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ABSTRACT
In this paper, we present MorphStore, an open-source in-
memory columnar analytical query engine with a novel holis-
tic compression-enabled processing model. Basically, com-
pression using lightweight integer compression algorithms al-
ready plays an important role in existing in-memory column-
store database systems, but mainly for base data. In partic-
ular, during query processing, these systems only keep the
data compressed until an operator cannot process the com-
pressed data directly, whereupon the data is decompressed,
but not recompressed. Thus, the full potential of compres-
sion during query processing is not exploited. To overcome
that, we developed a novel compression-enabled processing
model as presented in this paper. As we are going to show,
the continuous usage of compression for all base data and all
intermediates is very beneficial to reduce the overall memory
footprint as well as to improve the query performance.
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Patrick Damme, Annett Ungethüm, Johannes Pietrzyk, Alexan-
der Krause, Dirk Habich, Wolfgang Lehner. MorphStore: Ana-
lytical Query Engine with a Holistic Compression-Enabled Pro-
cessing Model. PVLDB, 13(11): 2396–2410, 2020.
DOI: https://doi.org/10.14778/3407790.3407833

1. INTRODUCTION
With increasingly large amounts of data being collected in

numerous application areas ranging from science to indus-
try, the importance of online analytical processing (OLAP)
workloads increases constantly [15]. OLAP queries typically
access a small number of columns, but a high number of
rows and are, thus, most efficiently processed by column-
stores [15]. Moreover, the significant developments in the
main-memory domain have rendered it possible to keep even
large data sets entirely in main-memory. For these rea-
sons, in-memory column-stores have established themselves
as state-of-the-art database management systems (DBMS)
for OLAP workloads [13, 25, 72].
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In these systems, all values of every column are encoded
as a sequence of integer values and, thus, query process-
ing is done on these integer sequences [1, 2, 25]. To im-
prove query processing performance in this case, vectoriza-
tion based on the Single Instruction Multiple Data (SIMD)
parallel paradigm is a state-of-the-art technique [27, 39, 58,
61, 74, 83], because all mainstream CPUs offer powerful
SIMD extensions nowadays [36, 74]. The main goal of SIMD
is to increase the single-thread performance by executing an
identical operation on multiple data elements in a vector reg-
ister simultaneously (data parallelism) [36]. Aside from vec-
torization, lightweight integer compression algorithms also
play an important role [1, 2, 25, 45]. With the help of some
additional lightweight computations for integer compression,
the necessary memory space can be reduced [1, 2, 25, 45].
As we have shown in [18, 20], there is a large variety of
lightweight integer compression schemes available and there
is no single-best algorithm, but the decision depends on sev-
eral factors, most importantly on the data characteristics.
Moreover, compressed integer values also offer advantages
for data processing such as increasing the effective band-
width to reduce the memory wall, a better utilization of
the cache hierarchy, and more logical data elements within
a physical vector register. Nevertheless, (de)compression
leads to additional computational effort, which is typically
kept low by means of vectorization [18, 20, 48, 57, 82].

Thus, vectorization and integer compression complement
each other in a suitable way and the smart use of both tech-
niques can improve the single-thread query performance.
This is especially true when a direct processing of com-
pressed integer values is possible [26, 27, 45, 46, 51, 77].
For example, several column scan approaches have been pre-
sented in the literature, where filter predicates are directly
evaluated on compressed integer data [27, 51, 77]. However,
existing systems only provide a very limited set of compres-
sion algorithms for base columns [1, 2, 25, 45]. Furthermore,
during query processing, these systems only keep the data
compressed until an operator cannot process the compressed
data directly, whereupon the data is decompressed, but not
recompressed [1, 2, 25, 45]. Thus, the potential of compres-
sion during query processing is not fully exploited.

Core Contribution. To enable this potential as adver-
tised in Figure 1, we designed a novel holistic compression-
enabled processing model satisfying four design principles:
(DP1) Our model is a compression-enabled optimization of
the well-known operator-at-a-time processing model intro-
duced by MonetDB [13, 37]. Thus, all intermediate results
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Figure 1: Advertising the benefits of compression
in a vectorized columnar query processing for the
SSB [66] at SF 100. Averages of all 13 queries. A
detailed description can be found in Section 5.

should be representable using a lightweight integer compres-
sion algorithm. With that, we want to enable the contin-
uous usage of compression for the whole query execution
from base to intermediate data. (DP2) Since data charac-
teristics have an impact on the compression scheme decision
and these usually change during query processing, a suitable
scheme should be chosen for each intermediate from a rich
and easily extensible set of schemes. Moreover, the selection
for each intermediate should not depend on the scheme used
for another one to independently adapt to its particular data
characteristics. This implies that a change of the compres-
sion scheme from one intermediate to the next should be
possible in a very efficient way. (DP3) No physical colum-
nar query operator should require the uncompressed materi-
alization of its entire input or output data, since this would
severely limit the benefits achievable through compression.
In particular, a full decompression of the input data should
be avoided. (DP4) Related work in this domain is manifold
as described in Section 2 and our approach should build on
as well as extend this work in a seamless and efficient way.

To prove the benefits of our approach, we developed the
open-source analytical query engine MorphStore [32], which
supports vectorized processing using Intel’s latest SIMD ex-
tension AVX-512. As depicted in Figure 1, going from a
purely uncompressed processing to a state-of-the-art pro-
cessing with compressed base data and uncompressed in-
termediates reduces the average memory footprint of all 13
SSB queries at scale factor 100 by 48%, while the query
runtimes can be reduced by only 9%. However, our novel
approach unlocks significant further improvements. In par-
ticular, the memory footprints can be reduced by additional
21%, and the runtimes by additional 24%. Thus, the con-
tinuous compression of intermediates contributes decisively
to the reduction of memory footprints and runtimes.

Contributions in Detail and Outline. To present
MorphStore in detail, we make the following contributions:

1. We give a comprehensive and systematical overview of
preliminary work in Section 2.

2. Based on that, we describe our holistic compression-
enabled processing model in Section 3. In particular,
we introduce a novel morphing-wrapper for operators.

3. In Section 4, we introduce MorphStore as an imple-
mentation for our novel processing model.

4. Then, we present selected results of our exhaustive
evaluation using micro-benchmarks and the SSB [66]
in Section 5. We show that the continuous use of com-

pression is very beneficial from two perspectives: mem-
ory footprint and query runtime.

5. Our evaluation shows that the choice of the compres-
sion scheme for intermediates opens up a new dimen-
sion for query optimization. Thus, we highlight and
present some initial steps for a compression-aware op-
timization in Section 6.

Finally, we discuss our approach in a broader context in
Section 7 and briefly summarize the paper in Section 8.

2. PRELIMINARIES
Without claim of completeness, we review related work

on vectorization and lightweight integer compression for in-
memory column-store systems in this section.

2.1 Vectorization
Vectorization based on the SIMD parallel paradigm is typ-

ically applied to isolated query operators [2, 58, 83]. Many
vectorized implementations for joins [5, 6, 9] and sorting [17,
59, 67] have been proposed. Moreover, linear access oper-
ators such as column scans are well-investigated [27, 77].
Non-linear access operators, such as hash-tables and par-
titioning have also been investigated and comprehensively
evaluated [56, 58, 60]. In addition to that, vectorization and
prefetching have been combined to minimize cache misses
on the query level [52]. However, vectorization only in-
creases the performance in terms of calculations by execut-
ing the same operation on multiple data elements simulta-
neously [36]. This further increases the gap between com-
puting power of CPUs and main-memory bandwidth (mem-
ory wall). Thus, vectorization can reduce query runtimes
to some degree, but the achieved reduction is suboptimal
because query operators quickly become memory-bound.

2.2 Lightweight Integer Compression
To efficiently address this memory wall effect, compression

is a state-of-the-art technique in in-memory column-stores.

2.2.1 Compression Algorithms
Since in-memory column-store systems encode and pro-

cess all values as integers [1, 2, 25], these systems extensively
use lightweight lossless integer compression [1, 2, 18, 25]. A
large corpus of such integer compression schemes has been
developed, and we have to distinguish between techniques,
algorithms, and implementations [18, 20, 34, 48].

Techniques: Five basic techniques are known and fre-
quently used: frame-of-reference (FOR) [28, 86], delta cod-
ing (DELTA) [48, 65], dictionary encoding (DICT) [2, 8, 65,
86], run-length encoding (RLE) [2, 65], and null suppres-
sion (NS) [2, 65]. FOR and DELTA represent each value
as the difference to a certain given reference value or to its
predecessor value, respectively. DICT replaces each value
by its unique key given by a dictionary. The objective of
these three techniques is to represent the original data as a
sequence of small integers, which is then suited for actual
compression using NS. NS is the most well-studied tech-
nique and its basic idea is the omission of leading zeros in
the bit representation. Finally, RLE tackles uninterrupted
sequences of occurrences of the same value, so-called runs.
In its compressed format, each run is represented by its value
and run length. Thus, the compressed data is a sequence of
such pairs. To sum up, FOR, DELTA, DICT, and RLE ad-
dress the logical level, while NS considers the physical level.
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Algorithms: The genericity of these techniques is the
foundation to tailor lightweight integer compression algo-
rithms to different data characteristics [18, 20]. A concrete
algorithm can be described as a cascade of one or more of
these basic techniques. On the algorithm level, NS has been
studied most extensively [3, 4, 22, 24, 48, 50, 57, 64, 68,
69, 71, 79, 81, 82, 86]. An example NS algorithm is Binary
Packing (BP) [48, 69]. The basic idea of BP is to partition
a sequence of integer values into blocks and compress every
value in a block using a fixed bit width (namely, the effec-
tive bit width of the largest value in the block). Based on
that, BP can adapt the bit width per block. The logical-
level techniques, however, have not received much attention
on the algorithm level. Different algorithms for RLE dif-
fer, e.g., in the way they record the repetitions. The run
value can be stored together with the run length [49], or the
run’s start position in the input sequence [49], or both [2].
Furthermore, runs of length one, which allow no actual re-
duction of the number of data elements, could be stored
in a special way to avoid the overhead of storing the run
length [49]. DELTA, FOR, and DICT have usually been
investigated in connection with the NS technique [22, 86].

Implementation: An implementation is a hardware-
specific executable code. In recent years, the efficient vec-
torized implementation to reduce the computational over-
head has attracted most of the attention [48, 57, 68, 71,
73, 82]. The focus of those vectorized implementations is
first and foremost on NS algorithms. For example, SIMD-
BP [48] is a vectorized implementation of the NS algorithm
BP. In comparison, the logical-level techniques have been
neglected, although there are also some papers presenting
vectorized implementation for DELTA [48] or RLE [20, 73].

Experimental Survey. In [18, 20], we presented an
extensive experimental survey of this large corpus of light-
weight integer compression algorithms and implementations.
By analyzing the evaluation metrics compression rate, com-
pression speed, decompression speed, and aggregation speed,
we could conclude that there is no single-best lightweight
compression algorithm, but the choice is non-trivial and
depends on: (i) the data characteristics, (ii) the hardware
properties, (iii) the SIMD extension, and (iv) the objective.
The latter point means that the best algorithm with respect
to the compression rate is not necessarily optimal regarding
(de)compression speed. This allows interesting trade-offs
between these two fundamental objectives for optimization.

2.2.2 Query Operators on Compressed Data
A major advantage of lightweight integer compression is

that some query operators can process the compressed data
directly, without decompression. For that, there is a lot of
related work available and we can classify them into process-
ing data compressed at the logical and the physical level.

Logical Level: DICT was the first compression scheme
whose qualification for direct processing was investigated.
In [30], the authors identified that the equality-preserving
property of DICT can be exploited by query operators em-
ploying exact-match comparisons. For instance, selection
scans can process dictionary keys directly, without looking
up the actual values in the dictionary, by mapping the selec-
tion predicate’s constants to keys using the same dictionary
as for the data. Furthermore, they note that duplicate elim-
ination, grouping, equality joins, and set operations can di-
rectly work on dictionary keys. Especially for equality joins

and set operations, the authors explicitly assume the same
dictionary across different columns of the same domain.

In contrast to that, Lee et al. [46] proposed to encode each
attribute individually to exploit skew in the data distribu-
tion for an efficient encoding. However, this implies that
join-operators can no longer compare dictionary keys from
different inputs directly any more. To address this issue
for hash joins, they propose to perform a so-called encoding
translation by re-encoding the keys of the build-side with the
dictionary of the probe-side. After the dictionary encodings
have been reconciled, dictionary keys, i.e., compressed val-
ues are inserted into the hash table to avoid decompression
in both the build phase and the probe phase.

Additionally, Abadi et al. [2] sketched how database op-
erators can directly process run-length encoded data. In
detail, they mention that an RLE-compressed inner of a
nested loop join does not need to be decompressed. Instead,
the data elements in the outer need to be compared only to
the run values of the inner. Each time a comparison suc-
ceeds, multiple join matches are found at once, whereby the
number of matches is the corresponding run length in the
inner. Furthermore, a summation on a run-length encoded
column can be done by summing up the products of corre-
sponding pairs of run value and run length.

Physical Level: Most DBMSs support different data
types for integral attributes and offer physical query opera-
tors tailored to these types. For instance, the SQL standard
defines the types TINYINT, SMALLINT, INTEGER, and BIGINT,
which represent a single value using 1, 2, 4, and 8 bytes,
respectively. Representing data in one of these types is, per-
haps, the simplest form of lightweight compression. Thus,
it can be seen as a particular NS format, namely a form of
BP, whereby a common bit width is used for all elements
of a column and this bit width must be either 8, 16, 32, or
64, making the compressed data byte-aligned. Thus, most
DBMSs can implicitly process compressed data directly.

Even recent research on compressed processing frequently
restricts the physical-level compression to byte-aligned NS [2,
7, 45, 76]. This has two reasons: (i) byte-alignment suits the
byte-addressability of main-memory naturally and (ii) data
elements of 8, 16, 32, and 64 bits can be processed natively
on current microprocessors using both classical scalar and
modern vectorized instructions. The second reason is espe-
cially important, since it implies that all operators can be
tailored to directly work on compressed data with a low ef-
fort. However, some authors observed that such simple byte-
aligned packing approaches lack support for arbitrary bit
widths and work at a sub-optimal bit-level parallelism [27,
51, 77]. Thus, some query operators have been proposed for
more sophisticated physical-level compression formats.

In this direction, the column scan has received a lot of
attention. For example, Willhalm et al. proposed SIMD-
Scan, a full column scan algorithm for data packed with
arbitrary bit widths [77]. They observed that such full col-
umn scans are usually memory-bound, but become compute-
bound when performed on compressed data. To alleviate
this, they focused on a vectorized implementation using In-
tel’s SSE instructions on 128-bit vector registers. In [51]
Li and Patel criticize that the SIMD-Scan algorithm suffers
from a sub-optimal bit-level parallelism, since the employed
32-bit comparisons effectively waste available bits, if the bit
width is below 32. To address this issue, they propose so-
called bit-parallel methods. In particular, the authors intro-
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duce two pairs of a physical memory layout and a column
scan algorithm efficiently processing data in this layout us-
ing an algebraic framework. Feng et al. [27] build upon
this work and especially focus on SIMD instructions. Their
ByteSlice approach comprises a new memory layout and a
suitable scan algorithm. Besides selection, aggregation has
been studied for data compressed at the physical level, e.g.,
Feng and Lo proposed bit-parallel implementations of com-
mon aggregation functions directly on compressed data [26].

2.2.3 Compression and Query Execution
Besides individual operators for compressed data, there

are different ways to employ compression in a query as a
whole. Chen et al. [16] intensively investigated the integra-
tion of compression into query execution in the context of
disk-centric row-stores and introduced three strategies: (i)
Eager decompression loads data into main-memory, im-
mediately decompresses it, and the entire query processing
takes place on uncompressed data. (ii) Lazy decompres-
sion keeps data in compressed form during query processing
as long as possible. Base data and, perhaps, early inter-
mediate results are represented in a compressed way and
processed by specific operators. However, as soon as an op-
erator cannot process the compressed data directly, the data
is decompressed and from this point, all processing happens
entirely on uncompressed data, which incurs unnecessarily
large intermediates and wastes the potential of working on
compressed data directly. (iii) Transient decompression
temporarily decompresses the inputs for operators incapable
of processing compressed data directly and keeps the com-
pressed input elements. Thus, the processing is done on
uncompressed data elements, but for the output, the com-
pressed input elements are used again, such that subsequent
query operators can still benefit from compression.

For in-memory column-store systems, the lazy decompres-
sion strategy has been investigated in several works [21, 45,
63, 86]. For example, [45] proposes a storage format for cold
(analyical) data subdividing a column into blocks, each of
which can be represented in its individual compressed for-
mat. The formats to choose from are a variant of RLE as
well as FOR and DICT combined with a byte-aligned NS
algorithm. Based on that, they present an approach to in-
tegrate a vectorized column scan into the compilation-based
query engine of HyPer [38]. In particular, their scan outputs
a list of logical positions in the compressed column, which
are subsequently extracted and decompressed. After that,
the query execution continues with uncompressed data. An-
other example is Oracle’s in-memory engine [21] executing
only selection scans on compressed data as well.

A more sophisticated approach was presented in [2]. The
authors show how they integrate five compressed formats
into the query execution of the column-store C-Store [72].
They observe that supporting n compressed formats requires
n variants of all unary query operators and n2 variants of all
binary query operators. Since this amounts to a high total
number, their main focus is on the reduction of the integra-
tion effort. Most importantly, each base and intermediate
column is split into blocks that can be accessed by operators
via a special API. This API abstracts from the particular
format by exposing properties exploitable by query opera-
tors, e.g., whether the data in the block is sorted or whether
the block contains only one distinct value. Consequently,
query operators are not specialized to individual formats,

but to such properties that can reduce the number of vari-
ants. As a fallback, the API allows to decompress the block
so that the operator can iterate over the uncompressed data
elements. The authors’ extension to C-Store also supports
compressed intermediates. However, an operator’s output
format is hard-coded for each (combination of) input for-
mat(s) and chosen depending on what seemed to the authors
easy to implement. In particular, the data characteristics of
the intermediates are not taken into account.

In Hyrise [10, 11, 23], base data is represented as columns
horizontally partitioned into segments, whereby each seg-
ment can have its individual compressed format. To limit
the effort of integrating compression into the query execu-
tion, the authors also decide to introduce a layer of abstrac-
tion. In particular, they implement iterator-based methods
for sequential and random access to each compressed format.
Query operators make use of the general iterator-interface
irrespective of the underlying compressed formats of their
inputs. Intermediate results are not explicitly compressed.

The only work we are aware of that explicitly investigates
the compression of intermediate results is [31]. Unfortu-
nately, the authors focus only on complex queries over bit
vectors, i.e., another data structure, with the operators AND,
OR, and XOR. Furthermore, they distinguish only between un-
compressed and compressed data, but not between different
compressed formats. Nevertheless, their motivation is sim-
ilar to ours: They also observe that the characteristics of
intermediate bit vectors may change during query process-
ing, rendering either the compressed or the uncompressed
representation more suitable on a per-intermediate basis.
Therefore, they want to support operators on all possible
combinations of (un)compressed inputs and outputs. While
they can reuse (un)compressed-only operators from previous
works, they contribute variants for mixed compressed and
uncompressed inputs. Moreover, they decouple the output
format from the input formats by reusing existing methods
to append to (un)compressed bit vectors.

2.3 Lessons Learned
To improve query performance, vectorization and integer

compression are state-of-the-art in-memory column-stores.
The approaches to integrate compression into query opera-
tors range from a generic and transparent decompression
during the reading data access [86] over abstractions for
compressed formats [2] to highly format-specific algorithms
for particular operators [26, 27, 51, 77]. Thus, an operator
executes its operations either on the uncompressed format of
data elements (uncompressed operator) or on data elements
compressed according to a particular compression format for
each of its input and output columns (specialized operator),
as illustrated on the left side in Figure 2. However, the
main focus of compression was so far on the storage and
processing of base columns, which decreases the query run-
time compared to a vectorized processing of uncompressed
data as highlighted in Figure 1. To the best of our knowl-
edge, a systematic investigation of the continuous use of
lightweight integer compression for intermediate results in
in-memory column-stores has never been addressed before.

3. COMPRESSION-ENABLED MODEL
The overall goal of our holistic compression-enabled pro-

cessing model is to enable the continuous use of lightweight
integer compression for intermediate results while pursuing
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Figure 2: From state-of-the-art operators to novel enhanced operators using our proposed morphing-wrapper
at the example of an arbitrary operator op with two inputs and one output.

the four design principles introduced in Section 1. Thus, the
major challenge is the interplay between query operators and
the large corpus of compression formats. A possible solution
would be the development of a large set of specialized oper-
ators. However, the most decisive drawback of specialized
operators is the high conceptual and integration effort they
incur. To support all combinations of n compressed formats
for the i inputs and o outputs of one operator, ni+o variants
of that operator would be required. Unless all of these vari-
ants are available, the choice of the intermediates’ formats
is restricted, since they must match those expected by the
operators, thereby impeding design principle DP2.

3.1 Morphing-Wrapper for Operators
To achieve the highest flexibility for the choice of the in-

termediates’ formats, we propose a novel morphing-wrapper
concept as illustrated in Figure 2. Our concept is inspired by
transient decompression [16], but we enhance this approach
in several directions to satisfy our design principles.

As shown in Figure 2, we propose surrounding a query
operator with a wrapper decoupling the operator’s input
and output formats from the formats used to materialize
the columns in memory. Our morphing-wrapper can be ap-
plied to uncompressed as well as specialized operators lead-
ing to two new enhanced operator classes: on-the-fly de/re-
compression operators and on-the-fly morphing operators.
Thus, we are able (i) to execute each operator on every
(un)compressed input format and (ii) to output the opera-
tor result in an arbitrary (un)compressed format. For that,
the task of our morphing-wrapper is to morph the input data
from the wrapper’s input format to the operator’s input for-
mat as well as to morph the output data from the operator’s
output format to the wrapper’s output format. Note that
our morphing-wrapper allows arbitrary changes of the com-
pressed format from the input to the output of an operator
during the query execution by configuring the wrapper ac-
cordingly, which is impossible with transient decompression.

Thus, we clearly separate the data representation using
lightweight compression formats from the query operators,
but also define a clear interface for cooperation. The appli-
cability and efficiency of our morphing-wrapper depends on
the granularity of the data exchange between wrapper and
operator. At the coarsest granularity, the wrapper would
morph an entire column before passing it to the operator,
respectively receive an entire column from the operator for
the morphing. That is, an uncompressed column might be
created within the wrapper, thereby contradicting DP3.

A more reasonable granularity is the Lx-cache-resident
block. The basic idea is not to materialize morphed data
in main-memory, but only in the cache hierarchy. On the
input side, the wrapper morphs a block of column values
when required and pipelines only this morphed block to the
operator. On the output side, the wrapper first buffers the
operator output, and morphs it to the appropriate format
when the block size is reached. Hence, morphing and oper-
ator execution are separated at the function-/routine-level.
The block size should be chosen in a cache-conscious way
to guarantee that the morphed data is still in the Lx-cache
when the processing starts and the output data is still in the
Lx-cache when the wrapper issues the morphing of an out-
put block. Note that this approach is related to RAM-cache
decompression [86] with the difference that our morphing is
designed to also output compressed data, thereby allowing
for compressed intermediates.

The finest granularity possible with a state-of-the-art vec-
torized processing is the vector register. On the input
side, the wrapper decompresses a single vector at a time and
pipelines it to the operator. On the output side, the operator
produces vectors of data elements, which it pipelines to the
wrapper for instantaneous morphing. Thus, the borders be-
tween morphing and operator execution are blurred, as these
are separated only at the instruction-level. Unfortunately,
this granularity is not possible for all combinations of output
formats and operators. Some lightweight compression algo-
rithms need to analyze a certain number of data elements to
decide how to compress them. For instance, SIMD-BP128
[48] needs to determine the maximum bit width of a block
of 128 data elements before it can pack the data. This bit
width cannot be known when just one vector register of un-
compressed data elements is available at a time.

3.2 Novel Enhanced Operators
In on-the-fly de/re-compression operators, our morphing-

wrapper conducts a decompression on the input side and
compression on the output side. Although uncompressed
data is processed internally, the performance of these oper-
ators can profit from the reduced memory footprint of their
input and output columns, which leads to an increased effec-
tive memory bandwidth. To support n compressed formats
for one operator, the original operator for uncompressed
data is reused. Additionally, only n compression and n de-
compression algorithms are required, which can be used for
wrapping other operators as well. This is currently the most
important enhanced operator class for us, since it can eas-
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ily be implemented, but already fulfils our design principles
DP1 to DP3. Nevertheless, it does not exploit the potential
of working directly on compressed data.

In contrast to that, in on-the-fly morphing operators, our
morphing-wrapper employs so-called direct morphing algo-
rithms capable of changing the data representation from one
compressed format to another one [19]. Thus, these opera-
tors can process compressed data internally by wrapping a
specialized operator tailored to certain formats, while they
can handle inputs and outputs in different formats. In ad-
dition to the footprint reduction and effective bandwidth
increase mentioned above, on-the-fly morphing also allows
the direct processing of compressed data, which can be more
efficient due to a higher data-level parallelism. Supporting
n compressed formats for one operator requires n2−n direct
morphing algorithms, which can be reused for other oper-
ators. The idea of adapting the compressed formats of an
operator’s inputs has already been sketched in [46]. How-
ever, their encoding translation addresses only (i) the inputs,
(ii) join-operators, and (iii) DICT-compressed data. In con-
trast, our proposed on-the-fly morphing (i) can also be ap-
plied to an operator’s outputs, (ii) is possible for any query
operator, and (iii) supports arbitrarily compressed formats.
Finally, on-the-fly morphing unifies the virtues of on-the-fly
de/re-compression and specialized operators.

3.3 Query Execution
A query execution plan (QEP) exploiting continuous com-

pression is constructed using our novel on-the-fly de/re-com-
pression and on-the-fly morphing operators in the same man-
ner as for state-of-the-art uncompressed or specialized op-
erators since the operators’ inputs and outputs still have
the same semantics and only differ in the compressed for-
mats. In such a QEP, each base column and intermediate
result has a particular (un)compressed format, which can
be chosen flexibly. To ensure that the plan is consistent, the
expected formats of each operator must match those of the
accessed input and output columns. Our morphing wrapper
can be used to ensure this. Furthermore, the final query re-
sult columns should always be uncompressed, since they are
returned to the client application. Finally, it is also possible
to mix state-of-the-art operators with our novel enhanced
operators in one QEP. The choice of the class for a particu-
lar operator depends on: (i) the availability of the respective
physical operator, and (ii) typical objectives of query opti-
mization, such as memory footprint or query runtime.

4. MORPHSTORE ENGINE
Our open-source analytical query engine MorphStore1 im-

plements our holistic compression-enabled processing model
in C++ [32, 33]. All query operators, (de)compression, and
morphing algorithms are vectorized through our recently in-
troduced Template Vector Library (TVL) [74], which allows
to write vectorized C++ code independently of any partic-
ular SIMD extension. Thus, in the following, we abstract
from a particular SIMD extension and vector length.

4.1 Columnar Storage
Base columns, intermediates, and query results are of ex-

actly the same nature, whereby the elements of each column
are unsigned integers. If the integers for a base column were

1https://morphstore.github.io

obtained through a dictionary coding, we assume an individ-
ual dictionary per domain as proposed in [46]. If range pred-
icates need to be evaluated, we assume the dictionary coding
to be order-preserving. Otherwise, the equality-preserving
property of DICT suffices for point predicates.

We decided to focus on (unsigned) 64-bit integers as the
data type of the uncompressed data, since this is the native
word width of most common microprocessors nowadays. As
most of the literature on lightweight integer compression
[48, 68, 71, 82] assumes 32-bit integers, we reimplemented
some algorithms for 64-bit data elements. In particular, at
the logical level, we currently support (i) DELTA and (ii)
FOR, and at the physical level, we currently support the
NS schemes (i) Static BP (a variant of BP with one block
and a fixed bit width for all data elements) and (ii) SIMD-
BP [48] (see Section 2.2.1)2. Additionally, cascades of one
logical-level and one physical-level algorithm are possible.

MorphStore’s column data structure is a continuous buffer
of bytes. Therein, the entire data of the column is stored
either uncompressed or compressed according to exactly one
of the formats mentioned above3. Some lightweight inte-
ger compression algorithms are able to compress integer
sequences of arbitrary lengths. However, others subdivide
the data into blocks of a certain number of data elements
and cannot represent smaller amounts of data, e.g., SIMD-
BP512, our port of SIMD-BP128 to AVX-512 [20], assumes
blocks of 512 data elements each. To be able to deal with
columns of arbitrary lengths, each column is subdivided into
a compressed main part and an uncompressed remainder.
Assuming a column of n data elements and a compression al-
gorithm with a block size of bs, the compressed part contains
the first bn/bsc data elements of the column represented in
the column’s compressed format and the remainder contains
the remaining n mod bs data elements as uncompressed 64-
bit integers. The remainder is stored directly behind the
compressed data in the column’s buffer and has to be taken
into account by operators, too. A separate structure of meta
data stores the sizes of these two parts.

4.2 Wrapper and Query Operators
Our query operators are strongly inspired by those of

MonetDB [12]4, whereby our current implementation fo-
cuses on a set of query operators that are sufficient to exe-
cute the Star Schema Benchmark (SSB) [66]. Nevertheless,
since our morphing-wrapper is not operator-specific, other
query operators could be embraced in the same way. We
started with the implementation for a purely uncompressed
processing, which involves no compressed data at all and
serves merely as a baseline.

Then, we focused on on-the-fly de/re-compression to real-
ize our morphing-wrapper in combination with the available
uncompressed operators. This already enables a continuous
use of compression for all intermediates (and base columns)

2Integrating more algorithms is straightforward with our
morphing-wrapper, and we plan to extend the choice.
3This is not a drawback, since most lightweight integer com-
pression algorithms, e.g., DELTA, FOR, and SIMD-BP, as
well as the cascades mentioned above, adapt to local varia-
tions in the data distributions internally on their own.
4Initially, MonetDB’s operators processed BATs consisting
of a head and a tail column [13, 37], but meanwhile, these op-
erators have been re-engineered to work on headless BATs,
i.e., mere sequences of values [70].
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Figure 3: Execution of a query operator adopting
on-the-fly de/re-compression.

with a low integration effort. Generally, a näıve implementa-
tion of on-the-fly de/re-compression operators would suffer
from either (i) low performance due to, e.g., virtual func-
tion calls, or (ii) high source code duplication due to the ex-
plicit implementation of all combinations, resulting in hardly
maintainable source code. To avoid both of these issues, we
apply a number of specific techniques.

On the input side, our morphing-wrapper works on a vec-
tor register-granularity to avoid the materialization of un-
compressed data even in caches. However, due to the rea-
sons mentioned in Section 3, this is not always possible on
the output side. Thus, we use the granularity of an Lx-cache-
resident block here.

As shown in Figure 3, each on-the-fly de/re-compression
operator follows a division-of-concerns approach by employ-
ing three layers with the following responsibilities: The col-
umn layer provides the interface to the operator and takes
care of the subdivision of the column into a compressed main
part and an uncompressed remainder. The buffer layer re-
alizes the morphing-wrapper. The vector register layer rep-
resents the actual operator core working on uncompressed
data. The name of each layer indicates the unit of data
it consumes and produces. Each layer is implemented as a
C++ function, whereby the column and buffer layers require
individual functions for the input side and the output side.

In the following, we describe the execution of an opera-
tor with one input and one output column, both of which
are accessed sequentially. With the numbers in brackets,
we refer to those in Figure 3. The column layer identifies
the compressed main part and uncompressed remainder of
the input column with the help of the column’s meta data.
Then, it calls the input-side buffer layer once for each of
these two sub-buffers (1). The input-side buffer layer is es-
sentially the decompression routine of the input column’s
compressed format (2) or a simple loading of uncompressed
data for the remainder (3). However, instead of storing de-
compressed vectors to memory, it passes each of them to
the operator core at the vector register layer (4). The vec-
tor register layer consumes vectors of uncompressed 64-bit
data elements. It executes the respective operator on each
vector, whereby a vector of uncompressed output data ele-
ments is produced (5). For selective operators, a bit mask

indicates which of the output vector’s elements are valid.
This output vector, perhaps accompanied by a bit mask, is
handed over to the output-side buffer layer. The output-side
buffer layer accepts one uncompressed vector at a time and
appends it to its uncompressed internal Lx-cache-resident
buffer, whereby the valid data elements indicated by the bit
mask are stored compactly (6). Once this internal buffer
reaches its capacity, the compression algorithm of the out-
put column’s format is called (7). It loads uncompressed
data from the internal buffer and appends compressed data
to the output column’s buffer (8). After both calls to the in-
put side buffer layer have terminated, the possible remaining
data elements in the output side buffer layer’s internal buffer
need to be flushed. Of this remaining data, as much as pos-
sible is appended to the output column in compressed form,
while the possible remainder is appended uncompressed (9).
Finally, the output-side column layer returns the output col-
umn to the caller of the operator (10). Note that the input
side and output side work in an interleaved fashion, i.e., the
output side is active before the input side returns.

Implementing our morphing-wrapper, the buffer layer is
the only layer depending on the particular format, while the
column layer only needs to know the format to invoke the
buffer layer correctly, and the vector register layer is not
concerned with formats at all. For the same reason, the
buffer layer is the only layer that is not specific to the logi-
cal operator, while the vector register layer obviously is, and
the column layer needs to know the operator core to pass
to the buffer layer. This constellation enables an economi-
cal, non-repetitive implementation based on C++ template
metaprogramming. In particular, the formats of the input
and output columns are modeled as template parameters of
the column and buffer layers. The column layer is imple-
mented generically with respect to these formats. However,
for both the input side and the output side of the buffer
layer, template specializations must be provided for each
format to be supported. These specializations are strongly
based on the decompression and compression algorithms of
the formats, respectively. Thus, these specializations can be
reused by all operators. Furthermore, the input-side buffer
layer receives the core operator to call as a template param-
eter as well. Finally, the column layer has to initialize the
vector register layer such that it calls the output format’s
template specialization of the output-side buffer layer. The
use of templates prevents expensive virtual function calls,
since the right specializations are determined at compile-
time. Besides that, expensive frequent calls to the vector
register layer are avoided by forcing the compiler to inline
it into the input-side buffer layer.

Almost all our physical operators access both their in-
put and output data sequentially. However, there are some
operators employing random read or write access. For ex-
ample, the project-operator requires random read access
to compressed data, because this operator is used, for in-
stance, to transfer the result of a selection on one column (se-
quential access) to another column (random access). Since
lightweight integer compression algorithms are designed for
efficient sequential access, random access incurs some chal-
lenges. At the logical level of compression, the interpretation
of one particular compressed data element might require ei-
ther meta information, as for FOR and DICT, or even in-
formation on all preceding data elements, as for DELTA.
At the physical level of compression, the challenge is three-
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Table 1: Properties of our synthetic columns.
Data distribution Sorted Maximum

bit width

C0 uniform in [0, 7] no 3
C1 uniform in [0, 63] no 6
C2 99.99% uniform in [0, 63] no 63

0.01% constant 263 − 1
C3 uniform in [262, 262 + 63] no 63
C4 uniform in [247, 247 + 100K] yes 48
C5 uniform in [0, 263 − 1] no 63

Unless stated otherwise, each column has 128 Mi elements.

fold: (i) the physical byte or bit address corresponding to a
logical position must be determined, (ii) one or more ran-
dom accesses are required to obtain all bits of a code word,
and (iii) the original data element must be restored from
the obtained bits. In the literature, random read access has
been investigated to certain compressed formats [27, 51, 75].
However, we decided to follow a simple approach by restrict-
ing random access to Static BP. For this format, all of the
challenges mentioned above can be solved straightforwardly.
The integration is accomplished using one specialization of
a template function for random read access. Random write
access usually addresses the query’s result column(s), e.g.,
in a group-based aggregation. Since these shall be uncom-
pressed anyway, we have not considered random write access
to compressed data yet.

Moreover, on-the-fly de/re-compression represents the blue
print for the realization of our on-the-fly morphing opera-
tors. In this case, we are able to re-use the column and buffer
layer. But instead of employing (de)compression algorithms,
we use direct morphing algorithms capable of changing the
data representation from one compressed format to another
one [19]. In addition, we invoke a specialized operator work-
ing directly on compressed data at the vector register layer.

5. EXPERIMENTAL EVALUATION
We conducted our experimental evaluation5 on a machine

equipped with an Intel Xeon Gold 6130 clocked at 2.1 GHz.
The capacities of the L1, L2, and L3-caches are 32 KiB,
1 MiB, and 22 MiB, respectively. The system has 4 sock-
ets with 32 cores each and exhibits a non-uniform memory
access (NUMA). However, we only investigate the single-
thread performance, and used numactl to ensure that all
memory allocations and processing happened on the same
socket to exclude NUMA effects [40, 47]. The size of the
ECC DDR4 main memory is 384 GiB and all experiments
happened entirely in-memory. All our operator and (de)com-
pression algorithm implementations are specialized to an
AVX-512 and a scalar version through our TVL [74]. Un-
less stated otherwise, we report the AVX-512 measurements.
We choose a size of 16 KiB, or 2,048 uncompressed data el-
ements, for the internal buffer used at the output side of
our on-the-fly de/re-compression operators. Note that this
is half of the size of the L1 cache of our machine. We com-
piled our code using g++-8.3.0 with the optimization flag
-O3. The operating system is a 64-bit Ubuntu 18.10 with
Linux kernel 4.18.0-13-generic. We repeated all time mea-
surements 10 times and report only the means.

5https://github.com/MorphStore/VLDB-2020.
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Figure 4: Runtime and input footprint for two state-
of-the-art and two novel wrapped select-operators.

5.1 Micro-Benchmarks
We start with some mirco-benchmarks to provide a clear

understanding of MorphStore and, in particular, of our wrap-
per aproach. The behavior of lightweight integer compres-
sion algorithms depends strongly on the data characteris-
tics [18, 20]. Since DBMSs have to handle data with ar-
bitrary properties efficiently, we use synthetic columns C0–
C5 and Table 1 summarizes their characteristics. We first
investigate the runtime of a single operator as the build-
ing block for complex QEPs. In particular, we choose the
select-operator, which takes a column as input and outputs
a sorted column containing the integer positions of match-
ing data elements in the input. For each input column, we
want to find the (a-priori known) lowest data element in the
column using a point predicate.6 We adapt the distributions
mentioned in Table 1 to ensure a certain selectivity.

Illustrative Example. We begin with an example il-
lustrating the usefulness of our novel morphing wrapper.
We compare the two state-of-the-art classes of the select-
operator to our two novel wrapped operators. As the input
column, we choose C0 with 512 Mi unsorted data elements
in the range [0, 7]. We ensure a selectivity of 0.01% to stress
the impact of the access to the input data, and leave the
output uncompressed for now. Figure 4 shows the runtimes
and the footprint of the input column for all four variants.

With purely uncompressed processing, the input column’s
size is 4 GiB and the selection takes 353 ms. However,
C0 can be represented using 3 bits per integer by Static
BP, yielding a compressed size of 192 MiB, a reduction by
21.3x. Wrapping the uncompressed operator into on-the-fly
de/re-compression reduces the runtime by 6.7x, since much
less data has to be loaded from RAM, thereby improving
the effective bandwidth. This effect suffices to amortize the
computational overhead of on-the-fly decompression.

In the literature, BitWeaving/H (BW/H) was proposed
as a specialized operator for a selection scan [51] tailored
to the HBP data layout, which is basically Static BP. How-
ever, this operator cannot be applied to data packed to 3
bits, because it requires an additional delimiter bit in each
code word. Thus, we must use Static BP with 4 bits per
integer for C0, i.e., we cannot fully exploit the compres-
sion potential with the specialized operator. Consequently,
the input column grows to 256 MiB, 33% more than be-
fore. Our own hand-tuned implementation of the BW/H
selection achieves a speedup of 2.1x compared to on-the-fly
de/re-compression, although more data has to be transferred

6We could as well use a range predicate here, since we
assume an order-preserving dictionary encoding for non-
integer columns, as stated above.
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Figure 5: select with on-the-fly de/re-compression.

over the memory bus. This is due to the fact that BW/H
performs the comparisons directly on compressed data at a
much higher data-level and bit-level parallelism.

Finally, our novel on-the-fly morphing provides the free-
dom to represent the input column with 3 bits per inte-
gers and to apply BW/H for 4-bit elements by morphing
the input from 3 to 4 bits per integer on-the-fly. For this
purpose, we employ a highly efficient direct morphing algo-
rithm pipelining morphed data to the BW/H operator at the
vector-register granularity.7 While allowing the lower foot-
print of 192 MiB for the input column, this on-the-fly mor-
phing operator is only negligible 4% slower than the special-
ized operator. This is possible, since the reduced transfers
from RAM amortize the extra computations for the direct
morphing. That is, on-the-fly morphing unifies the supe-
rior footprint of on-the-fly de/re-compression and the supe-
rior runtime of the specialized operator, which would not be
possible without our novel morphing wrapper approach.

While this example shows the feasibility and possible ben-
efit of our morphing wrapper, the development of a rich set
of direct morphing algorithms is a research topic of its own,
and we leave it to future work. In the following, we focus on
on-the-fly de/re-compression, since it suffices to realize our
design principles and can easily be implemented.

Single on-the-fly De/re-compression Operator. We
again focus on the select-operator. MorphStore currently
supports four compressed formats and the uncompressed for-
mat. Thus, there are 25 combinations of input and output
formats for this operator. Figure 5 gives an overview of the
runtimes of all combinations for the input columns C1–C5
for selectivities of 1% (a) and 90% (b). For both selectivities,
the runtime of the purely uncompressed processing (red dot)
is about the same for all input columns, which is expected.
With a selectivity of 1%, on-the-fly de/re-compression (blue
and gray dots) can decrease the runtime by between 27%
(C3) and 71% (C1) in the best case. At the same time, the
runtime can increase by up to 73% (C1) in the worst case.
As an exception, on-the-fly de/re-compression is not benefi-
cial on the hard-to-compress C5. With 90% selectivity, the
runtimes can be decreased by between 72% (C3) and 81%
(C1) in the best case, but can also be increased by up to
20% in the worst case. Note that compressing also the out-
put column (gray dots) can reduce the runtime much more
than compressing only the input column (blue dots). Owing
to that, on-the-fly de/re-compression is now also beneficial

7The detailed description of this algorithm is beyond the
scope of this paper. It is included in our open source code.
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Figure 6: A simple analytical query.

on C5. This is interesting, since the output column can only
be an intermediate in the context of a QEP.

The input format employed by the fastest combination
is the same for both selectivities and depends on the in-
put column. For C1, Static BP is preferred, as it contains
very small values. C2 contains 0.01% huge outliers, making
SIMD-BP512 a better choice, as it can adapt to the local
distribution in each block of 512 data values. The distribu-
tion of C3 has a narrow range of huge values. Thus, FOR
+ SIMD-BP512 is most suitable here. DELTA + SIMD-
BP512 yields the best runtime for the sorted C4. C5 should
always be left uncompressed. The output format employed
by the fastest variant is DELTA + SIMD-BP512 in all cases,
since the output is always sorted. We conclude that our on-
the-fly de/re-compression can reduce the runtime of a single
operator significantly, if the formats are chosen carefully.

Simple Query. We extend our evaluation to a simple
analytical query: given a relation R with attributes X and
Y, our query is SELECT SUM(Y) FROM R WHERE X = c. The
first step of the query execution is the selection we have in-
vestigated above, whereby the selectivity is 90%, with input
column X and output column X’. After that, a project-
operator extracts the data elements at the positions in X’

from base column Y producing intermediate Y’. Finally, a
sum-operator aggregates all data elements in Y’. Thus, our
simple query consists of three operators accessing two base
columns (X and Y), two intermediates (X’ and Y’), and one
result column with a single value, which we ignore below.

We measured the memory footprint and runtime of this
query for three cases, each of which is characterized by a
certain combination of the base columns in Table 1. Each
column can be assigned an individual format and there are
5 · 2 · 5 · 5 = 250 possible combinations.8 However, here we
concentrate on just a few interesting combinations, while not
searching for the best one. Figure 6(a) shows the results for
the query’s memory footprint, broken down to the individ-
ual columns. First, the footprint of the purely uncompressed
processing is the same irrespective of the characteristics of
the base columns. Applying Static BP for the base columns
results in a size reduction to 52% in case 1, since X and
Y contain only very small values here. The other extreme
is case 3, where almost no size reduction can be achieved,
since both base columns contain data elements of up to 63
bits. If Static BP is applied to the intermediates as well, fur-
ther reductions to between 17% (case 1) and 85% (case 3)
are the consequence. Representing both intermediates using

8Random access (performed on column Y) is currently only
supported for uncompressed data and Static BP.
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Figure 7: Impact of the format combinations in SSB.

DELTA + SIMD-BP512 reduces the size of X’ significantly
in all cases, since this column is always sorted. At the same
time, DELTA + SIMD-BP512 is beneficial for Y’ only in
case 2, where a reduction to 24% is achieved, while in case
1, it even yields a worse memory footprint than Static BP
resulting in a reduction to only 30% compared to the un-
compressed processing. In cases 1 and 3, Y’ should rather
be represented using FOR + SIMD-BP512 to achieve reduc-
tions to 11% and 58%, respectively.

The runtimes of the whole query and the individual op-
erators are displayed in Figure 6(b). Purely uncompressed
processing is equally fast in all cases. Applying Static BP
only for the base columns can decrease the runtime by only
up to 4% (case 1), since writing uncompressed intermedi-
ates is very expensive. In case 3, the query runtime is even
increased by 4%. If the intermediates are compressed as
well, the runtimes shrink to between 34% (case 1) and 86%
(case 3). While using a suitable cascade for the interme-
diates could reduce the memory footprint in all cases, the
runtimes can only be reduced in cases 2 and 3 by using
DELTA or FOR cascaded with SIMD-BP512 in both cases.

We conclude that the continuous compression of both base
columns and intermediates can reduce the memory footprint
as well as the runtime of a query, if the formats are chosen
carefully. Furthermore, given two format combinations, the
one that is better with respect to the memory footprint is
not always better concerning runtime.

5.2 Star Schema Benchmark (SSB)
Now we investigate the fitness of our novel processing

model for complex analytical queries using the SSB [66] at
scale factor 100. We applied an order-preserving dictionary
coding to all string columns in the schema to obtain integer
columns. All 13 queries can be executed on dictionary keys
without looking up the strings. This holds for point and
range predicates alike. Since MorphStore does not support
result sorting yet, we omit the ORDER BY clause in all queries.

Impact of Continuous Compression. The QEPs of
the SSB queries involve between 6 and 16 base columns and
between 13 and 56 intermediates. With our novel process-
ing model, each of the columns can be represented in its
individual compressed format, which results in a very high
number of possible format combinations. Thus, we first want
to find out the impact of different format combinations and
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Figure 8: Compressing base data vs. intermediates.

the improvement through the optimal format combination.
We allow compression for base columns and intermediates
here. We consider the following format combinations for
each query: (i) purely uncompressed, (ii) Static BP with a
fixed bit width of 32 bits per data element for all columns
(Static-BP-32), a simple compression approach not taking
individual data characteristics into account, (iii) the actual
best format combination, where each column can have its in-
dividual format, which only becomes possible with our novel
morphing wrapper, and (iv) the actual worst format com-
bination. We determined the best/worst combination re-
garding memory footprint by exhaustively trying each avail-
able format for each column individually (since column foot-
prints add up) and employing the format yielding the low-
est/highest physical size. Concerning runtime, we applied
a greedy strategy which, starting at the base data, consid-
ers one column at a time by trying all available formats for
that column, measuring the resulting query runtimes and
fixing the column’s format to the one yielding the best/worst
runtime for the next steps of the search. Note that these
best/worst combinations are allowed to employ the uncom-
pressed format. The best format combinations usually mix
all available formats within a single query. However, due to
a lack of space, we do not present them here.

Figure 7(a) shows the results for the memory footprint.
The purely uncompressed processing achieves by far the
worst memory footprints for all queries. Using Static-BP-32
for all columns reduces the memory footprint to about 50%
for all queries. However, employing the optimal format for
each column yields a reduction of the footprint to between
27% (Q3.2) and 36% (Q1.1) (31% on average). Figure 7(b)
depicts the query runtimes. Here, the worst combination re-
sults in a runtime increase by 8% on average, compared to
the purely uncompressed case. Employing Static-BP-32 re-
duces the runtimes to between 67% (Q3.2) and 85% (Q1.2)
(76% on average). However, the best format combinations
yield runtime reductions to 54% and 76% for these queries
(67% on average), compared to purely uncompressed pro-
cessing. To sum up, the continuous use of compression can
significantly reduce memory footprint and runtime, whereby
optimal results require a column-specific format selection en-
abled only through our novel morphing wrapper.

Compressing Base Data vs. Intermediates. Next,
we evaluate in how far our continuous compression of inter-
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mediates contributes to these improvements, compared to
the already established compression of base data. We start
by not allowing compression at all, then we allow compres-
sion for base columns only, and, finally, also for intermedi-
ates, whereby we use the actual best format combinations.
The resulting memory footprints can be found in Figure
8(a). Compressed base data already reduces the footprints
significantly to between 34% (Q1.3) and 75% (Q3.1) (52%
on average). The impact of offering compression also for
intermediates is highly query-dependent. For Q3.3 and 3.4,
virtually no further improvement is possible, while a further
reduction to 27% can be achieved for Q3.2. On average,
compressing intermediates reduces the footprints to 31%,
i.e., 21% further than with base columns only. Figure 8(b)
depicts the runtime results. These can be reduced to up
to 73% (Q3.3) when compressing only base data (91% on
average), while the additional compression of intermediates
achieves a reduction to up to 54% (Q3.2) (67% on aver-
age). We can conclude that our continuous compression of
intermediates contributes significantly to the overall mem-
ory and runtime reductions achievable through compression.
Regarding the runtime, the intermediates’ impact is even
higher than that of base columns, on average.

Comparison to MonetDB. Next, we move on to a com-
parison to MonetDB, the system that is closest to our pro-
cessing model in the uncompressed case. To ensure a fair
comparison, we compiled MonetDB-11.31.13 with all rele-
vant optimization switches on using the same compiler (and
version) and run it on the same machine as MorphStore. We
run MonetDB also in single-threaded and read-only mode.
Although MonetDB supports string columns, we use the
same dictionary-encoded base data. For our experiments,
the QEPs used in MorphStore imitate those of MonetDB
closely, including the same join order. We used MonetDB’s
internal tools for measuring the mere runtime (excluding the
time spent on query optimization) of each query 12 times,
and discarded the first two measurements for each query.

The runtimes are given in Figure 9. Since MonetDB sup-
ports neither vectorization nor compressed intermediates,
we first investigate the scalar execution on purely uncom-
pressed data (all columns use 64-bit) for a fair comparison.
None of the systems is faster than any other for all queries,
but on average, MorphStore is 1.4x faster. MorphStore also
supports a state-of-the-art vectorized execution using AVX-
512 and this reduces the runtime by up to 54% (Q1.3) or
increases it by up to 14% (Q4.1) (on average, it decreases
by 11%). However, maximum performance is only provided
by our novel continuous compression for base columns and
intermediates according to the ideal format combination, as
this reduces the runtimes further to between 35% (Q1.3)
and 82% (Q4.1) of the scalar uncompressed processing in
MorphStore (60% on average). While MonetDB has no ex-
plicit support for compression of intermediates, we try to
simulate it by using the narrowest integer type possible for
all base data columns in MonetDB. We can see that this im-
proves the runtime of MonetDB to 90% of its uncompressed
runtime, on average, however, this is still much slower than
MorphStore’s holistic compression-enabled approach. We
conclude that, even without our proposed continuous com-
pression of intermediates, MorphStore is slightly faster than
a state-of-the-art system adopting the operator-at-a-time
processing model, which proves the general quality of our
implementation. Moreover, our holistic compression-enabled
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Figure 9: Comparing MonetDB and MorphStore.

approach accelerates SSB queries by 40%, on average, com-
pared to a scalar processing of uncompressed data.

6. ENHANCING QUERY OPTIMIZATION
Our evaluation revealed that the continuous compression

of intermediates can improve or worsen the memory foot-
print and query runtime, depending on the combination of
the intermediates’ formats. Thus, the reasonable selection
of these formats is a new subject for query optimization.
Compression-aware query optimization has already been dis-
cussed for queries over bit vectors [31] and for row-stores [16,
76], but these approaches are not applicable to our contin-
uous compression, since we significantly advance the use of
compression during query execution. Nevertheless, inspired
by Two-Step [16], in the following, we show how an ex-
isting query optimizer can be extended by a compression-
aware secondary optimization phase. While a secondary
step might fail to find the globally optimal QEP, it can yield
an improvement compared to the state-of-the-art.

We assume that a classical query optimizer provides (i) a
QEP with uncompressed intermediates and (ii) some basic
data characteristics of all intermediates. We focus on the se-
lection of suitable formats for on-the-fly de/re-compression.
In our previous work, we proposed and evaluated a cost
model for selecting a suitable lightweight integer compres-
sion algorithm for a given column [20]. Based on basic col-
umn characteristics, such as the number of data elements, a
histogram, and the number of distinct values, our cost model
can estimate the compression rate as well as (de)compression
runtime of a lightweight integer compression algorithm.

A compression-aware query optimization could aim for
two objectives: (i) minimizing the memory footprint or (ii)
minimizing the query runtime. Minimizing the memory foot-
print: The size of each column can be minimized individ-
ually by estimating its compressed size in all available for-
mats using our cost model and choosing the format yield-
ing the lowest size. Minimizing the query runtime: Our
morphing-wrapper does not change the internal processing
of the wrapped operators. Thus, we only need to model
the cost of the wrapper to compare two alternative for-
mat combinations. Each column in a QEP has to be com-
pressed by the operator producing it (unless it is a base
column) and decompressed by each operator consuming it.
Using our cost model, we can estimate the runtimes of these
(de)compressions, whose sum constitutes the share of the
considered column in the overall wrapper cost in the QEP.
This sum can be minimized for each column individually.

We applied these optimization strategies to the SSB. Fig-
ure 10(a) reveals that we always achieve the perfect mem-
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Figure 10: Fitness of our cost-based optimization
strategies for on-the-fly de/re-compression.

ory footprint. Figure 10(b) shows that the query runtime
achieved with our cost-based optimization strategy is only
up to 26% (Q3.3) worse than the runtime yielded by the
greedily determined format combination (3% on average).
Interestingly, our cost-based selection is even 13% faster
than the combination determined by the greedy algorithm
for Q4.2. For both objectives and all queries, our cost-based
optimization strategy (i) yields an actual improvement com-
pared to the uncompressed baseline, and (ii) successfully
avoids the worst format combination.

7. DISCUSSION
In this paper, we focused on a single-threaded, in-memory

columnar query processing. On the one hand, we are confi-
dent that our novel model can be applied to column-stores
in general, since only the set of relevant compression al-
gorithms differs depending on the storage medium [2, 13,
44, 80]. While memory-centric systems use lightweight in-
teger compression schemes to optimize the main-memory
access bottleneck, so-called heavyweight generic compres-
sion schemes such as Huffmann [35], Lempel-Ziv [78, 84], or
Snappy [29] are used to optimize the disk access bottleneck
in disk-centric environments. The main difference between
heavy- and lightweight compression algorithms is their com-
putational complexity. However, our approach is indepen-
dent of any specific compression scheme. Thus, it should be
able to embrace such heavyweight algorithms, too.

On the other hand, our novel model could be used as a
foundation in multi-threaded settings. As shown in several
papers, the data-oriented database architecture provides a
superior scalability on common scale-up hardware [42, 41,
54, 62]. In contrast to the traditional transaction-oriented
database architecture, transactions are not first-class citi-
zens anymore and are processed in a distributed fashion by
worker threads. All data objects, e.g. columns, are parti-
tioned and partitions are exclusively processed by the as-
signed worker thread that is pinned to a specific hardware
thread. That means, each single worker thread can pro-
cess one specific column partition with our novel processing
model. The communication between worker threads during
query processing is handled via a message passing layer to
exchange intermediate results. From that perspective, the

combination of our novel processing model with the data-
oriented architecture should be explored in the near future.
This combination offers several advantages like (i) each col-
umn partition could be compressed with a specific compres-
sion schema or (ii) the intermediates could be compressed
with specific schemes to optimize the communication.

Boncz et al. [14, 85] identified that the full materialization
of intermediates performed by the operator-at-a-time model
makes query processing memory-bound if the intermediates’
sizes exceed that of the cache. To address this issue, the
authors present the X100 query engine with the vector-at-
a-time model combining the column-wise processing of the
operator-at-a-time model with a pipelined operator execu-
tion. There, operators consume and produce blocks of a
column, so-called vectors. Our holistic compression-enabled
processing model could be extended to this concept by invok-
ing the input-side morphing wrapper for each compressed
input vector and pipelining compressed output vectors di-
rectly to the next operator. By employing specialized op-
erators inside the morphing-wrapper, vectors could be pro-
cessed with a higher bit or data-level parallelism to improve
efficiency beyond a mere increase of the effective bandwidth.

An orthogonal approach to optimize query processing is
to avoid intermediate results [43, 53, 55]. For example, Neu-
mann introduced an approach by maintaining the pipeline
processing from one operator to the next [53]. Since these
pipelines are query-dependent, they must be compiled at
query run-time. Nevertheless, the materialization of inter-
mediate results is still required at the pipeline boundaries,
for instance, when building the hash table of a hash join.
The DBMS Peloton [55] employs an advancement of this ap-
proach that was proposed by Menon et al. [52]. The authors
argue that the strict avoidance of intermediates and the
pipeline processing disallow the exploitation of inter-tuple-
parallelism offered by modern microprocessors. In particu-
lar, the authors show how to leverage SIMD and prefetching
instructions. Moreover, they perform a strategic partial ma-
terialization of selected intermediate results, while they oth-
erwise avoid intermediates using pipelining. An interesting
research question would be to investigate our novel model
for the optimization of these partial materializations.

8. CONCLUSION
We presented MorphStore, an in-memory analytical query

engine with a novel holistic compression-enabled process-
ing model. We optimize the operator-at-a-time processing
model by establishing the continuous use of lightweight in-
teger compression for all intermediate results in a query ex-
ecution plan. Our approach is based on a novel morphing
wrapper embracing and enhancing existing query operators
for (un)compressed data and allowing a change of the com-
pressed format during query processing to adapt to changing
data characteristics. That way, we are able to significantly
reduce the memory footprint and runtime of complex analyt-
ical queries. Moreover, we complement our novel processing
model with novel compression-aware optimization strategies
selecting suitable compressed formats for all intermediates.
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[73] A. Ungethüm, J. Pietrzyk, P. Damme, D. Habich, and
W. Lehner. Conflict detection-based run-length
encoding - AVX-512 CD instruction set in action. In
ICDE Workshops, pages 96–101, 2018.
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