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ABSTRACT
Data Transformation is a long-standing problem in data
management. Recent work adopts a “transform-by-example”
(TBE) paradigm to infer transformation programs based
on user-provided input/output examples, which greatly im-
proves usability, and brought such features into mainstream
software like Microsoft Excel, Power BI, and Trifacta.
While TBE is great progress, the need for users to pro-

vide paired input/output examples still poses limits on its
applicability. In this work, we study an alternative that
transforms data based on input/output data patterns only
(without paired examples). We term this new paradigm
transform-by-patterns (TBP). Specifically, we demonstrate
that there is a rich class of transformations in TBP that can
be “learned” from large collections of paired table columns.
We show the proposed method can harvest such transforma-
tions across diverse domains and corpora (e.g., in different
languages such as English, Chinese, Spanish, etc.). TBP
transformations so obtained can be used in scenarios such
as suggesting data-repairs in tables, or automating transfor-
mations in ETL pipelines. Extensive experiments on real
data suggest that TBP outperforms existing methods on
tasks such as data repairs, and is a promising direction for
future research.
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1. INTRODUCTION
Data transformation is an important and long-standing

problem in the data management literature [53]. For decades,
expert users like developers or data engineers painstakingly
write one-off programs/scripts to transform data from one
format to another, across applications such as ETL [4, 26,
58], and data integration [14, 50].
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Figure 1: An example TBE feature called “Add-Column-
From-Examples” in Microsoft Power BI. After typing two
desired output examples in “Custom” column for the first
two input values in the “Input” column, the system finds a
consistent program (shown at the top), and gives a preview
of output for remaining values (shown in gray).

Today, in a broader trend known as “self-service data
preparation” [32, 56], non-technical users such as business
analysts (e.g., in Excel or Tableau) increasingly need to ma-
nipulate data and perform tasks like data transformation.
However, unlike expert users, these non-technical users lack
the expertise to write programs. Democratizing data trans-
formation for the non-technical users (e.g., without asking
them to write code) has become increasingly important.
Transform-by-Example (TBE). In response to this de-

mand, the “transform-by-example” (TBE) paradigm was de-
veloped for data transformation. In TBE, users provide a
few paired input/output examples to demonstrate a desired
transformation task. TBE systems would then search for
programs consistent with all given examples, from a prede-
fined space of candidate programs.
TBE has led to a fruitful line of research (e.g., [10, 31,

33, 36, 41, 42, 59, 68]), and has generated significant impact
on commercial systems used by millions of people. For in-
stance, TBE-like features are now available in Excel (using
FlashFill [31])1; Power BI (using TDE [33])2; and Trifacta3.
Google also announced plans to introduce TBE in Sheets4.
Figure 1 shows an example TBE feature called “Add-

Column-From-Examples” available in Microsoft Power BI5.
This example spreadsheet has an “Input” column on the
left with a list of date-time strings. In this case, a user

1
https://www.microsoft.com/en-us/microsoft-365/blog/2012/08/09/flash-fill/

2
http://powerbi.microsoft.com/en-us/blog/power-bi-desktop-june-feature-

summary/#addColumn
3
https://www.trifacta.com/blog/transform-by-example-your-data-cleaning-wish-is-our-

command/
4
https://cloud.google.com/blog/products/g-suite/connected-sheets-is-generally-

available
5The same feature is also available in recent versions of Excel
(e.g., Office 2019 and Office 365), under the “Data” tab.
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Figure 2: Two tables R and S with schema (time-stamps,
phone-number, geo-coordinates). Integrating the two would
require values to be reformatted using transformations.

invokes the TBE feature, and enters two output examples
(1997-01-12 and 1997-02-02) in the “Custom” column on the
right, to demonstrates a desired transformation. In response
to user input, the system synthesizes a transformation pro-
gram consistent with the two given input/output examples,
which is shown at the top of the figure (this program invokes
a total of 7 functions, including Text.Combine, Date.ToText,
etc.). Furthermore, a preview of remaining output values
is shown in gray (beneath user-provided examples), which
helps users to verify the correctness of the suggested trans-
formation.
Transform-by-Pattern (TBP). The by-example TBE

paradigm is clearly an excellent fit for Excel-like spread-
sheet environments. As we will see below, however, in other
settings it may not be as easy to invoke TBE, for it can
be hard for users to identify columns requiring transforma-
tions, and then provide paired input/output examples. We
in this work propose an alternative Transform-by-Pattern
(TBP) paradigm to complement the TBE approach, which
can proactively suggest relevant transformations based only
on input/output data patterns (with no paired examples).
More concretely, each TBP program is a triple (Ps, Pt,

T ), where Ps and Pt are data “patterns” (e.g., in regex)
describing the source and target column, for which the cor-
responding program T is applicable.
Table 1 shows a list of example TBP programs (we will

discuss how to harvest them in detail). Each row here is a
TBP program that consists of a triple (Ps, Pt, T ). For the
TBP program labeled as TBP-1 in the first row, its source
pattern Ps is: “<letter>{3}. <digit>{2}, <digit>{4}” and
target pattern Pt is: “<digit>{4}-<digit>{2}-<digit>{2}”.
Note that these two patterns can be used to describe the
example TBE case shown in Figure 1; the corresponding
transformation program (shown at the top of Figure 1) can
be “memorized” in the last column T of Table 1 (omitted in
the table in the interest of space).
In the following, we use two concrete applications, Auto-

Unify and Auto-Repair, to demonstrate that such TBP pro-
grams can enable scenarios complementary to TBE. We em-
phasize that TBP is not meant to replace the general-purpose
TBE, especially in spreadsheet settings where users can eas-
ily identify target output and enter examples.
TBP for “Auto-Unify”. Data transformation is of-

ten required in applications like ETL and data integration,
where data of different formats from multiple sources need
to be unified and standardized.
Figure 2 shows two example tables denoted by R and S,

both containing telemetry data of the form: (time-stamp,
cellular-device-numbers, geo-coordinates). As is often the
case in the real world, R and S are formatted differently
(e.g., the telemetry may be generated by different types of
devices, or different versions of programs), and need to be
integrated, which is a common task in ETL [26, 44].
Today, data engineers need to first identify such issues like

in Figure 2 (a time-consuming task when there are many
such feeds and columns). They would then write ad-hoc
transformation scripts, in order to unify each pair of incom-
patible data columns.
We argue that armed with a repository of TBP programs

like in Table 1, the task of identifying and addressing afore-
mentioned issues can be partially automated. Specifically,
given that R-timestamp and S-timestamp need to be merged,
based on the patterns of values in these two columns, we can
suggest TBP-1 in Table 1 to be used, because its source pat-
tern Ps = “<letter>{3}. <digit>{2}, <digit>{4}” and tar-
get pattern Pt = “<digit>{4}-<digit>{2}-<digit>{2}” match
with R-timestamp and S-timestamp, respectively. This allows
us to proactively suggest the corresponding T to perform
this transformation.
Similarly, the patterns Ps and Pt in TBP-2 and TBP-3 from

Table 1 would match with column-pairs (S-phone, R-phone)
and (S-coordinates, R-coordinates) in Figure 2, respectively,
suggesting two additional transformations that can be per-
formed. It should be noted that TBE typically requires
paired examples and would not apply here.
TBP for “Auto-Repair”. As an additional example

application, we show that TBP can also help to identify and
fix inconsistent data values in tables. Figure 3 shows real
data quality issues in Wikipedia tables that are identified
and fixed by TBP programs produced in this work.
For instance, in Figure 3(a), using TBP we can detect

that values in the Date column have two distinct patterns:
“<digit>{4}-<digit>{2}-<digit>{2}” (e.g., “1997-06-04”) as
well as “<letter>+ <digit>{2}, <digit>{4}” (“January 12,

1997”). Since these two patterns match with Ps and Pt of
a TBP program in Table 1, it likely indicates data inconsis-
tency. With TBP, we could bring these two groups of values
to users attention, and propose fixes by applying the cor-
responding T (e.g., transforming “1997-06-04” to “June 4,

1997”).
We note that the TBP framework is general and applies

to diverse types of transformations, including data in dif-
ferent languages (e.g., Spanish, Chinese, etc.), and data in
different domains (e.g., chemical, financial, etc.). For exam-
ple, some of the cases in Figure 3 require transformations in
languages other than English, such as Figure 3(e) (fixable
by TBP-15), and Figure 3(l) (fixable by TBP-16), etc. These
are all real TBP programs harvested from different table
corpora (e.g., Wikipedia tables in different languages). Our
evaluation suggests that these TBP programs can detect and
fix thousands of real issues across different languages.
For non-technical users working on spreadsheet data (e.g.,

in Microsoft Excel or Tableau), TBP makes it possible to au-
tomatically flag and repair a subclass of data format issues.
We note that TBP once again complements traditional TBE
approaches, which would require explicit paired-examples in
order to suggest transformations.
In short, TBP can program a rich class of transformations,

creating opportunities to simplify data transformation in ap-
plications such as Auto-Repair and Auto-Unify.
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Table 1: An example repository of TBP programs (Ps, Pt, T ), where each line is a TBP program. The first three programs
can be used to auto-unify the two tables shown in Figure 2.
TBP-id Source-pattern (Ps) Target-pattern (Pt) (T )
TBP-1 <letter>{3}. <digit>{2}, <digit>{4} <digit>{4}-<digit>{2}-<digit>{2} ...
TBP-2 (<digit>{3}) <digit>{3}-<digit>{4} <letter>{3}-<digit>{3}-<digit>{4} ...
TBP-3 (<digit>+◦<num>’<letter>{1}, <digit>+◦<num>’<letter>{1}) <letter>{1}<digit>+◦<num>’ <letter>{1}<digit>+◦<num>’ ...

... ... ... ...
TBP-7 <digit>{4}/<digit>{2}/<digit>{2} <letter>{3} <digit>{2} ...
TBP-8 <num> kg <num> lb ...
TBP-9 <num> lb <num> lb <num> oz ...

... ... ... ...
TBP-15 <num> kg <num>公斤 ...
TBP-16 <letter>+ de <digit>{4} <digit>{4} ...

... ... ... ...

Table 2: Example table with (C, C′, T ) triples, where (C, C′) are paired columns, and T is a synthesized program that can
transform C to C′. The first triple CCT-1 corresponds to the column-pair (“Born”, “Date of birth”) in Figure 4, with an
inferred program in Listing 1. CCT-4 shows another pair of columns with similar data format and an identical program. Not
all column-pairs have programmatic relationships, such as CCT-9, leading to an empty program.
CCT-id Input-column (C) Output-column (C′) Program (T )
CCT-1 (C1) “Born” = {“02/22/1732”, “10/30/1735”, ... } (C′1) “Date of birth” = {“February 22, 1732”, ... } Listing 1
CCT-2 (C2) “Date of birth” = {“February 22, 1732”, ... } (C′2) “Born” = {“02/22/1732”, “10/30/1735”, ... } ...
CCT-3 (C3) “Died” = {“02/14/1799”, “07/04/1826”, ... } (C′3) “Date of birth” = {“February 22, 1732”, ... } ...
CCT-4 (C4) “Date” = {“11/01/2019”, “12/01/2019”, ... } (C′4) “Date-2” = {“November 01, 2019”, ... } Listing 1

... ... ... ...
CCT-9 (C9) “Name” = {“Washington, George”, “Adam, John”, ... } (C′9) “Date of birth” = {“February 22, 1732”, ... } ∅

... ... ... ...

“Learned” TBP programs from TBE query logs.
Given the benefit of TBP, we set out to harvest such pro-
grams at scale (as manually curating them would not scale).
One possible approach is to leverage the “query-logs” of

a TBE system. This is analogous to search engines like
Google and Bing, which have long used their query logs con-
taining (keyword-query, user-clicked-document) to improve
search relevance. We argue that the same is true for TBE
systems – specifically, since we have developed TDE [33]
and deployed a version of the system as an Excel add-in,
we are able to collect telemetry of TBE tasks submitted
by Excel users. We should emphasize that we could not
log user data in any form due to legal and compliance rea-
sons – we only collect high-level statistics such as whether a
top-ranked transformation program suggested by TDE is ac-
cepted. Hypothetically, imagine that we could fully log users
input/output data sets, then like search engines we could
leverage the logs to identify common (input-data-pattern,
output-data-pattern, program) triples that are likely good
TBP programs.
Because we are not able to obtain detailed logs in spread-

sheet programs, in this work we develop alternative ap-
proaches to harvest TBP programs.
“Learned” TBP programs from tables. In this work

we propose to harvest TBP transformations from a large
collection of tables. Specifically, we develop techniques to
automatically “link” together table columns with related
content, from which we can exploit content redundancy to
“learn” common transformations.
Figure 4 shows 6 example web tables about US presidents.

We develop techniques to link them together at a row-level
– e.g., the first row of each table corresponds to “George
Washington” and will link/join. After rows are linked, we
can pair columns together “as if” they are input/output
columns, to see if any transformation can be learned us-
ing TBE – for example, the “Born” column {“02/22/1732”,
“10/30/1735”, . . . } in T1 can be paired with the “Date of

birth” column {“February 22, 1732”, “October 30, 1735”,
. . . } from T2, etc. Table 2 shows this column-pair, in row
CCT-1, as well as many other column pairs so produced.These
column pairs are then fed into a TBE system (in our case,
TDE [33]) to learn possible transformation programs, which
are stored in the last column of the table. Notice that given
6 different date-formats used by 6 tables for date-of-birth
in Figure 4, we can already construct a total of 2

(6
2

)
= 30

distinct pairs of formats and their corresponding transfor-
mations, which are all validate TBP programs.
Figure 5 shows another group of 5 tables from Wikipedia,

each of which has a table for US presidents but in different
languages. We develop methods to again automatically link
rows between these tables, and then construct column-pairs
for TBE systems to learn possible transformation programs
across different languages (e.g., from “April 30, 1789” to
“30 de abril de 1789”).
By analyzing many such (Input-column, Output-column,

Transformation-program) triples in Table 2, we can identify
programs that are used repeatedly across the corpus – for
example, the same program (labeled as Listing 1 in Figure 2)
is being used by column-pair CCT-1, CCT-4 and many others,
suggesting that this is likely a good TBP program. In this
work, we develop methods to construct a large “transforma-
tion graph”, to reason about the goodness of TBP programs
in a global manner. TBP programs so produced can then
be used to enable applications like Auto-Repair.
Inter-operability of structured data. TBP is one

step toward achieving inter-operability of tabular data. We
note that by “lifting” data values from a “string” space into
a “program/code” space using TBP, values become inter-
operable (via programs). This is analogous to knowledge-
bases used in search engines, which also “lift” strings into
“entities” for richer experiences (e.g., knowledge cards and
related entities as opposed to 10 blue links). TBP can sim-
ilarly light up new experiences for tabular data like Auto-
Repair, and is a useful step toward inter-operability.
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(a) EN-Wiki: Dates (b) EN-Wiki: Currency values (c) EN-
wiki:time

(d) EN-Wiki: Date

(e) ZH-Wiki: Units (f) ZH-Wiki: Ordinals (g) ZH-Wiki: Date (h) JA-Wiki: Year

(i) JA-Wiki: Date (j) ES-Wiki: Numbers (k) ES-Wiki: Numbers (l) ES-Wiki: Date

Figure 3: Auto-Repair: Real quality issues (in red boxes) from Wikipedia tables that are fixable by TBP programs. Note
that the examples span different languages (English, Chinese, Japanese, Spanish, etc.)

2. SYSTEM ARCHITECTURE
Figure 6 gives a high-level overview of the architecture

of our system. There are three main components, which
are all offline processing steps. The first component takes a
large corpus of tables (e.g., web tables or enterprise spread-
sheets), find related tables, link/join records across tables
(like shown in Figure 4 and Figure 5), to produce paired
columns (C, C′) like in Table 2 (Section 3).
The second component uses paired columns (C, C′) as if

they are input/output columns in a transformation task, and
invokes TBE to find possible transformation T consistent
with all examples in (C, C′). If TBE synthesizes such a T ,
the (C, C′, T ) triple is populated in Table 2 (Section 4).
In the last stage, we analyze (C, C′, T ) triples in Table 2

in a global manner, in order to identify TBP programs that
are both commonly-used and highly-accurate. We formulate
an automated approach to harvest such programs, as well
as a human-curated variant that can leverage human labels
effectively (Section 5).
We now discuss each component in turn.

3. PAIR COLUMNS WITH LINKED ROWS
In this section, we discuss the first part of our system,

which takes a large collection of tables T as input, and pro-

duces pairs of columns that are linked row-by-row. In this
section, we discuss 3 different ways to achieve this in turn,
using a corpus of over 100M web tables [18]6

3.1 Pair Columns by Search Engine
Our first approach leverages search engines, utilizing the

observation that pages returned for the same keyword query
often contain related tables. We perform 3 steps here: pair-
ing tables, linking rows, and pairing columns.
Pairing tables. We take the query-logs of a commercial

search engine, and first use a production classifier [18] to
select queries known as “table-intent queries” [18], which are
data-seeking queries such as “list of us presidents”, “list
of national parks”, “list of chemical elements”, etc. We
obtain a total of 16M table-intent queries, denoted by Q.
For each query q ∈ Q, we retrieve all web tables in the

top-20 pages returned by the search engine, denoted by Tq,
which contains tables related to query q. For example, ta-
bles in Figure 4 are all retrieved for the query “list of us

presidents”. We can then pair such tables in Tq to produce
table-pairs PQ = {(T, T ′)|T ∈ Tq, T ′ ∈ Tq, T 6= T ′, q ∈ Q}.
Linking rows. Recall that in order to utilize TBE to

generate programs, we need paired input/output examples.
6Similar web-table data sets are publicly available in [2, 8].
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Figure 4: An example group of 6 web tables on US presidents, extracted from top-ranked documents for query “list of us
presidents”. Note that the same date-of-birth information is being represented in 6 different formats, which can be used as
input/output examples for TBE to learn common TBP transformations.

Figure 5: An example group of 4 Wikipedia tables in different languages (clockwise: English, Chinese, German, Spanish)
that we can link at a row-level (using Wiki inter-language links for pages with the same content). Note that the “date-in-office”
is being represented in different languages across 4 tables, providing examples to learn such transformations.

Figure 6: System Architecture: Learn TBP Programs.

So for a given pair (T, T ′) ∈ PQ, we additionally need to
find row-level “links” between T and T ′ (e.g., the first row
of T1 in Figure 4 corresponds to the first row of T2, etc.).
In an ideal setting, such row-level links can be obtained by

equi-joins on key-columns. However, in practice equi-joins
typically fail, because values are often coded/formatted dif-
ferently between tables in the wild – e.g., names of presidents
are formatted differently as shown in Figure 4.
To account for syntactic variations in the key-columns, we

leverage an existing “auto-join” system [68]7 to automati-
cally identify join relationships. Specifically, given (T, T ′) ∈
PQ, we take two left-most non-numeric columns from T and

7
A variant of this system is publicly available in Azure ML Data

Prep: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.

api.builders.joinbuilder

T ′ (which likely include key columns), and invoke the “auto-
join” system to find possible joins.

Example 1. For T1, T2 in Figure 4, we use [68] to au-
tomatically infer a join-program J , which performs the fol-
lowing operations on the “Name” column of T1: (1) splitting
names like “Washington, George” by comma (producing an
array with two elements like [“Washington”, “George”]); (2)
concatenating the second element with the first element us-
ing a space (producing values like “George Washington”).
Note that applying J on the “Name” column in T1 produces

values like {“George Washington”, “John Adams”, . . . }, which
precisely match the key values in T2, such that an “equi-
join” can now be performed to link the two tables together.
We consider this J to be reliable, as most rows can be joined
1:1 using J .

The auto-join approach allows us to link rows together
between other table-pairs in Figure 4 similarly. We find this
approach produces substantially more links than equi-join,
which are also more accurate than fuzzy-join (because it
uses precise transformations). More details of this step can
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be found in [68], which we omit here in the interest of space.8
Pairing Columns. For each table pair (T, T ′) ∈ PQ that

is now linked at a row-level, we enumerate pairs of columns
in (T, T ′), written as CQ = {(C, C′)|(T, T ′) ∈ PQ, C ∈
T, C′ ∈ T ′}. This produces a total of 15M column pairs,
which will later be used as input/output examples for TBE.

Example 2. For T1, T2 in Figure 4, we produce (C, C′)
column pairs such as (Name, Date-of-birth), (#, Date-of-birth),
(Born, Date-of-birth), etc., which would populate Table 2.
Observe that values in C and C′ are ordered based on row-
level links from the previous step, and not all (C, C′) column-
pairs have programmatic relationships (e.g., CCT-9).

3.2 Pair Columns by Wikipedia Links
Our second approach pairs columns leveraging intra-Wiki

cross-language links.
Pairing Tables. Wiki pages have extensive intra-Wiki

links pointing to other related Wiki pages. A special form
of this is the cross-language links. Specifically, each Wiki
page p has a list of links on the left side-bar pointing to
Wiki pages with the same content as p but written in other
languages (e.g., Figure 7(a) shows the cross-language links
on page “list of us presidents” that point to similar pages
written in 109 other languages).
We parse Wiki pages from a recent crawl, and identify

cross-language links to produce Llink = {(p, p′)} that records
all pairs of pages p, p′ linked by cross-language links, from
which we can again identify pairs of related tables as: Pwiki =
{(T, T ′)|T ∈ p, T ′ ∈ p′, (p, p′) ∈ Llink}. Each pair (T, T ′) so
produced will likely have related content in different lan-
guages, like shown in Figure 5.
Linking Rows. Given table pairs (T, T ′) ∈ Pwiki, we

leverage cross-language links for a second time to identify
row-level links between (T, T ′). Specifically, notice that for
each table in a given language (e.g., English, Chinese, etc.)
in Figure 5, the president names are all blue links point-
ing to Wiki entity pages of these presidents in that same
language – e.g., the first row of the top two tables in Fig-
ure 5 links to the Wiki entity page of “George Washington” in
English and Chinese, respectively, denoted as pen

gw and pzh
gw.

Recall that these two pages pen
gw and pzh

gw are again linked
by cross-language links, or (pen

gw, pzh
gw) ∈ Llink, this allows us

to determine that these two first rows should be linked to-
gether. Links for other rows can be produced similarly, as
shown with dotted lines in Figure 5.

(a) Wiki-links:
other language

(b) Example col
pairs (same table).

(c) Example col pairs
(same table).

Figure 7: Example web pages.

8We note that this row-wise linking step can be seen as
a form of unsupervised entity-resolution, where other tech-
niques like [34, 47, 62, 67] may also be used.

We currently extract pages in 12 popular languages (en,
es, de, fr, ja, ka, it, zh, vi, pt, hi, ar, ru), and fo-
cus on language-pairs involving English (e.g., en-es, en-de,
etc.). This produces 3M table pairs across languages.
Pairing Columns. From Pwiki, columns paired can again

be enumerated as Cwiki = {(C, C′)|(T, T ′) ∈ Pwiki, C ∈
T, C′ ∈ T ′}, with values in (C, C′) paired based on row-
level links. Examples of Cwiki include pairs of different
“time-in-office” columns shown in Figure 5.

3.3 Pair Columns Within Individual Tables
Lastly, observing that column pairs within individual ta-

bles can also have programmatic relationships (e.g., Fig-
ure 7(b) and 7(c)), we produce single-table column pairs
as CT = {(C, C′) |T ∈ T, C ∈ T, C′ ∈ T, C 6= C′}, where T
is the corpus of all web tables. Note that such column-pairs
are from the same table and are thus already linked at a
row-level. This generates over 1 billion column pairs.

4. GENERATE TBE PROGRAMS
Given the paired-columns from the three approaches in

Section 3, denoted by C = CQ
⋃

Cwiki
⋃

CT, we take column-
pairs (C, C′) ∈ C and invoke TBE to test if there is any
programmatic relationships.
In this work, we use the TDE system [33] as our TBE

engine. Unlike other TBE systems, TDE can synthesize
complex programs using external functions from GitHub.

Example 3. Consider column pair (“Born”= {“02/22/1732”,
“10/30/1735”, . . . }, “Date of birth” = {“February 22, 1732”,
“October 30, 1735”, . . . }), shown in the CCT-1 row of Ta-
ble 2. (this column-pair is taken from Figure 4).
Figure 8 illustrates how TDE synthesizes a program that

can transform each value in the column “Born” (on the left)
to exactly match a corresponding value in the column “Date
of birth” (on the right).
In this example, TDE identifies a function in its index

called DateTime.Parse(String)9 as a promising candidate,
and invokes the function with each input value in “Born”
as parameter (e.g., DateTime.Parse(“02/22/1732”)).
For each input value, invoking DateTime.Parse(String)

produces a DateTime object, which has attributes such as
Year, Month, Day that are populated with relevant values.
Conceptually, these values can be organized as an interme-
diate table as shown in Figure 8.
From this table, we can leverage program-synthesis tech-

niques to “piece-together” relevant parts, so that the output
on each input value can exactly match its target. Let ret be
the object returned from invoking DateTime.Parse(String).
A synthesized program T performs the following steps:
(1): Take ret.Month-Str;
(2): Concatenate (1) with an empty-space “t”;
(3): Concatenate (2) with ret.Day;
(4): Concatenate (3) with “, t”;
(5): Concatenate (4) with ret.Year.
This synthesized program is shown below, and can be veri-

fied to transform values in “Born” to ones in “Date of birth”.
Listing 1: Synthesized program for the example in Figure 8

public string T(string input)
{ var ret = System.DateTime.Parse(input);

return ret.Month-Str + ‘‘ ’’ + ret.Day + ‘‘, ’’ + ret.Year;
}

9
https://docs.microsoft.com/en-us/dotnet/api/system.datetime.parse
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Figure 8: Example Invocation of f = DateTime.Parse() on each value from the input column (left). Each invocation returns
a DateTime object, whose attribute-values can be conceptually represented as the tables shown in the middle. Programs can
be dynamically synthesized to produce the exact values in the output column (right).

For each column pair (C, C′) from Table 2 where a pro-
gram T can be learned, we populate T in the last column
of Table 2. For example, Listing 1 is populated for CCT-1

and CCT-4. We refer to this collection of (C, C′, T ) triple as
TCCT = {(C, C′, T )}.

5. DISCOVER TBP PROGRAMS
So far we produced (C, C′, T ) triples in TCCT like shown

in Table 2. Our next step is to conflate related CCT triples,
so that useful TBP programs in the form of (Ps, Pt, T ) like
in Table 1 can stand out.
The first challenge we address in this section, is to gener-

ate suitable patterns Ps and Pt from C and C′, respectively.
5.1 Generate Patterns for Data Columns
In this work, we choose to use regex-like patterns to in-

stantiate both Ps and Pt in TBP programs. Note that other
ways to generate pattern-signatures and group related data
columns, e.g., via semantic type-detection [64, 66], are also
possible and are interesting directions to extend TBP.
Since generating regex-patterns given a data column C

has been extensively studied in the data profiling litera-
ture (e.g., [28, 54]), it is not the focus of this work. We
perform pattern-profiling using an in-house implementation
that enumerates all possible regex-like patterns for a given
column C, denoted by P(C).10

Given all possible patterns P(C) for a column C, our ob-
servation is that not all patterns in P(C) are equally suitable
for TBP, as illustrated in the following example.

Example 4. Consider the row CCT-1, with a triple (C1:
{“02/22/1732”, “10/30/1735”}, C2: {“February 22, 1732”,
“October 30, 1735”}, Listing 1) in Table 2. Given C1, the
possible patterns that can be generated in P(C1) include:
P1a = “<digit>{2}/<digit>{2}/17<digit>{2}” (with a con-
stant “17” since all years in C1 starts with “17”); a more gen-
eral P1b =“<digit>{2}/<digit>{2}/<digit>{4}”; or a even
more general P1c =“<num><symbol><num><symbol><num>”, etc.
Here “<digit>” stands for [0-9], “<num>” for both integer
and floating-numbers, “<symbol>” for any punctuation, and
“<letter>” for [a-zA-Z].
As humans, we can intuitively see that the ideal way to

generalize CCT-1 into a TBP program, is to use the second
option P1b = “<digit>{2}/<digit>{2}/<digit>{4}” to “de-
scribe” column C1, because it would “match” other similar
columns to which the same transformation in Listing 1 also
applies (e.g., column C4 = {“11/01/2019”, “12/01/2019”
} of CCT-4 in Table 2). In comparison, using a less general
pattern like P1a to describe C1 would lead to reduced ap-
plicability. At the same time, using a more general pattern
like P1c = “<num><symbol><num><symbol><num>” would make
Listing 1 trigger on irrelevant columns (e.g., phone numbers
like 425-880-8080), thus producing false-positives.
The upshot is that only P1b ∈ P(C1) generalizes values

in C1 into the right level for TBP, which strikes the right
10Different pattern languages can be used here – we consider
the exact choice of patterns as orthogonal to TBP.

balance between generality and accuracy of matches in the
context of this TBP transformation.
Similarly, while many patterns can be generated for C′1 in

CCT-1, only the pattern P2b ∈P(C′1), “<letter>+ <digit>{2},

<digit>{4}”, is a more suitable choice for this TBP program.
Example 4 illustrates that given a triple (C, C′, T ), there

are many possible patterns P(C) and P(C′), from which
we need to pick suitable choices. Intuitively, we want to
pick patterns P ∈ P(C) and P ′ ∈ P(C′) to balance two
conflicting objectives: (1) High “coverage”, or we should
pick patterns that are general to ensure that the resulting
TBP is broadly applicable; and (2) High “accuracy”, or we
should pick patterns that are not overly general to make the
resulting TBP trigger on irrelevant column-pairs.
Our observation is that while it is hard to know what

P and P ′ to pick by only looking at one (C, C′, T ) triple,
such decisions would become obvious when looking at a large
collection of triples TCCT (from Section 4).
In the following, we will first formally define coverage and

accuracy of a TBP program using TCCT, and then illustrate
these notions using concrete examples.

Definition 1. The estimated coverage of a TBP program
(P, P ′, T ) on TCCT, denoted by Cov(P, P ′, T ), is defined as:

Cov(P, P
′
, T ) =

|{(C, C
′
, T
′)|(C, C

′
, T
′) ∈ TCCT, P ∈ P(C), P

′ ∈ P(C
′), T = T

′}|
(1)

Cov(P, P ′, T ) identifies the number of triples in TCCT,
where P matches C (P ∈ P(C)), P ′ matches C′ (P ′ ∈
P(C′)), and T is applicable.

Definition 2. The estimated accuracy of a TBP program
(P, P ′, T ) on TCCT, denoted by Acc(P, P ′, T ), is defined as:

Acc(P, P
′
, T ) =

Cov(P, P ′, T )
|{(C, C′, T )|(C, C′, T ) ∈ TCCT, P ∈ P(C), P ′ ∈ P(C′)}|

(2)

Acc(P, P ′, T ) measures the fraction of column pairs match-
ing P and P ′, for which T is applicable.
We use the following example to illustrate how coverage

and accuracy of a TBP program (P, P ′, T ) can be estimated
using a global analysis of TCCT.

Example 5. Continue with Example 4. For CCT-1, sup-
pose we pick P1b ∈ P(C1) and P2b ∈ P(C′1), this produces
a candidate TBP program TBP1b = (P1b, P2b, Listing-1). If
we look across triples in TCCT, we find additional “evidence”
for which TBP1b is applicable. For example, in CCT-4, C4
and C′4 are consistent with P1b and P2b, respectively, and
furthermore T in CCT-4 is identical to Listing-1. Intuitively,
if we find many such triples in TCCT, we can reason TBP1b

to be high coverage.
Suppose we find a total of 800 triples (C, C′, T ) ∈ TCCT,

for which P1b matches C, and P2b matches C′. Intuitively
these (C, C′) are column-pairs on which TBP1b can trigger.
Suppose we find that 600 triples out of the 800 have the same
program Listing-1. This would indicate that TBP1b has a
good “coverage” of 600 column-pairs, using Equation (1), as
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well as a good “accuracy” of 600
800 , using Equation (2), making

TBP1b a desirable TBP candidate.
A second candidate TBP1a = (P1a, P2b, Listing-1) uses

a less general P1a = “<digit>{2}/<digit>{2}/17<digit>{2}”
from Example 4. Suppose we find 10 triples in TCCT for
which TBP1a is applicable (because P1a has a restrictive
prefix “17”). This makes TBP1a low coverage and less de-
sirable.
A third candidate TBP1c = (P1c, P2b, Listing-1) uses a

more general P1c = “<num><symbol><num><symbol><num>”. The
two patterns P1c and P2b would match 10000 column pairs
(C, C′) in TCCT, within which Listing-1 is applicable to only
600. This translates to a low accuracy score of 600

10000 , which
makes TBP1c less desirable.

5.2 A graph-based analysis of TBP programs
Our coverage and accuracy scores defined so far would re-

liably reflect the quality of TBP programs, if we could actu-
ally “log” real input-output columns users submit to a TBE
system, and use these real column-pairs/transformation-tasks
to estimate the quality of TBP programs.
However, because logging user data is not allowed in spread-

sheet settings, we rely on columns paired synthetically as a
“proxy” of real transformation tasks, many of which may
have no programmatic relationships. As a result, our esti-
mate of accuracy in Equation (2) can be inaccurate.
As an example, when columns are auto-paired in Figure 4,

note that the “Died” column in T1 and the “Date of birth”
column in T2 would also be paired, producing a triple CCT-3

shown in Table 2. Since there is no relationship for the two
columns in CCT-3, no programs can be learned. However,
since the the columns in CCT-3 have identical patterns as
those in CCT-1, the estimated accuracy of TBP programs
for CCT-1 (e.g, TBP1b in Example 5) would be lowered, be-
cause CCT-3 is (incorrectly) included in the denominator of
Equation (2) when accuracy is computed.
We should note that simply pruning away triples with no

learned-program in TCCT would also not work as it over-
estimates the true accuracy of programs – the TDE en-
gine we leverage uses powerful external functions, which can
occasionally “over-fit” complicated programs on unrelated
column-pairs, which would then be suggested.
Let TPPT = {(P, P ′, T )|(C, C′, T ) ∈ TCCT, P ∈ P(C), P ′ ∈

P(C′)}, be the space of possible candidate programs we enu-
merate. Given the large space of candidates in TPPT, the
coverage and accuracy measures help us to prune unpromis-
ing TBP candidates (e.g., coverage < 5, accuracy < 0.1).
From the remaining candidates, we propose to leverage pro-
gram interactions to find good TBP programs, by analyzing
all candidate TBP programs in a global TBP graph G.

Definition 3. We model TBP transformations in TPPT
using a directed graph G = (V, E), where each pattern P
corresponds to a vertex VP ∈ V , and each candidate pro-
gram (P, P ′, T ) ∈ TPPT corresponds to a directed edge
EP P ′T ∈ E that connects vertex VP to VP ′ .
We note that this is a directed graph because TBP pro-

grams are directional (e.g., T typically converts data in pat-
tern P to pattern P ′, but not in the other direction).

Example 6. Figure 9 shows an example TBP graph with
sample vertices and edges. Each vertex here corresponds to
a pattern, and each edge is a candidate TBP program (some
edges are omitted to avoid clutter).

We also note that in general there can be multiple edges
between vertices (making it a directed multi-graph), because
we may generate multiple candidate programs between two
patterns (some of which incorrect), and furthermore certain
patterns can be inherently ambiguous with multiple mean-
ings (e.g., mm/dd/yyyy vs. dd/mm/yyyy). We omit such edges
in the example graph for simplicity, but our techniques be-
low still apply when multiple edges are present.
5.3 Harvest TBP programs by relationships
Given a global TBP graph, in this section we discuss an

automated approach to harvest TBP programs leveraging
relationships between programs. We will discuss an alterna-
tive that leverages human labels in Section 5.4.
From a global TBP graph, we exploit two types of implicit

relationships between TBP programs in order to infer their
quality. Intuitively, this can be seen as asking programs to
“corroborate” each other’s validity.
Lossless inverse programs. The first type of relation-

ship is referred to as inverse programs, defined as follows.
Definition 4. Two TBP programs (P, P ′, T ) and (P ′, P,

T ′) are lossless inverse programs, if applying T on column
C matching P (or P ∈ P(C)) produces T (C) of pattern P ′,
from which applying T ′ produces the original input C, or
T ′(T (C)) = C.
Inverse programs are similar in spirit to inverse-functions

in mathematics, and we write such pairs as (P, P ′, T ) and
(P ′, P, T−1). Here, if after applying T and T ′ sequentially
we obtain the original input data C, it is a good indica-
tion that (1) both T and T ′ are lossless transformations (for
otherwise one could not regenerate an identical C); and (2)
both T and T ′ are likely good TBP programs (because the
counterpart is generated independently).

Example 7. In the example graph in Figure 9, we can see
many pairs of inverse programs, such as the pair (P8, P9, T89)
and (P9, P8, T98) for geo-coordinates; the pair (P4, P5, T45)
and (P5, P4, T45) for date-time strings, etc.
It can be verified that such transformations are lossless,

because executing T and T−1 produces output identical to
the input. For instance, from P5 to P4 and applying T54,
even though some tokens are dropped (e.g., “Sun and “Dec”),
it is still lossless because when we apply T45 in the other
direction, we re-produce the original input.
While the example graph in Figure 7 would suggest that

inverse programs can be identified as cycles of length 2, in
general we need to test whether the inverse-relationship of
Definition 4 holds on T and T ′ using real data.
Specifically, in order to test if (P, P ′, T ) and (P ′, P, T ′)

are inverse-programs, we leverage column-pairs (C, C′) from
TCCT for which (P, P ′, T ) is known to hold. We then apply
(P ′, P, T ′) in the other direction, by applying T ′ on each C′

to test whether the original C can be re-produced.
For each candidate pair TBP (P, P ′, T ) and (P ′, P, T ′),

we perform this test on TCCT , and compute a success rate
for inversion, denoted by Sinv((P, P ′, T ), (P ′, P, T ′)):

Sinv =
|{(C, C′, T ) ∈ TCCT , P ∈ P(C), P ′ ∈ P(C′), T ′(T (C)) = C}|

|{(C, C′, T ) ∈ TCCT , P ∈ P(C), P ′ ∈ P(C′), T (C) = C′}|
(3)

We consider (P, P ′, T ) and (P ′, P, T ′) be inverse programs
if the inverse relationship test holds on a large fraction of
real data tested (e.g., Sinv > 0.8). In such cases, we can
consider both as quality TBP programs, because they are
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Figure 9: An example TBP graph (with some edges omitted to avoid clutter). Each vertex corresponds to a data pattern
P , and each edge (P, P ′, T ) is a program between two patterns P and P ′. (We use short-hand notation of pattern tokens,
such as <d>, <l> and <n> that stand for <digit>, <letter> and <num>, respectively).

lossless and can corroborate each other. Spurious programs
“over-fitted” on limited examples in the TBE step would
often fail the test.
Triangular equivalent programs. Because not all trans-

formations are lossless (a prerequisite for inverse-programs),
we also consider a second type of triangular relationship be-
tween programs.

Definition 5. Three programs (P, P ′′, T ), (P, P ′, T ′) and
(P ′, P ′′, T ′′) are defined as triangular equivalent programs,
if applying T on column C matching P (or P ∈ P(C)) pro-
duces output T (C), which is identical to applying T ′ fol-
lowed by T ′′ sequentially on C, or T ′′(T ′(C)) = T (C).

Example 8. Consider the triangle between P5, P6 and P7
in Figure 9. It can be seen that the program T67 is lossy
(the time part is dropped after the transformation), and
thus cannot be part of an inverse program.
However, applying T67 on suitable input (e.g. 07:38AM, 30

December 2019) produces output (Dec. 2019) that is identi-
cal to applying T65 followed by T57, suggesting a triangular
relationship, which can be used as a piece of evidence to
substantiate the validity of T65.
Like inverse-programs, we test each triple (P, P ′′, T ), (P,

P ′, T ′) and (P ′, P ′′, T ′′), by performing tests on column data
in TCCT . The success rate Stri can be calculated as:

|{(C, C′′, T ) ∈ TCCT , P ∈ P(C), P ′′ ∈ P(C′′), T ′′(T ′(C)) = C′′}|
|{(C, C′′, T ) ∈ TCCT , P ∈ P(C), P ′′ ∈ P(C′′), T (C) = C′′}|

(4)We consider triangular-equivalence to hold on a program-
triple, if the test above holds on most column pairs from
TCCT (e.g., Stri > 0.8).
Harvest TBP programs by program relationships.

We note that because the program relationships above can
identify high-quality TBP programs, this provides an auto-
mated approach to harvest TBP programs. We implement
tests of inverse and triangular relationships as Map-Reduce
style jobs, using success-rates defined in Equation (3) and
Equation (4).
5.4 Harvest TBP programs by curation
We note that there are many application scenarios where

suggested TBP-transformations are required to be close to
100% correct (e.g., suggesting data-repairs in Excel or Google
Sheets). Such TBP programs need to be manually inspected
and verified beforehand.
As a result, we also consider a problem variant where TBP

programs have to be verified by human curators, who can
inspect and verify up to k candidate programs, and label
them as correct or incorrect. The key technical challenge is
to select programs of high “impact” for humans to verify, so
that the benefit of the k labels can be maximized.

For this task, we start with the graph where edges/pro-
grams are already verified as inverse or triangular. Recall
that each edge/program has a “coverage” score Cov(P, P ′, T ),
indicating the popularity/importance of the program. Intu-
itively, frequently-used transformations (e.g., for common
date-time formats) have high coverage scores and are more
important to be verified first. Our overall objective is thus
to maximize total coverage scores of edges/programs given
a budget of k labels.
Our observation here is that because of relationships be-

tween programs, verifying a program on one edge can have
super-modular benefits, as shown in the example below.

Example 9. In the curation setting, each edge/program in
Figure 9 needs to be verified and has an associated coverage
score. Observe that if a human curator can verify T89 to
be correct, then the inverse T98 is verified implicitly and
be assumed correct. We thus “gain” the coverage-scores
on both T89 and T98 by verifying one edge. Similarly, if
both T65 and T57 are verified as correct, T67 is also likely
correct (because of the triangular relationship), allowing us
to obtain the coverage score on T67 without labeling it.
Given that we try to maximize total coverage scores, and

the inverse/triangular relationships that we can leverage
(e.g., verifying an edge also implicitly verifies the inverse
of the edge), the incremental benefit of labeling an edge is
“super-modular” in regions of the graph with a dense cluster
of edges (e.g., the middle part of Figure 9). In comparison,
verifying an edge not well-connected to other nodes would
have reduced impact.
We formulate this as an optimization problem. Given a

TBP graph G = (V, E), where each edge e ∈ E has a cover-
age score Cov(e). Our objective is to find a subset of edges
Es ⊂ E to verify, with |Es| ≤ k, such that the total coverage
score of these verified programs, together with ones implic-
itly verified through program relationships, is maximized.
We write this in an ILP formulation, termed as CMPS

(coverage-maximizing program selection) below:

(CMPS)max
∑
ei∈E

Cov(ei)vi (5)

s.t.
∑
ei∈E

xi ≤ k (6)

ym ≤ xi + xj , ∀ Invm(ei, ej) ∈ Inv(G) (7)
zn ≤ xi + xj + xl − 1, ∀Trin(ei, ej , el) ∈ Tri(G) (8)

vi ≤ xi +
∑

ei∈Invm

ym +
∑

ei∈Trin

zn, ∀ei ∈ E (9)

vi, xi, ym, zn ∈ {0, 1} (10)
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Here, xi indicates whether ei is selected for human verifi-
cation, ym indicates whether the m-th inverse-relationship,
denoted by Invm, has a participating edge selected for ver-
ification, zn indicates whether n-th triangular-equivalence
relationship, Trin, have more than two edges selected for ver-
ification. And finally vi indicates whether ei can be treated
as correct, through explicit human verification, or program
relationships. All of these are {0, 1} binary variables.
The objective function in Equation (5) calculates the sum

of coverage scores of all programs implicitly or explicitly ver-
ified (indicated by vi). Equation (6) ensures that at most
k edges are explicitly verified by humans. Equation (7) and
Equation (8) check whether enough edges in each inverse/-
triangular relationship are explicitly verified by humans (and
if so the corresponding ym and zn is set to 1). Finally, Equa-
tion (9) checks whether ei can be verified explicitly (through
xi) or implicitly (through ym or zn).
It is worth noting that this problem is super-modular [46],

because adding one labeled edge brings more benefit on a
larger set of selected edges S than a smaller set S′. Unlike
sub-modular maximization problems (e.g., Max-Coverage [15])
super-modular maximization is more difficult. We show the
hardness of CMPS below.

Theorem 1. The CMPS problem is NP-hard, and no
PTAS likely exist under standard complexity assumptions.
A proof of this result can be obtained using a reduction

from densest k-subgraph [43].
Given the hardness of CMPS, in the curation setting, we

resort to a heuristic that at each step, picks the edge with
maximum benefit (via explicit and implicit verification), un-
til the budget k is exhausted. We omit pseudo-code of this
procedure in the interest of space.
Additional formulations. There are a few alternative

formulations to the curation problem, which are variants
of CMPS. One possible alternative models the “coverage”
Cov(ei) of each edge/program e as the set of column-pairs
this program covers (as opposed to using a numeric count
like in CMPS). This would take into account possible over-
lap in coverage between edges/programs, and can more ac-
curately model the benefit of verifying an edge.
A second alternative formulation additionally models the

likelihood of an edge being correct, using estimated accuracy
scores, which generalizes CMPS in a different dimension.
From a complexity perspective, because CMPS is a special

case of these formulations, these formulations are at least as
hard as CMPS. We defer details of these formulations a full
version of the paper.

6. EXPERIMENTS
In our evaluations, we set out to answer two main ques-

tions: (1) whether the proposed method can harvest useful
TBP programs in an unsupervised manner, and (2) whether
the curated variant can leverage human labels effectively.

6.1 Datasets and Evaluation
In our experiments, we use a recent crawl of web tables

extracted from the index of a search engine [17], and prepare
five different table corpora that are summarized in Table 3.
• WEB. WEB-en contains a set 135M relational tables in
English extracted from the web [17].
• WIKI. In order to test whether Auto-Transform can
“generalize” to different data corpora (e.g., in different lan-
guages or domains), we also perform tests using Wikipedia

Table 3: Characteristics of table corpus used.
language # of tables # of columns # of linked

col-pairs
WEB-en English 135M 350M 1.2B
WIKI-en English 7.3M 41M 232M
WIKI-es Spanish 1.1M 6.3M 13M
WIKI-ja Japanese 790K 4.7M 5M
WIKI-zh Chinese 1.8M 9M 10M
Table 4: Four disjoint test corpora in different languages.

Corpus to learn TBP Corpus to test Auto-Repair
WEB-en 1% WIKI-en

WIKI-es/en 10% WIKI-es
WIKI-ja/en 10% WIKI-ja
WIKI-zh/en 10% WIKI-zh

tables in 4 popular languages: English (WIKI-en), Spanish
(WIKI-es), Japanese (WIKI-ja), Chinese (WIKI-zh).11 Specif-
ically, we learn TBP programs using Wikipedia tables in
these 4 languages, and then test such programs to Auto-
Repair 1% of Wiki-en, 10% of Wiki-es, 10% of Wiki-ja and
10% of Wiki-zh tables, respectively (shown in Table 4). We
also evaluate the quality of the programs so produced on
each corpus.
There are non-trivial scalability challenges given the large

number of tables. We carefully engineer the pipelines out-
lined in Figure 6 as multiple map-reduce-style jobs executed
on a production cluster [16]. These jobs run in under 10
hours end-to-end.
Since each TBP program (and repairs it produces) has a

confidence score (Equation (3) and (4)), we rank programs
(resp. repairs) by confidence, and manually label top-K
programs (resp. repairs). Following a standard from the IR
literature [29, 57], we use a ternary labeling, where in addi-
tion to results that are clearly correct or incorrect, we also
explicitly label suggested transformations that are reason-
able but not always desired (e.g., in a column with mixed
year values like 1997 and 1998∗, recommend a transforma-
tion that removes all ∗ symbols). For all methods compared,
results labeled as “reasonable” would not count in the recall,
but also do not count against the precision.
We report quality results of top-K using the precision@K

metric [49], defined as #-correct-repairs-top-K
#-correct-top-K+#-incorrect-top-K , and

#-correct-programs-top-K
#-correct-top-K+#-incorrect-top-K , respectively.

6.2 Methods Compared
We compare the following methods for Auto-Repair, which

is one application of TBP discussed in the introduction.
• Auto-Transform. This uses TBP to repair values. We
apply a TBP program (P, P ′, T ) on a column C, when there
are two values v, v′ ∈ C whose patterns match P , P ′, re-
spectively. We suggest T (v) in place of v in such cases.
• Syntactic. System-A12 is a commercial data prepara-
tion tool with a pattern-based standardization feature that
is the closest to TBP.13 We refer to this as Syntactic, since
based on public documentation it uses two groups of cu-
rated syntactic-rules: (1) “Generic Conversion” defines a
set of permitted transformations between source/target pat-
terns. For example, symbol changes are allowed (e.g., from

11While experiments were conducted on table data across 12
languages as listed in Section 3.2, the authors are only fa-
miliar with these 4 languages, which are chosen for labeling.

12We anonymize the name of the system in compliance with
its EULA (also a tradition in database benchmarking).

13Because System-A is a UI-driven tool with no API exposed
for large-scale testing, we implemented it based on public
documentations of this feature on its website.
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(a) Wiki-en (b) Wiki-zh (c) Wiki-ja (d) Wiki-es
Figure 10: Quality of repairs on Wiki-en, Wiki-zh, Wiki-ja, Wiki-es, using TBP programs learned from corresponding corpus.

(a) Web-en (b) Wiki-zh (c) Wiki-ja (d) Wiki-es
Figure 11: Quality of TBP programs produced on Web-en, Wiki-zh, Wiki-ja, Wiki-es, respectively.

“123.456.7890” to “123-456-7890”), so is splitting (e.g., from
“1234567890” to “123-456-7890”), etc. (2) “Datetime Con-
version”: if a column is recognized as datetime (based on
known date-time formats), then datetime-specific rules kick
in, which allow transformations on up to two token-groups
(e.g., from “Jan 1, 1981” to “01/01/1981”), but not more
than two (e.g., from “Jan 1, 1981” to “01/01/81”).
While these curated rules provide a strong baseline that

handles many common transformations, they can also pro-
duce false-positives that are not entirely intuitive to humans
– for example, in a column with <alpha>+ (<digit>.<digit>)

(e.g. “Washington (8.5)”) and <alpha>+ (<digit>{2}) (e.g.,
“Washington (12)”), a suggestion to transform “Washington
(8.5)” into “Washington (85)” will be produced. This is be-
cause dropping the symbol “.” is allowed by rule, even
though it is not semantically meaningful.
• Syntactic-Generic. This is Syntactic but with only generic
conversion rules as defined in System-A documentation. We
ran both Syntactic and Syntactic-Generic on the entire test
corpus, and label their respective top-K results.
• Grok-Types. An alternative to repairing data format
issues in columns, is to use predefined regex patterns to de-
tect known data-types (e.g., date-time, email, url, ip, etc.).
If more than one known pattern/format is detected in the
same column (e.g., date-format-1 and date-format-2), it is
likely a format issue that needs to be fixed.
We use Grok-patterns [3] for type-detection, which has

over 70 curated regex patterns for common data-types. For
each repair from Auto-Transform, we evaluate if the same
issue can be detected by Grok (by testing if there are two
Grok patterns in the column), and if so we mark it as “fix-
able” by Grok (even though no repair exists in Grok). We
report the total number of fixable issues for Grok.
•Excel-Types. Observing that Excel can auto-format data
of certain known types (e.g., date-time and currency) into
standard formats [1], we simulate the Excel logic from [5]

(which has over 110 date-time formats for “en-us” alone).
Like in Grok-Types, this is to understand the potential cov-
erage of Excel types – specifically, for each real issue detected
by Auto-Transform, we check if Excel type-detection logic
can discover two known formats mixed in the same col-
umn. We again report the fraction of issues fixed by Auto-
Transform that are also fixable by Excel.
• Functional Dependency (FD). First-order logic like
FD is widely used for error detection and repair (e.g., [11,
13, 23]), which conceptually addresses an orthogonal type of
errors manifested as inconsistency across multiple columns
(whereas TBP leverage information within single columns).
Even though the errors addressed by the two are largely

complementary, we nevertheless perform a comparison to
quantify the possible overlap between FD-based approaches
and TBP-based methods. Specifically, if the column C of
tuple t (written as C(t)) is fixed by Auto-Transform from
v to v̄, we check whether there is any approximate FD: Cl →
C in the same table (with column Cl being the LHS), that
can possibly fix v to v̄. Namely, we check if there exists
another tuple t′ with Cl(t′) = Cl(t) and C(t′) = v̄, which
would make the fix v → v̄ possible. We report the fraction
of issues fixed by Auto-Transform that are fixable by FD.

6.3 Experiment Results
TBP-based Data Repairs. Figure 10 shows the qual-

ity of top-K repairs generated on Web-en, Wiki-zh, Wiki-ja,
Wiki-es, respectively, using TBP programs generated from
corresponding corpora listed in Table 4.
Overall the trend is consistent across the 4 test corpora.

Auto-Transform can generate high-quality repairs across
different languages (examples of which are shown in Fig-
ure 3). Note that these TBP programs are harvested us-
ing the graph-based analysis without human curation (Sec-
tion 5.3). This experiment shows that our approach can
indeed generalize across different types of table corpora (in
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Figure 12: Benefit of providing k labels to curate programs
using TBP-Graph and Greedy, measured as the number of
data repairs possible on 10% of Wiki-es.

this case different languages), and provide a way to repair
data errors complementary to existing methods.
Also note that although we only label top-200 auto-repair

predictions, because these top-200 are produced on small
samples of each test corpus (e.g., 1% sample of Wiki-en),
we can extrapolate that this corresponds a large number of
good repairs on the full test corpus.
We analyze the false-positives in our results, and find that

number-formatting to be a main cause. For example, we
were able to identify as training data, paired-columns with
identical numbers in different formats (e.g., “$12345” vs.
“$12,345). On such columns, a simple inferred TBP would
produce “<digit>+” and “<digit>+,<digit>+” as input/out-
put patterns, with a transformation that inserts one comma
after the third character counting from the back. This how-
ever yields false-positives on longer input (e.g., “$1234567”).
Extending the current pattern language with more expres-
sive constructs (e.g., variable-length groups) would be useful
extensions.

Syntactic produces the second-best result, repairing up
to 40% suggested results correctly14. We notice a signifi-
cant number of false-positives, like the case of suggesting
to fix “Washington (8.5)” to “Washington (85)” discussed
above (such a transformation of dropping punctuation is al-
lowed by static rules, but is not semantically meaningful).
Syntactic-Generic produces results that are slightly worse
than Syntactic, because curated date-time repairs are typi-
cally correct.
When we analyze how many of the issues repaired by

Auto-Transform are fixable by Grok-Types and Excel-Types,
we observe a very small overlap (up to around 20%), despite
the fact that these two approaches use large numbers of pre-
defined format patterns. The difference is more pronounced
on Wiki-ja and Wiki-es, where the coverage of both Grok-
Types and Excel-Types are close to 0 (for these comparisons
we configure language/locale of Excel-Types to Japanese and
Spanish, respectively). This comparison suggests that the
types of issues addressed by Auto-Transform are likely
not fixable using a curated list of data-type format strings.
We perform a similar coverage analysis for FD – for each

issue identified by Auto-Transform, we programmatically
test whether it is a possible fix using approximate FD. We
find minimal overlap between FD and Auto-Transform
across the 4 test sets. This suggests that at least for web-
tables (which tend to be small), there is little data redun-
dancy across multiple columns that FD can leverage to sug-

14Note that it produces a flat line, because the static rules
it uses have no inherent notion of confidence and we label a
sample of 200 (un-ordered) repair predictions from Syntactic.

gest repairs (TBP in comparison uses only values in a single
column). We believe this suggests that Auto-Transform
can be an interesting alternative that can fix data issues
complementary to existing FD-base approaches.
TBP Program Quality. Figure 11 shows the quality

of top-K TBP programs generated across 4 corpora. We
perform a similar quality evaluation using precision@K, by
labeling TBP programs learned on different corpus. We
compare with the repair programs generated by Syntactic
and Syntactic-Generic on these corpora. Because Syntactic
and Syntactic-Generic have no inherent notion of confidence,
we randomly sample 200 programs and evaluate precision,
which translates to two flat lines in the figure.
Like we discussed above, Auto-Transform substantially

outperforms these rule-based methods, because not all syn-
tactic programs they generate are semantically correct.
Impact of Curation. Figure 12 shows an experiment

where humans can manually label k edges/programs as cor-
rect or incorrect. We refer to our CMPS approach as TBP-
Graph (Section 5.4), and compare with Greedy, which is a
heuristic that prioritizes labeling based on individual edges.
We evaluate the benefit of curating top-K programs, mea-

sured as the total number of auto-repairs that these curated
programs can perform on tables in Web-es. We observe in
Figure 12 that, TBP-Graph is superior over Greedy, because
it considers the super-modular benefit between program-
s/edges (similar results are observed on other corpus). It
is encouraging to see that a substantial number of issues in
Wikipedia tables can be repaired with a handful of labels.

7. RELATED WORKS
Data transformation. Data transformation is a long-

standing problem in the literature [4, 14, 26, 27, 50, 53, 58].
A notable line of work is “transform-by-example” (TBE) [10,
31, 33, 35, 36, 41, 42, 59], in which users provide a few
(typically two or three) paired input/output examples to
specify an intent, and the system would search for programs
consistent with all given examples. TBE technologies have
generated substantial impacts on commercial software, and
are now available as features in popular systems such as
Microsoft Excel [31], Power BI [33], and Trifacta [6]. Vari-
ants of TBE have also been developed for scenarios where
paired-examples can be inferred [25, 68].
Data error detection and repair. Detecting and re-

pairing data quality issues is also an important topic [9,
38]. The community has produced a plethora of methods
for error-detection [12, 19, 20, 24, 30, 37, 39, 40, 45, 48,
51, 52, 60, 65]), as well as many related methods to repair
them [11, 13, 23, 21, 22, 55, 61, 63]. The TBP-based data
repair provides an alternative that is largely complementary
to existing constraint-based methods.

8. CONCLUSIONS
We propose transform-by-pattern (TBP), a new approach

to data transformation based on input/output data patterns
only, which enables applications such as suggesting transfor-
mations for data repairs. We believe exploring new ways to
describe input/output columns beyond syntactic regex pat-
terns can be an interesting direction for future work.
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