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ABSTRACT
Entity alignment seeks to find entities in different knowledge
graphs (KGs) that refer to the same real-world object. Re-
cent advancement in KG embedding impels the advent of
embedding-based entity alignment, which encodes entities
in a continuous embedding space and measures entity simi-
larities based on the learned embeddings. In this paper, we
conduct a comprehensive experimental study of this emerging
field. We survey 23 recent embedding-based entity alignment
approaches and categorize them based on their techniques
and characteristics. We also propose a new KG sampling
algorithm, with which we generate a set of dedicated bench-
mark datasets with various heterogeneity and distributions
for a realistic evaluation. We develop an open-source library
including 12 representative embedding-based entity align-
ment approaches, and extensively evaluate these approaches,
to understand their strengths and limitations. Additionally,
for several directions that have not been explored in current
approaches, we perform exploratory experiments and report
our preliminary findings for future studies. The benchmark
datasets, open-source library and experimental results are
all accessible online and will be duly maintained.
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1. INTRODUCTION
Knowledge graphs (KGs) store facts as triples in the form

of (subject entity, relation, object entity) or (subject entity,
attribute, literal value). This type of knowledge bases sup-
ports a variety of applications, e.g., semantic search, question
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Figure 1: Framework of embedding-based entity alignment

answering and recommender systems [18]. To promote knowl-
edge fusion, researchers have made considerable progress on
the task of entity alignment, which is also often termed en-
tity matching or entity resolution. The goal is to identify
entities from different KGs that refer to the same entity, e.g.,
Mount Everest in DBpedia [40] and Q513 in Wikidata [79].
Conventional approaches to this task exploit a wide range of
discriminative features of entities, e.g., names, descriptive an-
notations, and relational structures [15, 31, 32, 39, 70]. The
major challenge lies in the symbolic, linguistic and schematic
heterogeneity between independently-created KGs.

Embedding-based entity alignment has emerged [10] and
seen much development in recent years [8, 9, 24, 28, 57, 72,
73, 77, 81, 83, 93]. This approach is based on KG embedding
techniques, which embed the symbolic representations of a
KG as low-dimensional vectors in a way such that the se-
mantic relatedness of entities is captured by the geometrical
structures of an embedding space [5]. The premise is that
such embeddings can potentially mitigate the aforementioned
heterogeneity and simplify knowledge reasoning [80]. Figure 1
depicts a typical framework of embedding-based entity align-
ment. It takes as input two different KGs and collects seed
alignment between them using sources such as the owl:sameAs
links [10]. Then, the two KGs and seed alignment are fed
into the embedding and alignment modules, to capture the
correspondence of entity embeddings. There are two typical
combination paradigms for module interaction: (i) the em-
bedding module encodes the two KGs in two independent
embedding spaces, meanwhile the alignment module uses
seed alignment to learn a mapping between them [9, 10,
57, 58]; or (ii) the alignment module guides the embedding
module to represent the two KGs into one unified space by
forcing the aligned entities in seed alignment to hold very
similar embeddings [8, 44, 72, 73, 77, 81, 93]. Finally, entity
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similarities are measured by the learned embeddings. We
can predict the counterpart of a source entity through the
nearest neighbor search among target entity embeddings
using a distance metric like the Euclidean distance. Besides,
to overcome the shortage of seed entity alignment, several
approaches [9, 73, 93] deploy semi-supervised learning to
iteratively augment new alignment.

However, as an emerging research topic, there are still some
issues with analyzing and evaluating embedding-based entity
alignment. First, as far as we know, there is no prior work
summarizing the status quo of this field yet. The latest devel-
opment of embedding-based entity alignment, as well as its
advantages and weaknesses still remain to be explored. We
even do not know how the embedding-based approaches com-
pare to conventional entity alignment approaches. Second,
there are also no widely-acknowledged benchmark datasets
towards a realistic evaluation of embedding-based entity align-
ment. Arguably, a bit more popular datasets are DBP15K
(used by [8, 42, 68, 72, 73, 81, 83, 84, 85, 87, 94])) and WK3L
(used by [10, 44, 57, 58]). The different datasets for evalu-
ation make it difficult to obtain a fair and comprehensive
comparison of embedding-based entity alignment approaches.
Moreover, current datasets contain much more high-degree
entities (i.e., entities connected with many other entities,
which are relatively easy for entity alignment) than real-
world KGs do. As a result, many approaches may exhibit
good performance on these biased datasets. Additionally,
these datasets only focus on one aspect of heterogeneity, e.g.,
multilingualism, while overlook other aspects, e.g, different
schemata and scales. This brings difficulties in understanding
the generalization and robustness of embedding-based entity
alignment. Third, we find that only a portion of the studies
in this field come with source code, which makes it difficult
to conduct further research on top of these approaches. Due
to these issues, there is a pressing need to conduct a compre-
hensive and realistic re-evaluation of embedding-based entity
alignment approaches with in-depth analysis.

In this paper, we carry out a systematic experimental study
of embedding-based entity alignment with an open-source
library. Our main contributions are listed as follows:

• A comprehensive survey. We survey 23 recent approaches
for embedding-based entity alignment and categorize their
core techniques and characteristics from different aspects.
We also review the popular choices for each technical
module, providing a brief overview of this field. (Sect. 2)

• Benchmark datasets. To make a fair and realistic compari-
son, we construct a set of dedicated benchmark datasets
with splits of five folds by sampling real-world KGs DBpe-
dia [40], Wikidata [79] and YAGO [61], in consideration of
various aspects of heterogeneity regarding entity degrees,
multilingualism, schemata and scales. Particularly, we
propose a new sampling algorithm, which can make the
properties (e.g., degree distribution) of a sample approxi-
mate its source KG. (Sect. 3)

• Open-source library. We develop an open-source library
OpenEA1 using Python and TensorFlow. This library inte-
grates 12 representative embedding-based entity alignment
approaches belonging to a wide range of technologies. It
uses a flexible architecture to make it easy to integrate a

1https://github.com/nju-websoft/OpenEA

large amount of existing KG embedding models (8 represen-
tative ones have been implemented) for entity alignment.
The library will be duly updated along with the coming
of new approaches, to facilitate future research. (Sect. 4)

• Comprehensive comparison and analysis. We provide a
comprehensive comparison of 12 representative embedding-
based entity alignment approaches in terms of both effec-
tiveness and efficiency on our datasets. We train and
tune each approach from scratch using our open-source
library to ensure a fair evaluation. These results offer an
overview of the performance of embedding-based entity
alignment. To gain insights into the strengths and limita-
tions of each approach, we conduct extensive analysis on
their performance from different aspects. (Sect. 5)

• Exploratory experiments. We carry out three experiments
beyond what has been available in literature. We give the
first analysis on the geometric properties of entity embed-
dings to understand their underlying connections with the
final performance. We notice that many KG embedding
models have not been exploited for entity alignment and
we explore 8 popular ones among them. We also compare
embedding-based approaches with several conventional
approaches, to explore their complementarity. (Sect. 6)

• Future research directions. Based on our survey and exper-
imental findings, we provide a thorough outlook on several
promising research directions for future work, including
unsupervised entity alignment, long-tail entity alignment,
large-scale entity alignment and entity alignment in non-
Euclidean embedding spaces. (Sect. 7)

To the best of our knowledge, this work is the first system-
atic and comprehensive experimental study on embedding-
based entity alignment between KGs. Our experiments reveal
the true performance as well as the advantages and shortcom-
ings of current approaches in the realistic entity alignment
scenario. The shortcomings that we find, such as the incapac-
ity of relation-based approaches in handling long-tail entities
and the poor effectiveness of attribute-based approaches in
resolving the heterogeneity of attribute values, call for the
re-investigation of truly effective approaches for real-world
entity alignment. We also believe that our in-depth analysis
on the geometric properties of entity embeddings opens a new
direction to investigate what enables the alignment-oriented
embeddings and what supports the entity alignment perfor-
mance behind the increasingly powerful approaches. Our
benchmark datasets, library and experimental results are
all publicly available through the GitHub repository1 under
the GPL license, to foster reproducible research. We think
that the datasets and library will become a valuable and
fundamental resource to future studies. As a growing number
of knowledge-driven applications build their capacities on
top of KGs and benefit from KG fusion, this work can lead
to profound impacts to the KG and database communities.

2. PRELIMINARIES
We consider the entity alignment task between two KGs
KG1 and KG2. Let E1 and E2 denote their entity sets, respec-
tively. The goal is to find the 1-to-1 alignment of entities
SKG1,KG2 = {(e1, e2) ∈ E1 × E2 | e1 ∼ e2}, where ∼ denotes
an equivalence relation [39, 70]. In many cases, a small
subset of the alignment S ′KG1,KG2 ⊂ SKG1,KG2 , called seed
alignment, is known beforehand and used as training data.
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2.1 Literature Review

2.1.1 Knowledge Graph Embedding
Approaches. Existing KG embedding models can be gen-
erally divided into three categories: (i) translational models,
e.g., TransE [5], TransH [82], TransR [49] and TransD [33]; (ii)
semantic matching models, e.g., DistMult [86], ComplEx [76],
HolE [54], SimplE [36], RotatE [71] and TuckER [3]; and (iii)
deep models, e.g., ProjE [66], ConvE [13], R-GCN [63], KB-
GAN [7] and DSKG [25]. These models have been generally
used for link prediction. We refer interested readers to the
recent surveys [48, 80]. A related area is network embedding
[26], which learns vertex representations to capture their
proximity. However, the edges in networks carry simplex
semantics. This differentiates network embedding from KG
embedding in both data models and learning techniques.
Datasets & evaluation metrics. FB15K and WN18 are
two benchmark datasets for link prediction in KGs [5]. Some
studies notice that FB15K and WN18 suffer from the test
leakage problem and build two new benchmark datasets
FB15K-237 [75] and WN18RR [13] correspondingly. Three
metrics are widely used in evaluation: (i) proportion of
correct links in the top-m ranked results (called Hits@m, for
example, m = 1), (ii) mean rank (MR) of correct links, and
(iii) mean reciprocal rank (MRR). Two efforts in evaluating
link prediction models have been reported in [1, 62].

2.1.2 Conventional Entity Alignment
Approaches. Conventional approaches address entity align-
ment mainly from two angles. One is based on equivalence
reasoning mandated by OWL semantics [22, 34]. The other
is based on similarity computation, which compares symbolic
features of entities [39, 65, 70]. Recent studies also use statis-
tical machine learning [15, 31, 32] and crowdsourcing [96] to
improve the accuracy. Also, in the database area, detecting
duplicate entities, a.k.a. record linkage or entity resolution,
has been extensively studied [16, 20]. These approaches
mainly rely on literal information of entities.
Datasets & evaluation metrics. Since 2004, OAEI2 (On-
tology Alignment Evaluation Initiatives) has become the
primary venue for work in ontology alignment. It also or-
ganizes an evaluation track for entity alignment in recent
years. We have not observed any embedding-based systems
participating in this track. The preferred evaluation metrics
are precision, recall and F1-score.

2.1.3 Embedding-based Entity Alignment
Approaches. Many existing approaches [10, 47, 57, 58, 72,
73, 77, 93] employ the translational models (e.g., TransE [5])
to learn entity embeddings for alignment based on relation
triples. Some recent approaches [8, 42, 81, 83, 85, 84, 88,
94] employ graph convolutional networks (GCNs) [38, 78].
Besides, some approaches incorporate attribute and value em-
beddings [9, 28, 72, 77, 83, 84, 87, 90]. We elaborate the tech-
niques of these approaches in Sect. 2.2. Also, there are some
approaches for (heterogeneous information) network align-
ment [29, 44, 89] or cross-lingual knowledge projection [56],
which may also be modified for entity alignment. It is also
worth noting that two studies [14, 52] design the embedding-
based approaches for entity resolution in databases. They

2http://oaei.ontologymatching.org/
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Figure 2: Degree distributions and average degrees of two
popular datasets DBP15K [72] and WK3L [10] used in previ-
ous approaches, along with our contributed dataset EN-FR-
15K (V1). The x-axis denotes degrees and the y-axis denotes
the percentage of entities w.r.t. degrees. These datasets are
extracted from DBpedia [40], but the degree distributions of
DBP15K and WK3L are quite different from DBpedia and
their average degrees are also larger. Our dataset retains a
similar degree distribution to DBpedia.

represent the attribute values of entities based on word em-
beddings and compare entities using embedding distances.
However, they assume that all entities follow the same schema
or the attribute alignment must be 1-to-1 mapping. As differ-
ent KGs are often created with different schemata, it is hard
to fulfill these requirements. Thus, they cannot be applied
to entity alignment of KGs.
Datasets & evaluation metrics. To the best of our knowl-
edge, there is no widely-acknowledged benchmark dataset
for assessing embedding-based entity alignment approaches.
Arguably, a bit more used datasets are DBP15K [72] and
WK3L [10]. However, Figure 2 shows that their degree distri-
butions and average degrees are significantly different from
real-world KGs. More details about our datasets are reported
in Sect. 3. Similar to link prediction, Hits@m, MR and MRR
are mainly used as evaluation metrics, where Hits@1 should
be emphasized, as it is equivalent to precision.

2.2 Categorization of Techniques
Table 1 categorizes 23 recent embedding-based entity align-

ment approaches by analyzing their embedding and align-
ment modules as well as the modes that they interact. For
notations, we use capital calligraphic letters to denote sets
and boldface letters for vectors and matrices.

2.2.1 Embedding Module
The embedding module seeks to encode a KG into a low-

dimensional embedding space. Based on the types of triples
used, we classify the KG embedding models in two types,
i.e., relation embedding and attribute embedding. The for-
mer leverages relational learning techniques to capture KG
structures, and the latter exploits attribute triples of entities.
Relation embedding is employed by all existing approaches.
Below is three representative ways to realize it:

Triple-based embedding captures the local semantics of
relation triples. Many KG embedding models fall into this
category, which defines an energy function to measure the
plausibility of triples. For example, TransE [5] interprets a
relation as the translation from its head entity embedding
to its tail. The energy of a relation triple (e1, r1, e2) is

φ(e1, r1, e2) = ‖ e1 + r1 − e2 ‖, (1)

where ‖ · ‖ denotes the L1- or L2-norm of vectors. TransE
optimizes the marginal ranking loss to separate positive
triples from negatives by a pre-defined margin. Other choices
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Table 1: Categorization of popular embedding-based entity
alignment approaches published before December 2019

Embedding Alignment Interaction
Relation Att. Emb. distance Combination Learning

MTransE [10] Triple - Euclidean Transformation Superv.
IPTransE [93] Path - Euclidean Sharing Semi-
JAPE [72] Triple Att. Cosine Sharing Superv.
BootEA [73] Triple - Cosine Swapping Semi-
KDCoE [9] Triple Literal Euclidean Transformation Semi-
NTAM [44] Triple - Cosine Swapping Superv.
GCNAlign [81] Neighbor Att. Manhattan Calibration Superv.
AttrE [77] Triple Literal Cosine Sharing Superv.
IMUSE [28] Triple Literal Cosine Sharing Superv.
SEA [57] Triple - Cosine Transformation Superv.
RSN4EA [24] Path - Cosine Sharing Superv.
GMNN [85] Neighbor Literal Cosine Swapping Superv.
MuGNN [8] Neighbor - Manhattan Calibration Superv.
OTEA [58] Triple - Euclidean Transformation Superv.
NAEA [94] Neighbor - Cosine Swapping Superv.
AVR-GCN [88] Neighbor - Euclidean Swapping Superv.
MultiKE [90] Triple Literal Cosine Swapping Superv.
RDGCN [83] Neighbor Literal Manhattan Calibration Superv.
KECG [42] Neighbor - Euclidean Calibration Superv.
HGCN [84] Neighbor Literal Euclidean Calibration Superv.
MMEA [68] Triple - Cosine Sharing Superv.
HMAN [87] Neighbor Literal Euclidean Calibration Superv.
AKE [47] Triple - Euclidean Transformation Superv.

of loss functions include the logistic loss [54, 76] and the limit-
based loss [73, 91]. Negative triples can be generated using
the uniform negative sampling or truncated sampling.

Path-based embedding exploits the long-term dependency
of relations spanning over relation paths. A relation path is a
set of nose-to-tail linked relation triples, e.g., (e1, r1, e2), (e2,
r2, e3). IPTransE [93] models relation paths by inferring
the equivalence between a direct relation and a multi-hop
path. Assume that there is a direct relation r3 from e1 to
e3. IPTransE expects the embedding of r3 to be similar to
the path embedding, which is encoded as a combination of
its constituent relation embeddings:

r∗ = comb(r1, r2), (2)

where comb(·) is a sequence composition operation such as
sum. ‖ r∗ − r3 ‖ is minimized to make them close to each
other. However, IPTransE overlooks entities. Another work,
RSN4EA [24], modifies recurrent neural networks (RNNs) to
model the sequence of entities and relations together.

Neighborhood-based embedding uses the subgraph structure
constituted by a large amount of relations between enti-
ties. GCNs [6, 12, 38, 63] are well suited for modeling this
structure, and have been used for embedding-based entity
alignment recently [8, 42, 81, 83, 84, 85, 87]. A GCN consists
of multiple graph convolutional layers. Let A denote the ad-
jacency matrix of a KG and H(0) be a feature matrix where
each row corresponds to an entity. The typical propagation
rule from the ith layer to the (i+ 1)th layer [38] is

H(i+1) = σ(D̂−
1
2 ÂD̂−

1
2 H(i)W), (3)

with Â = A+I and I is an identity matrix. D̂ is the diagonal
degree matrix of Â. W is the learnable weight matrix. σ(·)
is the activation function such as tanh(·).
Attribute embedding is used by several approaches [9, 28,
72, 77, 81, 83, 85, 87, 90] to enhance the similarity measure
of entities. There are two ways for attribute embedding:

Attribute correlation embedding considers the correlations
among attributes. Attributes are regarded as correlated if
they are frequently used together to describe an entity. For
example, longitude is highly correlated with latitude as they
often form a coordinate. JAPE [72] exploits such correlations
for entity alignment, based on the assumption that similar

entities should have similar correlated attributes. For two
attributes a1, a2, the probability that they are correlated is

Pr(a1, a2) = sigmoid(a1 · a2), (4)

where attribute embeddings can be learned by maximizing
the probability over all attribute pairs. Here, the attribute
correlation embedding does not consider literal values.

Literal embedding introduces literal values to attribute
embedding. AttrE [77] proposes a character-level encoder
that is capable of dealing with unseen values in training
phases. Let v = (c1, c2, ..., cn) be a literal with n characters,
where ci (1 ≤ i ≤ n) is the ith character. AttrE embeds v as

v = comb(c1, c2, . . . , cn). (5)

With this representation, literals are treated as entities and
the relation embedding models like TransE can be used to
learn from attribute triples. However, the character-based
literal embedding may fail in cross-lingual settings.

2.2.2 Alignment Module
The alignment module uses seed alignment as labeled train-

ing data to capture the correspondence of entity embeddings.
Two keys are picking a distance metric and designing an
alignment inference strategy.
Distance metrics. Cosine, Euclidean and Manhattan dis-
tances are three widely-used metrics. In high-dimensional
spaces, a few vectors (called hubs [60]) may repeatedly occur
as the k-nearest neighbors of others, the so-called hubness
problem [11]. See Sect. 6.1 for more details.
Alignment inference strategies. Greedy search is used
by all current approaches. Given KG1 and KG2 to be aligned
and a distance metric π, for each entity e1 ∈ E1, it finds the
aligned entity ẽ2 by ẽ2 = arg mine2∈E2 π(e1, e2). Differently,
collective search [37, 51] aims to find a global optimal align-
ment that minimizes

∑
(e1,e2)∈SKG1,KG2

π(e1, e2). It can be

modeled as the maximum weight matching problem in a
bipartite graph and solved in O(N3) time using the Kuhn-
Munkres algorithm (N = |E1| + |E2|), or reduced to linear
time using the heuristic algorithm [30]. Another solution is
the stable marriage algorithm [50]. The alignment between
E1 and E2 satisfies a stable marriage if there does not exist a
pair of entities that both prefer each other than their current
aligned ones. Its solution takes O(N2) time [17].

2.2.3 Interaction Mode
Combination modes. Four typical designs to reconcile KG
embeddings for entity alignment are as follows: Embedding
space transformation embeds two KGs in different embedding
spaces and learns a transformation matrix M between the two
spaces using seed alignment, to achieve Me1 ≈ e2 for each
(e1, e2) ∈ S ′KG1,KG2 . Another combination mode encodes
two KGs into a unified embedding space. Embedding space
calibration minimizes ‖ e1−e2 ‖ for each (e1, e2) ∈ S ′KG1,KG2
to calibrate the embeddings of seed alignment. As two
special cases, parameter sharing directly configures e1 = e2

and parameter swapping swaps seed entities in their triples
to generate extra triples as supervision. For instance, given
(e1, e2) ∈ S ′KG1,KG2 and a relation triple of KG1 (e1, r1, e

′
1),

parameter swapping produces a new triple (e2, r1, e
′
1) and

feeds it in KG embedding models as a real triple. Both
parameter sharing and swapping methods do not introduce
new loss functions, but the latter produces more triples.
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Algorithm 1: Iterative degree-based sampling (IDS)

Input: KG1,KG2, reference alignment Sref , entity size N ,
hyper-parameters µ, ε

// only retain entities in reference alignment
1 Filter KG1,KG2 by Sref ;
2 Get degree distributions Q1, Q2 for KG1,KG2, resp.;
3 do // if fails, run it again
4 Initialize datasets DS1,DS2 from KG1,KG2, resp.;
5 while |DS1| > N && |DS2| > N do
6 for DSj (j = 1, 2) do
7 Get dsizej(x, µ) for each degree x;
8 Get entity deletion probability by PageRank;
9 Delete dsizej(x, µ) entities w.r.t. probabilities;

10 Filter DS1,DS2 by Sref ; update Sref accordingly;

11 Get degree distributions P1, P2 for DS1,DS2, resp.;
12 while JS(Q1, P1) > ε ‖ JS(Q2, P2) > ε;
13 return DS1,DS2,Sref ;

Learning strategies. Based on how to process labeled and
unlabeled data, learning strategies can be divided below:

Supervised learning leverages the seed alignment as labeled
training data. For embedding space transformation, seed
alignment is used to learn the transformation matrix. For
space calibration, it is used to let aligned entities have similar
embeddings. But, the acquisition of seed alignment is costly
and error-prone, especially for cross-lingual KGs.

Semi-supervised learning uses unlabeled data in training,
e.g., self-training [73, 93] and co-training [9]. The former it-
eratively proposes new alignment to augment seed alignment.
The latter combines two models learned from disjoint entity
features and alternately enhances the alignment learning of
each other. Although OTEA [58] and KECG [42] claim that
they are semi-supervised approaches, their learning strategies
do not augment seed alignment. We do not treat them as
standard semi-supervised learning in this paper.

Unsupervised learning needs no training data. We have not
observed any embedding-based entity alignment approaches
using unsupervised learning. Although IMUSE [28] claims
that it is an unsupervised approach, it actually uses a pre-
processing method to collect seed alignment with high string
similarity. Its embedding module still needs seed alignment.

3. DATASET GENERATION
As aforementioned, current widely-used datasets are quite

different from real-world KGs. Also, it is hard for embedding-
based approaches to run on full KGs due to the large and
unpartitioned candidate space. Hence, we sample real-world
KGs and provide two data scales (15K and 100K).

3.1 Iterative Degree-based Sampling
We consider five factors in building our datasets: source

KGs, reference alignment, dataset sizes, languages and den-
sity, where the last is more challenging for building datasets.
Specifically, we want to generate a certain-sized dataset from
a source KG such that the difference of their entity degree
distributions does not exceed an expectation. The difficulty
lies in that the removal of an entity from the source KG also
changes the connectivity of its neighboring entities.

We propose an iterative degree-based sampling (IDS) al-
gorithm, which simultaneously deletes entities in two source
KGs with reference alignment until achieving the desired size,
meanwhile keeping a similar degree distribution of each sam-
pled dataset as the source KG. Algorithm 1 describes the sam-
pling procedure. During iterations, the proportion of entities

having degree x in the current dataset, denoted by P (x), can-
not always equal the original proportion Q(x). We adjust the
entity size to be deleted by dsize(x, µ) = µ

(
1+P (x)−Q(x)

)
,

where µ is the base step size (see Line 7). Moreover, we prefer
not to delete entities having a big influence on the overall
degree distribution, such as the ones of high degree. To
achieve this, we leverage the PageRank value for measuring
the probability of an entity to be deleted (Line 8).

We use the Jensen-Shannon (JS) divergence [46] to assess
the difference of two degree distributions (Line 12). Given
two degree distributions Q,P , their JS-divergence is:

JS(Q,P ) =
1

2

n∑
x=1

(
Q(x) log

Q(x)

M(x)
+ P (x) log

P (x)

M(x)

)
, (6)

where Q(x) and P (x) denote the proportions of entities with
degree x (x = 1 . . . n) in Q,P , respectively, and M = Q+P

2
.

A small JS divergence ε between Q and P reveals that they
have similar degree distributions. We set expectation ε ≤ 5%.
The most costly part of IDS is to calculate PageRank weights
during the iterations of deleting entities. It can be scaled to
very large KGs by using approximation algorithms [2].

3.2 Dataset Overview
We choose three well-known KGs as our sources: DBpedia

(2016-10) [40], Wikidata (20160801) [79] and YAGO 3 [61].
Also, we consider two cross-lingual versions of DBpedia:
English–French and English–German. We follow the conven-
tions in [10, 72, 73, 81, 93] to generate datasets of two sizes
with 15K and 100K entities, using the IDS algorithm. Specif-
ically, we make use of DBpedia’s inter-language links and
owl:sameAs among the three KGs to retrieve reference entity
alignment. To balance the efficiency and deletion safety, we
set µ = 100 for 15K and µ = 500 for 100K.

The statistics of the datasets are listed in Table 2. We
generate two versions of datasets for each pair of source KGs.
V1 is gained by directly using the IDS algorithm. For V2,
we first randomly delete entities with low degrees (d ≤ 5)
in the source KG to make the average degree doubled, and
then execute IDS to fit the new KG. As a result, V2 is twice
denser than V1 and more similar to existing datasets [10, 72].
Figure 3 shows the degree distributions and average degrees
of EN-FR-15K (V1, V2) and EN-FR-100K (V1, V2). Our
15K and 100K datasets are much closer to the source KGs.

For each dataset, we also extract the attribute triples of
entities to fulfill the input requirement of some approaches
[9, 28, 72, 77, 81, 83, 85, 90]. Considering that DBpedia,
Wikidata and YAGO collect data from very similar sources
(mainly, Wikipedia), the aligned entities usually have identi-
cal labels. They would become “tricky” features for entity
alignment and influence the evaluation of real performance.
According to the suggestion in [95], we delete entity labels.

By convention, we split a dataset into training, validation
and test sets. The details are given in Sect. 5.1.

3.3 Dataset Evaluation
We assess IDS and the quality of our datasets. Note that,

generating an entity alignment dataset is a non-trivial work,
as a qualified dataset needs to hold several characteristics,
such as good connectivity (due to many approaches rely on
graph structures), similar degree distributions to original
KGs (for a realistic entity alignment scenario), and enough
alignment (for training/validation/test). As far as we know,
there still lacks a sampling method dedicated to this problem.
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Table 2: Dataset statistics
15K (V1) 15K (V2) 100K (V1) 100K (V2)

Datasets KGs
#Rel. #Att. #Rel tr. #Att tr. #Rel. #Att. #Rel tr. #Att tr. #Rel. #Att. #Rel tr. #Att tr. #Rel. #Att. #Rel tr. #Att tr.

EN-FR
EN 267 308 47,334 73,121 193 189 96,318 66,899 400 466 309,607 497,729 379 364 649,902 503,922
FR 210 404 40,864 67,167 166 221 80,112 68,779 300 519 258,285 426,672 287 468 561,391 431,379

EN-DE
EN 215 286 47,676 83,755 169 171 84,867 81,988 381 451 335,359 552,750 323 326 622,588 560,247
DE 131 194 50,419 156,150 96 116 92,632 186,335 196 252 336,240 716,615 170 189 629,395 793,710

D-W
DB 248 342 38,265 68,258 167 175 73,983 66,813 413 493 293,990 451,011 318 328 616,457 467,103
WD 169 649 42,746 138,246 121 457 83,365 175,686 261 874 251,708 687,860 239 760 588,203 878,219

D-Y
DB 165 257 30,291 71,716 72 90 68,063 65,100 287 379 294,188 523,062 230 277 576,547 547,026
YG 28 35 26,638 132,114 21 20 60,970 131,151 32 38 400,518 749,787 31 36 865,265 855,161
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#Rel. triples #Entities Deg. JS
Source V1 4,873,571 1,794,708 5.43 ---
Dataset 15K V1 40,864 15,000 5.45 2.9%
Dataset 100K V1 258,285 100,000 5.17 1.2%
Source V2 2,728,421 495,362 11.02 ---
Dataset 15K V2 80,112 15,000 10.68 3.8%
Dataset 100K V2 561,391 100,000 11.23 2.0%

#Rel. triples #Entities Deg. JS
Source V1 17,788,314 5,136,559 6.93 ---
Dataset 15K V1 47,334 15,000 6.31 2.0%
Dataset 100K V1 309,607 100,000 6.19 1.3%
Source V2 10,948,620 1,569,096 13.96 ---
Dataset 15K V2 96,318 15,000 12.84 1.4%
Dataset 100K V2 649,902 100,000 13.00 3.9%
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Figure 3: Degree distributions and average degrees of our
sampled datasets EN-FR-15K (V1, V2) and EN-FR-100K
(V1, V2), compared with DBpedia (the source KG)

Table 3: Comparison of the EN-FR-15K (V1) datasets
generated by RAS, PRS and IDS

Datasets KGs #Alignment Deg. JS Isolates Cluster coef.

DBpedia
EN

525,807
6.39 – 0 0.342

FR 5.43 – 0 0.080

RAS
EN

15,000
0.27 14.5% 85.5% 0.002

FR 0.17 12.1% 90.1% 0.001

PRS
EN

15,000
1.20 7.3% 68.9% 0.025

FR 0.63 9.3% 69.4% 0.015

IDS
EN

15,000
6.31 2.0% 0 0.233

FR 5.45 2.9% 0 0.190

For evaluation, we design two baseline methods on the basis
of existing graph sampling algorithms [41]:

• Random alignment sampling (RAS) first randomly selects
a fixed size (e.g., 15K) of entity alignment between two
KGs, and then extracts the relation triples whose head
and tail entities are both in the sampled entities.

• PageRank-based sampling (PRS) first samples entities from
one KG based on the PageRank scores (entities not in-
volved in any alignment are discarded), and then extracts
these entities’ counterparts from the other KG.

Table 3 lists the properties of EN-FR-15K (V1) datasets
generated by RAS, PRS and our IDS, compared to the source
KGs (relation triples). In addition to the average degree and
JS-divergence, we further consider two metrics: percentage
of isolated entities [19] and clustering coefficient [41]. The
dataset of RAS is much sparser than the source, because
the random sampling cannot retain the connectivity and
degree distribution [69]. It has a low clustering coefficient
and contains many isolated entities that are typically hard
for embedding modules to handle. PRS more focuses on high-
degree entities and gets better properties than RAS. However,
the dataset is still far away from satisfactory due to the low
average degree, high JS value and high percentage of isolated
entities. This is because its entity selection procedure only
applies to one KG rather than two KGs together. Differently,
IDS considers the degree distributions of two KGs together.
It tends to sample two aligned entities with similar degrees.
Thus, the two KGs of our dataset have similar clustering

Embedding module
Embedding initialization Loss functions Negative sampling

Unit Uniform Orthogonal Xavier Marginal Logistic Limited Uniform Truncated

Relation embedding Attribute embedding
Triple-based Path-based Neighborhood-based Attribute-based Literal-based

Interaction between modules
Combination modes Learning strategies

Transition Calibration Sharing Swapping Supervised Semi-supervised Unsupervised

Alignment module
Distance metrics Alignment inference strategies

Cosine Euclidean Manhattan CSLS Greedy Collective

Input: KG1, KG2, seed alignment, pre-trained word embeddings, configurations

Output: An alignment of entities

Figure 4: Software architecture of OpenEA

coefficients. As the sampled dataset is much smaller that
the source, it is hard to keep all these properties well. IDS
shows good comprehensive performance.

4. OPEN-SOURCE LIBRARY
We use Python and TensorFlow to develop an open-source

library, namely OpenEA, for embedding-based entity align-
ment. The software architecture is illustrated in Figure 4.
Our design goals and features include three aspects:
Loose coupling. The implementation of embedding and
alignment modules is independent to each other. OpenEA
provides a framework template with pre-defined input and
output data structures to make these modules as an inte-
gral pipeline. Users can freely call and combine different
techniques in these modules to develop new approaches.
Functionality and extensibility. OpenEA implements
a set of necessary functions as its underlying components,
including initialization functions, loss functions and negative
sampling methods in the embedding module; combination
and learning strategies in the interaction mode; as well as
distance metrics and alignment inference strategies in the
alignment module. On top of those, OpenEA also provides
a set of flexible and high-level functions with configuration
options to call these components. In this way, new functions
can be easily integrated by adding new configuration options.
Off-the-shelf approaches. To facilitate the usage of Ope-
nEA and support our experimental study, we try our best to
integrate or rebuild 12 representative embedding-based entity
alignment approaches belonging to a wide range of technolo-
gies, including MTransE, IPTransE, JAPE, KDCoE, BootEA,
GCNAlign, AttrE, IMUSE, SEA, RSN4EA, MultiKE and
RDGCN. MTransE, JAPE, KDCoE, BootEA, GCNAlign,
AttrE, RSN4EA, MultiKE and RDGCN are implemented by
integrating their source code, while IPTransE, IMUSE and
SEA are rebuilt by ourselves. Moreover, we integrate several
relation embedding models that have not been explored for
entity alignment yet, including three translational models
TransH [82], TransR [49] and TransD [33]; three semantic
matching models HolE [54], SimplE [36] and RotatE [71];
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Table 4: Common hyper-parameters for all the approaches
15K 100K

Batch size for rel. trip. 5,000 20,000

Termination condition
Early stop when the Hits@1 score begins to drop
on the validation sets, checked every 10 epochs.

Max. epochs 2000

as well as two deep models ProjE [66] and ConvE [13]. We
also integrate two attribute embedding models AC2Vec [72]
and Label2Vec [90], based on pre-trained multilingual word
embeddings [4]. TransH, TransR, TransD and HolE are de-
veloped by referring to the open-source toolkit OpenKE [27];
the remaining is implemented based on their source code.

5. EXPERIMENTS AND RESULTS
In this section, we report a comprehensive evaluation using

our benchmark datasets and open-source library.

5.1 Experiment Settings
Environment. We carry out the experiments on the work-
station with an Intel Xeon E3 3.3GHz CPU, 128GB memory,
a NVIDIA GeForce GTX 1080Ti GPU and Ubuntu 16.04.
Cross-validation. We conduct the experiments with 5-fold
cross-validation to ensure unbiased evaluation. Specifically,
we divide the reference entity alignment into five disjoint
folds, each of which accounts for 20% of the total. For each
running, we pick one fold (20%) as training data and leave
the remaining for validation (10%) and testing (70%). As
found in [10], the inter-language links in the multilingual
Wikipedia cover about 15% of entity alignment. Thus, using
20% as training data can both satisfy the need for 5-fold
cross-validation and conform to the real world.
Comparative approaches and settings. We evaluate
all the embedding-based entity alignment approaches imple-
mented in OpenEA. To make a fair comparison, we use our
best efforts to unify the experiment settings. Table 4 shows
the common hyper-parameters used for all the approaches.
As indicated in [35], the batch size has an influence on the
performance and running time. So, we use a fixed batch size
for relation triples to avoid its interference. For other settings
specific to each approach, we follow the reported details in
literature as carefully as we can, e.g., the margin for the
ranking loss in IPTransE and AttrE is 1.5; the number of
GCN layers in GCNAlign and RDGCN is 2. For several key
hyper-parameters and the unreported ones, we try our best
to tune them. For example, we constrain the L2-norm of
entity embeddings to 1 for many approaches, e.g., IMUSE,
because we find that such normalization yields better results.
For cross-lingual datasets, we use pre-trained cross-lingual
word embeddings [4] to initialize literal embeddings for the
approaches using attribute values. The hyper-parameter
settings of each approach on our datasets are available online.
Notice that there are emerging approaches (e.g., AliNet [74])
that are contemporaneous to this paper. We will accordingly
include those approaches into future release of OpenEA.
Evaluation metrics. In our experiments, the default align-
ment direction is from left to right. Take D-W for example.
We treat DBpedia as the source and align it with the target
KG Wikidata. Following the conventions, we use Hits@m
(m = 1, 5), MR and MRR as the evaluation metrics.
Availability. We release the datasets and OpenEA library
online. The experimental results on five folds of each dataset
using all the metrics are provided in the CSV format. All will
be duly updated along with the coming of new approaches.
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Figure 5: Recall w.r.t. alignment deg. on EN-FR-15K (V1)

5.2 Main Results and Analysis
Table 5 depicts the Hits@1, Hits@5 and MRR results of

the 12 implemented approaches on our datasets. In summary,
RDGCN, BootEA and MultiKE achieve the top-3 results.
For a comprehensive and thorough understanding, we analyze
the results from five angles:
Sparse datasets (V1) vs. dense datasets (V2). From
Table 5, we find that most relation-based approaches perform
better on the dense datasets than on the sparse ones, e.g.,
IPTransE, BootEA, SEA and RSN4EA. This is in accord
with our intuition that the entities in the dense datasets are
generally involved in more relation triples, which enable these
approaches to capture more semantic information. For the
approaches considering attribute triples, KDCoE, GCNAlign,
AttrE, IMUSE and RDGCN also perform better on the dense
datasets, indicating that the relation embeddings still make
contributions. Differently, MultiKE relies on multiple “views”
of features, which make it relatively insensitive to the relation
changes. Interestingly, we also see that the performance of
two relation-based approaches, MTransE and JAPE, drops
on some dense datasets. We believe that this is because
they are based on TransE, which has deficiency in handling
multi-mapping relations in the dense datasets. For example,
39.0% of entities in EN-FR-100K (V1) have multi-mapping
relations while the proportion in EN-FR-100K (V2) reaches
up to 71.2%. The complex structures make MTransE and
JAPE prone to learn very similar embeddings for different
entities involving the same multi-mapping relation [49, 82].

For further analysis, we divide the test alignment of each
dataset into multiple groups in terms of alignment degrees.
The degree of an alignment is defined as the sum of relation
triples for the two involved entities. Figure 5 illustrates
the recall results on EN-FR-15K (V1). Obviously, most
entities have relatively few relation triples, and we call them
long-tail entities. We find that all the relation-based ap-
proaches run better in aligning entities with rich relation
triples while their results decline on long-tail entities, as long-
tail entities have little information useful for learning, which
limits the expressiveness of their embeddings. This lopsided
performance confirms the results on the sparse and dense
datasets from another angle. By using additional literals, the
lopsided performance of KDCoE, AttrE, IMUSE, MultiKE
and RDGCN alleviates. However, JAPE and GCNAlign that
use attribute correlations still show the lopsided performance
for entities with different degrees. The experiments on other
datasets also agree on the above observations. Currently, we
have not seen a method that handles long-tail entities well.
15K datasets vs. 100K datasets. We observe that all
the approaches perform better on the 15K datasets than on
the 100K datasets, except D-Y, because the 100K datasets
have more complex structures, causing more difficulties for
embedding-based approaches to capture entity proximity. For
example, 34.9% of entities in EN-FR-15K (V1) are involved in
multi-mapping relations while the proportion in EN-FR-100K
(V1) reaches 39.0%. As we have discussed, multi-mapping
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Table 5: Cross-validation results of current representative approaches on the 15K and 100K datasets
15K (V1) 15K (V2) 100K (V1) 100K (V2)

Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR

E
N

-F
R

MTransE .247± .006 .467± .009 .351± .007 .240± .005 .436± .007 .336± .005 .138± .002 .261± .004 .202± .002 .090± .003 .174± .003 .135± .003

IPTransE .169± .013 .320± .025 .243± .019 .236± .012 .449± .021 .339± .016 .158± .004 .277± .008 .219± .006 .234± .007 .431± .015 .329± .010

JAPE .262± .006 .497± .010 .372± .007 .292± .009 .524± .006 .402± .007 .165± .002 .310± .002 .240± .002 .125± .003 .239± .005 .183± .004

KDCoE .581± .004 .680± .004 .628± .003 .730± .007 .837± .006 .778± .005 .482± .005 .515± .006 .499± .005 .611± .012 .653± .015 .632± .014

BootEA .507± .010 .718± .012 .603± .011 .660± .006 .850± .005 .745± .005 .389± .004 .561± .004 .474± .004 .640± .001 .806± .001 .716± .000

GCNAlign .338± .002 .589± .009 .451± .005 .414± .005 .698± .007 .542± .005 .230± .002 .412± .004 .319± .003 .257± .002 .455± .003 .351± .002

AttrE .481± .010 .671± .009 .569± .010 .535± .015 .746± .014 .631± .014 .403± .019 .572± .019 .483± .019 .466± .011 .644± .012 .549± .011

IMUSE .569± .006 .717± .010 .638± .008 .607± .013 .760± .014 .678± .013 .439± .002 .546± .004 .492± .003 .461± .003 .605± .005 .529± .004

SEA .280± .015 .530± .026 .397± .019 .360± .018 .651± .018 .494± .017 .225± .011 .399± .013 .314± .012 .297± .002 .500± .002 .395± .002

RSN4EA .393± .007 .595± .012 .487± .009 .579± .006 .759± .006 .662± .006 .293± .004 .452± .006 .371± .004 .495± .003 .672± .005 .578± .004

MultiKE .749± .004 .819± .005 .782± .004 .864± .007 .909± .005 .885± .006 .629± .002 .680± .002 .655± .002 .642± .003 .696± .003 .670± .003

RDGCN .755± .004 .854± .003 .800± .003 .847± .006 .919± .004 .880± .005 .640± .004 .732± .004 .683± .004 .715± .003 .787± .002 .748± .002

E
N

-D
E

MTransE .307± .007 .518± .004 .407± .006 .193± .016 .352± .023 .274± .018 .140± .003 .264± .004 .204± .004 .115± .003 .215± .004 .168± .003

IPTransE .350± .009 .515± .012 .43± .011 .476± .012 .678± .011 .571± .010 .226± .014 .357± .019 .292± .017 .346± .013 .535± .016 .437± .014

JAPE .288± .016 .512± .018 .394± .016 .167± .011 .329± .015 .250± .013 .152± .006 .291± .009 .223± .007 .11± .004 .218± .006 .167± .005

KDCoE .529± .014 .629± .015 .580± .014 .649± .017 .788± .017 .715± .016 .506± .014 .591± .019 .549± .016 .651± .011 .756± .010 .701± .011

BootEA .675± .004 .820± .004 .740± .004 .833± .015 .912± .008 .869± .012 .518± .003 .673± .003 .592± .003 .739± .004 .851± .003 .791± .004

GCNAlign .481± .003 .679± .005 .571± .003 .534± .005 .717± .005 .618± .005 .317± .007 .485± .008 .399± .007 .375± .005 .549± .006 .457± .005

AttrE .517± .011 .687± .013 .597± .011 .650± .015 .816± .008 .726± .012 .399± .010 .554± .012 .473± .011 .464± .011 .637± .010 .546± .011

IMUSE .580± .017 .720± .014 .647± .015 .674± .011 .803± .008 .734± .010 .421± .005 .516± .005 .469± .005 .457± .005 .588± .007 .521± .006

SEA .530± .027 .718± .026 .617± .025 .606± .024 .779± .018 .687± .020 .341± .016 .502± .017 .421± .016 .447± .006 .625± .006 .532± .006

RSN4EA .587± .001 .752± .003 .662± .001 .791± .009 .890± .006 .837± .008 .430± .002 .57± .001 .497± .001 .639± .001 .763± .001 .697± .001

MultiKE .756± .004 .809± .003 .782± .003 .755± .008 .813± .008 .784± .007 .668± .002 .712± .002 .690± .001 .661± .004 .709± .004 .686± .004

RDGCN .830± .006 .895± .004 .859± .005 .833± .007 .891± .005 .860± .006 .722± .002 .794± .002 .756± .002 .766± .002 .829± .002 .796± .002

D
-W

MTransE .259± .008 .461± .012 .354± .008 .271± .013 .49± .014 .376± .013 .210± .003 .358± .003 .282± .003 .148± .004 .268± .005 .209± .005

IPTransE .232± .012 .38± .016 .303± .014 .412± .007 .623± .010 .511± .007 .221± .004 .352± .008 .285± .006 .319± .017 .516± .024 .413± .020

JAPE .250± .007 .457± .010 .348± .007 .262± .013 .484± .019 .368± .015 .211± .004 .369± .004 .287± .004 .154± .004 .287± .005 .221± .005

KDCoE .247± .020 .412± .029 .325± .023 .405± .020 .640± .019 .515± .020 .157± .003 .243± .007 .199± .005 .373± .010 .550± .014 .458± .012

BootEA .572± .008 .744± .007 .649± .008 .821± .004 .926± .003 .867± .003 .516± .006 .685± .006 .594± .005 .766± .007 .892± .005 .822± .006

GCNAlign .364± .009 .580± .010 .461± .008 .506± .006 .743± .005 .612± .005 .324± .002 .507± .004 .409± .003 .353± .004 .559± .006 .449± .004

AttrE .299± .004 .467± .003 .381± .003 .489± .016 .695± .016 .585± .015 .209± .008 .335± .011 .273± .009 .301± .015 .475± .018 .386± .016

IMUSE .327± .016 .523± .024 .419± .019 .581± .016 .778± .011 .671± .014 .276± .010 .437± .016 .355± .013 .431± .011 .631± .013 .525± .012

SEA .360± .012 .572± .015 .458± .013 .567± .008 .770± .007 .660± .008 .291± .012 .470± .014 .378± .013 .382± .003 .585± .003 .479± .002

RSN4EA .441± .008 .615± .007 .521± .007 .723± .007 .854± .006 .782± .006 .384± .004 .533± .006 .454± .005 .634± .004 .776± .002 .699± .003

MultiKE .411± .010 .521± .017 .468± .012 .495± .010 .646± .016 .569± .011 .290± .006 .357± .011 .326± .009 .319± .001 .396± .004 .360± .002

RDGCN .515± .008 .669± .006 .584± .007 .623± .006 .757± .004 .684± .005 .362± .002 .485± .002 .420± .002 .421± .001 .528± .002 .473± .002

D
-Y

MTransE .463± .013 .675± .011 .559± .012 .443± .017 .635± .013 .533± .015 .244± .004 .414± .006 .328± .005 .100± .003 .195± .005 .152± .004

IPTransE .313± .009 .456± .015 .378± .011 .752± .018 .873± .013 .808± .015 .396± .014 .558± .018 .474± .015 .456± .016 .620± .017 .534± .017

JAPE .469± .009 .687± .011 .567± .009 .345± .010 .546± .013 .440± .011 .287± .007 .474± .008 .379± .007 .127± .004 .244± .006 .189± .005

KDCoE .661± .013 .764± .036 .710± .021 .895± .013 .974± .003 .932± .008 .565± .001 .646± .002 .605± .002 .540± .001 .621± .002 .581± .001

BootEA .739± .014 .849± .010 .788± .012 .958± .001 .984± .001 .969± .001 .703± .004 .827± .003 .761± .003 .886± .003 .944± .002 .912± .002

GCNAlign .465± .012 .626± .011 .536± .011 .875± .005 .948± .004 .907± .004 .528± .003 .695± .005 .605± .004 .620± .006 .779± .006 .693± .006

AttrE .668± .012 .803± .009 .731± .010 .914± .015 .97± .007 .939± .012 .678± .017 .81± .012 .739± .015 .720± .01 .846± .007 .778± .008

IMUSE .392± .013 .571± .023 .473± .017 .899± .011 .949± .007 .922± .009 .536± .018 .700± .019 .613± .018 .629± .011 .774± .010 .696± .010

SEA .500± .011 .706± .012 .591± .012 .899± .005 .950± .003 .923± .004 .490± .042 .677± .040 .578± .040 .526± .021 .687± .021 .603± .021

RSN4EA .514± .003 .655± .004 .580± .003 .933± .003 .974± .001 .951± .002 .620± .002 .769± .003 .688± .002 .841± .003 .922± .001 .877± .002

MultiKE .903± .004 .939± .003 .920± .003 .856± .004 .908± .002 .881± .003 .884± .005 .920± .004 .901± .005 .853± .003 .896± .003 .874± .003

RDGCN .931± .004 .969± .003 .949± .003 .936± .003 .966± .001 .950± .002 .897± .001 .950± .001 .921± .001 .911± .002 .949± .002 .928± .002

Means± stds. are shown. Top-3 results on each dataset are marked in red, blue and cyan, respectively. The same to the following.
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Figure 6: Hits@1 results of JAPE, GCNAlign, KDCoE, At-
trE, IMUSE, MultiKE, RDGCN and their degraded variants
without attribute embedding

relations challenge many embedding approaches. Moreover,
the 100K datasets have a larger candidate alignment space
than the 15K datasets. It is harder to rank the target entity
at the top from a larger candidate space with much more
negative cases. Differently, D-Y-15K and D-Y-100K have a
very similar number of relations in YAGO, which makes the
results different from those on other datasets.
Relations vs. attributes. For the purely relation-based
approaches, there is no clear advantage of one relation em-
bedding technique beyond another. For example, although
MTransE and BootEA both use TransE, their performance
is at two extremes. We believe that the negative sampling in
BootEA makes great contribution, and training embeddings
only with positive samples is prone to overfitting. The work

0
0.2
0.4
0.6
0.8
1

1 2 3 4 5 6 7 8 9 10

KDCoE

0
0.2
0.4
0.6
0.8
1

1 2 3 4 5 6 7 8

Precision
Recall
F1-score

IPTransE BootEA

1 6 11 16 21 26 31 36 41 46 51 Iter.

Figure 7: Precision, recall and F1-score of augmented align-
ment during iterations on EN-FR-100K (V1)

in [7] also shows that negative sampling can largely affect the
expressiveness of KG embeddings. We apply the negative
sampling along with the marginal ranking loss to MTransE
and find that its Hits@1 on EN-FR-15K (V1) rises to 0.271,
which further demonstrates the effectiveness of negative sam-
pling. Besides, the bootstrapping strategy of BootEA also
contributes a lot, which is discussed shortly. For another
example, IPTransE and RSN4EA both extend triple-based
embedding by linking relation triples into long relation paths,
but their results are also significantly different. This is be-
cause the recurrent skipping network of RSN4EA is more
powerful than the shallow composition of IPTransE.

For the approaches using attributes, we compare them to
their variants without attribute embedding. Figure 6 shows
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Figure 8: Running time (in log scale) on the V1 datasets

the Hits@1 results on D-W-15K (V1) and D-Y-15K (V1).
Other datasets show similar results. On D-Y, we do not
observe notable improvement from JAPE and GCNAlign by
using attribute correlations to cluster entities. This tech-
nique would fail to capture the attribute correlations across
different KGs without pre-aligned attributes. Moreover, even
if the attribute correlations are discovered, this signal is too
coarse-grained to determine whether two entities with corre-
lated attributes are aligned. Differently, literal embedding
brings significant improvement to most approaches except
IMUSE, indicating that literals are a stronger signal for entity
alignment than attribute correlations. IMUSE has a prepro-
cessing step using literals to find new entity alignment to
augment training data. However, the errors in new alignment
also harm performance. Most approaches fail to be improved
by attribute embedding on D-W. The symbolic heterogeneity
of attributes in Wikidata (e.g., the local names of attributes
are numeric IDs) notably challenges some approaches as they
cannot automatically find high-quality attribute alignment
for literal comparison. Overall, attribute heterogeneity has a
strong effect on capturing attribute correlations, and literal
embedding facilitates entity alignment.
Semi-supervised learning strategies. We further inves-
tigate the strengths and limitations of these semi-supervised
learning strategies by analyzing the quality of the augmented
seed alignment. Figure 7 depicts the precision, recall and
F1-score of IPTransE, BootEA and KDCoE during the semi-
supervised training on EN-FR-100K (V1), and other datasets
show similar results. IPTransE fails to achieve good perfor-
mance, because it involves many errors as the self-training
continues but does not design a mechanism to eliminate these
errors. KDCoE propagates new alignment by co-training
two orthogonal types of features, i.e., relation triples and
textual descriptions. However, many entities lack textual de-
scriptions, preventing KDCoE from finding alignment seeds
to augment training data. Thus, its strategy does not bring
notable improvement. BootEA employs a heuristic editing
method to remove wrong alignment. After undergoing a pe-
riod of fluctuations, the precision stays stable while the recall
continues growing during self-training, which brings a clear
performance boost. We also conduct an ablation study on
BootEA, and find that its self-training strategy can bring an
improvement of more than 0.086 Hits@1 on the V1 datasets,
demonstrating its effectiveness. So, the quantity and quality
of the augmented entity alignment have great impact on the
semi-supervised approaches. A larger augmented alignment
of higher precision leads to better performance.
Running time comparison. In Figure 8, we show a brief
comparison on the average running time of five repetitions
on the V1 datasets. The time used by different approaches
varies greatly. In general, an approach takes more time to run
on a 100K dataset than on a 15K dataset. BootEA is much
slower than other approaches. For example, its running time
on EN-FR-15K (V1) and EN-FR-100K (V1) are 2,260 and
26,939 seconds, respectively, where the truncated negative
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Figure 9: Visualization of the similarities between entities
and their top-5 nearest cross-KG neighbors on the D-Y-15K
(V1) dataset. The five rows from top to bottom correspond
to the similarities from the first to the fifth nearest neighbors,
respectively. Darker color indicates larger similarity.

sampling and bootstrapping procedure cost more than 23.5%
and 13.3% of the time, respectively. RSN4EA also uses much
time, especially on the 15K (V1) datasets, since it is trained
with multi-hop paths, which are far more than the relation
triples (i.e., one-hop paths). For instance, the number of
two-hop paths in EN-FR-15K (V1) is 500,260, five times
more than that of relation triples (88,198). As for KDCoE
and AttrE, a lot of their time is spent on encoding the literal
information. For example, in KDCoE, the time for training
descriptions takes up at least 26.3%. By contrast, GCNAlign
and MTransE use much less time, as they only use relation
triples and also have a lightweight model complexity. Thus,
we recognize that using auxiliary information or techniques
to boost performance usually increases training time. Overall,
MultiKE balances well between effectiveness and efficiency,
as its multi-view discriminative features make it converge
fast for entity alignment.

6. EXPLORATORY EXPERIMENTS

6.1 Geometric Analysis
In addition to performance comparison, we hereby focus on

the geometric properties of entity embeddings, to understand
how these embeddings support entity alignment performance
and the underlying limitations of existing approaches.

6.1.1 Similarity Distribution
Given entity embeddings, the alignment inference algo-

rithm identifies aligned entities by the nearest neighbor search
in the embedding space. It is interesting to investigate the
similarity distribution of each entity and its nearest neigh-
bors in the cross-KG scope. Towards this end, we visualize
in Figure 9 the average similarities between entities of the
source KG and their top-5 nearest neighbors of the target
KG on D-Y-15K (V1). To make the similarity comparable
over all the approaches, we select cosine similarity as the
metric. The results show two interesting findings:

First, the average similarities between source entities and
their top-1 nearest neighbors (top-1 similarities) of different
approaches differ widely. BootEA, KDCoE, MultiKE and
RDGCN yield a very high top-1 similarity, while IPTransE
and RSN4EA show the opposite. Intuitively, a high top-1
similarity indicates a better quality because it can reflect
how confidently the entity embeddings capture the alignment
information between two KGs. Most approaches with a high
top-1 similarity, such as BootEA, MultiKE and RDGCN,
also achieve good performance for entity alignment (see Ta-
ble 5). For KDCoE, as shown in Figure 7, the low precision
of its augmented alignment makes its top-1 entity alignment
contain many errors. Hence, its performance is not as good
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Figure 10: Proportions of target entities appearing 0, 1
and more times as the nearest neighbors on D-Y-15K (V1)

as BootEA. But it still outperforms many others as its de-
scription and relation embeddings are complementary, and
thus can help find some correct alignment.

Second, the similarity variances between the top-5 nearest
neighbors also differ greatly, which can be reflected by the
color gradients of the five rows from top to bottom. BootEA,
KDCoE, RSN4EA and RDGCN exhibit large variances while
MTransE, IPTransE and JAPE exhibit very slight variances.
A small similarity variance means that the nearest neighbors
are not discriminative enough to enable the entity to identify
its counterpart correctly. The overfitting issue in MTransE,
the bootstrapping errors in IPTransE and the fuzzy entity
clusters in JAPE are the reasons for their non-discriminative
embeddings. Other datasets show similar distribution. The
ideal similarity distribution for entity alignment is to hold a
high top-1 similarity and a large similarity variance.

6.1.2 Hubness and Isolation
Hubness is a common phenomenon in high-dimensional

vector spaces [60], where some points (known as hubs) fre-
quently appear as the top-1 nearest neighbors of many other
points in the vector space. Another phenomenon is that,
there would exist some outliers isolated from any point clus-
ters. The two issues have negative effects on the tasks relying
on the nearest neighbor search [11, 55]. Here, we investigate
whether embedding-based entity alignment also suffers from
them. We measure the proportions of target entities that
appear zero, one and more times as the nearest neighbors of
source entities, respectively. Figure 10 shows the results on
D-Y-15K (V1), and other datasets also show similar results.
Surprisingly, we find that there is a large proportion of target
entities that never appear as the top-1 nearest neighbors of
any source entity (marked with orange bars). This means
that such isolated entities may never be considered if we use
the greedy strategy of choosing the top-1 nearest neighbor to
form alignment. Consequently, we would miss much correct
entity alignment. The entities (blue and gray bars) that
appear as the nearest neighbors of more than one source
entity also occupy considerable proportions. They would
cause many violations against the 1-to-1 mapping constraint
and globally increase the uncertainty of alignment inference.
We observe that the approaches which yield fewer isolated
and hub entities, such as MultiKE and RDGCN, achieve
the leading performance of entity alignment, and vice versa.
So, the ideal case is to have small proportions of isolated
and hub entities. This finding indicates that we can make
an estimation about the final entity alignment performance
through the hubness and isolation analysis.

To resolve the hubness and isolation problem, we explore
cross-domain similarity local scaling (CSLS) [11] as the al-
ternative metric. It normalizes the similarity of source and
target entity embeddings based on the density of their em-
bedding neighbors. Taking cosine for example, we have

CSLS(xs,xt) = 2 cos(xs,xt)− ψt(xs)− ψs(xt), (7)

Table 6: Hits@1 w.r.t. distance metrics and alignment
inference strategies on D-Y-15K (V1)

Greedy Greedy w/ CSLS SM SM w/ CSLS
MTransE .463± .013 .550± .009 .694± .006 .697± .010

IPTransE .313± .009 .339± .013 .370± .018 .369± .018

JAPE .469± .009 .549± .009 .692± .015 .691± .015

KDCoE .661± .013 .679± .000 .840± .024 .815± .031

BootEA .739± .014 .741± .009 .783± .007 .782± .006

GCNAlign .465± .012 .531± .008 .613± .008 .582± .010

AttrE .668± .012 .778± .012 .845± .012 .857± .012

IMUSE .392± .013 .448± .018 .520± .028 .518± .030

SEA .500± .011 .557± .017 .647± .012 .650± .012

RSN4EA .514± .003 .548± .003 .571± .002 .575± .004

MultiKE .903± .004 .925± .003 .951± .003 .956± .002

RDGCN .931± .004 .956± .002 .962± .002 .979± .001

where ψt(xs) denotes the average similarity between the
source entity xs and its top-k nearest neighbors in the target
KG. ψs(xt) is computed symmetrically. CSLS decreases the
similarities between hub entities and other entities. It can
also let some isolated entities be fairly considered in test-
ing because they usually receive less similarity penalization.
Therefore, we use CSLS to enhance the conventional dis-
tance metrics. In addition, we also consider stable matching
(a.k.a. stable marriage) to retrieve entity alignment from a
global perspective rather than the greedy strategy based on
the nearest neighbor search. The entity alignment between
two KGs is stable when there does not exist another pre-
dicted aligned pair (e1, e2) of higher preference than those
of e1 and e2 to their current matches. The preference can
be calculated based on a similarity metric such as CSLS.

We report the Hits@1 results enhanced by CSLS and
stable matching (abbr. SM) in Table 6. We find that CSLS
brings significant gains to the greedy strategy, especially
on MTransE, JAPE, GCNAlign and AttrE. This is because
CSLS can help mitigate the hubness phenomenon. Besides,
SM further brings improvement. For example, compared
with the greedy strategy, it yields a gain of more than 10%
on Hits@1 for MTransE, JAPE, KDCoE, GCNAlign, AttrE,
IMUSE, SEA and RotatE. The reason lies in that SM can
consider all entities including isolated ones. Interestingly,
we observe that CSLS does not boost the performance of
SM. This indicates that SM relies less on the distance metric.
We gain similar results on other datasets. In summary, ex-
isting approaches concentrate on developing more powerful
embedding and interaction methods, but some methods for
the alignment module can also improve performance.

6.2 Unexplored KG Embedding Models
As summarized in Sect. 2.1, most existing approaches use

TransE [5] or GCNs [38] for KG embedding due to their
strong robustness and good generalizability. However, many
other KG embedding models have not been explored for entity
alignment yet. To fill this gap, we evaluate three translational
models TransH [82], TransR [49] and TransD [33], two deep
models ProjE [66] and ConvE [13], as well as three semantic
matching models HolE [54], SimplE [36] and RotatE [71],
for entity alignment. We choose MTransE as baseline and
replace its relation embedding model TransE with the afore-
mentioned models. We report the Hits@1 results on the V1
datasets in Figure 11. Other results are available online. The
results of TransR and HolE are omitted because their Hits@1
scores are smaller than 0.01 on most datasets.

We can see that the improved translational models TransH
and TransD show stable and promising performance on all
the datasets. Specifically, on the 100K datasets, TransH
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Figure 11: Cross-validation results of unexplored KG embedding models on the 15K (V1) and 100K (V1) datasets

Table 7: Comparison with conventional approaches on the 15K and 100K datasets
15K (V1) 15K (V2) 100K (V1) 100K (V2)

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

E
N

-F
R LogMap .818± .002 .729± .002 .771± .001 .599± .003 .805± .001 .687± .002 .719± .001 .677± .001 .697± .001 .541± .001 .709± .000 .614± .001

PARIS .907± .000 .900± .000 .903± .000 .929± .001 .939± .001 .934± .001 .852± .000 .844± .000 .848± .000 .874± .000 .888± .000 .881± .000

OpenEA .755± .004
∗ .755± .004

∗ .755± .004
∗ .864± .007

‡ .864± .007
‡ .864± .007

‡ .640± .004
∗ .640± .004

∗ .640± .004
∗ .715± .003

∗ .715± .003
∗ .715± .003

∗

E
N

-D
E LogMap .925± .002 .725± .001 .813± .001 .888± .000 .702± .002 .784± .001 .827± .001 .732± .001 .777± .001 .729± .003 .729± .001 .729± .002

PARIS .938± .000 .933± .000 .935± .000 .959± .000 .964± .000 .961± .000 .890± .000 .886± .000 .888± .000 .913± .000 .923± .000 .918± .000

OpenEA .830± .006
∗ .830± .006

∗ .830± .006
∗ .833± .015

† .833± .015
† .833± .015

† .722± .002
∗ .722± .002

∗ .722± .002
∗ .766± .002

∗ .766± .002
∗ .766± .002

∗

D
-W

LogMap - - - - - - - - - - - -
PARIS .746± .001 .723± .002 .734± .001 .828± .000 .854± .001 .840± .001 .692± .000 .643± .000 .667± .000 .783± .002 .806± .002 .795± .002

OpenEA .572± .008
† .572± .008

† .572± .008
† .821± .004

† .821± .004
† .821± .004

† .516± .006
† .516± .006

† .516± .006
† .766± .007

† .766± .007
† .766± .007

†

D
-Y

LogMap .971± .001 .943± .002 .957± .001 .944± .002 .984± .001 .964± .002 .920± .001 .915± .001 .917± .001 .954± .001 .912± .000 .933± .001

PARIS .899± .002 .869± .002 .884± .002 .972± .000 .971± .000 .971± .000 .893± .000 .866± .000 .880± .000 .956± .000 .953± .000 .955± .000

OpenEA .931± .004
∗ .931± .004

∗ .931± .004
∗ .958± .001

† .958± .001
† .958± .001

† .897± .001
∗ .897± .001

∗ .897± .001
∗ .911± .002

∗ .911± .002
∗ .911± .002

∗

The results of RDGCN, BootEA and MultiKE are marked in “ ∗ ”, “†” and “‡”, respectively.

is robuster than MTransE and gain better results. This is
because TransH handles multi-mapping relations better and
also uses negative sampling to enhance embedding. Differ-
ently, we find that TransR fails to achieve promising results.
The relation-specific transformation of entity embeddings in
TransR requires relation alignment to propagate the align-
ment information between entities. However, in our problem
setting, we focus on entity alignment and do not provide
relation alignment due to the great heterogeneity between
KG schemata. The neural models ConvE and ProjE also
show promising results on most of our datasets. However,
we find that they perform poorly on D-Y-15K (V1). We owe
it to the fewer relation triples and the big gap between the
relation numbers in these datasets. It is difficult for the two-
dimensional convolution of ConvE or the non-linear transfor-
mation of ProjE to capture the similar interactions between
entity and relation embeddings across such heterogeneous
KGs. For the semantic matching models, the non-Euclidean
embedding model RotatE achieves much better performance
than SimplE. It also outperforms other models. In short, not
all KG embedding models are suitable for entity alignment,
and non-Euclidean embeddings are worth further exploration.

6.3 Comparison to Conventional Approaches
We compare OpenEA with two famous open-source con-

ventional approaches for KG alignment, i.e., LogMap [34]
from the Semantic Web community and PARIS [70] from
the Database community. LogMap is an ontology matching
system with built-in reasoning and inconsistency repair capa-
bilities. PARIS is a holistic solution to align KGs based on
probability estimates. The non-English KGs in cross-lingual
datasets are translated to English using Google Translate to
eliminate the language barrier for LogMap and PARIS.
Overall comparison. Table 7 compares LogMap, PARIS
and the best embedding-based approach in OpenEA. For the
test phase of OpenEA, as each source entity gets a list of
candidates, precision, recall and F1-score are in fact equal
to Hits@1. All these approaches achieve good results, where
PARIS performs the best on most of our datasets including
EN-FR, EN-DE and D-W, and LogMap achieves promising
performance on D-Y. Overall, OpenEA shows no superiority
over the conventional approaches PARIS and LogMap. We
think this is because current embedding-based approaches
put in their main efforts in learning expressive embeddings to

Table 8: Comparison with conventional approaches using
different features on EN-FR-15K (V1)

Using relation triples only Using attribute triples only
Precision Recall F1-score Precision Recall F1-score

LogMap - - - .816± .003 .723± .002 .767± .001

PARIS - - - .917± .000 .769± .000 .837± .000

BootEA .507± .010 .507± .010 .507± .010 - - -
MultiKE .337± .005 .337± .005 .337± .005 .719± .005 .719± .005 .719± .005

RDGCN .255± .004 .255± .004 .255± .004 - - -

capture entity features while ignore the alignment inference.
As summarized in Sect. 2.2.2, their alignment inference strate-
gies are based on pairwise similarity comparison, lacking the
capability of inconsistency repair and holistic estimation that
LogMap and PARIS have. Our geometric analysis in Sect. 6.1
further shows that this weakness would lead to the issue of
hubness and isolation and thus degrade entity alignment
performance. By resolving this issue, as shown in Table 6,
OpenEA (RDGCN) achieves better Hits@1 (precision) on D-
Y-15K (V1) and outperforms LogMap and PARIS in Table 7.
Our experiment indicates that embedding-based entity align-
ment approaches require further improvement in alignment
inference. Besides, we notice that LogMap fails to output en-
tity alignment on the D-W datasets. This is because LogMap
highly depends on the local names in URIs to compute simi-
larities while the URIs in Wikidata have no actual meanings
(e.g., https://www.wikidata.org/wiki/Property:P69). In
fact, the results of all approaches on D-W decrease severely.
The symbolic heterogeneity brings huge obstacles to both
conventional and embedding-based approaches.
Feature study. Table 8 shows the results of LogMap and
PARIS as well as three top-performing embedding-based
approaches RDGCN, BootEA and MultiKE when only given
relation or attribute triples of EN-FR-15K (V1). LogMap and
PARIS rely on attribute triples and fail to output alignment in
the case of using relation triples only . This is different from
embedding-based approaches that all use relation triples. In
the case of using relation triples only, BootEA is not affected
by the lack of attribute triples. The performance of MultiKE
and RDGCN drops greatly since their attribute embedding
modules are disabled in this case. However, their relation
embedding modules can still learn embeddings. When only
using attribute triples, the results of LogMap almost remain
intact because it mainly uses attribute triples to compute
entity similarities. The recall of PARIS drops dramatically
as it cannot use the relational inference to find more entity
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Table 9: Summary of the required information of embedding-based and conventional entity alignment approaches
MTransE IPTransE JAPE KDCoE BootEA GCNAlign AttrE IMUSE SEA RSN4EA MultiKE RDGCN LogMap PARIS

Relation/attribute triples ∗/ ∗/ ∗/◦ ◦/◦ ∗/ ∗/◦ ◦/◦ ◦/◦ ∗/ ∗/ ◦/◦ ∗/◦ ◦/∗ ◦/∗
Pre-aligned ent./prop. ∗/◦ ∗/◦ ∗/◦ ∗/ ∗/ ∗/◦ ∗/ ∗/ ∗/ ∗/ ∗/◦ ∗/ ◦/◦ ◦/◦
Word embed./Google trans. ◦/ ◦/ ◦/ ◦/ /4 /4
“∗” means “mandatory”, “◦” means “optional”, “4” means “mandatory for cross-lingual entity alignment”, and blank means “not applicable”.

alignment. But its precision is still very high and even a
little better than that in Table 7. Considering that PARIS
is not designed for relational inference, relation triples may
bring along noises to this approach. As for embedding-based
approaches, RDGCN and BootEA cannot learn embeddings
without relation triples. The multi-view approach MultiKE
also suffers from performance penalties because it cannot
benefit from the relation embedding. This experiment reveals
the different application scenarios of these entity alignment
approaches. Conventional approaches better support the entity
alignment scenario with attribute information. Embedding-
based approaches cover most of the typical scenarios with
either relation information, attribute information or both.
Analysis on predicted alignment. To further investigate
the potential complementarity of embedding-based and con-
ventional approaches, we show in Figure 12 the proportions
of correct alignment found by OpenEA (RDGCN), LogMap
and PARIS on EN-FR-100K (V1). They all suffer from the
same challenge (the symbolic heterogeneity). We find that
they can produce complementary entity alignment. This
analysis calls for a hybrid system for entity alignment built
on both conventional and embedding-based techniques.

3.50%

12.67%1.74%

OpenEA

LogMap PARIS

4.01% 9.75%

46.56%

15.36%

6.41% Figure 12: Proportions of the
correct alignment found by LogMap,
PARIS and OpenEA on EN-FR-100K
(V1). OpenEA additionally finds
13.25% (3.50% + 9.75%) and 7.51%
(3.50% + 4.01%) of the alignment that
LogMap and PARIS do not, respec-
tively. Besides, 6.41% of the align-
ment is not found by any approach,
while 45.56% is found by all the three.

7. SUMMARY AND FUTURE DIRECTIONS

7.1 Summary of Experiments
From our experimental results, we find that (i) RDGCN,

BootEA and MultiKE achieve the most competitive perfor-
mance. This suggests that incorporating both literal infor-
mation and carefully-designed bootstrapping can help entity
alignment. (ii) For the embedding models designed for link
prediction, we find that not all of them are suitable for entity
alignment. (iii) Currently, the alignment inference strategy
receives little attention. Our preliminary results show that
the CSLS distance metric and the stable matching strategy
can bring performance improvement to all the approaches.
(iv) We also find that embedding-based and conventional en-
tity alignment approaches are complementary to each other.
(v) For choosing appropriate approaches based on the avail-
able resources in real-world scenarios, Table 9 summarizes the
required information of embedding-based and conventional
entity alignment approaches in our experimental analysis.

7.2 Future Directions
Unsupervised entity alignment. As summarized in Sec-
tion 2.2.3 and discussed in Section 5.2, all current approaches

require seed alignment as supervision. However, this require-
ment is sometimes difficult to be satisfied in the real world.
Hence, studying unsupervised entity alignment is a meaning-
ful direction. A possible solution is to incorporate auxiliary
features or resources and distill distant supervision from
them, such as discriminative features (homepages of people
and introductory images of products) and pre-trained word
embeddings [87]. Besides, recent advances in unsupervised
cross-lingual word alignment [11] like orthogonal Procrustes
[64] and adversarial training [23] are also worth investigation.
Another possible solution is to use active learning [32, 59] or
abductive learning [92] to reduce the burden of data labeling.
Long-tail entity alignment. Our experimental analysis on
the sparse and dense datasets reveals the difficulty in aligning
long-tail entities, which usually account for a large proportion
in KGs [43]. To embed long-tail entities, in addition to using
more advanced graph neural networks [38, 63, 78], injecting
more features such as multi-modal data and taxonomies
would also be helpful. As KGs are far from complete, jointly
training link prediction and entity alignment via a unified
framework may leverage the incidental supervision of both
tasks. Extracting additional information from the open Web
to enrich long-tail entities is also a potential direction [67].
Large-scale entity alignment. The running time com-
parison shows that training existing approaches on larger
datasets costs much more time. The test phrase also takes
much time. For example, computing the pairwise cosine sim-
ilarity of entity embeddings on a 100K dataset costs about 8
minutes by using 10 processes in parallel. The cost would
grow polynomially along with the growing number of entities.
It is difficult for embedding-based (and also conventional)
approaches to run on very large KGs due to the large and
unpartitioned candidate space. The blocking techniques, e.g.,
locality-sensitive hashing [21] and hashing representation
learning [45], may be useful to narrow the candidate space.
Entity alignment in non-Euclidean spaces. Our exper-
imental results in Figure 11 indicate that the non-Euclidean
embedding model RotatE [71] outperforms other Euclidean
models. We also notice that recent non-Euclidean embed-
dings have demonstrated their effectiveness in represent-
ing graph-structured data [53]. So, alignment-oriented non-
Euclidean KG embedding models are worth exploiting.

8. CONCLUSION
In this paper, we survey the field of embedding-based entity

alignment between KGs and conduct a benchmarking study
of the representative approaches. We create a set of dedi-
cated datasets that better fit real-world KGs and develop an
open-source library containing a variety of entity alignment
approaches and KG embedding models. Our experiments
analyze the status quo and point out future directions.

Acknowledgments. This work was supported by the Na-
tional Key R&D Program of China (No. 2018YFB1004300),
the National Natural Science Foundation of China (No.
61872172), and the Collaborative Innovation Center of Novel
Software Technology and Industrialization.

2337



9. REFERENCES

[1] F. Akrami, M. S. Saeef, Q. Zhang, W. Hu, and C. Li.
Realistic re-evaluation of knowledge graph completion
methods: An experimental study. In SIGMOD, pages
1995–2010. ACM, 2020.

[2] B. Bahmani, A. Chowdhury, and A. Goel. Fast
incremental and personalized pagerank. PVLDB,
4(3):173–184, 2010.
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