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ABSTRACT
Deep neural networks (deep nets) are revolutionizing many
machine learning (ML) applications. But there is a major
bottleneck to wider adoption: the pain and resource inten-
siveness of model selection. This empirical process involves
exploring deep net architectures and hyper-parameters, of-
ten requiring hundreds of trials. Alas, most ML systems
focus on training one model at a time, reducing through-
put and raising overall resource costs; some also sacrifice re-
producibility. We present Cerebro, a new data system to
raise deep net model selection throughput at scale without
raising resource costs and without sacrificing reproducibility
or accuracy. Cerebro uses a new parallel SGD execution
strategy we call model hopper parallelism that hybridizes
task- and data-parallelism to mitigate the cons of these prior
paradigms and offer the best of both worlds. Experiments
on large ML benchmark datasets show that Cerebro offers
3x to 10x runtime savings relative to data-parallel systems
like Horovod and Parameter Server and up to 8x memo-
ry/storage savings or up to 100x network savings relative
to task-parallel systems. Cerebro also supports heteroge-
neous resources and fault tolerance.
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1. INTRODUCTION
Deep learning is revolutionizing many ML applications.

Their success at large Web companies has created excite-
ment among practitioners in other settings, including do-
main sciences, enterprises, and small Web companies, to try
deep nets for their applications. But training deep nets is a
painful empirical process, since accuracy is tied to the neu-
ral architecture and hyper-parameter settings. A common
practice to choose these settings is to empirically compare as
many training configurations as possible for the user. This
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process is called model selection, and it is unavoidable be-
cause it is how one controls underfitting vs. overfitting [64].
Model selection is a major bottleneck for the adoption of
deep learning among enterprises and domain scientists due
to both the time spent and resource costs. Not all ML users
can afford to throw hundreds of GPUs at their task and burn
resources like the Googles and Facebooks of the world.

Case Study. We present a real-world model selection sce-
nario. Our public health collaborators at UC San Diego
wanted to try deep nets for identifying different activities
(e.g., sitting, standing, stepping, etc.) of subjects from body-
worn accelerometer data. The data was collected from a co-
hort of about 600 people and is labeled. Its size is 864 GB.
During model selection, we tried different deep net archi-
tectures such as convolution neural networks (CNNs), long
short-term memory models (LSTMs), and composite models
such as CNN-LSTMs, which now offer state-of-the-art re-
sults for multivariate time-series classification [35, 56]. Our
collaborators also wanted to try different prediction win-
dow sizes (e.g., predictions generated every 5 seconds vs. 15
seconds) and alternative target semantics (e.g., sitting–
standing–stepping or sitting vs. not sitting). The training
process also involves tuning various hyper-parameters such
as learning rate and regularization coefficient.

In the above scenario it is clear that the model selection
process generates dozens, if not hundreds, of different mod-
els that need to be evaluated in order to pick the best one
for the prediction task. Due to the scale of the data and the
complexity of the task, it is too tedious and time-consuming
to manually steer this process by trying models one by one.
Parallel execution on a cluster is critical for reasonable run-
times. Moreover, since our collaborators often changed the
time windows and output semantics for health-related anal-
yses, we had to rerun the whole model selection process
over and over several times to get the best accuracy for
their evolving task definitions. Finally, reproducible model
training is also a key requirement in such scientific settings.
All this underscores the importance of automatically scaling
deep net model selection on a cluster with high throughput.

System Desiderata. We have the following key desiderata
for a deep net model selection system.

1) Scalability. Deep learning often has large training
datasets, larger than single-node memory and sometimes
even disk. Deep net model selection is also highly compute-
intensive. Thus, we desire out-of-the-box scalability to a
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Figure 1: (A) Cerebro combines the advantages of both task- and data-parallelism. (B) System design phi-
losophy and approach of Cerebro/MOP (introduced in [52]): “narrow waist” architecture in which multiple
model selection procedures and multiple deep learning tools are supported–unmodified–for specifying/exe-
cuting deep net computations. MOP is our novel resource-efficient distributed SGD execution approach. (C)
Model Hopper Parallelism (MOP) as a hybrid approach of task- and data-parallelism. It is the first known
form of bulk asynchronous parallelism, filling a major gap in the parallel data systems literature.

cluster with large partitioned datasets (data scalability) and
distributed execution (compute scalability).

2) High Throughput. Regardless of manual grid/ran-
dom searches or AutoML searches, a key bottleneck for
model selection is throughput : how many training config-
urations are evaluated per unit time. Higher throughput
enables ML users to iterate through more configurations in
bulk, potentially reaching a better accuracy sooner.

3) Overall Resource Efficiency. Deep net train-
ing uses variants of mini-batch stochastic gradient descent
(SGD) [7, 10, 11]. To improve efficiency, the model selec-
tion system has to avoid wasting resources and maximize
resource utilization for executing SGD on a cluster. We
have 4 key components of resource efficiency: (1) per-epoch
efficiency : time to complete an epoch of training; (2) con-
vergence efficiency : time to reach a given accuracy met-
ric; (3) memory/storage efficiency : amount of memory/stor-
age used by the system; and (4) communication efficiency :
amount of network bandwidth used by the system. In cloud
settings, compute, memory/storage, and network all mat-
ter for overall costs because resources are pay-as-you-go; on
shared clusters, which are common in academia, wastefully
hogging any resource is unethical.

4) Reproducibility. Ad hoc model selection with dis-
tributed training is a key reason for the “reproducibility cri-
sis” in deep learning [68]. While some Web giants may not
care about unreproducibility for some use cases, this is a
showstopper issue for many enterprises due to auditing, reg-
ulations, and/or other legal reasons. Most domain scientists
also inherently value reproducibility.

Limitations of Existing Landscape. We compared exist-
ing approaches to see how well they cover the above desider-
ata. Unfortunately, each approach falls short on some major
desiderata, as we summarize next. Figure 3 and Section 2.2
present our analysis in depth.

1) False Dichotomy of Task- and Data-Parallelism.
Prior work on model selection systems, primarily from the
ML world, almost exclusively focus on the task-parallel set-
ting [32, 42, 43]. This ignores a pervasive approach to scale
to large data on clusters: data partitioning (sharding). A
disjoint line of work on data-parallel ML systems do con-
sider partitioned data but focus on training one model at a
time, not model selection workloads [44, 63]. Model selec-

tion on partitioned datasets is important because parallel
file systems (e.g., HDFS for Spark), parallel RDBMSs, and
“data lakes” typically store large datasets in that manner.

2) Resource Inefficiencies. Due to the false dichotomy,
naively combining the above mentioned approaches could
cause overheads and resource wastage (Section 2 explains
more). For instance, using task-parallelism on HDFS re-
quires extra data movement and potential caching, substan-
tially wasting network and memory/storage resources. An
alternative is remote data storage (e.g., S3) and reading re-
peatedly at every iteration of SGD. But this leads to or-
ders of magnitude higher network costs by flooding the net-
work with lots of redundant data reads. On the other hand,
data-parallel systems that train one model at a time (e.g.,
Horovod [63] and Parameter Servers [44]) incur high com-
munication costs, leading to high runtimes.

Overall, we see a major gap between task- and data-
parallel systems today, which leads to substantially lower
overall resource efficiency, i.e., when compute, memory/s-
torage, and network are considered holistically.

Our Proposed System. We present Cerebro, a new sys-
tem for deep learning model selection that mitigates the
above issues with both task- and data-parallel execution.
As Figure 1(A) shows, Cerebro combines the advantages
of both task- and data-parallelism, while avoiding the limi-
tations of each. It raises model selection throughput without
raising resource costs. Our target setting is small clusters
(say, tens of nodes), which covers a vast majority (over 90%)
of parallel ML workloads in practice [60]. We focus on the
common setting of partitioned data on such clusters. Fig-
ure 1(B) shows the system design philosophy of Cerebro:
a narrow-waist architecture inspired by [40] to support mul-
tiple AutoML procedures and deep net frameworks.

Summary of Our Techniques. At the heart of Cere-
bro is a simple but novel hybrid of task- and data-
parallelism we call model hopper parallelism (MOP) that
fulfills all of our desiderata. MOP is based on our insight
about a formal optimization theoretic property of SGD: ro-
bustness to the random ordering of the data. Figure 1(C) po-
sitions MOP against prior approaches: it is the first known
form of “Bulk Asynchronous” parallelism, a hybridization of
the Bulk Synchronous parallelism common in the database
world and task-parallelism common in the ML world. As
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Figure 2 shows, MOP has the network and memory/storage
efficiency of BSP but offers much better ML convergence
behavior. Prior work has shown that the BSP approach for
distributed SGD (also called “model averaging”) has poor
convergence behavior [20]. Overall, considering all resources
holistically–compute, memory/storage, and network–MOP
can be the resource-optimal choice in our target setting.

With MOP as its basis, Cerebro devises an optimizing
scheduler to efficiently execute deep net model selection on
small clusters. We formalize our scheduling problem as a
mixed integer linear program (MILP). We compare alter-
nate candidate algorithms with simulations and find that
a simple randomized algorithm has surprisingly good per-
formance on all aspects (Section 5). We then extend our
scheduler to support replication of partitions, fault toler-
ance, and elasticity out of the box (Sections 5.5 and 5.6).
Such systems-level features are crucial for deep net model
selection workloads, which can often run for days. We also
weigh a hybrid of Cerebro with Horovod for model selec-
tion workloads with low degrees of parallelism.

Overall, this paper makes the following contributions:

• We present a new parallel SGD execution approach
we call model hopper parallelism (MOP) that satisfies
all the desiderata listed earlier by exploiting a formal
property of SGD. MOP is applicable to any ML models
trained with SGD. We focus primarily on deep nets due
to their growing popularity combined with the pressing
issue of their resource-intensiveness.

• We build Cerebro, a general and extensible deep net
model selection system using MOP. Cerebro can sup-
port arbitrary deep nets and data types, as well as
multiple deep learning tools and AutoML procedures.
We integrate it with TensorFlow and PyTorch.

• We formalize the scheduling problem of Cerebro and
compare 3 alternatives (MILP solver, approximate,
and randomized) using simulations. We find that a
randomized scheduler works well in our setting.

• We extend Cerebro to exploit partial data replication
and also support fault tolerance and elasticity.

• We perform extensive experiments on real model selec-
tion workloads with two large benchmark ML datasets:
ImageNet and Criteo. Cerebro offers 3x to 10x run-
time gains over purely data-parallel systems and up to
8x memory/storage gains over purely task-parallel sys-
tems. Cerebro also exhibits linear speedup behavior.

2. BACKGROUND AND TRADEOFFS
We briefly explain mini-batch SGD, the method used for

training deep nets. We then compare existing approaches
for parallel deep net training and their tradeoffs.

2.1 Deep Net Training with Mini-batch SGD
Deep net training is a non-convex optimization prob-

lem [25]. It is solved by mini-batch SGD or its variants (e.g.,
Adam [36] and RMSprop [17]). SGD is an iterative process
that performs multiple passes over the data. Each pass is
called an epoch. In an epoch, it randomly samples a batch of
examples without replacement–called a mini-batch–and uses
that to estimate the gradient and make a model update.
Large datasets have 1000s to millions of mini-batches; so,
an epoch makes as many model updates. SGD is inherently
sequential; deviating from sequential execution may lead to
poor convergence behavior, typically raising the number of
epochs needed for a given accuracy. We refer the interested
reader to [7, 10] for more technical details on SGD.

2.2 Systems for Distributed Deep Net Training
Most deep learning tools (e.g., TensorFlow) focus on the

latency of training one model at a time, not on throughput.
A popular way to raise throughput is parallelism. Thus,
various multi-node parallel execution approaches have been
studied. All of them fall short on some desiderata, as Fig-
ure 3 shows. We group these approaches into 4 categories:

Embarrassingly Task Parallel. Tools such as Python
Dask, Celery, Vizier [23], and Ray [48] can run different
training configurations on different workers in a task-parallel
manner. Each worker can use logically sequential SGD,
which yields the best convergence efficiency. This is also re-
producible. There is no communication across workers dur-
ing training, but the whole dataset must be copied to each
worker, which does not scale to large partitioned datasets.
Copying datasets to all workers is also highly wasteful of re-
sources, both memory and storage, which raises costs. Alter-
natively, one can use remote storage (e.g., S3) and read data
remotely every epoch. But such repeated reads wastefully
flood the network with orders of magnitude extra redundant
data, e.g., see a realistic cost calculation in Table 2..

Bulk Synchronous Parallel (BSP). BSP systems such as
Spark and TensorFlow with model averaging [1] parallelize
one model at a time. They partition the dataset across work-
ers, yielding high memory/storage efficiency. They broad-
cast a model, train models independently on each worker’s
partition, collect all models on the master, average the
weights (or gradients), and repeat this every epoch. Alas,
this approach converges poorly for highly non-convex mod-
els; so, it is almost never used for deep net training [65].

Centralized Fine-grained. These systems also parallelize
one model at a time on partitioned data but at the finer
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Figure 3: Qualitative comparisons of existing systems on key desiderata for a model selection system.

Table 1: Notation used in Section 3

Symbol Description

S Set of training configurations

p Number of data partitions/workers

k Number of epochs for S to be trained

m Model size (uniform for exposition sake)

b Mini-batch size

D Training dataset (〈D〉 : dataset size, |D| :
number of examples)

granularity of each mini-batch. The most prominent ex-
ample is Parameter Server (PS) [44]. PS is a set of sys-
tems for data-parallel ML. A typical PS consists of servers
and workers; servers maintain the globally shared model
weights, while workers compute SGD gradients on a locally
stored data partition. Workers communicate with servers
periodically to update and retrieve model weights. Based
on the nature of these communications, PS has two variants:
synchronous and asynchronous. Asynchronous PS is highly
scalable but unreproducible; it often has poorer convergence
than synchronous PS due to stale updates but synchronous
PS has higher overhead for synchronization.

All PS-style approaches have high communication due to
their centralized all-to-one communications, which is pro-
portional to the number of mini-batches and orders of mag-
nitude higher than BSP, e.g., 1000x in Table 2.

Decentralized Fine-grained. The best example is
Horovod [63]. It adopts HPC-style techniques to enable syn-
chronous all-reduce SGD. While this approach is bandwidth
optimal, communication latency is still proportional to the
number of workers, and the synchronization barrier can be-
come a bottleneck. The total communication overhead is
also proportional to the number of mini-batches and orders
of magnitude higher than BSP, e.g., 500x in Table 2.

3. MODEL HOPPER PARALLELISM
We first explain how MOP works and its properties. Ta-

ble 1 presents some notation. We also theoretically compare
the communication costs of MOP and prior approaches.

3.1 Basic Idea of MOP
We are given a set S of training configurations (“configs”

for short). For simplicity of exposition, assume for now each

runs for k epochs–we relax this later1. Shuffle the dataset
once and split into p partitions, with each partition located
on one of p worker machines. Given these inputs, MOP
works as follows. Pick p configs from S and assign one per
worker (Section 5 explains how we pick the subset). On each
worker, the assigned config is trained on the local partition
for a single sub-epoch, which we also call a training unit.
Completing a training unit puts that worker back to the
idle state. An idle worker is then assigned a new config that
has not already been trained and also not being currently
trained on another worker. Overall, a model “hops” from
one worker to another after a sub-epoch. Repeat this process
until all configs are trained on all partitions, completing one
epoch for each model. Repeat this every epoch until all
configs in S are trained for k epochs. The invariants of
MOP can be summarized as follows:

• Completeness: In a single epoch, each training config
is trained on all workers exactly once.

• Model training isolation: Two training units of the
same config are not run simultaneously.

• Worker/partition exclusive access: A worker executes
only one training unit at a time.

• Non-preemptive execution: An individual training unit
is run without preemption once started.

Insights Underpinning MOP. MOP exploits a formal
property of SGD: any random ordering of examples suf-
fices for convergence [7, 10]. Each of the p configs visits
the data partitions in a different (pseudorandom) yet in se-
quential order. Thus, MOP offers high accuracy for all mod-
els, comparable to sequential SGD. While SGD’s robustness
has been exploited before in ML systems, e.g., in Parameter
Server [44], MOP exploits it at the partition level instead of
at the mini-batch level to reduce communication costs. This
is possible because we connect this property with model se-
lection workloads instead of training one model at a time.

Positioning MOP. As Figure 1(C) shows, MOP is a
new hybrid of task- and data-parallelism that is a form
of “bulk asynchronous” parallelism. Like task-parallelism,
MOP trains many configs in parallel but like BSP, it runs
on partitions. So, MOP is more fine-grained than task par-
allelism but more coarse-grained than BSP. MOP has no
global synchronization barrier within an epoch. Later in

1Section 4.2 (Supporting Multiple AutoML Procedures) ex-
plains further how Cerebro can support different configs
being trained for different numbers of epochs.
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Table 2: Communication cost analysis of MOP and
other approaches. ?Full replication. †Remote reads.
‡Parameters for the example: k = 20, |S| = 20, p =
10, m = 1GB, 〈D〉 = 1TB, and |D|/b = 100K.

Comm. Cost Example‡

Model Hopper Parallelism kmp|S|+m|S| 4 TB

Task Parallelism (FR?) p〈D〉+m|S| 10 TB
Task Parallelism (RR†) k|S|〈D〉+m|S| 400 TB

Bulk Synchronous Parallelism 2kmp|S| 8 TB

Centralized Fine-grained 2kmp|S|
⌈
|D|
bp

⌉
80 PB

Decentralized Fine-grained kmp|S|
⌈
|D|
bp

⌉
40 PB

Section 5, we dive into how Cerebro uses MOP to sched-
ule S efficiently and in a general way. Overall, while the core
idea of MOP is simple–perhaps even obvious in hindsight–it
has hitherto not been exploited in its full generality in ML
systems.

Reproducibility. MOP does not restrict the visit ordering.
So, reproducibility is trivial in MOP: log the worker visit
order for each configuration per epoch and replay with this
order. Crucially, this logging incurs very negligible overhead
because a model hops only once per partition, not for every
mini-batch, at each epoch.

3.2 Communication Cost Analysis
We summarize the communication costs of MOP and

other approaches in Table 2. It also illustrates the com-
munication costs in bytes for a realistic example based on
our case study in Section 1. MOP reaches the theoretical
minimum cost of kmp|S|. Crucially, note that this cost does
not depend on batch size, which underpins MOP’s higher
efficiency. BSP also has the same asymptotic cost but un-
like MOP, BSP typically converges poorly for deep nets and
lacks sequential-equivalence. Fine-grained approaches like
PS and Horovod have communication costs proportional to
the number of mini-batches, which can be orders of mag-
nitude higher. In our setting, p is under low 10s, but the
number of mini-batches can even be 1000s to millions based
on the batch size.

4. SYSTEM OVERVIEW
We present an overview of Cerebro, an ML system that

uses MOP to execute deep net model selection workloads.

4.1 User-facing API
Cerebro API allows users to do 2 things: (1) register

workers and data; and (2) issue a deep net model selection
workload. Workers are registered by IP addresses. As for
datasets, Cerebro expects a list of data partitions and their
availability on each worker. We assume shuffling and parti-
tioning are already handled by other means, since these are
well studied. This common data ETL step is also orthogonal
to our focus and is not a major part of the total runtime for
iterative deep net training.

Cerebro takes the reference to the dataset, set of ini-
tial training configs, the AutoML procedure, and 3 user-
defined functions: input fn, model fn, and train fn. It
first invokes input fn to read and pre-process the data. It

Cerebro API
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Extensible Components

Figure 4: System architecture of Cerebro.

then invokes model fn to instantiate the neural architec-
ture and potentially restore the model state from a previ-
ous checkpointed state. The train fn is invoked to perform
one sub-epoch of training. We assume validation data is
also partitioned and use the same infrastructure for evalu-
ation. During evaluation, Cerebro marks model param-
eters as non-trainable before invoking train fn. We also
support higher-level API methods for AutoML procedures
that resemble the popular APIs of Keras [57]. Note that
model fn is highly general, i.e., Cerebro supports all neu-
ral computational graphs on all data types supported by
the underlying deep learning tool, including CNNs, RNNs,
transformers, etc. on structured data, text, images, video,
etc. Due to space constraints, more details of our APIs, in-
cluding full method signatures and a fleshed out example of
how to use Cerebro are provided in the appendix of our
technical report [53].

4.2 System Architecture
We adopt an extensible architecture, as Figure 4 shows.

This allows us to easily support multiple deep learning tools
and AutoML procedures. There are 5 main components: (1)
API, (2) Scheduler, (3) Task Executor, (4) Catalog, and (5)
Resource Monitor. Scheduler is responsible for orchestrating
the entire workload. It relies on worker and data availabil-
ity information from the Catalog. Task Executor launches
training units on the cluster and also handles model hops.
Resource Monitor is responsible for detecting worker failures
and updating the Resource Catalog. Section 5 explains how
the Scheduler works and how we achieve fault tolerance and
elasticity. Next, we describe how Cerebro’s architecture
enables high system generality.

Supporting Multiple Deep Learning Tools. The func-
tions input fn, model fn, and train fn are written by users
in the deep learning tool’s APIs. We currently support Ten-
sorFlow and PyTorch (it is simple to add support for more).
To support multiple such tools, we adopt a handler-based ar-
chitecture to delineate tool-specific aspects: model training,
checkpointing and restoring. Note that checkpointing and
restoring is how Cerebro realizes model hops. Task Ex-
ecutor automatically injects the tool-specific aspects from
the corresponding tool’s handler and runs these functions
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Table 3: Additional notation used in the MOP
MILP formulation

Symbol Description

T ∈ IR|S|×p Ti,j is the runtime of unit
si,j (ith configuration on jth

worker)

C Makespan of the workload

X ∈ IR|S|×p Xi,j is the start time of the ex-
ecution of ith configuration on
jth partition/worker

Y ∈ {0, 1}|S|×p×p Yi,j,j′ = 1 ⇐⇒ Xi,j < Xi,j′

Z ∈ {0, 1}|S|×|S|×p Zi,i′,j = 1 ⇐⇒ Xi,j < Xi′,j

V Very large value (Default: sum
of training unit runtimes)

on the workers. Overall, Cerebro’s architecture is highly
general and supports virtually all forms of data types, deep
net architectures, loss functions, and SGD-based optimizers.

Supporting Multiple AutoML Procedures Meta-
heuristics called AutoML procedures are common for explor-
ing training configs. We now make a key observation about
such procedures that underpins our Scheduler. Most Au-
toML procedures fit a common template: create an initial set
of configs (S) and evaluate them after each epoch (or every
few epochs). Based on the evaluations, terminate some con-
figurations (e.g., as in Hyperband [42] and PBT [32]) or add
new configurations (e.g., as in PBT). Grid/random search
is a one-shot instance of this template. Thus, we adopt this
template for our Scheduler. Given S, Cerebro trains all
models in S for one epoch and passes control back to the
corresponding AutoML procedure for convergence/termina-
tion/addition evaluations. Cerebro then gets a potentially
modified set S′ for the next epoch. This approach also lets
Cerebro support data re-shuffling after each epoch. But
the default (and common practice) is to shuffle only once
upfront. Grid/random search (perhaps the most popular in
practice), Hyperband, and PBT (and more procedures) con-
form to this common template and are currently supported.

ASHA [43] and Hyperopt [6] are two notable exceptions
to the above template, since they do not have a global
synchronized evaluation of training configs after an epoch
and are somewhat tied to task-parallel execution. While
MOP/Cerebro cannot ensure logically same execution as
ASHA or HyperOpt on task-parallelism, it is still possi-
ble to emulate them on MOP/Cerebro without any mod-
ifications to our system. In fact, our experiments with
ASHA show that ASHA on Cerebro has comparable–even
slightly better!–convergence behavior than ASHA on pure
task-parallelism (Section 6.3).

4.3 System Implementation Details
We prototype Cerebro in Python using XML-RPC

client-server package. Scheduler runs on the client. Each
worker runs a single service. Scheduling follows a push-based
model–Scheduler assigns tasks and periodically checks the
responses from the workers. We use a shared network file
system (NFS) as the central repository for models. Model
hopping is realized implicitly by workers writing models to
and reading models from this shared file system. Tech-
nically, this doubles the communication cost of MOP to
2kmp|S|, still a negligible overhead. Using NFS greatly re-
duces engineering complexity to implement model hops.

5. CEREBRO SCHEDULER
Scheduling training units on workers properly is critical

because pathological orderings can under-utilize resources
substantially, especially when deep net architectures and/or
workers are heterogeneous. Consider the model selection
workload shown in Figure 5(A). Assume workers are homo-
geneous and there is no data replication. For one epoch
of training, Figure 5(B) shows an optimal task-parallel
schedule for this workload with a 9-unit makespan. Fig-
ure 5(C) shows a non-optimal MOP schedulewith also 9
units makespan. But as Figure 5(D) shows, an optimal MOP
schedule has a makespan of only 7 units. Overall, we see that
MOP’s training unit-based scheduling offers more flexibility
to raise resource utilization. Next, we formally define the
MOP-based scheduling problem and explain how we design
our Scheduler.

5.1 Formal Problem Statement as MILP
Suppose the runtimes of each training unit, aka unit times,

are given. These can be obtained with, say, a pilot run for
a few mini-batches and then extrapolating (this overhead
will be marginal). For starters, assume each of the p data
partitions is assigned to only one worker. The objective
and constraints of the MOP-based scheduling problem is as
follows. Table 3 lists the additional notation used here.

Objective: min
C,X,Y,Z

C (1)

Constraints:

∀i, i′ ∈ [1, . . . , |S|] ∀j, j′ ∈ [1, . . . , p]

(a) Xi,j ≥ Xi,j′ + Ti,j′ − V · Yi,j,j′

(b) Xi,j′ ≥ Xi,j + Ti,j − V · (1− Yi,j,j′)

(c) Xi,j ≥ Xi′,j + Ti′,j − V · Zi,i′,j

(d) Xi′,j ≥ Xi,j + Ti,j − V · (1− Zi,i′,j)

(e) Xi,j ≥ 0

(f) C ≥ Xi,j + Ti,j

(2)

We need to minimize makespan C, subject to the con-
straints on C, unit start times X, model training isolation
matrix Y , and worker/partition exclusive access matrix Z.
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The constraints enforce some of the invariants of MOP listed
in Section 3. Equations 2.a and 2.b ensure model training
isolation. Equations 2.c and 2.d ensure worker exclusive ac-
cess. Equation 2.e ensures that training unit start times are
non-negative and Equation 2.f ensures that C captures the
time taken to complete all training units.

Given the above, a straightforward approach to schedul-
ing is to use an MILP solver like Gurobi [27]. The start
times X then yield the actual schedule. But our problem
is essentially an instance of the classical open-shop schedul-
ing problem, which is known to be NP-Hard [24]. Since |S|
can even be 100s, MILP solvers may be too slow (more in
Section 5.4); thus, we explore alternative approaches.

5.2 Approximate Algorithm-based Scheduler
For many special cases, there are algorithms with good

approximation guarantees that can even be optimal un-
der some conditions. One such algorithm is “vector rear-
rangement” [21, 70]. It produces an optimal solution when
|S| � p, which is possible in our setting.

The vector rearrangement based method depends on two
values: Lmax (see Equation 3), the maximum load on any
worker; and Tmax (see Equation 4), the maximum unit time
of any training configuration in S.

Lmax = max
j∈[1,...,p]

|S|∑
i=1

Ti,j (3)

Tmax = max
i∈[1,...,|S|],j∈[1,...,p]

Ti,j (4)

If Lmax ≥ (p2 + p − 1) · Tmax, this algorithm’s output is
optimal. When there are lots of configs, the chance of the
above constraint being satisfied is high, yielding us an opti-
mal schedule. But if the condition is not met, the schedule
produced yields a makespan C ≤ C∗+ (p− 1) ·Tmax, where
C∗ is the optimal makespan value. This algorithm scales to
large |S| and p because it runs in polynomial time in contrast
to the MILP solver. For more details on this algorithm, we
refer the interested reader to [21,70].

5.3 Randomized Algorithm-based Scheduler
The approximate algorithm is complex to implement in

some cases, and its optimality condition may be violated of-
ten. Thus, we now consider a much simpler scheduler based
on randomization. This approach is simple to implement
and offer much more flexibility (explained more later). Al-
gorithm 1 presents our randomized scheduler.

Given S, create Q = {si,j : ∀i ∈ [1, ..., |S|], j ∈ [1, .., p]},
the set of all training units. Note that si,j is the train-
ing unit of configuration i on worker j. Initialize the state
of all models and workers to idle state. Then find an idle
worker and schedule a random training unit from Q on it.
This training unit must be such that its configuration is not
scheduled on another worker and it corresponds to the data
partition placed on that worker (Line 10). Then remove the
chosen training unit from Q. Continue this process until
no worker is idle and eventually, until Q is empty. After
a worker completes training unit si,j mark its model i and
worker j as idle again as per Algorithm 2.

5.4 Comparing Different Scheduling Methods
We use simulations to compare the efficiency and

makespans yielded by the three alternative schedulers. The
MILP and approximate algorithm are implemented using

Algorithm 1 Randomized Scheduling

1: Input: S
2: Q = {si,j : ∀i ∈ [1, . . . , |S|], ∀j ∈ [1, . . . , p]}
3: worker idle← [true, . . . , true]
4: model idle← [true, . . . , true]
5: while not empty(Q) do
6: for j ∈ [1, . . . , p] do
7: if worker idle[j] then
8: Q← shuffle(Q)
9: for si,j′ ∈ Q do

10: if model idle[i] and j′ = j then
11: Execute si,j′ on worker j
12: model idle[i]← false

13: worker idle[j]← false

14: remove(Q, si,j′)
15: break

16: wait WAIT TIME

Algorithm 2 When si,j finishes on worker j

1: model idle[i]← true

2: worker idle[j]← true

Gurobi. We set a maximum optimization time of 5min for
tractability sake. We compare the scheduling methods on 3
dimensions: 1) number of training configs (two values: 16
and 256), 2) number of workers (two values: 8 and 16), 3)
homogeneity/heterogeneity of configs and workers.

Sub-epoch training time (unit time) of a training con-
fig is directly proportional to the compute cost of the con-
fig and inversely proportional to compute capacity of the
worker. For the homogeneous setting, we initialize all train-
ing config compute costs to be the same and also all worker
compute capacities to be the same. For the heterogeneous
setting, training config compute costs are randomly sampled
(with replacement) from a set of popular deep CNNs (n=35)
obtained from [3]. The costs vary from 360 MFLOPS to
21000 MFLOPS with a mean of 5939 MFLOPS and stan-
dard deviation of 5671 MFLOPS. Due to space constraints
we provide these computational costs in the Appendix of
our technical report [53]. For worker compute capacities,
we randomly sample (with replacement) compute capacities
from 4 popular Nvidia GPUs: Titan Xp (12.1 TFLOPS/s),
K80 (5.6 TFLOPS/s), GTX 1080 (11.3 TFLOPS/s), and
P100 (18.7 TFLOPS/s). For each setting, we report the
average of 5 runs with different random seeds set to the
scheduling algorithms and also the min and max of all 5
runs. All makespans reported are normalized by the ran-
domized scheduler’s makespan.

The MILP scheduler sometimes performs poorer than the
other two because it has not converged to the optimal in
the given time budget. The approximate scheduler performs
poorly when both the configs and workers are heterogeneous.
It is also slower than the randomized scheduler.

Overall, the randomized approach works surprisingly well
on all aspects: near-optimal makespans with minimal vari-
ance across runs and very fast scheduling. We believe this
interesting superiority of the randomized algorithm against
the approximation algorithm is due to some fundamental
characteristics of deep net model selection workloads, e.g.,
large number of configurations and relatively low differences
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in compute capacities. We leave a thorough theoretical anal-
ysis of the randomized algorithm to future work. Based on
these results, we use the randomized approach as the default
Scheduler in Cerebro.

5.5 Replica-Aware Scheduling
So far we assumed that a partition is available on only one

worker. But some file systems (e.g., HDFS) often replicate
data files, say, for reliability sake. We now exploit such
replicas for more scheduling flexibility and faster plans.

The replica-aware scheduler requires an additional input:
availability information of partitions on workers (an avail-
ability map). In replica-aware MOP, a training configura-
tion need not visit all workers. This extension goes beyond
open shop scheduling, but it is still NP-Hard because the
open shop problem is a special case of this problem with
a replication factor of one. We extended the MILP sched-
uler but it only got slower. So, we do not use it and skip
its details. Modifying the approximate algorithm is also
non-trivial because it is tightly coupled to the open shop
problem; so, we skip that too. In contrast, the randomized
scheduler can be easily extended for replica-aware schedul-
ing. The only change needed to Algorithm 1 is in Line 10:
instead of checking j′ = j, consult the availability map to
check if the relevant partition is available on that worker.

5.6 Fault Tolerance and Elasticity
We now explain how we make our randomized scheduler

fault tolerant. Instead of justQ, we maintain two data struc-
tures Q and Q′. Q′ is initialized to be empty. The process
in Algorithm 1 continues until both Q and Q′ are empty.
When a training unit is scheduled, it will be removed from
Q as before but now also added to Q′. It will be removed
from Q′ when it successfully completes its training on the
assigned worker. But if the worker fails before the training
unit finishes, it will be moved back from Q′ to Q. If the
data partitions present on the failed worker are also avail-
able elsewhere, the scheduler will successfully execute the
corresponding training units on those workers at a future
iteration of the loop in Algorithm 1.

Cerebro detects failures via the periodic heart-beat
check between the scheduler and workers. Because the
trained model states are always checkpointed between train-

Table 4: Dataset details. All numbers are after pre-
processing and sampling of the datasets.

Dataset On-disk size Count Format Class

ImageNet 250 GB 1.2M HDF5 1000
Criteo 400 GB 100M TFRecords Binary

ing units, they can be recovered and the failed training units
can be restarted. Only the very last checkpointed model
is needed for the failure recovery and others can be safely
deleted for reclaiming storage. The same mechanism can
be used to detect availability of new compute resources and
support seamless scale-out elasticity in Cerebro.

5.7 Extension: Horovod Hybrid
Some AutoML procedures (e.g., Hyperband) start with

large |S| but then kill some non-promising configs after some
epochs. So, only a few configs may train till convergence.
This means at the later stages, we may encounter a situa-
tion where |S| goes below p. In such cases, Cerebro can
under-utilize the cluster. To overcome this limitation, we
explored the possibility of doubly hybridizing MOP with
data-parallelism by implementing a hybrid of Cerebro and
Horovod. Just like Cerebro, Horovod is also equivalent to
sequential SGD; so, the hybrid is reproducible. The basic
idea is simple: divide the cluster into virtual sub-clusters
and run Horovod within each sub-cluster and MOP across
sub-clusters. Due to space constraints, we explain this hy-
brid architecture further in our technical report [53].

6. EXPERIMENTAL EVALUATION
We empirically validate if Cerebro can improve overall

throughput and efficiency of deep net model selection. We
then evaluate Cerebro in depth. Finally, we demonstrate
Cerebro’s ability to support multiple AutoML procedures.

Datasets. We use two large benchmark datasets: Ima-
geNet [18] and Criteo [14]. ImageNet is a popular image
classification dataset. We choose the 2012 version and re-
shape the images to 112× 112 pixels2. Criteo is an ad click
classification dataset with numeric and categorical features.
It is shipped under sparse representation. We one-hot en-
code the categorical features and densify the data. Only
a 2.5% random sample of the dataset is used2. Table 4.
summarizes the dataset statistics.

Workloads. For our first end-to-end test, we use two
different neural architectures and grid search for hyper-
parameters, yielding 16 training configs for each dataset.
Table 5 offers the details. We use Adam [36] as our SGD
method. To demonstrate generality, we also present results
for HyperOpt and ASHA on Cerebro in Section 6.3.

Experimental Setup. We use two clusters: CPU-only
for Criteo and GPU-enabled for ImageNet , both on Cloud-
Lab [19]. Each cluster has 8 worker nodes and 1 master
node. Each node in both clusters has two Intel Xeon 10-
core 2.20 GHz CPUs, 192GB memory, 1TB HDD and 10
Gbps network. Each GPU cluster worker node has an extra
Nvidia P100 GPU. All nodes run Ubuntu 16.04. We use
TensorFlow v1.12.0 as Cerebro’s underlying deep learning

2We made this decision only so that all of our experiments
can complete in reasonable amount of time. This decision
does not alter the takeaways from our experiments.
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Figure 7: End-to-end results on ImageNet and Criteo. For Celery, we report the runtime corresponding to
the lowest makespan schedule. Celery’s per-epoch runtime varies between 1.72-2.02 hours on ImageNet; on
Criteo, 3.95-5.49 hours. Horovod uses GPU kernels for communication; hence its high GPU utilization.

Table 5: Workloads.?architectures similar to VGG16 and ResNet50, respectively.†serialized sizes.

Dataset Model arch. Model size/MB† Batch size Learning rate Regularization Epochs

ImageNet {VGG16?, ResNet50?} VGG16: 792, ResNet50: 293 {32, 256} {10−4, 10−6} {10−4, 10−6} 10
Criteo 3-layer NN, 1000+500 hidden units 179 {32, 64, 256, 512} {10−3, 10−4} {10−4, 10−5} 5

tool. For GPU nodes, we use CUDA version 9.0 and cuDNN
version 7.4.2. Both datasets are randomly shuffled and split
into 8 equi-sized partitions.

6.1 End-to-End Results
We compare Cerebro with 5 systems: 4 data-parallel–

synchronous and asynchronous TensorFlow Parameter
Server, Horovod, BSP-style TensorFlow model averaging–
and 1 task-parallel (Celery). For Celery, we replicate
datasets to each worker beforehand and stream them from
disk, since they do not fit in memory. I/O time is trivial for
deep nets, where computation dominates; thus, they can be
interleaved. We use TensorFlow features to achieve this. For
all other systems, each worker node has one in-memory data
partition. We do not include data copying in the end-to-end
runtimes. For scheduling, Celery uses a FIFO queue and
Cerebro uses the randomized scheduler. All other systems
train models sequentially.

Figure 7 presents the results. Cerebro significantly im-
proves the efficiency and throughput of model selection. On
ImageNet, Cerebro is over 10x faster than asynchronous
PS, which has a GPU utilization as low as 9%! Synchronous
PS was even slower. Cerebro is 3x faster than Horovod.
Horovod has high GPU utilization because it uses GPU for
communication. Cerebro’s runtime is comparable to model
averaging, which is as expected. But note model averaging
converges poorly. Celery’s runtime is dependent on the ex-
ecution order and thus we report the runtime on the opti-
mal schedule. On ImageNet, Celery’s runtime is compara-
ble to Cerebro. But note that Celery has a highly bloated
8x memory/storage footprint. Overall, Celery and Cere-
bro have the best learning curves–this is also as expected
because MOP ensures sequential equivalence for SGD, just
like task-parallelism. Horovod converges slower due to its
larger effective mini-batch size.

On Criteo, Cerebro is 14x faster than synchronous PS
and 8x faster than asynchronous PS. Both variants of PS
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Fault-tolerance.

report severe CPU under-utilization (< 7%). Cerebro is
also 4x faster than Horovod. Cerebro’s runtime is compa-
rable to model averaging, with about 52% CPU utilization.
Celery is somewhat slower than Cerebro due to a straggler
issue caused by the highly heterogeneous model configs for
Criteo. Cerebro’s MOP approach offers higher flexibility
to avoid such straggler issues. A more detailed explanation
is given in the appendix of our technical report [53]. All
methods have almost indistinguishable convergence behav-
ior on this dataset: all reached 99% accuracy quickly, since
the class label is quite skewed.

Overall, Cerebro is the most resource-efficient approach
when compute, memory/storage, and network are consid-
ered holistically. It also has the best accuracy behavior, on
par with task-parallelism.

6.2 Drill-down Experiments
Unless specified otherwise, we now show experiments on

the GPU cluster, ImageNet, and a model selection work-
load of 8 configs (4 learning rates, 2 regularization values,
and ResNet architectures) trained for 5 epochs. Each data
partition is placed on only one worker.

Scalability. We study the speedups (strong scaling) of
Cerebro and Horovod as we vary the cluster sizes. Fig-
ure 8(A) shows the speedups, defined as the workload com-
pletion time on multiple workers vs a single worker. Cere-
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bro exhibits linear speedups due to MOP’s marginal com-
munication costs; in fact, it seems slightly super-linear here
because the dataset fits entirely in cluster memory com-
pared to the minor overhead of reading from disk on the
single worker. In contrast, Horovod exhibits substantially
sub-linear speedups due to its much higher communication
costs with multiple workers.

Fault Tolerance. We repeat our drill-down workload with
a replication factor of 3. We first inject two node failures
and bring the nodes back online later. Figure 8(B) shows the
time taken for each epoch and the points where the work-
ers failed and returned online. Overall, we see Cerebro’s
replica-aware randomized scheduler can seamlessly execute
the workload despite worker failures.
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Figure 9: Effect of batch size on communication
overheads and convergence efficiency. (A) Runtime
against batch size. (B) The lowest validation error
after 10 epochs against batch size.

Effect of Batch Size. We now evaluate the effect of train-
ing mini-batch size for Cerebro and Horovod. We evaluate
5 batch sizes and report makespans and the validation er-
ror of the best model for each batch size after 10 epochs.
Figure 9 presents the results. With batch size 32, Horovod
is 2x slower than Cerebro. However, as the batch size
increases, the difference narrows since the relative commu-
nication overhead per epoch decreases. Cerebro also runs
faster with larger batch size due to better hardware utiliza-
tion. The models converge slower as batch size increases.
The best validation error is achieved by Cerebro with a
batch size of 32. With the same setting, Horovod’s best
validation error is higher than Cerebro; this is because its
effective batch size is 256 (32×8). Horovod’s best validation
error is closer to Cerebro’s at a batch size of 256. Overall,
Cerebro’s efficiency is more stable to the batch size, since
models hop per sub-epoch, not per mini-batch.

Network and Storage Efficiency. We study the trade-
off between redundant remote reads (wastes network) vs
redundant data copies across workers (wastes memory/s-
torage). Task parallelism forces users to either duplicate
the dataset to all workers or store it in a common reposito-
ry/distributed filesystem and read remotely. Cerebro can
avoid both forms of resource wastage. We assume the whole
dataset cannot fit on single-node memory. We compare
Cerebro and Celery in the following 2 settings:

Reading from remote storage (e.g., S3). In this setting, Cel-
ery reads data from a remote storage repeatedly each epoch.
For Cerebro each worker remotely reads one data parti-
tion and caches it. We change the data scale to evaluate
effects on the makespan and the amount of remote reads.
Figure 10 shows the results. Celery is slightly slower than
Cerebro due to remote read overheads. The most signifi-
cant advantage of Cerebro is its network bandwidth cost,
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Figure 10: Reading data from remote storage.
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Figure 11: Reading data from distributed storage.

which is over 10x lower than Celery’s. After the initial read,
Cerebro only communicates models weights during train-
ing. In situations where reads and networks are not free
(e.g., cloud providers), Celery will incur higher monetary
costs than Cerebro. These results show it is perhaps better
to partition the dataset on S3, cache partitions on workers
on the first read, and then run Cerebro instead of Celery
with full dataset reads from S3 per epoch to avoid copying.

Reading from distributed storage (e.g., HDFS). In this set-
ting, the dataset is partitioned, replicated, and stored on 8
workers. We then load all local data partitions into each
worker’s memory. Celery performs remote reads for non-
local partitions. We vary the replication factor to study its
effect on the makespan and the number of remote reads.
Figure 10 presents the results. For replication factors 1 (no
replication), 2, and 4, Cerebro incurs 100x less network
usage and is slightly faster than Celery. But at a replication
factor of 8 (i.e., full replication), Cerebro is slightly slower
due to the overhead of model hops. For the same reason,
Cerebro incurs marginal network usage, while Celery has
almost no network usage other than control actions. Note
that the higher the replication factor for Celery, the more
memory/storage is wasted. Cerebro offers the best overall
resource efficiency–compute, memory/storage, and network
put together–for deep net model selection.

Experiments with Horovod Hybrid. Our experiment
with the Horovod Hybrid gave an anti-climactic result: the
intrinsic network overheads of Horovod meant the hybrid is
often slower than regular Cerebro with some workers be-
ing idle! We realized that mitigating this issue requires more
careful data repartitioning. We deemed this complexity as
perhaps not worth it. Instead, we propose a simpler res-
olution: if |S| falls below p but above p/2, use Cerebro;
if |S| falls below p/2, just switch to Horovod. This switch
incurs no extra overhead. Due to space constraints, we skip
the details here and explain this experiment further in our
technical report [53].

6.3 Experiments with AutoML Procedures
We experiment with two popular AutoML procedures:

HyperOpt [6] and ASHA [43]. For HyperOpt, we compare
Cerebro and Spark as the execution backends. Spark is
a backend supported natively by HyperOpt; it distributes
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Table 6: Parameter grid used to randomly sample
configuration for Section 6.3.

Values sampled from

Model [ResNet18, ResNet34]
Learning rate [10−5, . . . , 10−1]
Weight decay coefficient [10−5, . . . , 10−1]
Batch size [16, . . . , 256]

Time (Hours) Time (Hours)

To
p-

5 
Va

lid
at

io
n 

Er
ro

r (
%

) (A) HyperOpt on Spark (B) HyperOpt on Cerebro
To

p-
5 

Va
lid

at
io

n 
Er

ro
r (

%
)

Figure 12: HyperOpt learning curves by time.

only the models, i.e., it is task-parallel on fully replicated
data. For ASHA, we compare Cerebro and Celery as the
execution backends. We use ImageNet, GPU cluster, and
PyTorch. Training configs are sampled from the grid shown
in Table 6. For Cerebro data is partitioned without repli-
cation; for Spark and Celery the dataset is fully replicated.

Both HyperOpt and ASHA keep exploring different con-
figs until a resource limit is reached. For HyperOpt, this
limit is the maximum number of configs; for ASHA, it is the
maximum wall-clock time. During the exploration Hyper-
Opt uses Bayesian sampling to generate new configs; ASHA
uses random sampling. For both methods, the generated
configs are dependent on the completion order of configs
across task-parallel workers. Thus, it is impossible for Cere-
bro to exactly replicate HyperOpt or ASHA ran with task-
parallelism. However, we can closely emulate HyperOpt and
ASHA on Cerebro by making the number of simultane-
ously trained configs (|S|) equal to the number of workers
(p) and without making any changes to Cerebro.

HyperOpt. We run an experiment using HyperOpt with
a max config budget of 32. We train each config for
10 epochs. With this configuration, HyperOpt on Cere-
bro (resp. Spark) took 31.8 (resp. 25.9) hours. Figure 12
shows all learning curves. We found that the slightly higher
(23%) runtime of Cerebro is mainly due to the lower degree
of parallelism (|S| = 8). However, this issue can be miti-
gated by increasing the number of simultaneously trained
configs. Although individual configs are not comparable
across the two systems, the best errors achieved are close
(34.1% on Cerebro; 33.2% on Celery).

ASHA. We use ASHA with a max epoch budget (R) of 9,
a selection fraction (η) of 3, and a time limit of 24hr. With
these settings, ASHA trains for a maximum of 13 epochs
over 3 stages: 1, 3, and 9 epochs. Only the more promis-
ing configurations are trained for more epochs. In the given
time limit, ASHA on Cerebro (resp. Celery) explored 83
(resp. 67) configs. Figure 13 shows all learning curves. Like
HyperOpt, even though the configs are not directly compa-
rable, the best errors achieved are close (31.9% on Cerebro;
33.2% on Celery). More details about this experiment and

Hours

To
p-

5 
Va

lid
at

io
n 

Er
ro

r (
%

) (B) ASHA on Cerebro

Hours

(A) ASHA on Celery

To
p-

5 
Va

lid
at

io
n 

Er
ro

r (
%

)

Figure 13: ASHA learning curves by time.

experiments with another AutoML procedure (HyperBand)
are presented in the appendix of our technical report [53].

7. DISCUSSION AND LIMITATIONS
Applications. Cerebro is in active use for time series
analytics for our public health collaborators. In the case
study from Section 1, Cerebro helped us pick 16 deep net
configs to compare. To predict sitting vs. not-sitting, these
configs had accuracies between 62% and 93%, underscoring
the importance of rigorous model selection. The best configs
gave a large lift of 10% over their prior RandomForest model
based on hand-engineered time series features. We plan to
use Cerebro for more domain science applications in the
future on time series, video, graph, and text data.

Open Source Systems. Cerebro is open sourced and
available for download [2]. MOP’s generality also enabled
us to emulate it on existing data-parallel systems. Piv-
otal/VMware collaborated with us to integrate MOP into
Greenplum by extending the MADlib library [28] for running
TensorFlow on Greenplum-resident data [47, 67]. Green-
plum’s customers are interested in this for enterprise ML
use cases, including language processing, image recognition,
and fraud detection. We have also integrated Cerebro into
Apache Spark [16]. Cerebro-Spark can run MOP on ex-
isting resource managers such as YARN and Mesos. Al-
ternatively, one can also deploy Cerebro as a standalone
application by wrapping it as tasks accepted by the resource
manager. We leave such an extension to future work.

Other ML Model Families. We focused primarily on
deep nets due to their growing popularity, high sensitivity to
model configurations, and resource intensiveness. However,
note that MOP and Cerebro’s ideas are directly usable for
model selection of any ML models trainable with SGD. Ex-
amples include linear/logistic regression, some support vec-
tor machines, low-rank matrix factorization, and conditional
random fields. In fact, since linear/logistic regression can be
trivially expressed in the deep learning tools’s APIs, Cere-
bro will work out of the box for them. Cerebro’s high
memory efficiency makes it easier for users to store the en-
tire large datasets in distributed memory, which can signif-
icantly reduce runtimes of such I/O-bound ML models. We
leave an empirical analysis of these less compute-intensive
models to future work.

Model Parallelism and Batching. Cerebro currently
does not support model parallelism (for models larger than
single-node memory) or model batching (running multiple
models on a worker at a time). It is possible to remove
these two limitations from Cerebro. For instance, model
parallelism can be supported with the notion of virtual nodes
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composed of multiple physical nodes that together hold a
very large model. Model batching can be supported with
multiple virtual nodes mapped to a physical node. We leave
these extensions to future work.

8. RELATED WORK
Systems for Model Selection. Google Vizier [23], Ray
Tune [46], Dask-Hyperband [61], SparkDL [15], and Spark-
Hyperopt [31] are systems for model selection. Vizier, Ray,
and Dask-Hyperband are pure task-parallel systems that im-
plement some AutoML procedures. SparkDL and Spark-
Hyperopt use Spark for execution but distribute configs in a
task-parallel manner with full data replication Cerebro of-
fers higher overall resource efficiency compared to pure task-
or pure data-parallel approaches.

AutoML Procedures. AutoML procedures such as Hy-
perband [42] and PBT [32] are orthogonal to our work
and exist at a higher abstraction level. They fit a com-
mon template of per-epoch scheduling in Cerebro. While
ASHA [43] does not fit this template, Cerebro can still
emulate it well and offer similar accuracy. Bayesian opti-
mization is a class of AutoML procedures, some of which
have a high degree of parallelism for searching configs (e.g.,
Hyperopt [6]); Cerebro supports such procedures. Some
others run a sequential search, leading to a low degree of
parallelism (e.g., [5, 37]); these may not be a fit for Cere-
bro.

Distributed SGD Systems. There is much prior work
on data-parallel distributed SGD, including centralized fine-
grained (e.g., [30, 34, 58, 73]) and decentralized fine-grained
(e.g., [45, 58, 69]). These are all complementary to our
work because they train one model at a time, while we fo-
cus on parallel model selection. As we showed, such ap-
proaches have higher communication complexity and thus,
higher runtimes than MOP in our setting. Also, since Cere-
bro performs logically sequential SGD, it ensures theoreti-
cally best convergence efficiency. CROSSBOW [38] proposes
a new variant of model averaging for single-server multi-
GPU setting. But it is also complementary to our work,
since it also trains one model at a time. Overall, our work
breaks the dichotomy between data- and task-parallel ap-
proaches, thus offering better overall resource efficiency.

Hybrid Parallelism in ML Systems. MOP is inspired
by the classical idea of process migration in OS multiprocess-
ing [4]. We bring that notion to the data-partitioned cluster
setting. This generic idea has been used before in limited
contexts in ML systems [8, 39]. The closest to our work
is [13], which proposes a scheme for training many homoge-
neous CNNs on a homogeneous GPU cluster. They propose
a ring topology to migrate models, resembling a restricted
form of MOP. But their strong homogeneity assumptions
can cause stalls in general model selection workloads, e.g.,
due to heterogeneous neural architectures and/or machines.
In contrast, we approach this problem from first principles
and formalize it as an instance of open shop scheduling.
This powerful abstraction lets Cerebro support arbitrary
deep nets and data types, as well as heterogeneous neural
architectures and machines. It also enables Cerebro to
support replication, fault tolerance, elasticity, and arbitrary
AutoML procedures, unlike prior work. SystemML also sup-

ports a hybrid of task- and data-parallelism for better plan
generation for linear algebra-based classical ML on top of
MapReduce [9]. Cerebro is complementary due to its fo-
cus on deep nets and SGD’s data access pattern, not lin-
ear algebra-based classical ML. Finally, a recent benchmark
study suggested that communication bottlenecks inherent in
pure data-parallelism imply hybrid parallelism is crucial for
scalable ML systems [66]. Our work validates that sugges-
tion for deep learning workloads.

Multi-Query and Other System Optimizations. MOP
is also inspired by multi-query optimization (MQO) [62]. A
recent line of work in the database literature studies MQO
for deep learning, including staging and sharing work in
CNN transfer learning [49] and batched incremental view
maintenance for CNN inference [50, 51, 59]. Cerebro fur-
thers this research direction. All these MQO techniques are
complementary and can be used together. Several works op-
timize the internals of deep net or SGD systems, including
communication-computation pipelining [54], new compila-
tion techniques [33], model batching [55], and execution on
compressed data [41]. They are complementary to Cere-
bro, since they optimize lower-level issues. MOP’s general-
ity enables Cerebro to be hybridized with such ideas.

Scheduling. Gandiva [71], Tiresias [26], and SLAQ [72] are
cluster scheduling frameworks for deep learning. They fo-
cus on lower-level primitives such as resource allocation and
intra-server locality for reducing mean job completion times.
Cerebro is complementary as it exists at a higher abstrac-
tion level and focuses on model selection throughput. How
compute hardware is allocated is outside our scope. There
is a long line of work on job scheduling in the operations
research and systems literatures [12,22,29]. Our goal is not
to create new scheduling algorithms but to apply known
techniques to a new ML systems setting.

9. CONCLUSIONS AND FUTURE WORK
Simplicity that still achieves maximal functionality and

efficiency is a paragon of virtue in real-world systems. We
present a simple but novel and highly general form of paral-
lel SGD execution, MOP, that raises the resource efficiency
of deep net model selection without sacrificing accuracy or
reproducibility. MOP is also simple to implement, which we
demonstrate by building Cerebro, a fault-tolerant deep net
model selection system that supports multiple popular deep
learning tools and model selection procedures. Experiments
with large ML benchmark datasets confirm the benefits of
Cerebro. As for future work, we plan to hybridize MOP
with model parallelism and batching and also support more
complex model selection scenarios such as transfer learning.
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