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ABSTRACT
Current approaches for enforcing Fine Grained Access Con-
trol (FGAC) in DBMS do not scale to scenarios when the
number of access control policies are in the order of thou-
sands. This paper identifies such a use case in the context of
emerging smart spaces wherein systems may be required by
legislation, such as Europe’s GDPR and California’s CCPA,
to empower users to specify who may have access to their
data and for what purposes. We present Sieve, a layered
approach of implementing FGAC in existing DBMSs, that
exploits a variety of their features (e.g., UDFs, index usage
hints, query explain) to scale to a large number of policies.
Given a query, Sieve exploits its context to filter the policies
that need to be checked. It also generates guarded expres-
sions that save on evaluation cost by grouping policies and
exploit database indices to cut on read cost. Our experi-
mental results demonstrate that existing DBMSs can utilize
Sieve to significantly reduce query-time policy evaluation
cost. Using Sieve DBMSs can support real-time access con-
trol in applications such as emerging smart environments.
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1. INTRODUCTION
Organizations today capture and store large volumes of

personal data that they use for a variety of purposes such
as providing personalized services and advertisement. Con-
tinuous data capture, whether it be through sensors embed-
ded in physical spaces to support location-based services
(e.g., targeted ads and coupons), or in the form of web data
(e.g., click-stream data) to learn users’ web browsing habits,
has significant privacy implications [6, 7, 33]. Regulations,
such as the European General Data Protection Regulation
(GDPR) [3], the California Online Privacy Protection Act

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407835

(CalOPPA) [2], and the Consumer Privacy Act (CCPA) [1],
have imposed legislative requirements that control how or-
ganizations manage user data. These requirements include
data collection transparency, data minimization, and data
retention. Another key requirement, for organizations/ser-
vices to collect and to use an individual’s data, is to adopt
the principle of choice and consent [21]1. This requirement
has resulted in supporting mechanisms which allow users to
opt-in/out and/or to specify data retention policies.

While such coarse level policies have sufficed for the web
domain, recent work has argued that as smart spaces be-
come pervasive wherein sensors continuously monitor indi-
viduals (e.g., continuous physiological monitoring by wear-
able devices, location monitoring both inside and outside
buildings), systems will need to empower users with finer
control over who can access their data and for what pur-
pose. Supporting such fine grained policies raises several
significant challenges that are beginning to attract research
attention. These challenges include policy languages suit-
able for representing data capture, processing, sharing, and
retention policies [28] together with mechanisms for users
to specify their choices within the system. This paper ad-
dresses one such challenge: scaling enforcement of access
control policies in the context of database query processing
when the set of policies becomes a dominant factor/bottle-
neck in the computation due to their large number. This
has been highlighted as one of the open challenges for Big
Data management systems in recent surveys such as [17].

In the envisioned system that drives our research, data
is dynamically captured from sensors and shared with peo-
ple via queries based on user-specified access control poli-
cies. We describe a motivating use case of a smart campus
in Section 2.1 which shows that data involved in process-
ing a simple analytical query might require checking against
hundreds to thousands of access control policies. Enforcing
that many access control policies in real-time during query
execution is well beyond database systems today. While our
example and motivation is derived from the smart space and
IoT setting, the need for such query processing with a large
number of policies also applies to many other domains. This
applicability will only increase as emerging legislation such
as GDPR empowers users to control their data.

Today, database management systems (DBMSs) imple-
ment Fine-Grained Access Control (FGAC) by one of two
mechanisms [8]: 1) Policy as schema and 2) Policy as data.

1Currently, such organizations typically follow the principle
of notice wherein they inform the user about data collection,
but may not support mechanisms to seek consent.
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In the former case, access control policies are expressed as
authorization views [31]. Then, the DBMS rewrites the
query and executes it against the relevant views instead of
the original data. These views allow administrators to con-
trol access to a subset of the columns and rows of a table.
In the latter case policies are stored in tables, just like data.
The DBMS rewrites queries to include the policy predicates
prior to execution [5, 9, 13, 15]. This mechanism allows ad-
ministrators to express more fine-grained policies compared
to views. Existing DBMS support both mechanisms, as they
are both based on query rewriting [32], by appending poli-
cies as predicates to the WHERE clause of the original query.
However, they are limited in the complexity of applications
they can support due to the increased cost of query exe-
cution when the rewriting includes a large number of poli-
cies. Thus, scalable access control-driven query execution
presents a novel challenge.

In this paper we propose Sieve, a general purpose mid-
dleware to support access control in DBMSs that enables
them to scale query processing with large number of access
control policies. It exploits a variety of features (index sup-
port, UDFs, hints) supported by modern DBMSs to scale to
a large number of policies. A middleware implementation,
layered on top of an existing DBMS, allows us to test Sieve
independent of the specific DBMS used. This is particularly
useful in our case (motivated by IoT) since different systems
offer different trade-offs in IoT settings as highlighted in [18].
The comparative simplicity of implementing the technique
in middleware enables us to explore the efficacy of different
ideas instead of being constrained by the design choice of a
specific system, as shown in previous work such as [14].

Sieve incorporates two distinct strategies to reduce over-
head: reducing the number of tuples that have to be checked
against complex policy expressions and reducing the num-
ber of policies that need to be checked against each tuple.
First, given a set of policies, it uses them to generate a
set of guarded expressions that are chosen carefully to ex-
ploit the best existing database indexes, thus reducing the
number of tuples against which the complete and complex
policy expression must be checked. This strategy is inspired
by the technique for predicate simplification to exploit in-
dices developed in [11]. Second, Sieve reduces the overhead
of dynamically checking policies during query processing by
filtering policies that must be checked for a given tuple by
exploiting the context present in the tuple (e.g., user/owner
associated with the tuple) and the query metadata (e.g.,
the person posing the query –i.e., querier– or their pur-
pose). We define a policy evaluation operator ∆ for this task
and present an implementation as a User Defined Function
(UDF).

Sieve combines the above two strategies in a single frame-
work to reduce the overhead of policy checking during query
execution. Thus, Sieve adaptively chooses the best strategy
possible given the specific query and policies defined for that
querier based on a cost model estimation. We evaluate the
performance of Sieve using a real WiFi connectivity dataset
captured in our building at UC Irvine, including connectiv-
ity patterns of over 40K unique devices/individuals. On this
real dataset, we generate a synthetic set of policies that such
individuals could have defined to control access to their data
by others. We also test the performance of our system on a
synthetic dataset based on a smart mall where connectivity
data of devices are logged inside shops in the mall. Our re-

sults highlight the benefit of Sieve-generated query rewrite
when compared to the traditional query rewrite approach for
access control when processing different queries. Addition-
ally, we perform these experiments on two different DBMSs,
MySQL and PostgreSQL, showcasing Sieve’s abilities as a
middleware.
Outline of the paper. Section 2 presents a case study
of a real IoT deployment, with a large set of access control
policies defined, and reviews related work. Section 3 for-
malizes the query and policy model, and the access control
semantics used by Sieve. We also describe an overview of
the approach used by Sieve with an outline of two differ-
ent strategies. Section 4 presents an algorithmic solution
for the first strategy i.e., to generate appropriate guarded
expressions. Section 5 describes the details of the Sieve gen-
erated query rewrite along with various optimization tech-
niques used. Section 6 presents the experimental evaluation
using two different datasets and two different DBMSs. Fi-
nally, Section 7 presents conclusions and future works.
Extended version. Due to space limitations, we could
not describe several technical details, which can be found in
the extended version [30], including: dynamic generation of
guarded expressions when the policy dataset is not static,
persistence of policies and guards, full implementation of
policy evaluation operator, experimental details (relation
schemas, sample policies), and more experimental results.

2. PROBLEM SETTING
We present a case study based on a smart campus setting

where there are a large number of FGAC policies specified
by users for their collected data. Using this context, we
review access control strategies in the literature and show
that they fall short when enforcing large policy sets.

2.1 Smart Campus Case Study
We consider a motivating application wherein an aca-

demic campus supports variety of smart data services such
as real-time queue size monitoring in different food courts,
occupancy analysis to understand building usage (e.g., room
occupancy as a function of time and events, determining
how space organization impacts interactions amongst oc-
cupants, etc.), or automating class attendance and under-
standing correlations between attendance and grades [20].
While such solutions present interesting benefits, such as
improving student performance [20] and better space utiliza-
tion, there are privacy challenges [29] in the management of
such data. This case study is based on our own experience
building a smart campus with variety of applications rang-
ing from real-time services to offline analysis over the past
4 years. The deployed system, entitled TIPPERS [26], is
in daily use in several buildings in our UC Irvine campus2.
TIPPERS at our campus captures connectivity events (i.e.,
logs of the connection of devices to WiFi APs) that can
be used, among other purposes, to analyze the location of
individuals to provide them with services.

We use the UC Irvine campus, with the various entities
and relationships presented in Figure 1 (along with the ex-
pected number of members in brackets), as a use case. Con-
sider a professor in the campus posing the following analyti-
cal query to evaluate the correlation between regular atten-

2More information about the system and the applications
supported at https://tippers.ics.uci.edu
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Figure 1: Entities and relationships in a Smart Campus Scenario.

dance in her class vs. student performance at the end of the
semester:

StudentPerf(WifiDataset , Enrollment , Grades)=
(SELECT student , grade , sum(attended)
FROM (
SELECT W.owner AS student , W.ts-date AS date ,

count (*)/count (*) AS attended
FROM WiFiDataset AS W, Enrollment AS E
WHERE E.class="CS101" AND E.student=W.owner AND W.

ts-time between "9am" AND "10am" AND W.ts -date
between "9/25/19" AND "12/12/19" AND W.wifiAP

="1200"
GROUP BY W.owner , W.ts-date) AS T, Grades AS G

WHERE T.student=G.student
GROUP BY T.student)

Let us assume that within the students in the professor’s
class, there exist different privacy profiles (as studied in the
mobile world by Lin et al. [24]). Adapting the distribution
of users by profile to our domain, we assume that 20% of
the students might have a common default policy (”uncon-
cerned” group), 18% may want to define their own precise
policies (”advance users”), and the rest will depend on the
situation (for which we consider, conservatively, 2/3 to be
”unconcerned” and 1/3 ”advance”). Using this distribution
of privacy profiles and applying it to a class of 200 students,
we have 120 unconcerned users who will adopt the default
policy and 80 advanced users who will define their own set
of policies. With the conservative assumption that there are
two default policies per default user and at least 4 specific
policies per advanced user, we have a total of 560 policies.
Typically, advanced users define more policies than this con-
servative assumption so if we were to add two additional
policies per group it will increase the number of policies to
880, or 1.2K (with three additional policies per group).

Given these numbers, together with students taking 1-6
classes per semester, the above query executed over classes a
professor taught over the year (faculty teaches 1-4 classes per
semester) would involve 3.3K (560 policies/class * 2 class-
es/quarter * 3 quarters/year) to 7.2K (using 1.2K policies/-
class estimation) policies. We only focused on a single data
type captured in this analysis (i.e., connectivity data) with
two conditions per policy (e.g., time and location) and poli-
cies defined by a given user at the group-level (and not at the
individual-level, which will even further increase the number
of policies).

2.2 Related Work
As discussed in the comprehensive survey of access con-

trol in databases in [8], techniques to support FGAC can
be broadly classified as based on views (e.g.,authorization
views [31] and Oracle Virtual Private Database [25]) or
based on storing policies in the form of data (e.g., Hippo-
cratic databases [5] and the follow up work [23, 4]). In either

of these approaches, input queries are rewritten to filter out
tuples for which the querier does not have access permission.
The view-based approach would be infeasible given the po-
tentially large number of queriers/purposes which would re-
sult in creating and maintaining materialized views for each
of them. In the policy-as-data based approach, the enforce-
ment results on computationally expensive query processing.
This is because the rewrite is done by adding conditions to
the query’s WHERE clause as 〈query predicate〉 AND (P1 OR

... OR Pn) (where each Pi above refers to the set of pred-
icates in each policy) or by using case-statement and outer
join. In a situation like the one in our use case study, it
results in appending hundreds of policy conditions to the
query in a disjunctive normal form which adds significant
overheads. Both strategies currently do not scale to scenar-
ios with large number of policies.

Other approaches, such as [10], have proposed augmenting
tuples with the purpose for which they can be accessed. This
reduces the overheads at query time and as policy checking
could be performed at data ingestion. Such pre-processing
based approaches have significant limitations in the context
where there are large number of fine-grained polices such
as in the context that motivates our work. Determining
permissions for individuals and encoding them as columns
or multiple rows can result in exorbitant overhead during
ingestion, specially when data rates are high (e.g., hun-
dreds of sensor observations per second). Additionally, pre-
processing efforts might be wasted for those tuples that are
not queried frequently or at all. Other limitations include:
1) Impossibility of pre-processing policy predicates that de-
pend on query context or information that is not known at
that time of insertion; and 2) Difficulty to deal with dy-
namic policies which can be updated/revoked/inserted at
any time (thus requiring processing tuples already inserted
when policies change). Recent work [12, 14], that performs
some pre-processing for access control enforcement, limits
pre-processing to policies explicitly defined to restrict user’s
access to certain type of queries or to certain tables. The
checking/enforcement of FGAC at tuple level is deferred to
query-time and enforced through query rewriting as is the
case in our paper.

Several research efforts have focused on implementing ac-
cess control in the context of the IoT and smart spaces.
In [27], the authors propose an approach for policy eval-
uation on streaming sensor data punctuated with access
control policies. Their approach does not handle analyti-
cal queries with policies on the arriving data. Additionally
the implementation of their approach requires significant
modification to existing DBMS to make different operators
security-aware for a large number of policies. In [16], the
authors proposed a new architecture based on MQTT for
IoT ecosystems. However, like [27] the focus of this work is
not on managing large number of policies at run time and
hence, they would experience the same issues highlighted for
traditional query rewrite strategies.

3. SIEVE APPROACH TO FGAC
We describe our modeling of the fundamental entities in

policy-driven data processing: data, query, and policies. Us-
ing these, we describe the access control semantics used in
this paper. We finish the section with a sketch of the ap-
proach followed by Sieve to speed up policy enforcement.
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Table 1: Frequently used notations.

Notation Definition
D Database
ii ∈ I Index and set of indexes in D
ri ∈ R Relation and set of relations in D
uk ∈ U User and set of users in D

tj ∈ T; Tr
i
; TQ

i
; Tp

l

Tuple and set of tuples: in D; required
to compute Qi; controlled by pl

group(uk) Groups uk is part of

Qi; QM
i Query; Metadata of Qi

pl ∈ P; P
QMi

Access control policy and set of policies
in D; set of policies related to a query
given its metadata

ocli ∈ OCl;qcli ∈
QCl;ACl

Object conditions; querier conditions;
action of pl

E(P) = OC1 ∨ · · · ∨
OC|P| Policy expression of P

G(P) = G1∨· · ·∨Gn
Guarded policy expression of P (DNF
of guarded expressions)

Gi = ocig ∧ PG
i

Guarded expression consisting of guard
(ocig) and its policy partition (PG

i
)

CG Candidate guards for E(P)

eval(exp, tt)
Function which evaluates a tuple tt
against a expression exp

∆(Gi, QM
i, tt) Ppolicy evaluation operator

ρ(pred) Cardinality of a predicate

ce
Cost of evaluating a tuple against the
set policies

cr Cost of reading a tuple using an index

We have summarized frequently used notations in Table 1
for perusal.

3.1 Modeling Policy Driven Data Processing
Data Model. Let us consider a database D consisting of
a set of relations R, a set of data tuples T, a set of indexes
I, and set of users U. Tri

represents the set of tuples in the
relation ri ∈ R. Users are organized in collections or groups,
which are hierarchical (i.e., a group can be subsumed by an-
other). For example, the group of undergraduate students
is subsumed by the group of students. Each user might be-
long to multiple groups and we define the method group(uk)
which returns the set of groups uk is member of. Each data
tuple tj ∈ T belongs to a uk ∈ U or a group whose access
control policies restrict/grant access over that tuple to other
users. We assume that for each data tuple tj ∈ T there ex-
ists an owner uk ∈ U who owns it, whose access control
policies restrict/grant access over that tuple to other users
(the ownership can be also shared by users within a group).

Query Model. The SELECT-FROM-WHERE query posed
by a user uk is denoted by Qi and tuples in the relations
in the FROM statement(s) of the query are denoted by

TQi
=

n⋃
i=1

Tri
. In our model, we consider that queries have

associated metadata QMi which consists of information about
the querier and the context of the query. This way, we as-
sume that for any given query Qi, QM

i contains the identity
of the querier (i.e., QMiquerier) as well as the purpose of the

query (i.e., QMipurpose). In the example query in Section 2.1,

QMiquerier=“Prof.Smith” and QMipurpose=“Analytics”.

Access Control Policy Model. A user specifies an access
control policy (in the rest of the paper we will refer to it
simply as policy) to allow or to restrict access to certain data
she owns, to certain users/groups under certain conditions.
Let P be the set of policies defined over D such that pl ∈ P is
defined by a user uk to control access to a set of data tuples

in ri. Let that set of tuples be Tp
l

such that Tp
l
⊆ Tu

k
∩ Tri

.

We model such policy as pl =〈OCl, QCl, ACl〉, where each
element represents:
• Object Conditions (OCl) are defined using a conjunctive
boolean expression ocl1 ∧ ocl2 ∧ ... ∧ ocln which determines
the access controlled data tuple(s). Each object condition
(oclc) is a boolean expression 〈attr, op, val〉 where attr is
an attribute (or column) of ri, op is a comparison operator
(i.e., =, ! =, <, >, ≥, ≤, IN, NOT IN, ANY, ALL), and val can
be either: (1) A constant or a range of constants or (2) A
derived value(s) defined in terms of the expensive operator
(e.g., a user defined function to perform face recognition)
or query on D that will obtain such values when evaluated.
In this paper, we focus on the object conditions with values
as constants. To represent boolean expressions involving a
range defined by two comparison operators (e.g., 4 ≤ a <
20) we use the notation 〈attr, op1, val1, op2, val2〉 (e.g.,
〈a, ≥, 4, <, 20〉). As an example, oclowner is an oclc ∈ OCl

such that oclc = 〈ri.owner, =, uk〉 or oclc = 〈ri.owner, =,
group(uk)〉.
• Querier Conditions (QCl) identify the metadata attributes
of the query to which the access control policy applies. QCl

is a conjunctive boolean expression qcl1 ∧ qcl2 ∧ · · · ∧ qclm.
Our model is inspired by the well studied Purpose Based
Access Control (Pur-BAC) model [9] to define the querier
conditions. Thus, we assume that each policy contains has
at least two querier conditions such as qclquerier = 〈QMiquerier,

=, uk〉 or qclquerier = 〈QMiquerier, =, group(uk)〉 (that defines

either a user or group), and a qclpurpose = 〈QMipurpose, =, pur-
pose〉 which models the intent/purpose of the querier (e.g.,
safety, commercial, social, convenience, specific applications
on the scenario, or any [22]). Other pieces of querier con-
text (such as the IP of the machine from where the querier
posed the query, or the time of the day) can easily be added
as querier conditions although in the rest of the paper we
focus on the above mentioned querier conditions.
• Policy Action (ACl) defines the enforcement operation, or
action, which must be applied on any tuple tj ∈ Tp

l
. We

consider the default action, in the absence of an explicit
policy allowing access to data, to be deny. Such a model is
standard in systems that collect/manage user data. Hence,
explicit access control actions associated with policies in our
context are limited to allow.

Based on this policy model, we show two sample policies
in the context of the motivating scenario explained before.
First, we describe a policy with object conditions containing
a constant value. This policy is defined by John to regulate
access to his connectivity data to Prof. Smith only if he is
located in the classroom and for the purpose of class atten-
dance as follows: 〈[W.owner = John ∧ W.ts-time ≥ 09:00

∧ W.ts-time ≤ 10:00 ∧ W.wifiAP = 1200] , [Prof. Smith

∧ Attendance Control], allow〉. Second, we describe the
same policy with an object condition derived from a query
to express that John wants to allow access to his location
data only when he is with Prof. Smith. The object condition
is updated as: [W.owner = John ∧ W.wifiAP = (SELECT W2.

wifiAP FROM WifiDataset AS W2 WHERE W2.ts -time = W.ts-

time AND W2.owner = "Prof.Smith")]. Finally, if a user ex-
presses a policy with a deny action (e.g., to limit the scope/-
coverage of an allow policy), we can translate it into the
explicitly listed allow policies. For instance, given an allow
policy, “allow John access to my location” and an overlap-
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ping deny policy from the same user “deny everyone access
to my location when in my office”, we express both by re-
placing the original allow policy by “allow John access to
my location when I am in locations other than my office”.
We therefore restrict our discussions to allow policies.

Access Control Semantics. We define access control
as the task of deriving T ′Qi

⊆ TQi
which is the projection

of D on which Qi can be executed with respect to access
control policies defined for its querier. Thus, ∀ tt ∈ TQi

, tt ∈
T ′Qi
⇔ eval(E(P), tt) = True. The function eval(E(P), tt)

evaluates a tuple tt against the policy expression E(P) that
applies to Qi as follows:

eval(E(P), tt) =

{
True if ∃ pl ∈ P | eval(OCl, tt) = True

False otherwise

where eval(OCl, tt) evaluates the tuple against the object
conditions of pl as follows:

eval(OCl, tt) =

True
if ∀ oclc ∈ OCl | tt.attr = oclc.attr =⇒

eval(oclc.op,oclc.val,tt.val) = True
False otherwise

where eval(oclc.op, oc
l
c.val, tt.val) compares the object con-

dition value (oclc.val) to the tuple value (tt.val) that matches
the attribute of the object condition, using the object condi-
tion operator. If the latter is a derived value, the expensive
operator/query is evaluated to obtain the value.

This access control semantics satisfies the sound and se-
cure properties of the correctness criterion defined by [34].
If no policies are defined on tt then the tuple is not in-
cluded in T ′Qi

as our access control semantics is opt-out by
default. Depending upon the query operations, evaluating
policies after them is not guaranteed to produce correct re-
sults. This is trivially true in the case for aggregation or
projection operations that remove certain attributes from a
tuple. In queries with non-monotonic operations such as set
difference, performing query operations before policy evalu-
ation will result in inconsistent answers. Let P be the set
of policies defined on rk that control access to Qi (a query
with a set difference). E(P) is the Disjunctive Normal Form

(DNF) expression of P such that E(P) = OC1 ∨ · · · ∨ OC|P|

where OCl is conjunctive expression of object conditions from
pl ∈ P. After appending E(P) to Qi we obtain: SELECT *

FROM rj MINUS SELECT * FROM rk WHERE E(P). Consider a
tuple tk ∈ Tr

k
which has policy pl ∈ P that denies Qi access

to tk. If there exists a tuple tj ∈ Trj
such that tj = tk, then

performing set difference operations before checking policies
on rk will result in a tuple set that does not include tj .
On the other hand, if policies for rk are checked first, then
tk 6∈ TQi

and therefore tj will be in the query result.

3.2 Overview of Sieve Approach
For a given query Qi, the two main factors that affect the

time taken to evaluate the set of policies for the set of tuples
TQi

required to compute Qi (i.e., eval(E(P), tt) ∀ tt ∈ TQi
)

are the large number of complex policies and the number of
tuples in TQi

. The overhead of policy evaluation can thus
be reduced by first eliminating tuples using low cost filters
before checking the relevant ones against complex policies
and second by minimizing the length of policy expression a
tuple tt needs to be checked against before deciding whether
it can be included in the result of Qi or not. These two
fundamental building blocks form the basis for Sieve.

• Reducing Number of Policies. Not all policies in P
are relevant to a specific query Qi. We can first eas-
ily filter out those policies that are defined for different
queriers/purposes given the query metadata QMi. For
instance, when Prof. Smith poses a query for grading,
only the policies defined for him and the faculty group
for grading purpose are relevant out of all policies de-
fined on campus. We denote the subset of policies which
are relevant given the query metadata QMi by PQMi ⊆ P
where pl ∈ PQMi iff QMipurpose = qclpurpose ∧ (QMiquerier =

qclquerier ∨ qclquerier ∈ group(QMiquerier)). In addition,
for a given tuple tt ∈ TQi

we can further filter policies
in PQMi that we must check based on the values of at-
tributes in tt. For instance, we can further restrict the
set of policies relevant for Prof. Smith’s query by consid-
ering tuple attributes such as its owner (i.e., tt.owner)
and only retrieving the relevant policies based on the
attribute value.

• Reducing Number of Tuples. Even if the number
of policies to check are minimized, the resulting expres-
sion E(P) might still be computationally complex. To
speed up processing of E(P) further, we derive low cost
filters (object conditions) from it which can filter out
tuples by exploiting existing indexes I over attributes
in the database. We therefore rewrite the policy ex-
pression E(P) = OC1 ∨ · · · ∨ OC|P| as a guarded policy
expression G(P) which is a disjunction of guarded ex-
pressions G(P) = G1 ∨ · · · ∨ Gn. Each Gi consists of
a guard ocig and a policy partition PGi

where PGi
⊆

P. Note that PGi
partitions the set of policies, i.e.,

PGi
∩ PGj

= ∅ ∀ Gi,Gj ∈ G(P). Also, all policies in

P are covered by one of the guarded expressions, i.e.,
∀ pi ∈ P (∃ Gi ∈ G such that pi ∈ PGi

). We will repre-

sent the guarded expression Gi = ocig ∧ PGi
where PGi

is the set of policies but for simplicity of expression we
will use it as an expression where there is a disjunction
between policies.

The guard term ocig is an object condition that can sup-
port efficient filtering by exploiting an index. In partic-
ular, it satisfies the following properties:

• ocig is a simple predicate over an attribute (e.g., ts−
time > 9am) and the attribute in ocig has an index

defined on it (i.e., ocig.attr ∈ I).

• The guard ocig is a part of all the policies in the par-
tition and can serve as a filter for them PGi

(i.e.,

∀ pl ∈ PGi
∃ oclj ∈ OCl | oclj =⇒ ocig).

As an example, consider the policy expression of all the
policies defined by students to grant the professor access to
their data in different situations. Let us consider that many
of such policies grant access when the student is connected
to the WiFi AP of the classroom. For instance, in addition
to John’s policy defined before, let us consider that Mary de-
fines the policy 〈[W.owner = Mary ∧ ∧ W.wifiAP = 1200] ,

[Prof. Smith ∧ Attendance Control], allow〉. This way,
such predicate (i.e., wifiAP=1200) could be used as a guard
that will group those policies, along with others that share
that predicate, to create the following expression: wifiAP

=1200 AND ((owner=John AND ts-time between 9 AND 10am

OR (owner=Mary) OR ...).
Sieve adaptively selects a query execution strategy when
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a query is posed leveraging the above ideas. First, given
Qi, Sieve filters out policies based on QMi. Then, using the
resulting set of policies, it replaces any relation rj ∈ Qi by
a projection that satisfies policies in PQMi that are defined

over rj . It does so by using the guarded expression G(Prj
)

constructed as a query SELECT * FROM rj WHERE G(Pr
j
).

By using G(Prj
) and its guards ocig, we can efficiently filter

out a high number of tuples and only evaluate the relevant
tuples against the more complex policy partitions PGi

. The
generation of G(Prj

) might take place offline if the policy

dataset is deemed to undergo small number of changes over
time. Otherwise, the generation can be done either when
a change is made in the policy table or at query time for
more dynamic scenarios (our algorithm is efficient enough
for dynamic scenarios as we show in Section 6).

A tuple that satisfies the guard ocig is then checked against

E(PGi
) = OC1 ∨ · · · ∨ OC

|PG
i
|
. This evaluation could be ex-

pensive depending upon the number of policies in PGi
. As

it is a DNF expression, in the worst case (a tuple that does
not satisfy any policy) will have to be evaluated against
each OCj ∈ PGi

. We introduce a policy evaluation oper-

ator (∆(Gi, QM
i, tt)) which takes a guarded expression Gi,

query metadata QMi, and each tuple tt that satisfied ocig and

retrieves a subset of PGi
(filtered using QMi and tt). Then,

policy evaluation on the tuples that satisfy the guard is only
performed on this subset of policies instead of PGi

. Sieve sit-
uationally selects based on each Gi ∈ G whether to use the
policy evaluation operator for evaluating PGi

to minimize
the execution cost. We explain the details of implementa-
tion of this operator and the selection strategy in Section 5.

Hence, the main challenges are: 1) Selecting appropriate
guards and creating the guarded expression; 2) Dynamically
rewriting query by evaluating different strategies and con-
structing a query that can be executed in an existing DBMS.
We explain our algorithm to generate guarded expressions
for a set of policies in Section 4. We later explain how Sieve
can be implemented in existing DBMSs and how it selects
an appropriate strategy depending on the query and the set
of policies that apply to the query.

4. CREATING GUARDED EXPRESSIONS
Our goal is to translate a policy expression E(P) = OC1 ∨
· · ·∨OC|P| into a guarded policy expression G(P) = G1∨· · ·∨
Gn such that the cost of evaluating G(P) given database D
and set of indices I is minimized

min cost(G(P)) = min
∑

Gi∈G

cost(Gi) (1)

where G is the set of all the guarded expressions in G(P). A
guarded expression Gi corresponds to Gi = ocig ∧PGi

where

ocig is a guard and PGi
is a policy partition. The cost of

evaluating a tuple against a set of policies is defined by

cost(eval(E(PGi
))) = α.|PGi

|.ce (2)

where α represents the average number of policies in PGi

that the tuple tt is checked against from the disjunctive ex-
pression in E(PGi

) (we assume that the DBMS stops the
execution of such a disjunctive expression with the first pol-
icy that the tuple satisfies and skips the rest), and ce rep-
resents the average cost of evaluating tt against the set of
object conditions for a policy pl ∈ PGi

(i.e., OCl). We model

cost(Gi) as

cost(Gi) = ρ(ocig).(cr + cost(eval(E(PGi
)))) (3)

where ρ(ocig) denotes the estimated cardinality3 of the guard

ocig and cr represents the cost of reading a tuple using an
index. The values of cr, ce, and α are determined experi-
mentally using a set of sample policies and tuples.

The first step in determining G(P) is to generate all the
candidate guards (CG), given the object conditions from P,
which satisfy the properties of guards as explained in Sec-
tion 3.2. Different choices of guarded expressions may exist
for the same policy given I and therefore the second step is
to select a set of guards from CG with the goal of minimizing
the evaluation cost of G(P).

4.1 Generating Candidate Guards
Any object condition oclc in a policy pl is added to the can-

didate guard set CG if it satisfies the properties of a guard
i.e., oclc.val is a constant and oclc, attr ∈ I. Each policy
pl ∈ PQj

is guaranteed to have at least one object condition

that satisfies these properties (e.g., oclowner or oclprofile).
Guards group together policies and act as a filter reducing
the tuples to be evaluated against policies. If only the iden-
tical object conditions were to be used as guards, they might
group only a small number of policies in their corresponding
policy partitions PGi

. This would result in a larger number
of guarded expressions in G(P) of a querier and thus increase
the cost of evaluation according to Equation 1.

To improve the grouping capability of a guard, we present
an approach which generates additional candidate guards
from the already existing candidate guards which have oc.val
as a range of values ([val1, val2].). This is done by merg-
ing together these candidate guards on the same attribute
that belong to different policies. For example, consider two
policies with the following object conditions on attribute a:
3 ≤ a ≤ 10 (ocxc ) and 4 ≤ a ≤ 15 (ocyc ). Depending on
whether it is beneficial to do so, they could be merged to
create a new candidate guard 3 ≤ a ≤ 15 (ocx⊕y

c ). Af-
ter merging, this new object condition could be used as a
guard for the two policies. The following theorem states
the requirement for this merging of object conditions to be
beneficial based on their overlap.

Theorem 1. Given two object conditions ocxc = (attrc,
opx1 , valx1 , opx2 , valx2 ) ∈ px, ocyc = (attrc, op

y
1 , val

y
1 , op

y
2 , val

y
2)

∈ py and attrc ∈ I, the object condition generated by merg-

ing them i.e., ocx⊕y
c = (attrc, op1, valx⊕y

1 , op2, val
x⊕y
2 ) with

valx⊕y
1 = min(valx1 , val

y
1) and valx⊕y

2 = max(valx2 , val
y
2) is

only beneficial if [valx1 , val
x
2 ] ∩ [valy1 , val

y
2 ] 6= φ.

Proof: Let px and py be two policies with candidate guards
ocxc and ocyc , respectively. Based on Equation 3, the cost of
evaluating a single policy px with ocxc as the guard is

cost(px) = ρ(ocxc ).(cr + ce) (4)

To simplify the notation in this proof, we use ocxc to de-
note the values in the range [valx1 , val

x
2 ] (similarly for ocyc ).

W.l.o.g. let min(valx1 , val
y
1) = valx1 and max(valx2 , val

y
2) =

3Estimated using histograms maintained by the DBMS.
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valy2 . If ocxc ∩ ocyc = ∅ the cost of evaluating the merged
policy is given by

cost(px ⊕ py) = ρ(ocx⊕y
c ).(cr + 2.α.ce) =

(ρ(ocxc ) + ρ(ocyc )).(cr + 2.ce) + ρ(ocec).(cr + 2.α.ce) (5)

where ocec = (attrc, op1, val
x
2 , op2, val

y
1) (denotes the extra

values that are not covered by either ocxc or ocyc ). Since
ρ(ocec) ≥ 0, cost(px ⊕ py) >= cost(px) + cost(py). Thus,
when candidate guards do not overlap, merging them is not
beneficial.

We now check when it is beneficial to merge candidate
guards if they overlap i.e., ocxc ∩ ocyc 6= ∅. If these candidate
guards were to be merged, the values covered by the merged
object condition would be the union of the two ranges, rep-
resented by ocxc ∪ ocyc . The cost of evaluation is given by

cost(px ⊕ py) = ρ(ocxc ∪ oc
y
c ).(cr + 2.α.ce) (6)

Applying the inclusion-exclusion principle4, we have

cost(px ⊕ py) = (ρ(ocxc ) + ρ(ocyc )−
ρ(ocxc ∩ oc

y
c )).(cr + 2.α.ce) (7)

Given that merging will be beneficial if cost(px ⊕ py) <
cost(px) + cost(py), using Equations 4 and 7 we have the
following inequality

(ρ(ocxc ) + ρ(ocyc )− ρ(ocxc ∩ oc
y
c )).(cr + 2.α.ce) <

ρ(ocxc ).(cr + ce) + ρ(ocyc ).(cr + ce)
(8)

Simplifying using again the inclusion exclusion principle

ρ(ocxc ∩ ocyc )

ρ(ocxc ∪ oc
y
c )
>

ce
cr + α.ce

(9)

as the right side are all constant values, we can replace it
with C. We denote the ratio on the left by θ(ocxc , oc

y
c ).

Thus, the merging is beneficial if θ(ocxc , oc
y
c ) > C. If this

condition is satisfied, we add ocx⊕y
c to Px, Py, and CG .

As merging is only beneficial, if |ocxc ∩ ocyc | 6= φ, we first
order the candidate guards by their left range values in the
ascending order. Considering transitive merges, the number
of pair-wise checks to be done between candidate guards
could be linear. For instance, consider an additional pol-
icy added to the previous example with the following object
condition on attribute a, 12 ≤ a ≤ 18 (oczc). It is possi-
ble that θ(ocxc , oc

y
c ) < C while θ(ocyc , oc

z
c) > C and there-

fore θ(ocxc , oc
y⊕z
c ) > C (i.e., the merged object condition

3 ≤ a ≤ 18 is beneficial). The following theorem charac-
terizes when the transitive merges will not be beneficial for
candidate guards with certain properties in a CG sorted in
the ascending order of their left range values.

Theorem 2. Given three candidate guards ocxc , ocyc , and
oczc sorted in the ascending order of their left range values
with the following properties: ocxc ∩ ocyc 6= φ, θ(ocxc , oc

y
c ) <

C, and θ(ocyc , oc
z
c) > C. The transitive merge between ocxc

and ocy⊕z
c will not be beneficial (i.e., θ(ocxc , oc

y⊕z
c ) < C) if

ocxc ∩ oczc = φ.

We prove this theorem by contradiction. As θ(ocxc , oc
y
c ) <

C, using Equation 9 we have

ρ(ocxc ∩ ocyc )

ρ(ocxc ∪ oc
y
c )
< C (10)

4A ∪ B = A + B - A ∩ B

Note that since ocxc ∩ oczc = φ, ocxc ∩ ocy⊕z
c = ocxc ∩ ocyc .

Thus, for the transitive merge between ocxc and ocy⊕z
c to be

beneficial, we should have θ(ocxc , oc
y⊕z
c ) > C.

ρ(ocxc ∩ ocyc )

ρ(ocxc ∪ oc
y
c ∪ oczc)

> C (11)

This is not possible as the numerator is same in both
Equation 10 and Equation 11, while the denominator is
larger in Equation 11.

Given Theorems 1 and 2, the steps for generating CG from
a set of policies P defined on a relation ri are: 1) For every
attrj that is part of ri and has an index defined on it (i.e.,
attrj ∈ I); 2) Sj is the set of all object conditions for all
pl ∈ P such that, oclc.val is a constant and oclc.attr = attrj ;
3) For each Sj containing object conditions with range of
values, sort the object conditions by their left values to cre-
ate a sorted list; 4) For the first candidate guard (ocxc ) in this
sorted list, verify whether the next candidate guard (ocyc ) is
such that θ(ocxc , oc

y
c ) > C. If true, then merge both the can-

didate guards to generate ocx⊕y
c which is added to Sj along

with px and py. Else if θ(ocxc , oc
y
c ) < C, then we check if

it is beneficial to transitively merge ocxc with the following
candidate guard (oczc) using Theorem 2. 5) When transitive
merge is no longer beneficial, we move on to the next candi-
date guard (ocyc ). The final CG is constructed by combining
all the Sj corresponding to each attrj that is part of ri.

4.2 Selecting Guards To Minimize Cost
We next select the set of guards G ∈ CG that minimizes

the cost of policy evaluation according to Equation 1. The
goal of guard selection is to select G from CG such that every
policy in P is covered exactly once and the cost of evalua-
tion is minimized. We show that this problem is NP-hard,
by reducing the well-known weighted Set-Cover problem to
it. In the weighted Set-Cover problem, we have a set of el-
ements E = e1, · · · , en and a set of subsets over E denoted
by S = S1, · · · , Sm with each set Si ∈ S having a weight
wi associated with it. The goal of set cover problem is to
select minŜ⊆S

∑
Si.wi | Si ∈ Ŝ and E =

⋃
Si∈Ŝ Si. We

map E to P, S to CG , and Ŝ to G. We assign the element
ei to Si ∈ Ŝ when the corresponding policy pi is assigned
to Gi ∈ G. The weight function wi is set to the read cost
of Gi based on using the guard ocic to read the tuples i.e.,
wi = read cost(Gi) = ρ(ocic).cr. If a polynomial time al-
gorithm existed to solve this problem, then it would solve
set-cover problem too.

For the purpose of selecting guards that minimize cost
of evaluation, we define a utility heuristic which ranks the
candidate guards by their benefit per unit read cost (simi-
lar to the one used by [19] for optimizing queries with ex-
pensive predicates). Each guard ocic, based on its selectiv-
ity, reduces the number of tuples that have to be checked
against PGi

. The benefit of a guarded expression captures
this reduction in evaluation cost for a relation ri as defined
by benefit(Gi) = ce.|PGi

|.(|ri| − ρ(ocic)). Using this bene-
fit method, and the read cost defined earlier, we define the

utility of Gi as utility(Gi) =
benefit(Gi)

read cost(Gi)
.

Algorithm 1 uses this heuristic to select the best possible
guards to minimize the cost of policy evaluation. First, it it-
erates over CG and stores each guarded expression Gi ∈ CG
in a priority queue in the descending order of their util-
ity (PriorityInsert(Q,Gi,U [i]). Second, the priority queue
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is polled for the Gi with the highest utility (Extract −
Maximum(Q)). If PGi

intersects with another PGj
∈ CG ,

PGj
is updated to remove the intersection of policies (PGi

∩
PGj

). After removal, utility(Gj) is recomputed and the up-

dated Gj is reinserted into priority queue in the order of its
utility. The result is thus the subset of candidate guards (G)
that covers all the policies in P and minimizes cost(G(P))
as in Equation 1.

Algorithm 1 Selection of guards.

1: function GuardSelection(CG)
2: for i in 1 · · · |CG| do
3: C[i] = cost(Gi); U[i] = utility(Gi)

4: Q← φ
5: for i in 1 · · · |CG| do
6: PriorityInsert(Q,Gi,U [i])

7: while Q is not empty do
8: Gmax = Extract-Maximum(Q); G ← Gmax
9: for each Gi in Q do
10: if PG

i
∩ PGmax

6= φ then

11: PG
i

= PG
i
\ PGmax

; Remove(Q,Gi)

12: if PG
i
6= φ then

13: B = benefit(Gi); U[i] =
B

C[i]
14: PriorityInsert(Q,Gi,U [i])

return G

5. IMPLEMENTING SIEVE
Sieve5 is a general-purpose middleware that intercepts

queries posed to a DBMS, optimally rewrites them, and sub-
mits the queries back to the underlying DBMS for efficient
execution that is compliant with the access control policies.
In this section, we first present the rewrite approach with
guarded expressions in DBMSs. Then, we present two op-
timization techniques to improve this rewrite by utilizing
policy evaluation operator and query predicates. Finally,
we illustrate a sample rewritten query in Sieve.

5.1 Query Rewrite with Guarded Expressions
Our goal is to evaluate policies for query Qi by replacing

any relation rj ∈ Qi by a projection of rj that satisfies the
guarded policy expression G(Prj

) where Prj
is the set of poli-

cies defined for the specific querier, purpose, and relation.
To this end, we first use the WITH clause for each relation
rj ∈ Qi that selects tuples in rj satisfying the guarded pol-
icy expression. Using the WITH clause, the policy check is
performed only once even if the same relation appears mul-
tiple times in the query. This rewritten query replaces every
occurrence of rj with the corresponding r̂j .

WITH r̂j AS (

SELECT * FROM rj WHERE G1 OR G2 OR · · · OR Gn)

Optimizers might choose sub-optimal plans when execut-
ing the complex Sieve rewritten queries. Sieve utilizes DBMS
extensibility features (e.g., index usage hints6, optimizer ex-
plain7, UDFs) offered by DBMSs that allows it to suggest
index plans to the underlying optimizer. Since such features
vary across DBMSs, guiding optimizers requires a platform
dependent connector that can rewrite the query appropri-
ately. In systems such as MySQL, Oracle, DB2, and SQL
5The implementation of Sieve (with connectors for both
MySQL and PostgreSQL) is available at https://github.com/

primalpop/sieve.
6
https://dev.mysql.com/doc/refman/8.0/en/index-hints.html

7
https://www.postgresql.org/docs/13/sql-explain.html

Server that support index usage hints, Sieve can rewrite the
query to explicitly force indexes on guards. For example,
in MySQL using FORCE INDEX hints, which tell the optimizer
that a table scan is expensive and should only be used if the
DBMS cannot use the suggested index to find rows in the
table, the rewritten query will be as follows:

WITH r̂j AS (

SELECT * FROM rj [FORCE INDEX (oc1g)] WHERE G1
UNION

SELECT * FROM rj [FORCE INDEX (oc2g)] WHERE G2
UNION· · ·

SELECT * FROM rj [FORCE INDEX (ocng )] WHERE Gn)

Some systems, like PostgreSQL, do not support index
hints explicitly. In such cases, Sieve still does the above
rewrite (without index usage hints) but depends upon the
underlying optimizer to select appropriate indexes.

5.2 Policy Evaluation Operator
For a given guarded expression Gi, a tuple that satisfies

its guard ocig is checked against its policy partition PGi
. We

define this strategy of evaluating policies inline with a guard
as Guard&Inlining. This evaluation strategy could be ex-
pensive depending upon the number of policies in PGi

. We
introduce an alternative strategy which uses the policy eval-
uation operator ∆(Gi, QM

i, tt) as an alternative to evaluating
policies inline with a guard. This operator retrieves only the
policies that are applicable to a tuple tt (that satisfied ocig of

Gi) based on Gi, the query metadata QMi, and tuple context
of tt. We call this strategy of using the policy evaluation
operator in conjunction with guards as Guard&∆. Sieve
adaptively chooses between these two strategies depending
on the number of policies in the guard partition (i.e., |PGi

|).
The policy evaluation operator ∆(Gi, QM

i, tt) (which is
part of Guard&∆) is implemented using User Defined Func-
tions (UDFs) supported by DBMSs. This implementation
is done per rj ∈ R as the tuple context of tt used to re-
trieve policies varies per relation. The policy evaluation op-
erator performs two operations. First, it retrieves a subset
of PGi

which only includes the relevant policies based on

the query metadata QMi and the tuple context of tt. The
tuple context is determined by its values for different at-
tributes (e.g., ri.owner) and QMi is information associated
with the query Qi such as QMiquerier and QMipurpose. Sec-
ond, given such a subset, P̄Gi

, the operator evaluates each

policy in it, pi ∈ P̄Gi
, on tt using the access control seman-

tics defined in Section 3.1. An example invocation of the
∆(Gi, QM

i, tt) is as follows: delta(32, “Prof.Smith”, “Anal-
ysis”, “owner”, “ts-date”, “ts -time”, “wifiAP”). The first
parameter, 32, denotes the id of the persisted guarded ex-
pression Gi in the database. The second set of parameters
{“Prof.Smith”, “Analysis”} belong to the metadata of the
query QMi. The final set of parameters (“owner”, “ts-date”,
“ts -time”, “wifiAP”) denote the attributes of the tuple and
thus defines its context.

Sieve uses a cost model to compare between the two differ-
ent strategies (Guard&∆ andGuard&Inlining) and chooses
the best one for performing the rewrite. This comparison is
performed for each guarded expression Gi in a guarded pol-
icy expression G(P) (along with query metadata). We model
the cost of each strategy by computing the cost of evaluat-
ing policies per tuple since the number of tuples to check are
the same in both cases. The cost of the Guard&∆ strategy
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is estimated by the invocation and execution cost of the
UDF implementation of policy evaluation operator. Thus,
cost(Guard&∆) = UDFinv + UDFexec where the UDFinv

and UDFexec represent the cost of invocation and execution
of the UDF, respectively. We compute this cost by execut-
ing the UDF with different guards (with different number of
policies in their partitions) and averaging across them. As
both the terms involved are constants, cost(Guard&∆) does
not vary across guarded expressions.

The cost of Guard&Inlining is determined by the num-
ber of policies in the policy partition of the guard i.e., |PGi

|.
Thus, cost(Guard&Inlining)=α.|PGi

|.ce (based on Equa-
tion 2). Unlike cost(Guard&∆), this cost is not a con-
stant and varies depending upon the guarded expression.
Therefore, after generating guarded expressions Sieve com-
putes cost(Guard&Inlining) and compares it against the
pre-computed cost(Guard&∆) to determine the appropriate
rewriting for each guarded expression. Our experiments (see
Section 6) indicate that the usage of the Guard&∆ strategy
is beneficial if |PGi

| > 120.

5.3 Exploiting Selective Query Predicates
In the query rewrite strategy with guarded expressions

presented in Section 5.1, we used the guards to read the rel-
evant tuples using an index. This is followed by evaluating
against policies using inlining or policy evaluation operator.
We now consider the situation where the selection predi-
cates that appear in Qi are highly selective and could be
exploited to read the tuples using an index on them instead
of on the guards. Sieve considers the following two strategies
for reading tuples using the index. 1) Using guards followed
by evaluation of the policy partitions associated with them
(referred to as IndexGuards); 2) Using the query predicate
Qi.pred in Qi followed by the evaluation of the guarded pol-
icy expression (referred to as IndexQuery). Each of these
strategies use guarded expressions to evaluate the policies
and generate r̂j from rj on which Qi is evaluated.

Sieve uses a cost model to compare between these two
strategies (IndexGuards and IndexQuery) and chooses the
best one for performing the final rewrite. This comparison is
done per query Qi. The cost of IndexQuery is determined
by using the query explain feature of DBMSs for Qi, which
returns the query predicate Qi.pred in Qi used for reading
tuples using the index (if any) and its estimated selectivity.
We use this to compute cost(IndexQuery) = ρ(Qi.pred).cr.
If index is not used for access, we set cost(IndexQuery) =
∞. For IndexGuard, Sieve estimates cost(IndexGuards) =∑

Gi∈G ρ(ocig).cr where ocig is the guard used in the guarded

expression Gi. Note that this is an upper bound of the
cost for reading tuples using index as it does not consider
any optimizations such as index merge. Sieve chooses the
best strategy, at query execution time, by comparing their
costs (cost(IndexGuards) vs. cost(IndexQuery)). If the
IndexGuards strategy is chosen, we use the rewrite illus-
trated in Section 5.1. Otherwise, if IndexQuery is selected,
we use index usage hints with Qi.pred (instead of ocig).

5.4 Sieve generated Query Rewrite
Using the different strategies presented, we now revisit the

query in Section 2.1 to study the tradeoff between student
performance and attendance to classes. A possible rewrite
by Sieve to evaluate the policies defined on WifiDataset
and generate WiFiDatasetPol is as follows:

WITH WiFiDatasetPol AS (

SELECT * FROM WiFiDataset as W FORCE INDEX(oc1g)

WHERE (oc1g AND (G1))

UNION

SELECT * FROM WiFiDataset as W FORCE INDEX(oc2g)

WHERE (oc1g AND (G2))

....
UNION
SELECT * FROM WiFiDataset as W FORCE INDEX(ocng )

WHERE (ocng AND delta(32,"Prof.Smith", "Analysis","

owner","ts -date", "ts-time", "wifiAP")=true)
) StudentPerf(WifiDatasetPol , Enrollment , Grades)

The WiFiDatasetPol replaces WiFiDataset in the origi-
nal query. This rewrite includes the set of guards gener-
ated for the querier (Prof. Smith) and his purpose (Anal-
ysis) given the policies defined for him. As Sieve selected
the IndexGuards strategy, we use the index usage hints
on guards (through the FORCE INDEX command since this
rewrite is for MySQL) as explained in Section 5.3. Finally,
for one specific guarded expression (Gn) Sieve selected the
Guard&∆ strategy (see Section 5.2). Hence, its policy par-
tition was replaced by the call to the UDF that implements
the ∆ operator.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
Datasets. We used the TIPPERS dataset [26] consisting
of connectivity logs generated by the 64 WiFi Access Points
(APs) at the Computer Science building at UC Irvine for a
period of three months. These logs are generated when a
WiFi enabled device (e.g., a smartphone or tablet) connects
to one of the WiFi APs and contain the hashed identification
of the device’s MAC, the AP’s MAC, and a timestamp. The
dataset comprises 3.9M events corresponding to 36K differ-
ent devices (the signal of some of the WiFi APs bleeds to
outside the building and passerby devices/people are also
observed). This information can be used to derive the occu-
pancy levels in different parts of the building and to provide
diverse location-based services (see Section 2.1) since device
MACs can be used to identify individuals. Since location in-
formation is privacy-sensitive, it is essential to limit access
to this data based on individuals’ preferences.

We also used a synthetic dataset containing WiFi connec-
tivity events in a shopping mall for scalability experiments
with even larger number of policies. We refer to this dataset
as Mall. We generated the Mall dataset using the IoT data
generation tool in [18] to generate synthetic trajectories of
people in a space (we used the floorplan of a mall extracted
from the Web) and sensor data based on those. The dataset
contains 1.7M events from 2,651 different devices represent-
ing customers.

Queries. We used a set of query templates based on the
recent IoT SmartBench benchmark [18] which include a mix
of analytical and real-time tasks and target queries about
(group of) individuals. Specifically, query templates Q1 -
Retrieve the devices connected for a list of locations during
a time period (e.g., for location surveillance); Q2 - Retrieve
devices connected for a list of given MAC addresses dur-
ing a time period (e.g., for device surveillance); Q3 - Num-
ber of devices from a group or profile of users in a given
location (e.g., for analytic purposes). Based on these tem-
plates, we generated queries at three different selectivities
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(low, medium, high) by modifying configuration parameters
(locations, users, time periods). Below, when referring to a
particular query type (i.e., Q1, Q2, or Q3), we mean the set
of queries generated for such type.

Policy Generation. The TIPPERS dataset, collected for
a limited duration with special permission from UC Irvine
for the purpose of research, does not include user-defined
policies. We therefore generated a set of synthetic policies.
As part of the TIPPERS project, we conducted several town
hall meetings and online surveys to understand the privacy
preferences of users about sharing their WiFi-based location
data. The surveys, as well as prior research [22, 24], indicate
that users express their privacy preferences based on differ-
ent user profiles (e.g., students for faculty) or groups (e.g.,
my coworkers, classmates, friends, etc.). Thus, we used a
profile-based approach to generate policies specifying which
events belonging to individual can be accessed by a given
querier (based on their profile) for a specific purpose in a
given context (e.g., location, time).

We classified devices in the TIPPERS dataset as belong-
ing to users with different profiles (denoted by profile(uk)
for user uk) based on the total time spent in the building
and connectivity patterns. Devices which rarely connect to
APs in the building (i.e., less than 5% of the days) are clas-
sified as visitors. The non-visitor devices are then classified
based on the type of rooms they spent most time in: staff
(staff offices), undergraduate students (classrooms), gradu-
ate students (labs), and faculty (faculty offices). As a re-
sult, we classified 31,796 visitors, 1,029 staff, 388 faculty,
1,795 undergraduate, and 1,428 graduate from a total of
36,436 unique devices in the dataset. Our classification is
consistent with the expected numbers for the population of
the monitored building. We also grouped users into groups
based on the affinity of their devices to rooms in the building
which is defined in terms of time spent in each region per
day. Thus, each device is assigned to a group with maximum
affinity. In total, we generated 56 groups with an average of
108 devices per group.

We define two kinds of policies based on whether they are
an unconcerned user or an advanced user as described in
Section 2.1. Unconcerned users subscribe to the default poli-
cies set by administrator which allows access to their data
based on user-groups and profiles. Advanced users define
on average 40 policies, given the large number of control op-
tions (such as device, time, groups, profiles, and locations) in
our setting. In total, the policy dataset generated contains
869,470 policies with each individual defining 472 policies on
average and appearing as querier in 188 policies defined by
others on average. The above policies are defined to allow
access to data in different situations. Any other access that
is not captured by the previous policies will be denied (based
on the default opt-out semantics defined in Section 3.1).

For the Mall dataset, the shops were categorized into six
types based on the services they provide, such as arcade
or movies. We also classified customers into regular and
irregular, based on their shop visits. For each customer, we
then defined two types of policies depending on whether they
were regular or irregular. Regular customers allowed shops
they visit the most to have access to their location during
open hours. Irregular customers shared their data only with
specific shop types depending on whether there were sales
or discounts. Finally, if a customer expressed an interest in
a particular shop category, we also generated policies which

allowed access of their data to the shops in the category for
a short period of time (e.g., lightning sales). In total, this
policy dataset generated on top of Mall dataset contains
19,364 policies defined for 35 shops (queriers) in the mall
with 551 policies on average per shop.

Database System. We ran the experiments on an in-
dividual machine (CentOS 7.6, Intel(R) Xeon(R) CPU E5-
4640, 2799.902 Mhz, 20480 KB cache size) in a cluster with
a shared total memory of 132 GB. We performed experi-
ments on MySQL 8.0.3 with InnoDB as it is an open source
DBMS which supports index usage hints. We configured the
buffer pool size to 4 GB. We also performed experiments on
PostgreSQL 13.0 with shared buffers configured to 4 GB.

6.2 Experimental Results
We first study the performance of the guarded expression

generation algorithm (Experiment 1). Then, we validate the
design choices in Sieve (Experiment 2) and compare the per-
formance of Sieve against the baselines (Experiment 3). The
previous experiments are performed on the MySQL system.
Next, we study the performance of Sieve on PostgreSQL
which, in contrast to MySQL, does not support index us-
age hints (Experiment 4). In the final experiment, we stress
test our approach with a very large number of policies (Ex-
periment 5). The first four experiments use the TIPPERS
dataset and the final experiment the Mall dataset.

Figure 2: Guard generation cost.

Experiment 1: Cost
for generating Guarded
Expressions and Ef-
fectiveness. The goal
of this experiment is to
study the cost of generat-
ing guarded expressions
for a querier, as factor
of the number of policies,
and the quality of generated guards. To analyze the cost
of guarded expression generation, we generate guarded ex-
pressions for all the users using the algorithm described in
Section 4 and collect the generation times in a set. We
sort these costs (in milliseconds) and average their value in
groups of 50 users showing the result in Figure 2. The cost
of guard generation increases linearly with number of poli-
cies. As guarded expression generation is also dependent on
the selectivity of policies, number of candidate guards gen-
erated, which is also a factor of overlap between predicates,
we sometimes observe a slight decrease in the time taken
with increasing policies. The overhead of the cost of gener-
ating guarded expression is minimal, for instance, the cost
of generating a guard for a querier with 160 policies associ-
ated (e.g., the student trying to locate classmates explained
in Section 2.1) is around 150ms.

Table 2: Analysis of policies and
generated guards.

min avg max SD
|Pu

k
| 31 187 359 38

|G| 2 31 60 10
|PG

i
| 4 7 60 5

ρ(Gi) 0.01% 3% 24% 2%
Savings 0.99 0.99 1 7e−4

Table 3: Analysis of num-
ber of guards and total
cardinality.

ρ(G)
|G|

low high
low 227.2 537.0
high 469.0 1,406.7

We present the results of the analysis of the policies and
generated guarded expressions in Table 2. Each user is af-
fected, on average, by 187 policies (|Pu

k
|). This number
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Figure 3: Inlining vs. ∆.

Figure 4: Index choice.

depends on their profiles (e.g., student) and group member-
ships. Sieve creates an average of 31 guards per user with
the mean partition cardinality (i.e., |PGi

|) as 7. The to-
tal cardinality of guards in the guarded expression is low
(i.e., ρ(Gi)) which helps in filtering out tuples before per-
forming policy evaluation. In cases with high cardinality
guards (e.g., maximum of 24%), Sieve will not use force an
index scan in that particular guard as explained in Section 5.
Savings is computed as ratio of the difference between to-
tal number of policy evaluations without and with using
the guard and the number of policy evaluations. This was
computed on a smaller sample of the entire dataset and the
results show that guards help in eliminating around 99% of
the policy checks compared to policy evaluation.

Experiment 2.1: Inline vs. Operator ∆. SIEVE uses a
cost model to determine for each guard whether to inline the
policies or to evaluate the policies using the ∆ operator. The
∆ operator has an associated overhead of UDF invocation
but it can utilize the tuple context to reduce the number of
policies that need to be checked per tuple. For the purpose
of studying this tradeoff in both inlining and using the ∆
operator, we gradually increased the number of policies that
are part of the partition of a guard and observed the cost of
policy evaluation. As expected, we observed that when the
number of policies are about 120, the cost of UDF invoca-
tions is amortized by the savings from filtering policies by
the ∆ operator (see Figure 3).

Experiment 2.2: Query Index vs. Guard Index. In
Sieve, we use a cost model to choose between using the In-
dexQuery and IndexGuards as explained in Section 5. We
evaluated this cost model by analyzing the cost of evalua-
tion against increasing query cardinality for three different
guard cardinalities (low, medium, high). Figure 4 shows
the results averaged across these three guard cardinalities.
As expected, at low query cardinality it is better to utilize
IndexQuery, while at medium and high query cardinalities
(> 0.07), IndexGuards are the better choice. Note that in
both these options, guarded expressions are used as filter on
top of the results from Index Scan.

Table 4: Overall performance for Q1, Q2, and Q3 (in ms).

ρ(Q) BaselineP BaselineI BaselineU Sieve

Q1
low 1,668 906 9,122 418

mid 15,356 910 23,575+ 453
high TO 937 TO 523

Q2
low 860 916 7,787 407

mid 7,191 922 22,617+ 454

high 29,765+ 962 TO 475

Q3
low 883 881 14,379 477
mid 2,217 2,209 TO 476
high 3,502 3,543 TO 521

Experiment 3: Query Evaluation Performance. We
compare the performance of Sieve (implemented as detailed
in Section 5) against three different baselines. In the first
baseline, BaselineP , we append the policies that apply to
the querier to the WHERE condition of the query. Second,
BaselineI , performs an index scan per policy (forced using
index usage hints) and combines the results using the UNION

operator. Third, BaselineU is similar to BaselineP but in-
stead of using the policy expression, it uses a UDF defined
on the relation to evaluate the policies. The UDF takes as
input all the attributes of the tuple. BaselineU significantly
reduces the number of policies to be evaluated per tuple and
is therefore an interesting optimization strategy for low car-
dinality queries. UDF invocations are expensive, so it might
be preferable to execute the UDF as late as possible from
the optimization perspective [19]. To preserve correctness
of policy enforcement as defined in Section 3.1, UDF opera-
tions have to be performed before any non-monotonic query
operations.

For each of the query types (Q1, Q2, Q3), we generate
a workload of queries with three different selectivity classes
posed by five different queriers of belonging to four differ-
ent profiles. The values chosen for these three selectivity
classes (low, medium, high) differed depending upon the
query type. We execute each query along with the access
control mechanism 5 times and average the execution times.
The experimental results below give the average warm per-
formance per query. The time out was set at 30 seconds. If
a strategy timed out for all queries of that group we show
the value TO. If a strategy timed out for some of the queries
in a group but not all, the table shows the average perfor-
mance only for those queries that were executed to comple-
tion; those time values are denoted as t+.

Table 4 shows the average performance for the three query
types. The performance of BaselineP and BaselineU de-
grades with increasing cardinality of the associated query as
they rely on the query predicate for reading the tuples. The
relative reduction in overhead for Q3 for BaselineP at high
cardinalities is because the optimizer is able to use the low
cardinality join condition to perform a nested index loop
join. The performance of Sieve and BaselineI remains the
same across query cardinalities as they utilize the policy and
guard predicates for reading the tuples and hence are not af-
fected by the query cardinality. The increase in the speedup
between these two sets of approaches clearly demonstrate
that exploiting indices paid off. For BaselineP , the opti-
mizer is not able to exploit indices at high cardinalities and
resorts to performing linear scan. In BaselineU , the cost
of UDF invocation per tuple far outweighed any benefits
from filtering of policies. BaselineI , generated by careful
rewriting with an index scan per policy, performs signifi-
cantly better than the previous two baselines. The perfor-
mance degrade of BaselineI for Q3 is due to the optimizer
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Figure 5: Sieve on MySQL and PostgreSQL.

Figure 6: Scalability comparison.

preferring to perform the nested loop join first instead of the
index scans. In comparison to all these baselines, Sieve is
significantly faster at all different query cardinalities.

Experiment 4: Sieve on PostgreSQL. In the previous
experiments we used MySQL, which supports hints for index
usage, thus enabling SIEVE to explicitly force the optimizer
to choose guard indexes. However, other DBMSs, such as
PostgreSQL, do not support index usage hints explicitly (as
discussed in Section 5.1). To study Sieve’s performance in
such systems, we implemented a Sieve connector to Post-
greSQL using the same rewrite strategy but without index
usage hints. To have a cumulative set of policies (i.e., the
larger set of policies contain the smaller set of policies) for
evaluation, we chose 5 queriers to whom at least 300 poli-
cies apply. For each querier, we divided their policies into 10
different sets of increasing number of policies starting with
smallest set of 75 policies. The order and the specific poli-
cies in these sets were varied 3 times by random sampling.
The results in Figure 5 shows the average performance of
different strategies for each set size averaged across queriers
and the samples for SELECT ALL queries.

The four strategies tested in this experiment are: the
best performing baseline for MySQL (BaselineI(M)), the
baseline in PostgreSQL (BaselineP (P)), and Sieve in both
MySQL and PostgreSQL (Sieve (M) and Sieve (P)). The re-
sults show that not only Sieve outperforms the baseline in
PostgreSQL but also the speedup factor w.r.t. the baseline
is even higher than in MySQL. Additionally, the speedup
factor in PostgreSQL is the highest at largest number of
policies. Based on our analysis of the query plan chosen by
PostgreSQL, it correctly chooses the guards for performing
index scans (as intended by Sieve) even without the index
usage hints. In addition, PostgreSQL supports combining
multiple index scans by preparing a bitmap in memory. It
used these bitmaps to OR the results from the guards when-
ever it was possible, and the only resultant table rows are
visited and obtained from the disk. With a larger number of
guards (for larger number of policies), PostgreSQL was also
able to more efficiently filter out tuples compared to using

the policies. Thus, Sieve benefits from reduced number of
disk reads (due to bitmap) as well as a smaller number of
evaluations against the partition of the guarded expression.

Experiment 5: Scalability. The previous experiment
shows that the speedup of Sieve w.r.t. the baselines in-
creases with an increasing number of policies, especially for
PostgreSQL. We explore this aspect further on PostgreSQL
using the Mall dataset where the generation of very large
number of policies per querier (in this case the querier is a
shop) is more feasible as we can simulate more customers.
We used the same process than in Experiment 4 to generate
cumulative set of policies by choosing 5 queriers/shops with
at least 1,200 policies defined for them. Figure 6 reaffirms
how the speedup of Sieve compared against the baseline in-
creases linearly starting from a factor of 1.6 for 100 poli-
cies to a factor of 5.6 for 1,200 policies. We analyzed the
query plan selected by the optimizer for the Sieve rewritten
queries. We observed that with larger number of guards,
PostgreSQL is able to utilize the bitmaps in memory to gain
additional speedups from guarded expressions (as explained
in Experiment 4). Also, this experiment shows that Sieve
outperforms the baseline for a different dataset which shows
the generality of our approach.

7. CONCLUSION
In this paper, we presented Sieve, a layered approach to

enforcing large number of fine-grained policies during query
execution. Sieve combines two optimizations: reducing the
number of policies that need to be checked against each
tuple, and reducing the number of tuples that need to be
checked against complex policy expressions. Sieve is de-
signed as a general purpose middleware approach and we
have layered it on two different DBMSs. The experimental
evaluation, using a real dataset and a synthetic one, high-
lights that Sieve enables existing DBMSs to perform effi-
cient access control. Sieve significantly outperforms existing
strategies for implementing policies based on query rewrite.
The speedup factor increases with increasing number of poli-
cies and Sieve’s query processing time remains low even for
thousands of policies per query.

We plan to leverage the experience gained while develop-
ing Sieve to pursue a tighter integration with the database
query optimizer. Also, we plan to study possible mecha-
nisms to combine certain amount of preprocessing at inser-
tion time to simplify policy checking and guard evaluation
at query time to extend Sieve to co-optimize a query and
policy workload.
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