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ABSTRACT
Streaming spatio-textual data that contains geolocations and
textual contents, e.g., geo-tagged tweets, is becoming in-
creasingly available. Users can register continuous queries
to receive up-to-date results continuously, or pose snapshot
queries to receive results instantly. The large scale of spatio-
textual data streams and huge amounts of queries pose great
challenges to the current location-based services, and call
for more efficient data management systems. In this pa-
per, we present SSTD (Streaming Spatio-Textual Data),
a distributed in-memory system supporting both continu-
ous and snapshot queries with spatial, textual, and tem-
poral constraints over data streams. Compared with ex-
isting distributed data stream management systems, SSTD
has at least three novelty: (1) It supports more types of
queries over streamed spatio-textual data; (2)SSTD adopts
a novel workload partitioning method termed QT (Quad-
Text) tree, that utilizes the joint distribution of queries and
spatio-textual data to reduce query latency and enhance sys-
tem throughput. (3) To achieve load balance and robust-
ness, we develop three new workload adjustment methods
for SSTD to fit the changes in the distributions of data or
queries. Extensive experiments on real-life datasets demon-
strate the superior performance of SSTD.
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1. INTRODUCTION
With the prevalence of GPS-enabled mobile devices, there

emerges massive amounts of data containing both geographi-
cal locations and textual contents, also termed spatio-textual
data. Location-based services (LBS) are important sources
of spatio-textual data, e.g., geo-tagged tweets in Twitter,
and geo-tagged posts in Facebook. This data usually arrives
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at high rates, and can be modelled as a data stream. It con-
veys valuable information, e.g., trending topics and people’s
reactions towards them. Users may issue different types of
queries to retrieve information of interest. For example, a
filmmaker can pose a snapshot query to collect opinions of
audiences within a city regarding her latest movie. Mean-
while, to get notified of every new comment on her movie
from her home city, she can register a continuous query over
the stream of social media data, e.g., tweets, to receive the
up-to-date comments about her movie. These two types of
queries are essentially different. A snapshot query is dis-
posable and retrieves historical information already in the
system. In contrast, a continuous query resides in the sys-
tem after being registered, and will not be deleted until it
expires or the user deregisters it. During its lifetime, new
results satisfying the query will be reported. Both query
types have many applications, e.g., social marketing, event
detection and sentiment analysis.

It is challenging to develop a distributed stream processing
system that supports both snapshot and continuous queries
over a large scale of spatio-textual data with low latency and
high throughput. First, the fast arrival speed of streaming
spatio-textual data imposes high demands on the system
performance. For example, Twitter receives up to 500 mil-
lion tweets per day [27] and Foursquare receives over 9 mil-
lion check-ins per day [23]. This calls for a distributed so-
lution with efficient and effective workload partitioning and
workload adjustment methods. Second, there exist notable
differences in the mechanisms for processing snapshot vs.
continuous queries. Efficient processing of snapshot queries
requires effective index structures of the streaming objects.
In contrast, efficient processing of continuous queries entails
indexing the queries as well to continuously produce the
query results over streaming objects efficiently. This calls
for a careful design of the system architecture to seamlessly
process snapshot queries and continuous queries.

There exist distributed systems for spatio-textual data
streams [6, 16, 17] as well as distributed systems for spa-
tial data [1,8,13,18,21,24,26], which are both related to our
work. They either do not provide supports for both snapshot
and continuous queries, or fail to satisfy the system perfor-
mance requirements on low latency and high throughput for
spatio-textual data streams.

In this paper, we present SSTD, a new distributed system
for processing streaming spatio-textual data. SSTD sup-
ports more types of snapshot and continuous queries than
previous spatio-textual streaming systems. We develop al-
gorithms to handle various types of queries in a distributed
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setting and support querying over large amounts of stream-
ing spatio-textual data with low latency and high through-
put. We propose a novel global index structure termed the
QT-tree that is employed by multiple routers (dispatchers)
to achieve effective workload partitioning for both streamed
objects and queries while minimizing the total workload.

To support workload partitioning and workload balanc-
ing while minimizing the total workload in the QT-tree, we
develop an effective cost model to capture the characteris-
tics of the workload comprising multiple types of queries.
Moreover, we develop three workload adjustment methods
to handle the workload imbalance problem.

Our contributions can be summarized as follows:

• We develop SSTD, a distributed system that supports
both snapshot and continuous queries over spatio-textual
data streams.

• We design a new global index structure termed the QT-
tree for workload partitioning while minimizing the total
workload that utilizes both the spatial and textual prop-
erties of the data. For QT-tree, we design an effective
cost model to capture the workload that is composed of
various types of queries.

• To cope with the load imbalance incurred by workload
changes, we design three workload adjustment methods to
recover from load imbalance. Our workload adjustment
mechanisms outperform existing work in three aspects:
(a) more effective load balancing, (b) more efficient work-
load adjustment, and (c) guaranteed correct query results
during workload adjustment.

• We implement SSTD, and deploy it on Amazon EC2. We
conduct extensive experiments over real-life datasets to
evaluate the performance of SSTD. Results demonstrate
that SSTD outperforms existing systems with respect to
latency, throughput, and scalability.

2. RELATED WORK
Querying spatio-textual data streams. There exists a
lot of work on querying spatio-textul data streams. These
proposals usually focus on a specific type of query. Some sys-
tems [3, 6, 12, 15, 22] focus on processing continuous queries
with both spatial and keyword constraints. They aim to
develop efficient indexing structures to organize the contin-
uous queries to efficiently match the new spatio-textual ob-
jects with the registered continuous queries. There also exist
proposals focusing on the top-k frequent term query [5, 20]
that returns the top-k terms with the highest frequency in
a region. These proposals focus on developing specialized
index structures to efficiently compute the term frequencies.

These index structures have been developed to handle a
specific type of spatial keyword queries. It would be difficult
to generalize them to handle other types of queries. Worse
still, they cannot be extended to act as a global index that
needs to meet the following requirements: (1) effective work-
load distribution while minimizing the total workload, which
is not considered by these indexes; (2) being efficiently up-
dated over the new streaming data; however, these indexes
are complex and expensive to maintain. Details will be dis-
cussed in Section 4. In contrast, SSTD may utilize these in-
dex structures as local indexes for processing queries, which
in this sense, are complementary to our work.

Distributed spatial systems. Parallel Secondo [13], MD-
HBase [18], Hadoop-GIS [1] and SpatialHadoop [8] are disk-
based spatial analysis systems. Parallel Secondo [13] com-
bines Hadoop with Secondo that is an extensible database
system that supports non-standard data types e.g., spatial
data. MD-HBase [18] extends HBase with multi-dimensional
index structures (e.g., kd tree). Hadoop-GIS [1] extends
Hive to support spatial indexes. SpatialHadoop [8] extends
Hadoop to provide native support for spatial data. It parti-
tions the spatial data using an R-tree or a grid index.

Simba [24], GeoSpark [26] and LocationSpark [21] are dis-
tributed in-memory spatial data analysis systems. Simba [24]
extends Spark with SQL-like query language to express spa-
tial queries and provides native support for spatial data. It
uses an R-tree-based partitioning strategy to partition the
spatial data. GeoSpark [26] is also based on Spark. It ap-
plies two spatial index structures (quadtree and R-tree) to
support spatial join, range query and kNN query. Location-
Spark [21] extends Spark with a query scheduler and local
query executors.

These disk-based and in-memory systems focus on query-
ing static spatial data but do not handle continuously arriv-
ing and large scale data streams. We discuss them in two
categories as follows. (1) R-tree-based global index for work-
load distribution [1,8,24]. These are not easily adaptable to
spatio-textual data streams for two reasons: (a) They are
not suitable for high update rates. To distribute new queries
and objects, the global index needs to invoke frequent up-
dates of the MBRs of R-tree nodes due to the insertions of
the arriving spatio-textual objects, which leads to poor per-
formance of the global index. (b) Multiple routers undertake
the role of global index layer, each maintaining a copy of the
index. Inserting new streaming objects into R-tree will re-
sult in inconsistency of the global index on different routers.
To solve this, we either do costly communication and syn-
chronization in response to updates on a global index, or
send each query to all routers. Either solution is infeasi-
ble and will result in very poor performance for handling
queries. (2) Other spatial index based partitioning strate-
gies, e.g., grid [8, 26], kd-tree or quadtree. They do not
suffer from the two aforementioned issues of R-tree when
employed as global index for spatio-textual data streams.
However, both categories of global indexes do not have a
cost model for various types of spatio-textual queries as does
SSTD. Since the expected workload of SSTD includes pro-
cessing many queries with textual constraints, these parti-
tioning strategies are not effective.

Additionally, Cruncher [19] is a demonstration system
that supports continuous and snapshot spatial queries over
spatial data. Cruncher uses kd-tree based index that is
based on AQWA [2]. Cruncher does not consider the textual
property of data, making it inefficient for processing queries
with textual constraints.
Distributed systems for spatio-textual data streams.
Closest to our system SSTD are Tornado [16,17] and PS2 [6],
which are distributed systems supporting continuous range
keyword queries only over spatio-textual data streams. We
proceed to review the two key components of the two sys-
tems: (1) Workload distribution. Tornado uses an aug-
mented grid structure (called A-Grid) that overlays spatial
partitions from a kd-tree on top of the cells of A-Grid as
the global index for partitioning the workload comprising
continuous range keyword queries. Each spatial partition in
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the A-Grid contains a summary of all keywords contained
in continuous queries falling in the partition, which will be
used together with spatial partitions to decide how to route
a new query. PS2 [6] adopts the global kdt index struc-
ture for partitioning the workload. kdt extends kd-tree by
allowing a node to be split based on the spatial property
or the textual property, both of which are used for routing
a new query. However, both A-Grid and kdt-tree are de-
veloped for processing one type of continuous queries, and
their cost models do not consider a dynamic workload that
involves object insertions and various types of queries in-
cluding snapshot queries as does SSTD. Their partitioning
strategies cannot reflect well the characteristics of the tar-
geted workload of SSTD.

(2) Workload adjustment. To adapt to changes in the
workload, Tornado [16, 17] uses split and merge operations.
It splits an overloaded partition into two partitions and
then merges two lightly-loaded partitions into one partition.
In addition, Tornado adopts workload shift operations that
transfer queries among neighbor partitions when no merg-
ing is possible. PS2 [6] solves the load imbalance problem by
transferring continuous queries from the most loaded worker
to the least loaded worker. The workload adjustment strate-
gies of Tornado and PS2 do not consider the workload caused
by snapshot queries, which makes them inapplicable to our
adjustment problem. In contrast, we propose for SSTD three
workload adjustment methods that work together to rebal-
ance the workload while guaranteeing correct query results
during workload adjustment.

3. SYSTEM OVERVIEW
In this section, we present the definitions of supported

queries and describe the system architecture of SSTD.

3.1 Supported Queries
A spatio-textual object is in the form of o =< φ, ρ, t >,

where φ is a set of keywords, ρ is the object’s geographical
location (i.e., latitude and longitude), and t is the creation
timestamp of object o. We next define the query types sup-
ported in SSTD.

Definition 1. Range keyword query: A range key-
word query is in the form of q =< φ, r, τ >, where φ is
a set of keywords, r is a rectangular region, and τ is a time
duration.

• For the snapshot version, q returns objects that contain
q.φ, are located inside q.r, and that arrive within the last
q.τ time units.

• For the continuous version, q keeps running in the system
for a duration of q.τ . During the lifetime of q, a newly
arrived object is reported as the result of q if it contains
q.φ and is located inside q.r.

Definition 2. kNN query: A kNN query is of the form
q =< φ, ρ, k, τ >, where φ is a set of keywords, ρ is the geo-
graphical location, k is an integer, and τ is a time duration.

• For the snapshot version, q returns the k-nearest objects
to q.ρ that contain q.φ, and that arrive within the last q.τ
time units.

• For the continuous version, q keeps running in the system
for a duration of q.τ . During the lifetime of q, it maintains
the k-nearest objects to q.ρ and that contain q.φ.

Definition 3. Top-k frequent-term query: A top-k
frequent-term query is of the form q =< r, k, τ >, where
r is a rectangular region, k is an integer, and τ is a time
duration.

• For the snapshot version, q returns the top-k most frequent
terms appearing in the objects that are located inside q.r,
and that arrive within the last q.τ time units.

• For the continuous version, different from the last two
types of queries, q does not make instant response to the
user. Instead, every δ time units, it performs aggregation
operations on objects received within a period T , and re-
turns the aggregation information (top-k frequent terms)
to the user. Therefore, q has two additional parameters
T and δ, where T denotes the sliding window size and δ
denotes the step size. Query q keeps running in the sys-
tem for a duration of q.τ . During the lifetime of q, every
δ time units, q reports the top-k most frequent terms ap-
pearing in the objects that are located inside q.r and that
arrive within the time window [tnow−T, tnow], where tnow
denotes the current timestamp.

The parameter r in range keyword query and top-k fre-
quent term query can also be a circular region. For brevity,
in the paper hereafter, we use the terms object and spatio-
textual object interchangeably if there is no ambiguity. We
use SRQ, SKQ, and STQ to represent the snapshot versions
of the range keyword, the kNN, and the top-k frequent-term
queries, respectively, and use CRQ, CKQ, and CTQ to refer
to the continuous versions of the range keyword, the kNN,
and the top-k frequent-term query, respectively.

3.2 System Architecture
SSTD builds on Apache Storm to process large scale

streaming spatio-textual data. Storm is a popular dis-
tributed platform that provides rich APIs to conduct real-
time operations over streaming data. Storm is not optimized
for the execution of spatial-keyword queries because it does
not have built-in support for spatial or textual primitives.

To support the various types of queries over a large scale
of spatio-textual data with low latency and high through-
put, SSTD focuses on addressing the following challenges:
(1) Efficiently and effectively distributing streaming data
and queries across workers. This calls for a global index em-
ployed by routers to co-locate relevant data and queries in
the same worker to reduce workload. (2) Maintaining load
balancing as the workload changes by redistributing work-
load while guaranteeing the correctness of query execution.
(3) The mechanisms for processing snapshot vs. continuous
queries are significantly different as discussed in Introduc-
tion. Figure 1 illustrates the overall architecture of SSTD.
Routers To partition the workload and facilitate the pro-
cessing of both snapshot and continuous queries, we design
a novel global index structure, termed the QT-tree. QT-
tree aims to achieve load balance while minimizing the total
workload. To reduce the total workload, ideally spatially
close or textually similar objects are assigned to the same
worker and co-locate the relevant queries as well. To sup-
port this, we develop an effective cost model to capture the
characteristics of the workload comprising multiple types of
queries. To support high arrival rates of streamed data, the
global index is replicated in multiple routers. Once an object
or a query is received, a router is selected in a round-robin
fashion to handle the object or query, and sends the object
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Figure 1: Architecture of SSTD

to a relevant worker or the query to relevant worker(s). We
will explain the indexing structure in detail in Section 4.
Workers Each worker (1) maintains a local index for ob-
jects and indexes for various types of continuous queries,
(2) checks the incoming data objects against the continu-
ous queries and updates query results, and (3) checks the
incoming snapshot queries over the object index to produce
results. SSTD supports 6 kinds of queries. We will discuss
their execution strategies in Section 6.
Load balancing Achieving load balancing is essential for
excellent performance in a distributed system. A decent
distributed stream processing system calls for an effective
load-balancing mechanism that can adaptively adjust the
workload of different workers to maintain load balance. The
load balancing module periodically collects the statistics of
objects and queries to estimate the workloads of the workers,
and decides whether load imbalance occurs. If that hap-
pens, SSTD applies three different methods to change the
workload assignment, and adjusts the workload of workers
accordingly as to be discussed in Section 5.
Persistent storage Due to the nature that data streams
are unbounded, it is impractical for SSTD to always pre-
serve the whole data in memory, which is also unnecessary as
users are usually interested in relatively “fresh” data. There-
fore, every a period of time, SSTD writes the obsolete data
into persistent storage to free memory space. SSTD also
supports connections with other peripheral systems, e.g.,
RDMBS and HDFS for future processing.
Fault tolerance SSTD extends the fault tolerance mecha-
nism of Storm. It has two major daemon processes: Nim-
bus and Supervisor. Nimbus assumes the responsibilities
of scheduling and monitoring the Supervisors. In contrast,
the Supervisor takes charge of launching and killing threads
that undertake the roles of routers and workers. When a
router/worker fails, the Supervisor daemon will restart it.
If it continuously fails on startup, Nimbus will create a new
router/worker. After recovery, (1) the “new” router will
load the QT-tree from disk and continue receiving streamed
objects and queries; (2) the “new” worker will load the lost
objects from the persistent storage (if they have been per-
sisted already) to support subsequent queries. For the fault
tolerance of Nimbus, we maintain multiple Nimbus processes
managed by Zookeeper. If the current Nimbus dies, another
Nimbus will be elected as the new leader.

4. GLOBAL INDEXING
In SSTD, a global index is deployed on the routers to

partition and distribute the workload to the workers, aiming
to achieve load balance. When a router receives an object or
a query, it looks up the global index, and dispatches to the

Figure 2: Before partitioning

(a) spatial partitioning (b) textual partitioning

Figure 3: After partitioning

corresponding workers. We present the index construction
in Section 4.1, and the index deployment in Section 4.2.

4.1 QT-tree Construction
Requirements on global index As discussed in Related
Work, existing global indexes cannot reflect well the char-
acteristics of the target workload of SSTD. We proceed to
present the requirements on global index: (1) Optimize the
cost. Ideally, each object is stored only once in the sys-
tem. It reduces communication cost, saves the memory of
storing objects, and avoids deduplication overhead in query
processing. (2) Achieve load balance among the workers.
The global index should assign balanced workload to each
worker, as well as adapt and fit the change of workload of
workers over time. (3) Minimize the total workload. Intu-
itively, it will reduce the workload of answering queries if
spatially close or textually similar objects are assigned to
the same worker and co-locate the relevant queries as well.
Furthermore, different ways of workload partitioning will re-
sult in different workloads. To illustrate this, Figure 2 gives
5 objects and 1 SRQ together with their textual contents in
Region P . If P is handled by a worker, the workload will
be visiting 5 objects on P to answer q. If we partition the
workload of P utilizing the spatial properties of the objects
into 4 workers as in Figure 3(a), then we only need to visit
objects in Regions P2 and P4 to check if they are results, the
total workload is smaller. Alternatively, if we partition P
utilizing textual properties of objects as in Figure 3(b), we
only need to visit 2 objects in Region P3 to answer q, which
has even smaller total workload. (4) Efficient maintenance.
The global index should be maintained efficiently by each
router, under the premise that the objects with high arrival
rate can be digested and queries can be correctly processed.
QT-tree To address these challenges, we propose the QT-
tree, a variant of quadtree that allows a node to be split
based on the spatial or textual properties of the objects.
Figure 4 gives an example of QT-tree, where node N2 is
partitioned based on the spatial property, and N4 is parti-
tioned based on the textual property. It aims to minimize
the total workload while preserving load balance among all
workers. To achieve this goal, in Section 4.1.1, we introduce
a cost model to estimate the workload of a region, which is
a key component in QT-tree construction. We present the
algorithm for constructing the QT-tree in Section 4.1.2.

4.1.1 Cost Model
Existing cost models for querying spatio-textual data fo-

cus on SRQ and cannot capture the characteristics of the
workload comprising various type of queries. For example,
Tornado [17] adopts a cost model called AQWA [2] that
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Figure 5: Query Distribution Statistics

defines the workload of a partition P as W (P) = |Q| · |O|,
where |Q| and |O| denotes the number of queries and objects
overlapping with P, respectively. It does not consider the
effect of textual dimension. Furthermore, the model cannot
characterize the various types of snapshot and continuous
queries supported in SSTD.

To this end, we propose a new cost model to better char-
acterise the workload in our system. Before presenting the
model, we first introduce the query distribution statistics
which is required for computation in the cost model.
Query distribution statistics Query distribution statis-
tics indicate the probabilities of each type of query arriving
at a particular region and the distribution of query keywords
in this region. For convenience, we use a quadtree denoted
by J to store these statistics. Figure 5 gives an example of
the query distribution statistics. The left part is Quadtree
J and the right part is the query distribution statistics on
Cell P . Initial statistics can be derived from historical data.
Given historical queries and objects, for each Cell P of J ,
we estimate the probability of each type of query arriving at
Cell P by counting the number of each type of query over-
lapping P and normalizing (e.g., psrq in Figure 5). We also
count the average number of objects arriving at P per time
unit, denoted by Eobj . Furthermore, based on the term fre-
quencies collected from queries that overlap P , we estimate
the distribution of query keywords in P for SRQ and SKQ
(i.e., Msrq and Mskq). Additionally, we compute the distri-
bution w.r.t. the number of query keywords and the distri-
bution w.r.t. the length of the query time-window. SSTD
updates these statistics periodically based on the received
objects and queries.
Cost model for SRQ Given partition P and objects O
located in P, let P.r,P.φ denote the MBR of P and the set
of keywords extracted from O, respectively. When an SRQ
q arrives, P incurs workload if: (1) P.r overlaps q.r; and
(2) P.φ covers q.φ. Thus we estimate the workload of P
under an SRQ q as

Wsrq(P) = Pr(q.r ∩ P.r) · Pr(q.φ ⊆ P.φ | p.r ∩ P.r) · |O|.

To compute Wsrq, we find the same cell as P from quadtree
J , and use psrq (see Figure 5) to estimate the probability
that they overlap, i.e., Pr(q.r ∩ P.r). In addition, we as-
sume for any SRQ q arriving at P, each query keyword of it
is independently drawn from Msrq (Figure 5). Under con-
dition that q overlaps P, each keyword of q is contained by
P.φ with probability Hsrq =

∑
w∈Msrq∩P.φ pw, where pw is

the probability of w in distribution Msrq. Then we have
conditional probability

Pr(q.φ ⊆ P.φ | p.r ∩ P.r) =
∑
l

Pr(|q.φ| = l) · (Hsrq)l, (1)

where l is the number of keywords in q. The probability wrt
the number of query keywords Pr(|q.φ| = l) can be obtained
from query distribution statistics.
Cost model for SKQ When an SKQ q arrives, P incurs
workload only if: (1) the minimum distance between P and
q (denoted by d(q,P)) is smaller than the distance between
q and its kth result (denoted by d(q, q.Rk)); (2) P.φ covers
q.φ. Thus we estimate the workload of P under an SKQ as

Wskq(P) =Pr(d(q,P) < d(q, q.Rk))·
Pr(q.φ ⊆ P.φ | d(q,P) < d(q, q.Rk)) · |O|.

To compute Wskq, we find the same cell as P from J . As
pskq (see Figure 5) denotes the probability an SKQ access-
ing P, we use it to estimate the probability P overlapping
the search region of an SKQ, i.e., Pr(d(q,P) < d(q, q.Rk)).
Based on the same assumption as SRQ, we can compute
Hskq and Pr(q.φ ⊆ P.φ | d(q,P) < d(q, q.Rk)) in the same
way (i.e., replace Msrq by Mskq).
Cost model for STQ When an STQ q arrives, P incurs
workload if P.r overlaps q.r. The workload of P under an
STQ q is estimated by

Wstq(P) = Pr(q.r ∩ P.r) · |O|.

Similarly we use pstq in Figure 5 to estimate the probability
that they overlap, i.e., Pr(q.r ∩ P.r).
Cost model for Continuous Query For continuous
queries, we define their workload since they check the newly
arrived objects during their lifetime in the system.

When a CRQ q arrives, if q.r overlaps P.r, then for each
incoming stream object o in P during the lifetime of q, we
need to check if o updates the results of q. Thus we estimate
the workload of P under a CRQ as

Wcrq(P) = Pr(q.r ∩ P.r) · EP,O.

where Pr(q.r ∩ P.r) is estimated by pcrq in Figure 5, and
EP,O is the expected number of newly arrived objects in
P during the lifetime of q, and is estimated by EP,O =∑
T Pr(q.τ = T ) ·T ·EP , where T is the time window length

of q, and EP is the average number of objects arriving at P
per time unit. Both Pr(q.τ = T ) and EP (Eobj in Figure 5)
can be retrieved from the query distribution statistics.

For a CKQ q, if P.r overlaps the search region of q, then
for each incoming object o in P, we need to check if o updates
the results of q. Thus we estimate the workload of P under
a CKQ as Wckq(P) = Pr(d(q,P) < d(q, q.Rk)) ·EP,O, where
the first term is estimated by pckq in Figure 5.

For a CTQ q, if q, r overlaps P.r, then for each incoming
object o in P during q’s lifetime, we need to check if o up-
dates the term-frequency tables of q. Thus we estimate P’s
workload under a CTQ as Wctq(P) = Pr(q.r ∩ P.r) · EP,O.

By summing up the workload of all types of queries, we
compute the workload of a partition P under a random
query using Equation 2.

W (P) =Pr(srq) ·Wsrq(P) + Pr(skq) ·Wskq(P)+

Pr(stq) ·Wstq(P) + Pr(crq) ·Wcrq(P)+

Pr(ckq) ·Wckq(P) + Pr(ctq) ·Wctq(P),

(2)
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where Pr(srq), Pr(skq), Pr(stq), Pr(crq), Pr(ckq) and
Pr(ctq) represent the probability that the system receives a
SRQ, SKQ, STQ, CRQ, CKQ and CTQ, respectively. They
can be obtained from query distribution statistics.

4.1.2 QT-tree Construction
Taking a set of historical queriesQ and objectsO as input,

we build the QT-tree offline. The construction involves three
steps to be presented below.
Generating query distribution statistics Given Q and
O, SSTD computes query distribution statistics as discussed
previously, which is denoted by J , and will be used for com-
puting the cost model.
Constructing QT-tree SSTD takes as inputO and utilizes
the cost model to build the QT-tree. Initially, we construct
a root node that covers the whole spatial range, and contains
all objects O. Then, we recursively split the leaf nodes until
the number of leaf nodes reaches a threshold θ. We design
two partitioning methods for splitting a node: Spatial and
Textual Partitioning. (1) Spatial Partitioning. It splits a
node into 4 child nodes of equal size, and divides the objects
on the parent node among the child nodes based on the lo-
cations of the objects, as illustrated in Figure 3(a). (2) Tex-
tual Partitioning. This method aims to store the textually
similar objects in the same child node as in Figure 3(b). It
splits a node into 4 child nodes, each with the same MBR as
the parent node’s MBR, and the objects on the parent node
are assigned to the child nodes based on the textual contents
of the objects. Specifically, for each object o on the parent
node, we compute the workload increment using Equation 2
for each child node if this child takes o, and assign o to the
child node that has the smallest workload increment. To
compute the workload increment efficiently when attempt-
ing to add an object to a child node, for each child node,
we maintain a keyword list that stores the keywords in its
objects, and the associated Hsrq, Hskq as defined by Equa-
tion 1. To compute the increment due to o, for a child node,
we check if o brings new keywords into the node’s keyword
list and use their values in the query distribution statistics
Msrq,Mskq to incrementally update Hsrq, Hskq, and thus
compute the increments for Wsrq and Wskq. After assigning
o to a child node, SSTD will update the node’s keyword list
and the associated Hsrq, Hskq as needed. Since the number
of keywords in an object is usually small, assigning o from
the parent node to a child node takes constant time. When
splitting a node, we consider both partitioning methods, and
choose the partitioning method that incurs smaller amount
of total workload.

Algorithm 1 lists the pseudo code. It takes as input a set
of objects O, a threshold θ for the number of leaf nodes and
query distribution statistics J . First, we initialize a root
node nr of the QT-tree using O that covers the whole space
(Line 1). Then, we initialize a max-heap H, which stores
the nodes to be split in descending order of their workload,
and push nr into H (Line 2–3). If the number of leaf nodes
is smaller than θ, we pop up a node from H, compute the
workload of both partitioning methods, and adopt the one
with lower workload. We keep partitioning nodes until the
number of leaf nodes reaches θ (Line 4–13). In the end, we
return, as output, the root node of the QT-tree (Line 14).
Remark. The time complexity of Algorithm 1 is
O(|O| log(θ)). As spatial partitioning and textual partition-
ing both take linear time, in each layer of the QT-tree, we

visit O(|O|) objects, and the height of QT-tree is given by
log(θ), and thus the total complexity is O(|O| log(θ)). In
our experiments, we study the effect of θ.

Algorithm 1: QTtreeConstruction

Input : Objects O, Threshold θ, Query
distribution statistics J

Output: The root node of QT-tree
1 nr ← Initialize a root node of the QT-tree using O;
2 Initialize a max-heap H;
3 H.push(nr);
4 while the number of leaf nodes is smaller than θ do
5 np ← H.pop();
6 childrens ← spatialPartitioning(np);
7 childrent ← textualPartitioning(np);
8 if

∑
W (childrens) ≤

∑
W (childrent) then

9 Set childrens to be child nodes of np;
10 Push each node in childrens into H;

11 else
12 Set childrent to be child nodes of np;
13 Push each node in childrent into H;

14 return nr

Allocating the leaf nodes of the QT-tree to work-
ers The objective of the allocation is to achieve load bal-
ance among workers. This problem can be reduced from the
multi-way partitioning problem: Given a finite set of n real
numbers, find the optimal solution to divide the set into k
subsets such that the difference between the maximum sub-
set sum and the minimum subset sum is minimized. Since
the multi-way partitioning problem is NP-complete [10,11],
we apply a heuristic algorithm, namely the Karmarkar-Karp
differencing algorithm [10], to solve SSTD’s leaf-nodes allo-
cation problem.

At the end of construction, SSTD writes the QT-tree to
disk. Note that SSTD does not store the objects at each
node of the QT-tree. SSTD stores the keyword list for nodes
whose parent node is textually partitioned, and the key-
word list will be used for routing objects. The QT-tree is
lightweight and takes only dozens of KBs.

4.2 QT-tree Deployment
Each router in SSTD loads a copy of the QT-tree from

disk for routing objects and queries, and receives streamed
objects and queries in a round-robin fashion.
Routing Objects When a router receives an object, say o,
the router traverses its QT-tree to assign o to a leaf node’s
corresponding worker as follows: (1) When a non-leaf node is
partitioned by spatial properties, the router visits the child
node that covers o.ρ; (2) When a node is partitioned by
textual properties, the router assigns o to the child node
that has the smallest workload increment after inclusion of
o based on the cost model (i.e., in the same way as assigning
objects using textual partitioning when building the QT-
tree. It takes constant time, and updates the keyword list
of that child node by the keywords of o. The router sends o
to the worker corresponding to o’s leaf node. Note that we
do not maintain objects in the QT-tree.
Routing Queries When a router receives a query q with
a region (SRQ, STQ, CRQ, CTQ), it traverses the QT-
tree and finds out all leaf nodes that overlap q spatially,
and sends q to the corresponding workers. As SKQ and
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CKQ queries have no regions, SSTD adopts different rout-
ing strategies for them (See Section 6.2 for SKQ’s routing
strategy). For CKQ q, since each leaf node may contribute
to the result of q, SSTD routes q to all workers. In rout-
ing queries, (1) we do not update the QT-tree; (2) we do
not check query keywords. The reason is that SSTD up-
dates the keyword lists of some nodes when routing objects,
and thus each router may maintain slightly different key-
word lists within a node. For correctness, we only check the
spatial constraints when routing queries; only the workers
will do pruning using the textual constraints.
QT-tree Maintenance Each router maintains its copy of
the QT-tree by updating its keyword lists when routing ob-
jects. Although copies of the QT-tree are slightly differ-
ent across routers, it does not affect the correct execution
of queries in SSTD, and does not synchronize the QT-tree
copies. However, when rebalancing load, we may need to
change the QT-tree (see Section 5.3), and SSTD will syn-
chronize the QT-tree among all routers in this case.

Remark. Since routing an object from a non-leaf node to a
child node takes constant time, the complexity of routing an
object depends on the height of the QT-tree, i.e., O(log(θ)),
where θ is the number of leaf nodes in QT-tree. SSTD takes
O(a log(θ)) time to route a query q, where a is the average
number leaf nodes that overlap q.

5. LOAD BALANCING
As the data and query distribution evolve over time, the

workload assigned to the workers will change gradually,
which may result in load imbalance. To avoid system per-
formance degradation, SSTD needs to conduct workload ad-
justments to rebalance the load. In this section, we intro-
duce the definition of load imbalance, and then present two
types of workload adjustment strategies: workload realloca-
tion and QT-tree adjustment.

5.1 Overview
SSTD periodically collects the statistics of each leaf node

from the workers and computes their workloads to detect
load imbalance. We define load imbalance as follows.

Definition 4. Load Imbalance: The system has load
imbalance if Lmax

Lmin
> λ, where Lmax is the maximum load

of workers, Lmin is the minimum load of workers, and λ is
a predefined threshold. Both Lmax and Lmin are computed
using Eqn 2.

When load imbalance occurs, SSTD conducts workload
adjustments to recover load balance. Ideally, the workload
adjustment procedure can meet the following requirements:
(1) SSTD can recover load balance after workload adjust-
ment, (2) workload adjustment should be conducted effi-
ciently, and (3) query results should be correct during work-
load adjustment.

To meet these requirements, we propose two strategies for
workload adjustment in SSTD. (1) Workload reallocation:
Aims to change the leaf node allocation scheme that shuffles
the leaf nodes and reallocates them to the workers. (2) QT-
tree adjustment: Aims to update the QT-tree’s structure,
and then allocate the updated leaf nodes to the workers.
Workload reallocation performs workload adjustment effi-
ciently, and incurs small network cost. In many cases, it
can recover load balance effectively. When it cannot balance

the load, it is probably because the current QT-tree does not
well characterize the workload. Thus, SSTD switches to the
QT-tree adjustment method that updates the structure of
the QT-tree, and reallocates the leaf nodes. The adjustment
is conducted by one router, and will propagate the updated
QT-tree to the other routers after completion. Next, we
present these two workload adjustment strategies.

5.2 Workload Reallocation
When load imbalance is detected, workload reallocation

will shuffle the leaf nodes, and reallocate them to the work-
ers, aiming to regain the load balance. We illustrate the
idea with an example. Assume that there are 3 workers
(W1,W2,W3) and 7 leaf nodes (P1, · · · ,P7), current alloca-
tions are: W1(P1, P2, P4), W2(P3, P5), W3(P6, P7). To con-
duct workload reallocation, we first apply the Karmarkar-
Karp algorithm to split {P1,P2, · · · ,P7} into 3 subsets:
X1(P1, P3, P6), X2(P2, P5), X3(P4, P7).

Next, we want to find the optimal assignment with mini-
mum transfer cost to assign X1, X2, and X3 to W1, W2, and
W3. During workload reallocation, we only transfer contin-
uous queries between workers rather than objects. This is
beneficial for reducing the network cost because the num-
ber of objects is much larger than the number of continuous
queries. This design choice will result in a new challenge for
handling snapshot queries to be discussed later. We proceed
to define the transfer cost. Suppose we assign X2 to W1, X1

to W2 and X3 to W3, then we need to transfer P5 to W1, P1

and P6 to W2, and P4 to W3. Therefore, the total cost in-
voked by workload reallocation is

∑
i∈{1,4,5,6} |Pi.Q|, where

Pi.Q is the set of continuous queries in Pi. The problem of
finding the optimal assignment is a combinatorial optimiza-
tion problem termed the assignment problem. We apply the
state-of-the-art Hungarian algorithm [9] to solve this prob-
lem in O(n3) time. We denote this adjustment method that
involves all workers by FM.

It is not always necessary to shuffle all the leaf nodes.
To reduce the network cost, we propose an alternative
method which shuffles and reallocates the leaf nodes of only
two workers: the most loaded worker and the least loaded
worker. We term this method PM.

A challenge caused by our design of transferring contin-
uous queries only is that this scheme will cause incomplete
results for some snapshot queries that arrive after the work-
load reallocation. To illustrate this, let t be the time when
workload reallocation is completed, and P be a leaf node
that is transferred from worker W to W ′. When the system
receives a snapshot query q requesting to access P at time
t′ (t′ > t), based on the up-to-date mapping table (i.e., a
hash table storing the mapping from leaf node id to worker
id), the router will send q to W ′. If q asks for historical
objects that arrive at the system before t, then sending q
to W ′ will lead to incomplete results as W ′ only stores the
objects arriving after t. To address this issue, the router
maintains different versions of the leaf node mapping table
and each version is associated with a validation timestamp.
When receiving a snapshot query q, the router checks these
mapping tables and finds the workers that may contain the
result objects. Since the workload reallocation is conducted
infrequently, the router only maintains a small number of
mapping tables and in most cases only the up-to-date map-
ping table is used for disseminating the query.
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5.3 QT-tree Adjustment
In the case when workload reallocation fails to rebalance

the load, this implies that the current QT-tree does not well
distribute the workload, e.g., some leaf nodes are heavily
loaded while others are lightly loaded. To rebalance the
load, we propose to update the structure of current QT-tree
through invoking two operations iteratively: splitting the
heavily loaded leaf nodes, and merging the lightly loaded
leaf nodes. After the QT-tree is updated, we invoke FM on
the updated QT-tree to perform workload reallocation. We
denote this strategy as FG. We proceed to present the two
operations and the algorithm for updating QT-tree.
Split Operation: If we apply the spatial or textual parti-
tioning method as described in Section 4.1.2, we need to re-
trieve the detailed information about objects from the work-
ers, which will result in significant network overhead. In-
stead, we propose a heuristic algorithm to determine which
partitioning method to use.

As mentioned in Section 4.1.1, we use a quadtree J to
store the query distribution statistics. Suppose we want to
split a leaf node P, we first find the smallest node N0 in J
that covers the MBR of P, and the child nodes of N0 in J ,
denoted by N1, N2, N3 and N4. If the similarity of query
distribution between N0 and its child nodes is small, it indi-
cates that queries are distinguishable across the spatial par-
titions and spatial partitioning would result in smaller work-
load than textual partitioning. We compute the similarity
of query distribution by the Manhattan distance computed

by ĥ=
∑4

i=1

∑6
j=1 Ni.pj

4·
∑6

j=1 N0.pj
, where Ni.p1, · · · , Ni.p6 are the prob-

abilities that the SRQ, SKQ, STQ, CRQ, CKQ and CTQ
queries overlap Ni, respectively. They can be derived from
the statistics maintained in Ni. The smaller the ĥ, the larger
the spatial discrepancy between N0 and its child nodes. If ĥ
is small, most queries in P overlap a small number of child
nodes, and it is better to use spatial partitioning.

We partition a leaf node P based on the following rule:

split(P) =

{
spatial partitioning, ĥ ≤ ε;
textual partitioning, ĥ > ε,

(3)

where ε is a threshold. After splitting P, we move the con-
tinuous queries of P to its child nodes, accordingly.
Merge Operation: Merge is only applicable to a non-leaf
node P whose four child nodes are all leaf nodes. It moves
the continuous queries from all four child nodes to P, and
deletes the child nodes (making P a new leaf node).

Now, we show how we update a QT-tree G using the split
and merge operations. We use Lmax to record the maximum
workload of leaf nodes in G, and use a min-heap H to store
the nodes whose child nodes can be merged. For each can-
didate node, if its workload is smaller than Lmax, we insert
it into H. Then, we recursively apply the split and merge
operations on G until the load balance constraint is satis-
fied. In each iteration, we split the most loaded leaf node
P using Equation 3, and update the value of Lmax accord-
ingly. Next, we pop one node P ′ from H and if its workload
is larger than Lmax, then we cannot further decrease the
difference in workload among the leaf nodes by more merge
operations, and thus we terminate. Otherwise, we perform
the merge operation on P ′. If the merge operation results
in a new candidate node (i.e., the parent node of P ′) for the
merge operation, we push the new candidate node into H.
Then, we check whether the load balance constraint is met

by invoking the Karmarkar-Karp algorithm, and terminate
if this is the case. In each iteration, the split operation re-
duces the value of Lmax and the workload variance in leaf
nodes decreases further, and thus, eventually the algorithm
will terminate.

As in the workload reallocation strategy, we only transfer
continuous queries among workers in the QT-tree adjust-
ment strategy. This design will also result in incomplete
results for new snapshot queries after the QT-tree is ad-
justed. In remedy the router of SSTD maintains different
versions of the QT-tree, each of which is associated with the
mapping from leaf node id to worker id, and a validation
timestamp. For simplicity, we consider two versions of the
QT-tree G and G′, where G′ is the up-to-date version. For
a snapshot query q that overlaps a leaf node P of G′, where
P is assigned to worker W1, besides sending q to W1, we
conduct the following operations:

• If P is a leaf node in G and is assigned to another worker
W2, then we also send q to W2.

• If P is not a leaf node in G but its parent (or ancestor)
node is, and is assigned to another worker W3, then we
send q to W3.

• If P is not a leaf node in G but its child (or descendant)
nodes are, and are assigned to several workers, then we
send q to each of them.

To summarize, SSTD maintains query distribution statis-
tics and periodically checks whether load imbalance occurs.
Once load imbalance is detected, to rebalance the load,
SSTD first applies PM, and if it does not recover the bal-
ance, SSTD will next apply FM, followed by FG. After
adjusting the workload, the updated mapping table and the
QT-tree will be synchronized among all routers, and are
written into disk for fault tolerance.

6. LOCAL INDEXES AND OPERATIONS
We proceed to present how to build local indexes and

process the snapshot and continuous queries in the workers.

6.1 Local Indexes
After workload allocation, each worker is assigned with

multiple leaf nodes of the QT-tree. For each leaf node as-
signed to a worker, the worker builds and maintains separate
index structures for the objects and continuous queries in
that leaf node. When a worker receives an object or a con-
tinuous query from a router, it assumes the responsibility
of inserting the object or query into a corresponding local
index. The reason for the design of building separate in-
dexes for each leaf node rather than a single index for all
leaf nodes assigned to a worker is that the worker can uti-
lize the filtering power of the global index and only access
the data/queries under a leaf node for query processing and
index maintenance. We proceed to present object index and
query index for each leaf node.
Object index. SSTD categorizes the data into different
time intervals, e.g., [t0, t0 + ∆), [t0 + ∆, t0 + 2∆), · · · , and
builds index structures for each time interval. When re-
ceiving a new object o, the worker finds the time interval
that covers the timestamp of o, and inserts o into the cor-
responding index structure. The benefits of this design are
twofold: (1) When processing snapshot queries, only the in-
dexes satisfying the temporal constraint need to be visited;
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(2) SSTD periodically writes the obsolete data into the per-
sistent storage to free memory space. SSTD supports all
existing spatio-textual index structure(e.g., [4, 7]) for ob-
jects. Additionally, to improve the efficiency in answering
STQ, we maintain a hash table to store term frequencies in
each node of the object index.
Query index. SSTD also supports and indexes continu-
ous queries that may be active for a long time duration and
whose number may be large. Note that SSTD does not need
to index snapshot queries. For CRQs, SSTD supports exist-
ing indexes, e.g., AP-tree [22], IQ-tree [3] and Rt-tree [12].
For CKQs, SSTD also supports existing indexes, e.g. the
grid structure [25] or IQ-tree [3]. SSTD adopts FAST [15] for
CRQ and a grid structure [25] for CKQ. For CTQs, SSTD
reports the top-k most frequent terms every δ time units.
To the best of our knowledge, no dedicated index structures
are designed for CTQ queries. We extend the hash table [14]
and subscription group [5] techniques to index CTQs. The
main idea is to categorize the CTQs into groups based on
their query regions. Figure 6 gives an example of the index
of a group of CTQs. For each group, we maintain a common
hash table that stores the term frequencies in the intersec-
tion region of all queries (e.g., shaded in Figure 6), and an
individual hash table that stores the term frequency in the
region excluding the intersection region for each query.

6.2 Snapshot Query Processing
After a worker receives an SRQ query q, it accesses the ob-

ject indexes that satisfy the temporal constraint of q, finds
the result objects using the algorithms proposed in previ-
ous work on spatial keyword queries and sends them to the
merger, i.e., a particular worker responsible for collecting
the partial results from the other workers and reporting the
complete results to the users. SSTD processes an STQ q
in a similar way as to that of an SRQ. Specifically, when a
worker receives an STQ, it searches for the objects in the in-
dex that satisfy the temporal constraint, aggregates the term
frequency table, and then sends this table to the merger.

SSTD processes an SKQ q in two phases. In the first
phase, the router finds the leaf node closest to q.ρ and sends
q to the corresponding worker. Then, the worker retrieves k
initial results of q based on the object indexes and outputs
the radius r of q that is the distance between q and the kth
farthest object in the initial results. The radius r is an over-
estimation of the distance between q and the kth object in
the actual results. If the initial results contain fewer than
k objects, we set r to be a large value. The worker then
sends (q, r) back to the router. In the second phase, after
receiving (q, r) from the worker, the router uses r to con-
struct a range constraint for q, and processes q in the same
way as processing an SRQ. At the end of the second phase,
the workers report their k result objects to the merger.

6.3 Continuous Query Processing
Each worker processes the three types of continuous

queries by inserting them into the corresponding index struc-
tures. With the query indexes, the update of query re-
sults is driven by the arrivals of new objects. If a new
object o updates the results of a query, then we term this
query as affected. When a worker receives a new object,
it checks the continuous query indexes to find out the af-
fected queries using the existing algorithms [15, 25]. Next,
we present how we handle each affected continuous query.

individual hash table
(for )

terms

common hash table
(for the group)

terms

group=

Figure 6: Index of CTQ

(1) For each affected CRQ q, the worker sends (o, q) to the
merger. (2) For each affected CKQ q, the worker sends (o, q)
to the merger. As the merger collects partial results from
the workers and keeps the up-to-date results for q, if the
merger finds d(o, q) > r, (r is the distance between q and
its latest kth result object), then the merger will omit o
and send r back to the source worker. (3) For CTQs, the
worker updates the hash tables of each affected group of
CTQs as described in Section 6.1. Every δ time units, the
worker sends the hash tables storing the term frequency in-
formation to the merger, and the merger reports the top-k
frequent terms of CTQs.

7. EXPERIMENTS

7.1 Experimental Setup
SSTD is deployed on Amazon EC2 platform that runs

on a cluster of 10 c5.2xlarge instances. Each instance has
8 vCPUs running Intel Xeon E5-2680@3.4GHz and 16GB
RAM. All instances are connected by a 10Gbps network,
and run Ubuntu 16.04 LTS with Storm 1.1.0 and Kafka 1.1.0.
We use one instance to serve as a Kafka server that presents
the input data stream to SSTD. We use one instance to
run Storm Nimbus daemon and 8 instances to run Storm
supervisor daemon.
Datasets and Queries. We use two real datasets from
Twitter. The first dataset contains 63 million tweets in Au-
gust 2014 and its size is 5.9GB, and the second dataset con-
tains 52 million tweets in August 2015 with a size of 4.6GB.
Each tweet contains 10 keywords on average. The vocab-
ulary size is about 800k. We denote them as TW14 and
TW15, respectively. Since we do not have real queries, we
synthesize them in the following way: we sample a small
set of tweets and for each tweet, we utilize its textual con-
tent and geo-location to generate one query in SRQ, SKQ,
STQ, CRQ, CKQ and CTQ such that (i) The number of
query keywords ranges from 1 to 3 (default is 1), (ii) The
area of the query region ranges from 0.0001% to 1% of the
area of the global space (default is 0.01%), (iii) The value
of k ranges from 10 to 40 (default is 10), and (iv) The time
duration ranges from 24 hours to 168 hours (default is 72).
We generate 400k queries for each type of query.
Compared methods. We use two state-of-the-art spatial
data stream processing systems, namely Tornado [16] and
PS2 [6], as baselines to evaluate the performance of global
index. (1) Tornado. It uses A-Grid as global index. A-
Grid partitions the global space into equal-sized grid cells.
We evaluate different granularities of grid cells varying from
100×100 to 1000×1000, and choose 600×600 as it performs
the best in our experiments. (2) PS2. It applies kdt as global
index, which extends a kd-tree by allowing some leaf nodes
to be further partitioned using textual partitioning. PS2 is
developed for processing continuous queries and we extend
it to support other queries as follows: Let N1, N2 be two leaf
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Figure 7: Data distribution

nodes derived from textual partitioning on node N0. When
an incoming object omeetsN0, no matter whether o updates
the results of continuous queries on N1 and N2, o will be sent
to at least one worker for storage. If o updates the queries
on both N1 and N2, o will be sent to both workers, but only
one worker selected at random will store o in local index.
When an incoming query q meets N0, q will be sent to both
N1 and N2 for range and top-k query, or one of them at
random for kNN query.

We also adopt two simplified versions of QT-tree as base-
lines. (3) Quadtree. We always apply spatial partitioning
in the construction of QT-tree. (4) Text. We always apply
textual partitioning in the construction of QT-tree.

As we aim to evaluate the performance of different global
indexing techniques, we use the same local index layer in
each evaluated method. Specifically, in the local index layer,
we use an R-tree augmented with inverted lists for storing
objects, FAST [15] for indexing CRQs, Grid [25] for indexing
CKQs, and hash table [5, 14] for indexing CTQs.

We evaluate the performance of SSTD in three as-
pects:(1) We evaluate the query latency of snapshot queries.
The query latency is measured by the temporal difference
between the time a query arrives at the system and the
time the complete query results are produced. We send 50M
objects to the system, then submit a batch of 200 queries
every other second, and use the average query latency value
to serve as the query latency. (2) We evaluate the system
throughput when processing continuous queries. We ini-
tially register 200k queries into the system, and produce
an input stream of objects with an arrival rate of 200,000
objects per second. We measure the throughput by the aver-
age number of objects being processed every second. (3) We
evaluate the effectiveness of our load balancing methods.

7.2 Performance with Different Data
In this set of experiments, we study the performance of

SSTD on different datasets. In addition to datasets TW14
and TW15, we synthesize another two datasets with dif-
ferent data distributions by changing the geographical lo-
cations of the objects in TW14 as follows: (i) Uni, where
we assign uniformly distributed locations to the objects; and
(ii) Gau, where we assign locations satisfying 2-dimensional
Gaussian distribution to the objects, where σx and σy are
set as 1, µx and µy are set as the mid points of the x and y
axes, resp., and the correlation coefficient ρxy is set as 0.

Figure 7(a) gives the query latencies of SRQs for the four
datasets when query region is varied. The result shows that
SSTD displays similar trend for datasets of different data
distributions, even for the skewed dataset Gau. The latency
for Gau is the largest as its skewed data distribution makes it
difficult to achieve load balance for workers, and this affects
the performance of SSTD’s workload partitioning strategy.
In contrast, the latency for Uni is the smallest in most cases
due to its uniform data distribution. The results of TW14
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and TW15 are similar and are between the latencies of Gau
and Uni. Figure 7(b) gives the throughputs of CRQs for
the four datasets. As expected, the throughput for Gau is
the smallest due to its skewed data distribution while that
for Uni is the largest. The throughput for TW15 is slightly
larger ( < 2%) than the throughput for TW14.

The results demonstrate that SSTD displays similar trend
on different datasets. Since the results on TW14 and TW15
are similar, due to space, we report only the results on TW14
in the remaining experiments.

7.3 Query Latency
Figure 8 gives the query latencies of SRQ for different

systems. Figure 8(a) shows the effect of the size of the
query region. SSTD consistently has the smallest query la-
tency, and Quadtree performs the second best. Text has the
worst performance. When the query region is 0.0001% of
the entire space, the query latencies of SSTD, Tornado, PS2

and Quadtree are 4ms, 16ms, 14ms and 10ms, respectively;
SSTD is 2–4 times faster than baselines although they over-
lap in the figure. The disparity becomes larger as the size
of the query region increases. When the query region is
1% of the entire space, the query latency of SSTD is 32ms,
whereas Tornado, PS2, and Quadtree are 172ms, 158ms, and
132ms, respectively, which means that SSTD is 4–5 times
faster than baselines. When the size of the query region
increases, SRQ runs slower as it accesses more partitions.
QT-tree can prune many irrelevant partitions, and thus its
query latency increases slowly. Tornado and PS2 have similar
performance because they both use kd-tree-like structures
and adopt similar cost models. The performance of Text is
hardly affected by the query region due to its textual par-
titioning scheme. Figure 8(b) shows the effect of the num-
ber of query keywords. The query latency becomes smaller
when the number of query keywords increases. SSTD has
the best performance, which always has the query latency
being smaller than 10ms. Though the query latency of Text
reduces greatly when increasing the number of query key-
words, it is still at least 4x slower than the others. Due to
its poor performance, we do not show it subsequently.

Figure 9(a) shows the effect of the value of k of SKQ on
TW14. SSTD performs significantly better than the other
systems. The value of k does not have an obvious effect
on the query latency. The reason is that the query latency
is mainly dominated by the number of partitions being ac-
cessed, and as k is usually much smaller than the number
of objects in a partition, k does not affect the number of
partitions being accessed in most cases. Recall that SKQ is
processed in two phases. SSTD outperforms the baselines
since QT-tree can effectively find the partition producing a
more accurate initial query results, which greatly reduces the
searching cost in the second phase. Figure 9(b) shows that
the query latency becomes larger when the number of query
keywords increases. As the number increases, it is more
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Figure 10: STQ query latency

likely that the initial results from the first phase contain
fewer than k objects, and this will cause higher searching
cost in the second phase.

Figure 10(a) gives the effect of the size of the query region
of STQ on TW14. SSTD has the best performance. The
query latency of an STQ is mainly decided by the number
of term-frequency tables to be aggregated and the term dis-
tribution in each table. Textual partitioning in the QT-tree
allows SSTD to store objects with different term distribu-
tions into different partitions, which is helpful in reducing
the aggregate cost. For small query regions, a small num-
ber of term-frequency tables need aggregation. Thus the
difference in latency among various systems is small. For
large query regions, a larger number of term-frequency ta-
bles needs aggregation, and the QT-tree textual partitioning
lowers the aggregate cost, thus reducing query latency. Fig-
ure 10(b) gives the effect of k. It shows that k has no obvious
effect on query latency. The reason is that k does not af-
fect the number of term-frequency tables to be aggregated,
and it only affects the termination condition in aggregation,
which has minor effect on the total aggregation cost. SSTD
outperforms the other systems due to its textual partitioning
method that puts textually similar objects together.

7.4 Throughput
Figure 11 compares the throughput of the systems when

processing CRQs on TW14. Figure 11(a) gives the ef-
fect of the query region’s size and Figure 11(b) gives the
effect of the number of query keywords. SSTD has the
largest throughput consistently, which outperforms Tornado
by around 15–20%. The reason is that QT-tree utilizes both
the spatial and textual properties to disseminate the objects,
and does better in co-locating objects and relevant CRQs.
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Figure 11: CRQ throughput
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Figure 12: CKQ and CTQ throughput
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Figure 13: Scalability

Figure 12(a) gives the effect of the number of query key-
words of CKQs. SSTD achieves the best throughput consis-
tently. The result demonstrates that SSTD achieves better
workload partitioning. As the number of query keywords
increases, the throughput of the systems becomes larger.
This is because the local index for the CKQs becomes more
efficient when the number of query keywords is larger. Fig-
ure 12(b) gives the effect of the size of the query region of
CTQs. The result shows that SSTD outperforms other sys-
tems. As the size of query region increases, the difference
of throughput between SSTD and other systems becomes
larger. The reason is similar as we discuss for STQ.

7.5 Scalability
We evaluate the scalability of SSTD in two scenarios:

varying the number of objects and the number of contin-
uous queries. To evaluate the effect of the number of ob-
jects, we duplicate Dataset TW14 to generate four datasets
that contain 50M, 100M, 150M and 200M tweets, respec-
tively. We report the average query latency for a batch of
10, 000 SRQs on the four datasets in Figure 13(a). We ob-
serve that SSTD scales well with the object size and is 3–4
times faster than baselines consistently. The disparity be-
tween SSTD and baselines becomes larger as the number of
objects grows. This further demonstrate the effectiveness
of the QT-tree in distributing spatially close or textually
similar objects into the same partition, and its efficiency in
processing snapshot queries.

To evaluate the scalability on the number of queries, we
preload 0.5M, 1M, 5M and 10M CRQs, respectively, into the
system, and present the streamed data at an arrival rate of
200, 000 objects per second. Figure 13(b) gives the system
throughput. We observe that SSTD achieves the largest
throughput consistently and its throughput drops slightly
with the increase of number of CRQs.

7.6 Robustness to Load Imbalance
To evaluate the effectiveness and efficiency of SSTD’s pro-

posed workload adjustment methods, we compare the fol-
lowing 6 plans after a load imbalance: (i) taking no ad-
justment actions, (ii) using PM, (iii) using FM, (iv) using
PM+FM (i.e., using PM followed by FM), (v) using FG,
and (vi) using PM+FM+FG. To simulate a load imbal-
ance occurrence, we randomly select a region and change
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Figure 14: Workload adjustment under object insertions

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

5M 10M 15M

#
(t

ra
n
sf

er
re

d
 c

o
n
ti

n
u
o
u

s 
q
u
er

ie
s)

#(continuous queries)

NO
PM
FM

PM+FM
FG

PM+FM+FG

(a) #(Transferred queries)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

5M 10M 15M

T
im

e 
el

ap
se

d
 (

se
c)

#(continuous queries)

NO
PM
FM

PM+FM
FG

PM+FM+FG

(b) Time elapsed

 0

 50

 100

 150

 200

 250

 300

5M 10M 15M

L
at

en
cy

 (
m

s)

#(continuous queries)

NO
PM
FM

PM+FM
FG

PM+FM+FG

(c) Query latency

 0

 50

 100

 150

 200

 250

 300

5M 10M 15M

T
h
ro

u
g
h

p
u
t 

(×
1
0

3
 o

b
je

ct
s/

se
c)

#(continuous queries)

NO
PM
FM

PM+FM
FG

PM+FM+FG

(d) Throughput

Figure 15: Workload adjustment under continuous query insertions

its load in either of the following ways: 1) insert a signif-
icantly large number of objects into the region; 2) register
a significantly large number of continuous queries into the
region. We preload 40k continuous queries and 30M objects
into the system before triggering load imbalance. For each
case of load imbalance, we perform workload adjustments
and measure the network cost (i.e., the number of contin-
uous queries being transferred during the adjustment), the
required time for load adjustment, the average latency of 40k
new snapshot queries after the adjustment, and the system
throughput after the adjustment.

Figure 14 gives the performance after inserting different
numbers of objects that results in different extents of im-
balance. The result shows that PM, FM, and FG greatly
improve load balance, and consequently, the query latency
and throughput. For example, at 50M objects, PM, FM, and
FG reduce the query latency by 69.3%, 76.6% and 85.1%,
respectively, and enhance the throughputs by 78.4%, 86.6%
and 97.9%, respectively, compared with taking no action.
Comparing PM, FM, and FG in Figures 14(c) and 14(d), ob-
serve that FG achieves the best query latency and through-
put, followed by FM, and then PM. However, Figures 14(a)
and 14(b) indicate that FG incurs the largest network cost,
and takes the longest time to conduct load adjustment.
Comparing PM+FM with PM only, and FM only, observe
that PM+FM has similar performance to that of PM in
case of minor imbalance (i.e., #objects=10M), and is simi-
lar to FM’s performance in moderate (i.e., #objects=30M)
or severe (i.e., #objects=50M) imbalance. Observe that
PM+FM+FG has similar performance with PM, FM and
FG when #objects is 10M, 30M and 50M, respectively,
which indicates that PM+FM+FG employs different strate-
gies under different levels of imbalance. Figure 15 gives the
performance after registering different numbers of continu-
ous queries. Observe that PM, FM and FG often improve
throughput by more than one time. Also, observe that FG
achieves better balance than PM and FM, but it has larger
network cost and needs more time to recover balance. In
both cases, PM+FM+FG achieves similar effectiveness as
FG, but often costs less in terms of network cost and ad-
justment time. Thus, PM+FM+FG is recommended.

In the experiments, we set parameters λ and ε at 6, 0.5,
respectively, where λ denotes the threshold of load imbal-
ance factor and ε is the threshold for choosing spatial or
textual partitioning during QT-tree adjustment. We vary λ
from 2 to 10 and ε from 0.1 to 0.9, and conduct experiments
to evaluate their effects. However we observe similar trends.

7.7 Parameter tuning
This experiment is to study the impact of parameters on

the performance of SSTD: (1) Parameter θ, the threshold
of the minimum number of leaf nodes in the QT-tree, and
(2) Parameter ∆, the length of the temporal interval of a
local index storing the objects. We vary θ from 32 to 256,
∆ from 1 day to 7 days, and set θ = 64 and ∆ = 3 in
our experiments. Due to the space limitation, the detailed
results are reported in an online version of this paper1.

8. CONCLUSION
In this paper, we present SSTD, a distributed in-memory

system supporting continuous and snapshot queries over
streaming spatio-textual data. We introduce a cost-based
model to depict the workload, and propose a new global
index for workload partitioning. Furthermore, we propose
three workload adjustment methods to handle load imbal-
ance. The experimental study demonstrates the superior
performance of SSTD over the other systems.
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