, 2007. ACM.

[61] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau. SOCK: Rapid
task provisioning with serverless-optimized containers. In
2018 USENIX Annual Technical Conference (USENIX ATC 18),
pages 57–70, Boston, MA, 2018. USENIX Association.

[62] Home | openfaas - serverless functions made simple.
https://www.openfaas.com.

[63] Apache openwhisk is a serverless, open source cloud
platform. https://openwhisk.apache.org.

[64] R. Pang, R. Caceres, M. Burrows, Z. Chen, P. Dave,
N. Germer, A. Golynski, K. Graney, N. Kang, L. Kissner, J. L.
Korn, A. Parmar, C. D. Richards, and M. Wang. Zanzibar:
Google’s consistent, global authorization system. In 2019
USENIX Annual Technical Conference (USENIX ATC ’19),
Renton, WA, 2019.

[65] M. Perron, R. C. Fernandez, D. DeWitt, and S. Madden.
Starling: A scalable query engine on cloud function
services. arXiv preprint arXiv:1911.11727, 2019.

[66] Q. Pu, S. Venkataraman, and I. Stoica. Shu�ing, fast and
slow: Scalable analytics on serverless infrastructure. In 16th
{USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 19), pages 193–206, 2019.

[67] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network.
SIGCOMM Comput. Commun. Rev., 31(4):161–172, Aug. 2001.

[68] M. Raynal and M. Singhal. Logical time: Capturing causality
in distributed systems. Computer, 29(2):49–56, Feb. 1996.

[69] Tutorial: Design and implementation of a simple Twitter
clone using php and the redis key-value store | redis.
https://redis.io/topics/twitter-clone.

[70] pims/retwis-py: Retwis clone in python.
https://github.com/pims/retwis-py.

[71] R. Rodruigues, A. Gupta, and B. Liskov. One-hop lookups for
peer-to-peer overlays. In Proceedings of the 11th Workshop
on Hot Topics in Operating Systems (HotOS’03), 2003.

[72] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing, pages
329–350. Springer, 2001.

[73] Nokia Bell Labs Project SAND.
https://sandserverless.org.

[74] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman,
I. Stoica, B. Recht, and J. Ragan-Kelley. numpywren:
serverless linear algebra. CoRR, abs/1810.09679, 2018.

[75] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Con�ict-free replicated data types. In Symposium on
Self-Stabilizing Systems, pages 386–400. Springer, 2011.

[76] A. Singhvi, K. Houck, A. Balasubramanian, M. D. Shaikh,
S. Venkataraman, and A. Akella. Archipelago: A scalable
low-latency serverless platform. CoRR, abs/1911.09849, 2019.

[77] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems
Principles, pages 385–400. ACM, 2011.

[78] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. ACM SIGCOMM Computer
Communication Review, 31(4):149–160, 2001.

[79] R. R. Y. Taft. Elastic database systems. PhD thesis,
Massachusetts Institute of Technology, 2017.

[80] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer, and B. B. Welch. Session guarantees for weakly
consistent replicated data. In Proceedings of 3rd International
Conference on Parallel and Distributed Information Systems,
pages 140–149. IEEE, 1994.

[81] E. Van Eyk, A. Iosup, S. Seif, and M. Thömmes. The SPEC
cloud group’s research vision on FaaS and serverless
architectures. In Proceedings of the 2nd International
Workshop on Serverless Computing, pages 1–4. ACM, 2017.

[82] W. Vogels. Eventually consistent. Communications of the
ACM, 52(1):40–44, 2009.

[83] T. A. Wagner. Acquisition and maintenance of compute
capacity, Sept. 4 2018. US Patent 10067801B1.

[84] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift.
Peeking behind the curtains of serverless platforms. In 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC}
18), pages 133–146, 2018.

[85] C. Wu, J. Faleiro, Y. Lin, and J. Hellerstein. Anna: A kvs for
any scale. IEEE Transactions on Knowledge and Data
Engineering, 2019.

[86] C. Wu, V. Sreekanti, and J. M. Hellerstein. Autoscaling
tiered cloud storage in anna. PVLDB, 12(6):624–638, 2019.

[87] X. Yan, L. Yang, H. Zhang, X. C. Lin, B. Wong, K. Salem, and
T. Brecht. Carousel: low-latency transaction processing for
globally-distributed data. In Proceedings of the 2018
International Conference on Management of Data, pages
231–243. ACM, 2018.

[88] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, pages 2–2. USENIX Association, 2012.

[89] E. Zamanian, C. Binnig, T. Kraska, and T. Harris. The end of
a myth: Distributed transactions can scale. arXiv preprint
arXiv:1607.00655, 2016.

[90] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas,
and M. Shapiro. Write fast, read in the past: Causal
consistency for client-side applications. In Proceedings of the
16th Annual Middleware Conference, Middleware ’15, pages
75–87, New York, NY, USA, 2015. ACM.

[91] I. Zhang, N. Lebeck, P. Fonseca, B. Holt, R. Cheng,
A. Norberg, A. Krishnamurthy, and H. M. Levy. Diamond:
Automating data management and storage for wide-area,
reactive applications. In 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16),
pages 723–738, 2016.

[92] T. Zhang, D. Xie, F. Li, and R. Stutsman. Narrowing the gap
between serverless and its state with storage functions. In
Proceedings of the ACM Symposium on Cloud Computing,
pages 1–12, 2019.

2452


