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ABSTRACT
Today’s query optimizers use fast selectivity estimation
techniques but are known to be susceptible to large estima-
tion errors. Recent work on supervised learned models for
selectivity estimation significantly improves accuracy while
ensuring relatively low estimation overhead. However, these
models impose significant model construction cost as they
need large numbers of training examples and computing se-
lectivity labels is costly for large datasets. We propose a
novel model construction method that incrementally gener-
ates training data and uses approximate selectivity labels,
that reduces total construction cost by an order of magni-
tude while preserving most of the accuracy gains. The pro-
posed method is particularly attractive for model designs
that are faster-to-train for a given number of training exam-
ples, but such models are known to support a limited class
of query expressions. We broaden the applicability of such
supervised models to the class of select-project-join query
expressions with range predicates and IN clauses. Our ex-
tensive evaluation on synthetic benchmark and real-world
queries shows that the 95th-percentile error of our proposed
models is 10-100× better than traditional selectivity estima-
tors. We also demonstrate significant gains in plan quality
as a result of improved selectivity estimates.
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1. INTRODUCTION
Selectivity estimates are necessary inputs for a query op-

timizer, in order to identify a good execution plan [39]. A
good selectivity estimator should provide accurate and fast
estimates for a wide variety of intermediate query expres-
sions at reasonable construction overhead [16]. Estimators
in most database systems make use of limited statistics on
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the data, e.g., per-attribute histograms or small data sam-
ples on the base tables [41, 36, 35], to keep the query op-
timization overhead small [11]. However, these statistics
are insufficient to capture correlations across query predi-
cates and can produce inaccurate estimates for intermediate
query expressions [11, 28]. Such inaccurate estimates of-
ten lead the optimizer to choose orders of magnitude slower
plans [28]. While there is a huge literature on selectivity esti-
mators (refer to survey [16]), accurate selectivity estimation
with low overhead remains an unsolved problem.

1.1 Learned models for selectivity estimation
Recent works [25, 17, 46, 47] have shown that the su-

pervised learned models may fit well into the low overhead
expectation of query optimization, as they can provide bet-
ter accuracy than traditional techniques with low estimation
overhead. As a case in point, the regression model design
proposed in [17] requires only tens of KB of memory and ≈
100 µsec per estimation call, to deliver accurate estimates for
correlated range filters on the base tables in the query. Their
ability to adapt to the query workload, similar to self-tuning
methods [10, 43], is also considered to be a significant ad-
vantage. However, constructing supervised models can take
many hours [25, 46, 22], which is orders of magnitude slower
than the traditional statistics collection methods.

To construct a supervised model for selectivity estimation
of a given query expression, we need a set of example in-
stances along with their true selectivities. Such training data
is then used to train a regression model, which approximates
the selectivity function captured by the given examples. It
has been shown that the model training step is reasonably
efficient - a few seconds with optimized libraries for gradient
boosted trees [17] and several minutes for a simple neural
network [46, 17]. The bottleneck lies in the generation of la-
beled training examples, where the overhead increases with
(1) the number of query expressions to be supported by the
model, (2) the number of training examples per query ex-
pression, and (3) the cost of generating true selectivity label
for each training example. Recently, generation of labeled
training examples has been highlighted as a major limitation
of supervised models for selectivity estimation [22].

While past execution logs can provide labeled training ex-
amples without any explicit overhead, it is usually available
only for a limited set of query expressions as highlighted
in [47, 13]. For example, consider a query that joins 4 ta-
bles {T1, T2, T3, T4} and executed using a right deep plan
(T1 ./ (T2 ./ (T3 ./ T4))). Execution logs can provide true
selectivity labels for (T3 ./ T4) and (T2 ./ (T3 ./ T4) but not
for (T2 ./ T3) or (T1 ./ T3) and many other expressions.
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1.2 Contributions
The focus of this work is to efficiently construct super-

vised selectivity estimation model for a given query expres-
sion without compromising accuracy. We present a novel
model construction procedure that can reduce the training
data collection overhead by reducing the number of training
examples and the per-example label generation cost. Fur-
ther, our analysis shows that faster-to-train models are bet-
ter suited to reduce the total model construction cost for
different query expressions with varying selectivity labeling
cost. With this motivation, we build upon the low over-
head regression models proposed in [17] to show that these
simpler models can achieve accuracy similar to the more
complex model design [25].

Efficient model construction. Recent proposals with su-
pervised approach for selectivity estimation [25, 17, 46, 47]
use tens of thousands of training examples for model train-
ing. They also empirically observed that similar accuracy
could also be achieved with much smaller number of exam-
ples [17, 46] and approximated labels [17, 47]. We formalize
these observations and propose a method to efficiently con-
struct a supervised model with a target accuracy.
Automated determination of training data size Deter-
mining the required number of training examples is a chal-
lenging task [38, 23]. To avoid generating an unnecessarily
large number of training examples, a potent approach is to
use an iterative method that incrementally generates train-
ing examples. It can lead to significant savings, whenever
a large enough test set is available to monitor the stopping
criteria based on model accuracy [38, 23]. Also, if the model
of choice is relatively slow to train, repetitive model train-
ing in each iteration can significantly increase the total time
spent on model training. Overall, there is no existing it-
erative training method that can optimize the total model
construction cost (model training cost and labeling cost)
without compromising model accuracy.

We propose a novel iterative procedure that (1) supports
early stopping for query expressions that need a small num-
ber of examples to train, by using cross-validation to avoid
generation of a large set of test examples, (2) ensures robust
monitoring of model accuracy by using confidence intervals
on tail q-errors to suit the selectivity estimation context, and
(3) optimizes the worst case total model construction cost by
adapting the geometric step size to provide a constant-factor
approximation guarantee. The optimal geometric step size is
a function of the per-example label cost for the query expres-
sion and the per-example training cost for the chosen model
training method. For instance, the constant-factor is ≈ 1.2,
when training cost is 100× smaller than the label cost .
Efficient approximation of training labels To reduce
the absolute cost of training data generation in each iter-
ation, we propose to use approximate selectivity labels for
model training. To control the adverse impact on model ac-
curacy, we use a small relative error threshold during this
approximation. The key idea is that if the true selectivity
has large value, it can be efficiently approximated using a rel-
atively small uniform random sample, compared to the case
when true selectivity is small1. The challenge lies in iden-
tifying appropriate sample size for different examples. We

1We highlight the similarity and differences w.r.t. approxi-
mate query processing literature [7, 6] in Section 4.2.

present an algorithm that takes a set of unlabeled training
examples and an error threshold as input, and uses uniform
random data samples of increasing sizes to progressively re-
fine the probabilistic estimate of the selectivity labels, until
sufficiently accurate labels are determined.

Extended applicability of regression models. With re-
duced label cost due to approximation, faster-to-train mod-
els proposed in [17], such as tree-ensembles, become more
attractive as they can ensure that the total model construc-
tion overhead is closer to its lower bound, i.e., the cost
of generating only the required number of training exam-
ples. But these models were evaluated only for single ta-
ble range predicate [17]. The second contribution of this
work is to demonstrate that low overhead regression mod-
els [17] can be extended to support selectivity estimation
for select-project-join queries with multiple categorical (IN)
and range filters on the base tables, which is an important
subclass of queries. We also discuss how these models can
support other filter types by leveraging run-time features,
i.e., sample-bitmap [25]. Finally, our model design choices
focus on reducing estimation overhead.
Using models for join estimates Regression models for
single tables [17] can be adapted for joins by following the
same approach as statistics on views [9, 19], by treating a
materialized view for the join as a base table. The materi-
alized join can be discarded after constructing the required
model. However, the cost of materialization adds up to the
model construction cost. We empirically found that a rea-
sonable approximation of the join selectivity function can
be learned using a large enough sample of the join, which
can be collected relatively efficiently without materializing
the entire join result using existing techniques [18, 45, 50].

Overall, our models can typically deliver accuracy compa-
rable to join-samples by using only compile-time information
similar to histograms. While we need to create a dedicated
model for each query expression (refer to Section 5.5 for ex-
ceptions) rather than a single global model as in [25], the
total memory footprint does not blow up quickly as individ-
ual models are small.

Extensive evaluation and plan improvements. We
present an extensive evaluation with 42 query expressions
across 3 different datasets using queries with joins up to 5 ta-
bles with filter predicates on multiple base tables. We show
that regression models with only 16KB memory can deliver
10-100× better 95th percentile error values compared to tra-
ditional techniques such as histograms, statistics on views,
and join-samples. Surprisingly, our 16 KB regression models
delivered accuracy comparable to custom design supervised
models [25] with much larger number of model parameters.
Our model construction improvements bring 10× or more
savings for a large fraction of expressions compared to exist-
ing training method. Finally, we also evaluate improvement
in quality of plans when estimates produced by our trained
model are injected during query optimization. A sample ex-
periment consisting of 500 test query instances with a fixed
query template show that injected estimates bring improve-
ment similar to injecting true selectivities. Overall, 30%
queries improved by a factor of at least 1.2 and 10% of the
instances improved by a factor of 10× or more.
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Organization. We start with a quick review of selectivity
estimators in existing optimizers in Section 2 and formally
define our problem and evaluation metrics in Section 3.
The algorithmic improvements to reduce model construction
overhead are discussed in Section 4, followed by details on
model design and feature encodings in Section 5. Section 6
provides experimental setup, and summarizes our empirical
findings. Finally, we review related literature in Section 7
and conclude in Section 8.

2. BACKGROUND
The quality of the execution plan chosen by the query

optimizer heavily depends on the output size estimates at
intermediate stages of the plan [28], often termed as selec-
tivity estimates2. In this section, we review the important
characteristics of a good selectivity estimator and the state-
of-the-art estimators in existing industrial optimizers.

2.1 Criteria for a good selectivity estimator
A selectivity estimator needs to be evaluated on the fol-

lowing criteria: (1) accuracy, (2) space and time efficiency,
(3) construction overhead, and (4) range of applicability [16].
Estimation accuracy is critical for selecting good quality
plans and small estimation time is important to keep check
on optimization overhead [11]. Typically, each estimator re-
quires a metadata structure (e.g. histogram, sample rows,
regression model) that decides the memory footprint of us-
ing the estimator. The issue of space efficiency is further
emphasized by the fact that the estimator may need a sepa-
rate structure for each query expression. While construction
of these structures is offline, i.e., it does not impact the criti-
cal path of query execution, it is an important consideration
due to the large number of query expressions and handling
updates to the database. Finally, range of applicability is
another very important criteria for a good selectivity esti-
mator. It identifies the subclass of query expressions that
the estimator can support and is important because esti-
mates are required for a large variety of query expressions
that involve a mix of various relational operators such as
select (filters), joins, group by, union etc.

2.2 Existing selectivity estimators
Most existing optimizers [36, 41, 2] use table-level statis-

tics, e.g., row count, and attribute-level statistics that in-
clude null count, distinct count, and histograms or data
samples on the base tables [36, 35]. Selectivity estimates for
intermediate expressions, e.g., combination of filters, joins
etc., are typically derived from table-level and attribute-
level statistics using a set of assumptions including attribute
value independence (AVI), join containment, and uniform
value distribution etc. [41]. These techniques satisfy most
of the requirements of a good estimator such as small space
and time overhead, low construction overhead, and applica-
ble for most query expressions in select-project-join queries3.
But they are prone to large estimation errors [28] when cor-
relations are present among various query predicates, e.g.,
between two filter predicates or between filter and join pred-
icates. Per-attribute histograms can also be built over a
materialized view [9, 8, 19] to capture join-correlation at

2We use the term “selectivity fraction” to denote the frac-
tion of output rows out of the maximum output size.
3Assuming simple filters of the form column 〈op〉 constant

the expense of extra construction overhead, they still do not
capture correlation between view attributes.

There have been many proposals in research literature in-
cluding multi-dimensional histograms, and other statistical
structures, as reviewed in Section 7. Most of them either
have large construction or space/time overhead, or have lim-
ited applicability. Sampling based techniques [45, 27, 5, 21,
15, 49, 18] can deliver good accuracy, reasonable construc-
tion overhead and have wide range of applicability, their
space/time overhead do not fit the low overhead expecta-
tion of query optimization.

In this work, we explore simple regression models for se-
lectivity estimation [17]. Such models are attractive because
they can capture data correlations to provide significantly
better accuracy compared to traditional techniques, while
keeping low estimation overhead [47, 17, 25, 46]. We aim to
improve their usability by significantly reducing their con-
struction overhead and broadening their applicability.

3. PROBLEM DESCRIPTION
Selectivity estimation is very challenging in its full gen-

erality. In this work, we focus on select-project-join queries
with simple filters such as range and categorical filters (IN
clause), which is an important subclass of queries. Observe
that this subclass is similar to that of statistics on views [8,
9, 19]. Specifically, we focus on estimation accuracy, and
overhead (estimation and construction) for a given query
expression of the above mentioned class.

3.1 Notations
Consider a relation T with attributes A1,A2,. . ., Ad, where

kth attribute Ak is either a numerical attribute with domain
[mink, maxk] or a categorical attribute with finite domain
catgk = {catgk1 , catgk2 , . . . , catgkN}. Observe that, the rela-
tion T here can be a base table in the database or a relation
that represents the result of a join between two or more
base tables. A range filter predicate on numerical attribute
is of the form (lbk ≤ A1 ≤ ubk) where lbk ≥ mink and
ubk ≤ maxk. An IN filter predicate on categorical attribute
is a non-empty subset of catgk.

Let q represent a query on relation T consisting of con-
junction of range and categorical predicates. In this rep-
resentation, if the query does not contain a predicate on
some numerical attribute Ak, then it is treated as mink ≤
Ak ≤ maxk. Similarly, if the query does not contain a
predicate on some categorical attribute then it is treated
as the entire domain catgk. For instance, if relation T has
a numerical attribute A1 with domain [0,100] and categor-
ical attribute A2 with domain {catg21 , . . . , catg210}. Then,
(10 ≤ A1 ≤ 20) ∧A2 IN (catg21 , catg

2
2) is an example query.

We define actual selectivity of q as the number of rows
in relation T that satisfy all predicates in the query q, and
denote it with act(q). Similarly, we use est(q) to denote the
estimated selectivity for query q. Let Q represent a set of
m queries Q = {q1, . . . , qm}. And S represents the labeled
version of query set Q, i.e., S = {(q1 : act(q1)), . . . , (qm :
act(qn))}, with actual selectivity as the label, e.g. {(10 ≤
A1 ≤ 20 ∧ A2 IN (catg21 , catg

2
2) : 5000), (70 ≤ A1 ≤ 85 ∧

A2 IN (catg24 , catg
2
9) : 300), . . .}.

Observe that, supervised models are typically studied in
a training-testing regime. That is, a model M trained using
labeled query set S is expected to produce reasonably accu-
rate estimates for queries in Stest, when both S and Stest
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have queries sampled from the same distribution. In this
work, we use a random query distribution to generate the
query set Q for a given relation T (details in Section 6.1).
Relevance of the past execution logs In practice, past
execution logs can be leveraged to construct the required la-
beled query examples, even when the logs may not provide
sufficient examples to be directly used for model training.
For example, it can help identify the set of query expres-
sions that need to be supported using the supervised models,
depending on the usage frequency in the workload, and the
error-profile with the default estimation method. It can also
guide the parameters that define the space of queries for the
training query generation method with information such as
the set of relevant filter attributes and their sub-domains.
For instance, the range of length of IN clause and the sub-
set of categories can be quite useful in generating training
examples relevant to the workload.

3.2 Problem Statement
We consider the problem of efficiently constructing a

model M from a given unlabeled query set Q, such that
it satisfies a specified accuracy target when evaluated on
Stest. Observe that, the model construction cost includes
the time required to generate selectivity labels for examples
in Q as well as the time to train the model M . Our goal is to
reduce the total model construction cost compared to one-
shot model training with a fixed large number of training
examples, without compromising accuracy.

Observe that the procedure may not provide required ac-
curacy when the given query set size m of training examples,
model input feature set, or the model size is insufficient - we
discuss such practical considerations in Section 4.3.

3.3 Evaluation metrics
To evaluate training efficiency of our solution, we report

the number of training examples used for training, denoted
with m′, out of the maximum number of examples m and
also report total CPU-time spent in constructing model M .
To evaluate the estimation accuracy of model M , we use q-
error as the metric, a widely used metric in selectivity esti-
mation context [32, 28, 17, 25, 34]. Each query qi ∈ Stest has

a q-error ei = max
(
est(qi)
act(qi)

, act(qi)
est(qi)

)
. To make the q-error

well-defined, we assume that act(q) ≥ 1 and est(q) ≥ 1. To
avoid artificially large values of q-error, we ignore errors due
to queries that have act(qi) ≤ ∆ as well as est(qi) ≤ ∆ [31],
for a small constant ∆. To evaluate aggregate accuracy of
M over Stest, we either plot entire q-error distribution or
use 95th percentile of q-error values.

We include estimation time as well as model size (in KB)
for constructed models in our evaluation. Finally, we also
report the impact on plan quality, when we inject model esti-
mated selectivities for the query expressions involved during
the query optimization.

4. EFFICIENT MODEL CONSTRUCTION
Supervised models for selectivity estimation are quite at-

tractive for multiple reasons: (1) low overhead estimation
method as preferred during query optimization [27, 11], (2)
ability to adapt to recent query workload patterns, similar
to self-tuning methods [43, 10], and (3) potential to deliver
selectivity estimates significantly more accurate than tradi-
tional methods [25, 17, 46, 47]. However, their construction

overhead [46, 22] can be huge compared to the traditional
statistics collection methods [41, 3] when the labeled train-
ing examples are generated synthetically. Considering that
the set of expressions that require selectivity estimate dur-
ing query optimization is typically much larger than the set
of expressions for which labeled examples can be collected
from plans executed in the past [13, 47] - the overhead in
the model construction process is an important barrier in
the industrial adaption of supervised models.

To elaborate, constructing a supervised model for selec-
tivity estimation of a given query expression has two major
components: (1) generating training examples with their se-
lectivity labels, and (2) using the labeled examples to train a
supervised model, with the former being the bottleneck [17,
46]. We proposed a novel method that leverages this dispar-
ity to reduce the total model construction overhead. Train-
ing data generation cost depends on two factors (1) number
of training examples, and (2) per example label generation
cost. In this section, we present ideas that can help signifi-
cantly reduce overhead due to both of these factors.

4.1 Deciding appropriate size of training data
In general, there are no easy ways to decide the required

number of training examples [38, 23]. While larger number
of examples is better for prediction accuracy, it increases
model construction cost. On the other hand, training with
too few examples can compromise model accuracy. For a
given query expression, let s∗ denote the smallest number
of examples such that the trained model reaches a target pre-
diction accuracy, e.g., 95th percentile q-error is below 10. We
propose to use an iterative approach to increase the number
of training examples, until we determine sufficient number
of training examples s to achieve the target accuracy. Ob-
serve that while an iterative procedure has the potential to
save the cost of generating unnecessarily more examples, it
brings an additional repetitive overhead of monitoring the
accuracy at the end of each iteration.

While iterative training procedures have been proposed
in the past [38, 23], they explore the scenario where an
enormous amount of labeled examples are present and the
dominant overhead is training the model using all available
examples. They use a large test set for monitoring the im-
provement in model accuracy and show that increasing the
number of examples in doubling fashion minimizes the to-
tal time spent on model training steps. A straightforward
adaption of their approach would not have worked since,
in our context, label generation is the dominant overhead
(also it varies across query expressions), and training over-
head varies across various model designs [25, 17, 47].

4.1.1 Proposed Algorithm: IterTrain
Our proposal for iterative model construction, termed as

IterTrain, is formalized in Algorithm 1 and visualized in Fig-
ure 1. It uses cross-validation for estimating model accuracy
and computing confidence interval, and we show that the op-
timal geometric step size depends on the ratio between label
generation cost and cross-validation cost 4.

4Observe that, a linear schedule would still be worse than
geometric since in the linear schedule the total cost of k-fold
cross-validation steps (up to any stage) grows quadratically
in the number of examples and becomes dominant as the
number of iterations increase.
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Algorithm 1 IterTrain

Inputs: maximum # training examples m, target q-
error ε > 1, target percentile p, significance level of con-
fidence δ < 1, initial training size s0, ratio r of labeling
cost vs. cross validation cost per example

1: Initialization: Label s = s0 random examples as the

initial pool D. Set c = 1 +
√

1
r+1

.

2: while s ≤ m do
3: Run cross validation using D
4: Compute the confidence interval [p, p] of the per-

centile of predictions with q-error below ε
5: if p ≥ p then break

6: s0 ← s
7: if p ≤ p then
8: s← m
9: else

10: s← c× s
11: label s− s0 random examples and add them to D
12: return model trained with D

To elaborate, in each iteration, we run k-fold cross vali-
dation on the training examples and use it to compute the
confidence interval (p and p) for the percentage of exam-
ples below q-error threshold ε, as explained in Section 4.1.2.
When the target percentile p is equal or below the lower
bound p (line 5), we know that the target has been met
with probability at least 1− δ. So we stop generating more
training examples. When the target percentile p is equal or
above the upper bound p (line 7), we know that the target
cannot be met with the given budget m with probability at
least 1 − δ, so we use the maximal budget m and return a
best model we can train with this budget. When the target
percentile is contained in the confidence interval (line 9-10),
our algorithm increases the sample size geometrically using
the optimal geometric ratio derived in Section 4.1.3.

4.1.2 Confidence intervals for accuracy target
Consider k-fold cross validation on s training examples.

For each fold, we use s · k−1
k

examples for training and s · 1
k

examples for testing. Each fold i produces an empirical es-
timation of the true percentage p of examples with q-error
below ε in the test distribution. We follow the proof of
Theorem 1 and 2 in Huang et al. [23], and replace the clas-
sification accuracy in [23] with the percentage p, to derive a
δ-confidence interval for p as:

p ∈

[
pi,2 −

√
k

2s
ln

1

δ
, pi,1 +

√
k

2(k − 1)s
ln

2

δ
+

√
k

2s
ln

2

δ

]
(1)

where pi,1 and pi,2 correspond to the empirical percentage of
examples with q-error below ε in the test data and training
data of fold i respectively. Given that p − pi,j , i ∈ [k] have
identical distributions for j = 1, 2 respectively, we know that
the length of the confidence interval for the mean of p− pi,j
is 1√

k
of that of p− pi,j . So:[

p2 −
√

1

2s
ln

1

δ
, p1 +

√
1

2(k − 1)s
ln

2

δ
+

√
1

2s
ln

2

δ

]
(2)

is a δ-confidence interval for p.
Note that these confidence intervals are valid because we

label examples uniformly at random. They do not hold if

Generate 
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labeled 
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Train model
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cross validation)

Error target 
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Increase 
training
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no
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 model
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minimum num of 
labeled examples
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Label 
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using Algo 2

Figure 1: Visual representation of IterTrain

we use active learning [40] to label non-uniformly random
examples.

4.1.3 Optimizing the geometric step size
The approximate optimality of geometric scheduling was

first proved by Provost et al. [38], and the optimal base value
was presented by Huang et al. [23]. Our context is differ-
ent since the cost of labeling dominates the cost of cross-
validation, for a given number of examples. Still, we can
prove that our algorithm has a constant-ratio approxima-
tion guarantee of optimality, and our choice of the geometric
base c is optimal in terms of the approximation ratio.

Theorem 1. Assuming a specific random order of train-

ing examples, IterTrain has a
(√

1
r+1

+ 1
)2

-approx guaran-

tee, i.e., the total cost is no larger than
(√

1
r+1

+ 1
)2

times

the cost of directly generating and cross-validating with s∗

examples, where s∗ is the optimal number of training exam-
ples such that s∗ > s0.

Proof. Let the cost of generating s training examples
and cross-validation using s examples be C1(s) and C2(s)
respectively. In our problem, C1(s) = C2(rs)� C2(s), and
both are proportional to s. The cost of generating and cross-
validating with the optimal number of s∗ training examples
is Copt = C1(s∗) + C2(s∗) = (r + 1)C2(s∗).

The training size used in IterTrain is s0, cs0, . . . . Let z
be the smallest integer such that czs0 ≥ s∗. By definition,
cz−1s0 < s∗. The cost of IterTrain is given by:

C =C1(czs0) +
z∑
i=0

C2(cis0)

=C1(c× cz−1s0) + C2

(
cz+1 − 1

c− 1
s0

)

<C1(cs∗) + C2

(
c2

c− 1
s∗
)

=
rc+ c2

c−1

r + 1
Copt

(3)

This means that for any geometric base c > 1, the algorithm

has a
rc+ c2

c−1

r+1
-approx guarantee. This number reaches its

minimum
(√

1
r+1

+ 1
)2

when c = 1 +
√

1
r+1

.

Intuitively, the theorem implies that the iterative procedure
can get closer to the optimal cost of model construction
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by reducing the geometric step size, compared to doubling
approach [38, 23], when cross validation is significantly faster
compared to label generation cost, e.g., r ≈ 100 leads to
approximation ratio < 1.2.

Finally, observe that the above theorem gives approx-
guarantee with respect to Copt that includes cost of k-fold
cross-validation. The approx-guarantee with respect to only

label generation cost is given by c + c2

r(c−1)
, which can be

much higher than
rc+ c2

c−1

r+1
when r < 1. This implies that,

for techniques that are slower-to-train to cause r to be much
less than 1, IterTrain with cross-validation can have large
constant in the approx-guarantee and it may be better for
IterTrain to use a hold-out test set for monitoring model
accuracy across iterations (and hence increase ’r’).

4.2 Efficient selectivity label approximation
As mentioned above, generating the selectivity label for

a given query (line 11 in Algorithm 1) can be quite expen-
sive for large datasets. Our proposal to reduce the cost of
computing selectivity labels is based on the assumption that
we can tolerate small errors in the model predictions (e.g.,
q-error < 2) - our experiments empirically validate this as-
sumption. We exploit this by generating approximate selec-
tivity labels for training queries using a data sample, rather
than the full data. In general, the larger the selectivity of
a query is, the smaller is the size of the data sample re-
quired to produce its approximate label, for a given relative
error bound. We note here that similar ideas for selectiv-
ity approximation are used in approximate query processing
(AQP) systems like BlinkDB [6], the main difference is we
target to bound q-error instead of absolute error and we
need to minimize total cost of label generation for multiple
queries in each training iteration. With these observations,
we formally describe our proposal for efficient generation of
approximate selectivity labels.

Let Qrem = {q1, . . . , qn} be the working set of training
queries that remained unlabeled after the previous itera-
tions of Algorithm 2, and act(qi) be the true selectivity of
qi. Using t random tuples from the table, we can obtain
an approximate selectivity label li(t) for each query qi, i.e.,
li(t) ≈ act(qi) where N is the total number of tuples in the
table5. We use concentration inequalities to bound the dif-
ference between li(t) and act(qi) with high probability. The
difference decreases as t increases. We progressively increase
the data sample size t used for the approximate labels. Ob-
serve that, this procedure requires the tuples to be processed
in random order and scans each of the N tuples at most once.
To control the labeling cost for large datasets, we may also
consider an upper limit Upper Limit on the number of tuples
to be processed. When the difference for a query qi is be-
low a desired threshold with high probability, we drop the
query qi from the working set of queries and stop updat-
ing its approximate label. When the working set of queries
is empty, we obtain the approximate labels for all training
queries. The procedure for approximate label generation is
formalized in Algorithm 2.

Given query qi and sample size t, we now describe how
to calculate the confidence probability (line 4) for li(t) ∈

5Observe that, t denotes the count of all tuples processed
until the current iteration (equivalent to the value of y in
line 3 of Algorithm 2).

Algorithm 2 ApproxLabel

Inputs: Qrem = {q1, . . . , qn}, T = {t1, . . . , tN}, q-error
threshold η > 1, probability threshold α < 1

1: Initialization: x = 0, y = 100, tuples in T are assumed
to be in random order

2: while y ≤ min(Upper Limit, N) and Qrem 6= ∅ do
3: Evaluate tuple tx+1 to ty for each query qi in Qrem

and update their approximate labels
4: Update confidence probability for each query qi in
Qrem to achieve q-error bound η

5: Drop queries from Qrem for which the confidence
probability is above α

6: x← y
7: y ← 2× y

[act(qi)
η

, η × act(qi)]. To simplify notations, we use l and a

to abbreviate for li(t) and act(qi).
First, based on the multiplicative Chernoff bound, we

have:
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The last inequality is because η > 1, ηe1−η < 1.
Second, based on Hoeffding’s inequality, we have:

Pr

[
l

N
− a

N
>

l

N
− l

Nη

]
≤ e−2t2l2(1−1/η)2/N2

(6)

Together, with probability at least 1 −
(
ηe1−η

)tl/N −
e−2t2l2(1−1/η)2/N2

, the ratio between approximate label l
and the true selectivity a is bounded by [1/η, η].

It is easy to see that the total number of samples used by
ApproxLabel has a constant ratio approximation guarantee
of optimality.

Proposition 1. ApproxLabel has a 2-approx guarantee,
i.e., the total labeling cost is no larger than twice the cost of
using the minimal number of samples for each query.

Observe that, while sample size in Algorithm 2 follows
a geometric schedule, a linear schedule would have been a
better choice when N is very large and most of the queries
happen to have large values of actual selectivities, which
implies that small data samples would be sufficient.

4.3 Practical considerations
Observe that, Algorithm 1 can ensure that target accuracy

is achieved if (a) maximum training size m is sufficiently
large, (b) the model being used has sufficient representative
power, and (c) true selectivity labels are used for training.
But due to practical constraints on training time or memory
footprint, one or more of these requirements may not satisfy.
In such cases, the training procedure can be restarted with
larger values of m or model size, while reusing the labeled
examples already generated in the first attempt. Further, if
we choose to use small value of Upper Limit on sample size,
it can lead to errors in selectivity labels. In that case, the
learned model is approximating the selectivity function for
a random data-sample with Upper Limit rows.

Algorithm 1 can use any regression technique for model
construction. Use of such alternatives would only cause
change in value of parameter r (ratio of labeling cost to
cross validation cost), resulting in different optimal value of
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Query:
Select * from T1,T2 where T1.ja1 <op> T2.ja2 and 
T1.A1 >= lb1 and T1.A1 <= ub1 and T2.A3 >= lb2 and T2.A3 <= ub2 
T1.A2 IN (a1, a3, a10)                 and  T2.A4 IN(b1, b6, b9)

• Estimated selectivity(T1): |T1|
• Estimated selectivity(T2): |T2|
• Assuming 10 distinct categories in T1.A2 and T2.A4

Regression Model
M

Regression model
M

lb1
ub1
lb2
ub2

|T1|
|T2|

Log(selectivity_label)1010 0000 0100 1000 0100 1000
10, 0, 4 8, 4, 8
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Figure 2: Model design for an example query

geometric step size c. Algorithm 2 is independent of the
method used to compute selectivity labels (line 3 in Algo-
rithm 2). We use regular query execution to get these labels,
but it can easily be replaced by a more efficient alternative
- for instance, an unsupervised model [48].

An important issue with these models is that of incremen-
tal maintenance when there are updates to underlying data.
Such update invalidate the selectivity labels used for train-
ing of supervised models. This is an interesting problem
beyond the scope of this paper. Observe that, our efficient
training method that help reduce model construction cost
makes the update issue less severe.

Finally, observe that with increase in iterations, the label-
ing cost keeps increasing while the accuracy gains may di-
minish. It may be possible to use the intermediate learned
model to compute approximate labels for a subset of new
training examples to further reduce labeling costs - we defer
such attempts for future work.

5. MODEL DESIGN
We present our model design choices for a given query

expression. We consider join expressions between two or
more base tables, with simple filter (column 〈op〉 constant).
Specifically, we consider equality, range and IN filter types
and the join predicates may vary from key-foreign key, equal-
ity or even inequality types. Our model design choices are
driven by small training time and fast estimation time.

5.1 Basic design
We inherit the following basic aspects from [17]. We

use XGBoost [14] as the regression technique with log-
transformed selectivity labels. The reason for these choices
are (1) log-transformed labels help in better accuracy when
the evaluation metric is relative (q-error) and, (2) training
time for tree-based ensembles is much faster compared to
multi-layer perceptron regressor for a given training set [17].

The evaluation in [17] was limited to multiple range pred-
icates on a single base table. By treating the relation corre-
sponding to a query expression as a table itself, we can use
the same basic design for intermediate expressions. Figure 2
illustrate our adaption of regression models in [17] for a join
between two tables with range as well as IN filter on each of
the base tables.

We now describe our input feature encoding to regression
model M given a query example, also shown visually in Fig-
ure 2. Observe that, the set of base tables participating in
the join and the join-predicates need not be used as explicit
input features since all the training examples correspond to

the same join expression. Next, we discuss our input fea-
tures choices for filter predicates.

5.2 Query features
Range predicates For each range filter specified by lbi and
ubi, we use the values lbi and ubi to featurize such range
predicate. This encoding is also inherited from [17]. The
fact that the range filters may appear on different side of
the join T1 ./ T2 has no impact on its representation.
Categorical IN predicates For filter predicates of the
form A2 IN (catg list1), we first compute a bitmap that en-
codes the domain values that appear in the list (catg list1).
Further, we perform a decimal encoding of the bitmap, by
first splitting the bitmap into equal sized chunks and then
convert each chunk of bits into its decimal form. We use the
resulting sequence of decimal numbers as input feature to
the model. For example, as shown in Figure 2, categorical
attribute A2 with 10 values in its domain a1 through a10 has
an IN clause (a1, a3, a10). For this filter, the bitmap is given
by 101000000100. Note that, last two bits (underlined) have
been added to make the bitmap length a multiple of chunk
size6. The decimal encoding (10,0,4) become three input
features to the model. We use decimal encoding to reduce
the number of input features to the model. Similarly, IN
filter on A4 leads to three more input features as shown in
Figure 2. If the number of categories in an attribute domain
is very large, it would help to exploit distribution skew and
keep most frequent categories in the bitmap, and hash the
infrequent categories into smaller number of dimensions [33].
Note that, computation of both range and categorical fea-
tures (for moderate size domains) is efficient and requires
information from either the query or pre-computed statisti-
cal metadata.

5.3 Selectivity features
While query features are sufficiently descriptive, it helps

to add additional relevant features – specifically, when we
want to use small sized models to keep estimation time
low [17, 25]. We add per-table selectivity estimates as ex-
tra inputs to the model. These features are computed from
compile-time statistics, such as histograms, that are typi-
cally available in most database systems. These estimates
can certainly be replaced by more accurate estimates from
regression models, if available, for the participating base
tables. Our selectivity features are in the same spirit as

6In our experiments we use chunk size 32, details in Sec-
tion 6.5.
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CE features [17] or sample-based estimates [25], and are ex-
pected to help improve accuracy while adding small over-
head to the estimation time. Overall, our model for exam-
ple query q has 12 features including four range features, six
categorical features and two selectivity features, as shown in
Figure 2.

5.4 Discussion
Observe that the above discussion is not limited to the

case for a single join T1 ./ T2. A similar method can be fol-
lowed to design a model for join expressions with more than
two tables, by featurizing the range and categorical predi-
cates across all the participating tables and adding a selec-
tivity feature for each table. We consider different combina-
tions of features (1) query features only; (2) selectivity fea-
tures only; and (3) query and selectivity features together,
to find the best set of features across many different query
expressions.

Sample-bitmap features. Our empirical analysis of the
benchmark (TPC-H, TPC-DS) and industrial workload
show that the filter types natively supported by our model
design (equality, range, categorical) are sufficient to cover
a large majority of the queries. To support more complex
filter predicates, we include evaluation of the per-table sam-
ple bitmap features proposed in [25]. Empirically, our ob-
servation is same as [25] that sample-bitmaps can help in
improving higher percentile errors even when queries have
simple filters. Given their added estimation overhead, we
evaluate a feature sub-selection approach to extract their
accuracy benefits with much smaller estimation overhead.
To elaborate, we first train the model using a large number
of bits (say 10,000) in the sample-bitmap, and then rank
these bits in terms of feature importance. While preparing
the final model we use only the high rank bits, and ignore
the rest to bring down the estimation overhead.

5.5 One model for multiple expressions
Until now, we have described model design for the sim-

plest case of a single join expression. Observe that, the
model works with a single relation that can correspond to
any join expression. It also means that in the scenarios
where a materialized view of a join expression can support
queries for different subsets of tables, we can also learn a
single model to estimate selectivities for different join subex-
pressions. For instance, consider the case when a fact table
TF joins with two dimension tables TD1 and TD2 and we
wish to estimate selectivities for all 3 join sub-expressions
TF ./ TD1, TF ./ TD2, TF ./ TD1 ./ TD2, with pre-specified
template filters on TF , TD1, TD2, etc. In this case, it is pos-
sible to learn a single model that can serve the purpose7.
Specifically, we can estimate selectivity of TF ./ TD1, by
setting the filter predicates on TD2 as full-domain predi-
cates. In Section 6, we present an experiment where we use
a single 16KB model to estimate selectivities of 15 join sub-
expressions extending from 2-way to 5-way joins. Observe
that, this model can also generate single table selectivity
estimates for the fact table TF , but not for the dimension
tables TD1 and TD2.

7Similar to how a join-sample constructed using a sample
from the fact table can serve estimates for many join sub-
expressions [5]

6. EXPERIMENTAL EVALUATION
We evaluate the proposed models on construction over-

head, estimation accuracy, feature set effectiveness, as well
as impact of injecting model estimates on quality of plans
chosen by the optimizer.

6.1 Experimental setup
We include the following techniques in our evaluation,

1. ComOpt, a commercial optimizer that uses per-attribute
histograms on base tables and black-box complex com-
putations to compute selectivity estimates for join-
expressions.

2. Statistics on views [8, 19] (abbv. as SOV), use per-
attribute histograms on the view for the join expression.

3. Join-sample (JS(10k)), a 10 thousand row uniform ran-
dom sample over the result of the join expression. We also
use 100 thousand row join-sample (abbv. as JS(100k)) as
accuracy baseline.

4. MSCN, a recently proposed [25] neural network based su-
pervised learning model design. We use code sourced
from authors [1] with recommended values for hyper-
parameters (100 epochs, 256 neurons).

5. Regression model variants (model X), the models pro-
posed in this work with feature choices captured in ‘X’,
where ‘Q’ represents query features, ‘E’ represents selec-
tivity features and ‘B’ represents sample-bitmap features.

Setup and estimation overhead. For all techniques that
require materialized join expressions, we use a 100 thousand
row join sample constructed over the result of the join ex-
pression. Effectively, learned models are approximating the
selectivity function from this 100 thousand row sample.

We use 10 thousand training examples per join expression
to train MSCN models, as well as an upper limit on training
size for the proposed models. We report training time and
accuracy of training a MSCN model for each individual join
expression to achieve best model accuracy, sometimes better
than a global model training across all expressions [25]. The
sample-bitmap features for MSCN or model QBE are com-
puted using 1000 row uniform random sample over each base
table, similar to [25]. XGBoost is used with following hyper-
parameters: {tree method:hist, grow policy:lossguide }.

In terms of estimation overhead, ComOpt as well as SOV
require only tens of KBs and < 100µsec for scanning the
per-attribute histogram structures. The proposed XGBoost
model (model QE) uses only 16 KB memory (16 trees with
max. 16 leaves each) with estimation time ≈ 100µsec per
inference (similar to [17]). As expected, models that use base
table sample bitmap features need extra time for sample
bitmap computation. And the estimation time for JS(10k)
is a few milliseconds.

Queries and datasets. We use 42 join expressions across
3 datasets in our evaluation, with a number of tables in the
join - later referred to as join-dimension - varying from 2
to 5. For each join-expression, we generate query instances
by adding a range predicate and an IN predicate on each of
the participating tables. Thus, our queries have a predicate
count varying from 4 to 10. While real-world queries can
have more tables, having multiple filters on each base table
makes our setup sufficiently challenging for join selectivity
estimation task.
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To create a query with non-empty result, we use a ran-
domly chosen row from the 100 thousand row data sample
as the seed - we call it a data-centric query. Given a data
row seed, different queries may differ in their width for range
predicates and number of categories added to the IN lists.
The join-expressions are chosen from the following datasets:
TPC-H with skew (1GB, z=2), TPC-DS (10GB) and a real
sales dataset (97 GB).

For the purpose of accuracy evaluation, we generated 1000
queries for each expression using the same query generation
parameters as training examples. Note that, the actual se-
lectivities of test queries are computed over the entire mate-
rialized join (not the 100 thousand row sample used for the
estimators). Figure 3(a) shows the distribution of actual
selectivities for test queries across all expressions. Observe
that the actual selectivities are spread over large range of
values to avoid bias against any technique. Such wide dis-
tribution of selectivities also presents a variety of learning
challenge to the models.

6.2 Effectiveness of iterative procedure
As mentioned above, we use an upper limit of 10 thousand

examples for each join expression, and initial training size of
100 examples. We aim to achieve a target accuracy of p = 95
percent queries below q-error of ε = 10. We use geometric
step size 1.2 in our experiments, and increase training size
only in multiples of 100.

(a) Actual Selectivities (b) # training examples

Figure 3: (a) Distribution of actual selectivities across all
expressions (b) Number of training examples used by Iter-
Train vary significantly across expressions

To evaluate the effectiveness of iterative procedure, we
evaluate the number of training examples used out of the
10 thousand budget, across different join expressions. Fig-
ure 3(b) shows cumulative percentage of join expressions
with increasing training size. Observe that for around 40%
of the join expressions, less than 1000 examples were found
sufficient to meet the target accuracy and 4000 examples
were sufficient for 75% of the expressions. There are expres-
sions for which the selectivity function was “difficult” to
learn and they required 5000 or more examples for training.
Note that we use additional practical exit criteria in addi-
tion to that specified in Algorithm 1, that is, when p does
not improve in last 5 iterations. Overall, we can conclude
that using 10 thousand or more training examples, would
be overkill for most of the expressions. On the other hand,
if we used 1 thousand examples for all expressions, then we
could loose on model accuracy for many expressions.

In Figure 4(a), we group together join expressions accord-
ing to their join-dimension and observed that there is a con-
sistent increase in the number of training examples with the

(a) # training examples (b) Factor accuracy gain

Figure 4: Effectiveness of IterTrain w.r.t. dimensions

increase in join-dimension. In our experimental setup, one
reason for this is that the number of filter predicates also
increase with the number of joins. However, the training
size required for a fixed dimension also varied significantly.
It implies that dimension can not be used as a direct proxy
to decide the size of training data.

To evaluate the improvement in accuracy, we use the ratio
of q-error values - termed as factor-gain. In Figure 4(b),
we plot the factor gain in 95th percentile values from first
iteration to the last iteration, grouped by join dimension.
It shows that for many expressions, the 95th errors improve
significantly, i.e., by a factor of 10-100×.

6.3 Model construction overhead
In Figure 5, we illustrate how worst case IterTrain over-

head stand compared to one-shot training with 10k exam-
ples (using MSCN with Integrated GPU0 Quadro K420) and
the lower bound of generating only necessary training exam-
ples. Further, we demonstrate different IterTrain scenarios
depending on whether: (i) 10-fold cross-validation or hold-
out testing (with 2k examples) is used for monitoring accu-
racy; (ii) the model training set is relatively fast (XGBoost)
or slow (MSCN); and (iii) per-label cost is relatively large
(10 sec) or small (0.1 sec). We find that when per-label
cost is relatively high, IterTrain with cross-validation deliv-
ers small constant-factor approximation to lower bound for
both MSCN and XGBoost. However, when the per-label
cost is smaller, e.g., due to approximation, it is better for
MSCN to use hold-out testing since 10-fold cross-validation
increases the per-example training cost. On the other hand,
overhead with XGBoost remains close to the lower bound
due to its significantly faster training routine.

Figure 5: Overhead analysis for IterTrain scenarios
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Figure 6: Construction overhead comparison with one-shot
training w.r.t. join-dimension (on CPU)

We now report the cost spent in model construction when
CPU is used for training both models, in Figure 6. For
MSCN, we report the time spent in computing selectivity la-
bels from the 100 thousand row join sample for 10 thousand
queries (shown as Exact label (10k)) and then time spent in
training MSCN (shown as MSCN-CPU) (GPU needs 7×-13×
lesser time). For the proposed models, we report the time
taken by our Algorithm 1 while approximating labels using
Algorithm 2 - this is represented as Approx-Itertrain. Fi-
nally, we also report the total time spent in cross-validation
(and model training) with XGBoost across all iterations.
Overall, the total construction cost for our models typically
varied from tens of seconds to a few hundred seconds, with
the worst case being less than 1000 seconds. In contrast,
one-shot MSCN model training with 10 thousand examples
need more than 1000 seconds and label generation adds an-
other several hundred seconds. Note that use of 100k join
sample itself reduces the overhead of label generation by
huge factor. The additional savings due to Approx-Itertrain
vary from 2-20×, with an order of magnitude saving for a
large fraction of expressions. Observe that the time spent
in XGBoost training never exceeded a few minutes across
multiple iterations with ten-fold cross validation in each it-
eration. For majority of expressions, XGBoost took only
tens of seconds.

Note that MSCN training overhead can be reduced by
tuning the model design, e.g., decreasing neuron count of
feature count or number of epochs, but that may hurt the
model accuracy. Parallel resources also can be leveraged
to reduce the latency of labeling phase, independent of the
training method. Overall, XGBoost models can achieve sim-
ilar accuracy with much smaller total resource consumption.

Figure 7: Estimation error comparison across techniques

(a) Median Q-error (b) 95th Q-error

Figure 8: Expression-wise accuracy comparison

6.4 Estimation error evaluation
Next, we evaluate the estimation accuracy of the pro-

posed regression models against existing techniques. Fig-
ure 7 shows error-distribution for each technique across all
expressions used in our evaluation. We plot only the errors
in the up to 95 percentile to avoid the outlier cases. The
first highlight of this plot is that all learned models deliver
more accurate estimates when compared to ComOpt, SOV
and 1000 row join sample. These are the techniques with
small estimation overhead comparable to single table regres-
sion models [17]. Compared to JS(10k), learned models have
better 95th percentile error but worse median error.

Among learned models, model QE provides best overall
error distribution, much better than model E and model Q.
Addition of sample-bitmap features does not lead to sig-
nificant improvement across all estimates. As expected,
JS(100k) provides the best accuracy and model QE learns
a reasonable approximation of its selectivity function.

Errors for different expressions. Next, we report per-
expression median and 95th percentile q-error in Figure 8(a)
and Figure 8(b) in log-scale q-error. Figure 8(a) shows the
median q-error plot for each technique sorted across differ-
ent expressions. We find that both ComOpt or SOV are
worst in terms of median error, all other techniques are sig-
nificantly better, with JS(10k) and JS(100k) being the best.
Both learned techniques MSCN and model QE are typically
within 2× of JS(10k) in terms of median error.

Similarly we plot 95th percentile q-errors in Figure 8(b).
We find that ComOpt and SOV have 95th q-error larger than
100 for many expressions, and SOV does not always improve
upon ComOpt. Even JS(10k) can have large values of 95th

percentile q-error. All learned techniques meet the accuracy
target for most of the expressions. The target could not be
achieved in the remaining cases due to errors in approxi-
mated labels, as evident by the spike in JS(100k) curve.

We highlight here that the relatively worse estimation ac-
curacy of MSCN in a few cases does not imply that their
model design is not capable of good estimation accuracy.
Following are the possible reasons for the large 95th per-
centile errors: (a) IN predicates need to be explicitly featur-
ized in their design as well, (b) MSCN is more sensitive to
approximated labels or needs hyperparameter optimization.

Accuracy improvement due to proposed models. Fig-
ure 9 summarizes the accuracy improvement achieved by
model QE compared to each of the other 4 techniques in the
form of factor gain in 95th percentile q-error for individual
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Figure 9: Factor gain in 95th percentile for proposed 16KB
XGBoost model compared to other techniques

expressions. We plot the factor gain with increase in the
number tables in the join, with observations as follows,
1. For majority of cases, model QE is 10× to 100× more

accurate compared to ComOpt and SOV.
2. JS(10k) can be better than model QE (factor < 1) in some

cases, but model QE is 10× or more accurate in major-
ity of the cases. For 2-table joins, JS(10k) is particularly
better than model QE. The reason for such specific be-
havior is our experiment setup that has at most 2 filter
predicates per table, leading to larger values of selectivi-
ties for queries over 2-table joins compared to joins with
more tables.

3. The factor gain increases consistently with the join di-
mension, this is because the estimation errors for tradi-
tional techniques get worse with more joins (except for
MSCN).

4. We do not observe significant regressions in 95th accu-
racy compared to MSCN, even though model QE is sig-
nificantly smaller (16 KB) compared to MSCN (3 MB).
It is possible that MSCN could be more accurate with
explicit IN features and hyper-parameter tuning.

Overall, we found that model QE with only 16 KB size
produces accurate estimates, orders of magnitude better
than non-ML approaches and comparable to more complex
MSCN model.

Figure 10: Factor gain in 95th percentile for proposed 16KB
XGBoost model compared to feature variations

6.5 Impact of features choices
In Figure 10, we report factor gain in 95th percentile q-

error for a model variant with all features (model QBE) com-
pared to different variants with increasingly more features.
We found that that using all features is significantly better
than any variant with only one kind of features (model E,
model B, model Q). In fact, combining only compile-time
features (model QE) is significantly more accurate compared

to using only sample-bitmap features (model B) that indi-
rectly encodes both query and selectivity features, highlight-
ing that it is better to add features explicitly whenever pos-
sible. Finally, we found that a variant that uses only 100
highest rank bits from the sample-bitmap in terms of fea-
ture importance (model QcBE), brings most of the accuracy
gains of full-sample bitmap (1000 bits per base table), at
significantly reduced run-time overhead. Overall, model QE
is a reasonable model choice without any run-time feature,
while model QcBE provides good balance between the ac-
curacy and the estimation overhead and also support any
complex filter predicate.
Impact of decimal encoding for IN features We now
present an experiment where we evaluate IN clause features
with different chunk-sizes for decimal encoding, including no
decimal encoding (chunk-size=1) as well as absence of the
IN features. Figure 11 summarizes the factor gain in tail-
accuracy achieved by using IN features without any deci-
mal encoding as compared to others variants. Largest gains
(> 10×) compared to model RE shows that using only range
features (no IN features) significantly degrades model accu-
racy. Large gains (≈ 10×) compared to model RB shows
that including sample-bitmap features (as an alternative to
explicit IN features) is not enough. Finally, rare and small
gains compared to model QE (chunk-size 32) and model Q8E
(chunk-size 8) show that our choice of chunk size works rea-
sonably well in most cases. Notwithstanding, using a rela-
tively small chunk-size, say 8, may be a safer approach.

Figure 11: Impact of IN features and their decimal encoding

6.6 Plan quality experiment
Finally, we evaluate the impact of using estimates gener-

ated using model QE, compared to using true selectivities
during query optimization on the quality of chosen plans
in terms of CPU time improvement w.r.t. using ComOpt
estimates.

In our first experiment, we use a query based
on TPC-H Q8 (joins 8 relations) and filters on
p size, p type, l shipmode, and o orderdate. Due to skewed
version of TPC-H dataset (z=2), we found a huge correla-
tion across the join between part and lineitem tables. We
generated 50 instances of the query with varying filters on
p type and p size. As shown in Figure 12(a), the original
estimate by ComOpt remain ≈ 105 irrespective of the filter
instantiations. In contrast, model QE captures the correla-
tion to produce orders of magnitude better estimates. When
these estimates are utilized in plan selection, we get plans
with 80% smaller CPU time in many cases, as shown in
Figure 12(b). It is only in a few cases that estimates from
model QE do not bring the same improvement as true selec-
tivity w.r.t. plan quality.
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(a) Estimation quality (b) CPU time comparison

Figure 12: Estimation and plan quality improvement by us-
ing model QE estimates for the expression for 50 queries
based on TPC-H Q8 on skewed TPC-H (z=2)

In another experiment, we executed 500 instances of a 5
join query on the real world customer dataset, with range
as well as categorical filter on each of the 5 tables. Note
that during optimization, these queries require selectivity
estimates for various 2,3,4-way joins as well. Since there
was a single fact table and all joins were key-joins, we could
use a single 16 KB model to produce all required estimates.
When we injected model estimates, the plan choice changed
for 74% of the queries with 30% queries resulting in a plan
at least 1.2x better than the original plan choice (with Co-
mOpt estimates). In fact, CPU time for 10% of the queries
improved by 10x or more with a few queries gaining in ex-
cess of 100x. Overall, these experiments demonstrate that
the significant improvements in estimation quality can lead
to savings in CPU execution time as well, even when the
model estimates have some errors w.r.t. true selectivity.

7. RELATED WORK
Selectivity estimation is a challenging problem for many

reasons such as the expectation of small estimation and con-
struction overhead, as well as small enough estimation errors
to avoid bad plan choices. In this work, we focus on super-
vised models for selectivity estimation as they can support
low overhead estimation with reasonably accurate selectivity
estimates. We propose methods to significantly reduce the
construction overhead, and demonstrate that fast-to-train
models can be extended to support join-expressions with
base-table filters, which is an important subclass of query
expressions. Past work related to construction overhead re-
duction has already been discussed in Section 4 - here we
focus on the alternative methods for selectivity estimation.

For query-expressions with base table filters, sampling
based methods are arguably the most promising line of
work in terms of estimation accuracy. These include tech-
niques that use a join-sample for one or more join expres-
sions [5] by leveraging key-based joins and novel techniques
that efficiently produce a join-sample by sampling base-table
rows [12, 49, 45, 27] etc. While sampling based techniques
are great in terms of both accuracy and range of applicabil-
ity, their estimation and storage overhead make them less
attractive in the context of selectivity estimation for low
overhead query optimization [11]. This is evident by limited
adoption of such methods, e.g., [35, 36] supports use of a
small uniform random sample for base tables. Actually, the
proposal in this paper can be seen as an attempt to approx-
imate the selectivity function from a large join sample and

making it available at low estimation overhead for selectiv-
ity estimation. In fact, efficient techniques to construct join
sample [50] can help our technique by reducing the overhead
of large join-sample creation step.

Many other innovative proposals such as multi-
dimensional histograms, graphical models [20, 44] or un-
supervised methods [48, 22], can also provide improved es-
timation accuracy at the cost of large construction or esti-
mation overhead when dealing with high-dimensional data.
Interestingly, an unsupervised method [48, 22] with highly
accurate estimation quality could potentially be combined
with low estimation overhead of supervised methods, to get
the best of both worlds.

While unsupervised methods aim to capture the entire
data distribution, supervised models focus to learn selec-
tivity function from a given set of labeled query examples,
which is similar to self-tuning approaches [4, 10, 42, 21].
Once the set of queries is known, highly optimized imple-
mentations for regression techniques [14, 24] ensure that the
training process is much faster compared to traditional pro-
posals [10, 42, 21]. Recently, efficient algorithm for training
uniform mixture models have also been developed [37]. We
show that the faster training routine plays an important role
in reducing the total model construction cost.

The idea of selectivity estimation using supervised learn-
ing is not new [26, 30, 29]. Recent work [17, 25, 46] on su-
pervised models for selectivity estimation generate a large
amount of training data to ensure good model accuracy.
However, the costly step of generating sufficient training
data has been a critical bottleneck in their usage [22]. In this
work, we propose an iterative approach to generate training
data that reduces the total model construction cost. While
the proposed iterative model construction procedure can be
used for any supervised model design, it is more suitable for
model designs that support low overhead training routine.
We also demonstrate that low overhead regression models
proposed in [17] can support selectivity estimation for much
broader class of query expressions.

8. CONCLUSION
Supervised models for selectivity estimation are attractive

due to their low estimation overhead and ability to adapt to
recent query workload. The techniques proposed in this pa-
per improve the usability of simple regression models for
selectivity estimation by making significant progress in re-
ducing the total model construction cost and broadening the
class of supported queries. Note that, the term “usability”
also implies other properties such as ability to debug and
explain the predictions from regression models. These prop-
erties are also important in selectivity estimation context,
and leveraging the tree-based ensembles for this purpose is
an area of future work. It could also be helpful to develop
mechanisms that can raise an alert whenever the model gen-
erated estimate has large error.

Overall, we believe that this paper pushes the case forward
for use of supervised learning methods to improve state-of-
the-art in selectivity estimation.
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