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ABSTRACT
A major algorithmic challenge in designing applications in-
tended for secure remote execution is ensuring that they are
oblivious to their inputs, in the sense that their memory ac-
cess patterns do not leak sensitive information to the server.
This problem is particularly relevant to cloud databases that
wish to allow queries over the client's encrypted data. One
of the major obstacles to such a goal is the join operator,
which is non-trivial to implement obliviously without resort-
ing to generic but ine�cient solutions like Oblivious RAM
(ORAM).
We present an oblivious algorithm for equi-joins which

(up to a logarithmic factor) matches the optimal O(n logn)
complexity of the standard non-secure sort-merge join (on
inputs producing O(n) outputs). We do not use use expen-
sive primitives like ORAM or rely on unrealistic hardware
or security assumptions. Our approach, which is based on
sorting networks and novel provably-oblivious constructions,
is conceptually simple, easily veri�able, and very e�cient in
practice. Its data-independent algorithmic structure makes
it secure in various di�erent settings for remote computa-
tion, even in those that are known to be vulnerable to certain
side-channel attacks (such as Intel SGX) or with strict re-
quirements for low circuit complexity (like secure multiparty
computation). We con�rm that our approach is easily realiz-
able by means of a compact implementation which matches
our expectations for performance and is shown, both for-
mally and empirically, to possess the desired security char-
acteristics.
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1. INTRODUCTION
With an increasing reliance on cloud-based services to

store large amounts of user data securely, there is also a
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growing demand for such services to provide remote com-
putation in a privacy-preserving manner. This is a vital
requirement for cloud databases that store sensitive records
and yet wish to support queries on such data.
Various di�erent mechanisms exist that achieve this pur-

pose, for instance, dedicated hardware in the form of secure
cryptographic coprocessors or hardware enclaves like Intel
SGX [10] that come in the form of a dedicated set of pro-
cessor instructions. Although such approaches provide good
cryptographic guarantees in that they ensure the contents
of the user's data remain encrypted throughout the execu-
tion of a remote program, on their own they provide no
guarantees to address a major source of information leak-
age: the memory access patterns of the execution. As the
program reads and writes to speci�c addresses of the un-
trusted server's memory, these access patterns can reveal
information to the server about the user's data if the pro-
gram's control �ow is dependent on its input.
Consider, for example, the standard O(n logn) sort-merge

algorithm for database joins. The two input tables are �rst
sorted by their join attribute values and then scanned for
matching entries by keeping track of a pointer at each ta-
ble. At each step either one of the pointers is advanced (if
one of either corresponding join attribute values precedes
the other), or an entry is appended to the output. If the ta-
bles are stored on regular memory, an adversary observing
memory patterns will obtain input-dependent information
at each step. Namely, at each step it will learn the locations
of the two entries read from the input table, and depend-
ing on whether an entry is written to output, it will learn
whether the entries match. This information can reveal crit-
ical information about the user's input.
Protecting a program against such leaks amounts to mak-

ing it oblivious: that is, ensuring that its decisions about
which memory locations to access do not depend on the con-
tents of its input data. For many programs this is di�cult to
accomplish without introducing substantial computational
overhead [43]. The generic approach is to use an Oblivious
RAM (ORAM), which provides an interface through which
a program can access memory non-obliviously, while at the
same time providing guarantees that the physical accesses of
such programs are oblivious. Though the design of ORAM
schemes has been a central focus of oblivious algorithm de-
sign, such schemes have a very high computational overhead,
not only due to their asymptotic overhead (due to a theoret-
ical lower bound of O(logn) time per access to an array of n
entries), but also due to the fact that they can be ine�cient
in practice [24,25,35,43] and in some cases � insecure [2].
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Table 1: Comparison of approaches for oblivious database joins. n1 and n2 are the input table sizes, n = n1 + n2,
m is the output size, m′ = m + n1 + n2, t is the amount of memory assumed to be oblivious. The time complexities are in
terms of the number of database entries and assume use of a bitonic sorter for oblivious sorting (where applicable).

Algorithm/System Time complexity Local Memory Assumptions/Limitations

Standard sort-merge join O(m′ logm′) O(1) not oblivious
Agrawal et al. [3] (Alg. 3) O(n1n2) O(1) insecure (see � 2.3.1 of [27])
Li and Chen [27] (Alg. A2) O(mn1n2/t) O(t) �
Opaque [45] and ObliDB [13] O(n log2(n/t)) O(t) restricted to primary-foreign key joins
Oblivious Query Processing [5] O(m′ log2m′) O(logm′) missing details; performance concerns

Ours O(m′ log2m′) O(1) �

Another approach to achieving obliviousness is to assume
a limited but non-constant amount of memory that can be
accessed non-obliviously. While such an assumption may
make sense in certain settings (for example, cryptographic
coprocessors may provide internal memory protected from
the untrusted system), it is unsafe to make in the more
common hardware enclave setting due to a wide range of
attacks that can infer access patterns to enclave memory
itself [9, 23, 26,37,39,41].
These considerations motivate the need for the design of

problem-speci�c oblivious algorithms that closely approach
the e�ciency of their non-secure counterparts without the
use of generic primitives or reliance on hardware assump-
tions. Such algorithms are very similar to circuits in that
their control �ow is independent of their inputs. This not
only provides security against many side-channel attacks
(beyond those involving memory accesses), but also makes
them very suitable for use in secure multiparty computa-
tion where programs with low circuit complexity achieve the
best performance [40, 44]. One of the best-known oblivious
algorithms are sorting networks such as those proposed by
Batcher [7], which match (up to at most a logarithmic fac-
tor) the standard O(n logn) complexity of sorting and are
often a critical component in other oblivious algorithms such
as ours.
Making database operators oblivious does not pose much

of algorithmic challenge in most cases since often one can di-
rectly apply sorting networks (for instance to select or insert
entries). On the other hand, database joins, being among
the most algorithmically-complex operators, have proven to
be very di�cult to make oblivious in the general case. This
is due to the fact that one cannot allow any such oblivious
algorithm to base its memory accesses on the structure of
the input tables (with respect to how many entries from one
table match a given entry in the other table). As such, joins
have been the prime focus of work on oblivious database op-
erators: prior work is summarized in Table 1 and discussed
in detail in � 4.2.

Contributions
We fully describe an oblivious algorithm for binary database
equi-joins that achieves O(n log2 n+m logm) running time,
where n is the input length (the size of both tables) and m
is the output length, thus matching the running time of the
standard non-oblivious sort-merge join up to a logarithmic
factor. It can also achieve a running time of O(n logn +
m logm) but only using a sorting network that is too slow
in practice. Our algorithm does not use ORAM or any other
computationally-expensive primitives and it does not make

any hardware assumptions other than the requirement of a
constant-size working set of memory (on the order of the size
of one database entry), for example to compare two entries.
In other words, any model of computation that can support
a sorting network on encrypted data can also support our
algorithm; this includes secure coprocessors or hardware en-
claves like Intel SGX, in which case we provide resistance
against various side-channel attacks. In addition, because
our program is analogous to a circuit, it is very suitable for
use in settings like secure multiparty computation and fully
homomorphic encryption.
Our approach is conceptually very simple, being based on

a few repeated runs of a sorting network and other basic
primitives. As such it is both incredibly e�cient, amenable
to a high degree of parallelization, and fairly easy to verify
for obliviousness. We have a working prototype implemen-
tation consisting of just 600 lines of C++ code, as well as a
version that makes use of SGX. We have used a dedicated
type system to formally verify the obliviousness of the imple-
mentation and have conducted experiments that empirically
examine its memory accesses and runtime.

Outline
We begin by providing, in � 2, a brief background on several
di�erent modes of computation that our algorithm is com-
patible with. In � 3, we discuss the goals, challenges, and
methodologies related to oblivious algorithm design. � 4 de-
scribes the target problem and prior related work, as well as
give the intuition behind our approach. The full algorithm
is then described in detail in � 5. Finally, we discuss our
implementation in � 6, where we also analyze its security
and performance.

2. COMPUTING ON ENCRYPTED DATA
Users who have securely stored their data on a remote

server often need to perform computation on their encrypted
data, for example, to execute database queries. We dis-
cuss and contrast several di�erent approaches that strive to
achieve this purpose.

Outsourced External Memory
In this setting (discussed in [22]), there is no support for
server-side computation on the client's private data. The
client treats the server as external memory: if they wish to
compute on their data, they must do so locally. This sce-
nario is clearly impractical for intensive computations due
to the signi�cant di�erences between RAM and network la-
tency.
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Secure Cryptographic Coprocessors
A cryptographic coprocessor (e.g., [6]) is a tamper-proof de-
vice can perform computation within its own trusted region
isolated from its external host. Through the use of remote
attestation, the client can send a trusted code base (TCB) to
the coprocessor and have it execute within a secure environ-
ment shielded from the semi-trusted server (according to the
Trusted Platform Module speci�cation [1]). The drawback
to this approach is that such hardware provides very limited
memory and computational power, and imposes hardware
requirements on the server.

Trusted Execution Environments (TEE)
Hardware enclaves such as Intel SGX [10], provide similar
guarantees to coprocessors in that the client can make use of
remote attestation to run a TCB within a trusted execution
environment (TEE) that provides guarantees for authen-
ticity and some protection against an untrusted OS. Such
designs are becoming increasingly prevalent in new proces-
sors, taking the form of a specialized set of instructions for
setup and access to the TEE. The enclave provides a limited
amount of memory called the Enclave Page Cache (EPC),
which resides on the system's main memory but cannot be
accessed by other process (including the kernel). In addition,
the contents of the enclave are encrypted, and the processor
can transparently read, write and perform logical and arith-
metic operations on this data. Although these properties
make it seem that hardware enclaves provide a secure con-
tainer completely isolated from the untrusted OS, numerous
papers [9,23,26,37,39,41] have shown that enclaves like Intel
SGX are susceptible to numerous side-channel attacks, e.g.,
cache attacks that infer data-dependent information based
on memory access patterns to enclave memory.

Secure Multiparty Computation (SMC)
In the general setting, secure multiparty computation [17]
allows several parties to jointly compute functionalities on
their secret inputs without revealing anything more about
their inputs than what can be inferred from the output. The
two standard approaches are Yao's garbled circuit proto-
col [42], and the Goldreich-Micali-Wigderson protocol [18],
based on secret sharing. Both approaches require the desired
functionality to be expressed as a boolean circuit, and the
output is computed gate by gate. Practical implementations
of SMC include the SCALE-MAMBA system [4], as well as
the ObliVM framework [29], which allows programs to be
written in a (restricted) high-level syntax that can then be
compiled to a circuit. Outsourcing computation using SMC
is usually done using a distributed protocol involving a clus-
ter of several servers [8].

Fully Homomorphic Encryption (FHE)
Cryptosystems such as that of Gentry et al. [14] allow ar-
bitrary computation on encrypted data. As in SMC, such
schemes require the target computation to be represented as
a boolean circuit. Although FHE provides solid theoretical
guarantees and several implementations already exist, it is
currently too computationally-expensive for practical use.

3. OBLIVIOUS PROGRAMS
Intuitively, a program is data-oblivious (or simply oblivi-

ous) if its control �ow, in terms of the memory accesses it

Table 2: Properties of three levels of obliviousness.
Bottom portion of table shows vulnerability of programs sat-
isfying these levels to timing (t), page access attacks on data
(pd), page access attacks on code (pc), cache-timing (c), or
branching (b) attacks when used in di�erent settings.

Property/Setting I II III

Constant local memory × � �
Circuit-like × × �

Ext. Memory t t �
Secure Coprocessor t t �
TEE (enclave) t, pd, pc, c, b t, pc, c, b �

Secure Computation n/a n/a �
FHE n/a n/a �

makes, is independent of its input given the input size. That
is, for all inputs of the same length, the sequence of memory
accesses made by an oblivious program is always identical
(or identically distributed if the program is probabilistic).
This is indeed well-de�ned for simple computational mod-
els like random-access machines and Turing machines; for
instance, the latter is said to be oblivious if the motions
of its head are independent of its input. However, we need
to carefully account for real-world hardware where there can
be di�erent types of memory as well as various side-channels
unaccounted for in simpler models.
In the remainder of this section, we de�ne our adversarial

model, and introduce three di�erent levels of obliviousness
that one can obtain against such an adversary. We also
introduce various tools and methodologies related to oblivi-
ousness.

3.1 Adverserial Model
We will use an abstract random access machine model

of computation where we distinguish between two types of
memory. During an execution of a program, the adversary
has complete view and control of the public memory (for
example, RAM) used throughout its execution. However,
the program may use a small amount of local memory (or
protected memory) that is completely hidden from the ad-
versary (for example, processor registers). The program may
use this memory to perform computations on small chunks
of data; the adversary learns nothing about such compu-
tations except the time spent performing them (we assume
that all processor instructions involving local memory that
are of the same type take an equal amount of time).
We assume that the adversary cannot infer anything about

the individual contents of individual cells of public memory,
as well as whether the contents of a cell match a previous
value. This can be achieved through the use of a probabilis-
tic encryption scheme and is not the concern of this paper.

3.2 Degrees of Obliviousness
We distinguish between three di�erent levels of oblivious-

ness that a given program may satisfy (summarized in Table
2), from weakest to strongest, each subsuming the lower lev-
els. The distinctions will be based on how much local mem-
ory the program assumes and whether the program's use of
local memory leaks information through side-channels. We
will restrict our attention to deterministic programs; the
concepts easily generalize to the probabilistic case.
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Level I
A program is oblivious in this sense if its accesses to public
memory are oblivious but it requires a non-constant amount
of local memory used for non-oblivious computation. This
memory may be accessed whenever required and for any
duration of time. Such programs are suitable for use in the
outsourced external memory model since the client can use
as much local memory as there is memory on his machine.
They may also be suitable for use in a secure coprocessor
model setting since coprocessors have an internal memory
separated from the rest of the system. However, in both of
these scenarios, timing attacks may be an issue: e.g., if the
local memory is used for variable lengths of time between
pairs of public accesses.
Examples of algorithms that are oblivious in this sense are

those proposed by Goodrich [12,20,22], which are well-suited
for the outsourced external memory model.

Level II
At this level we not only require, as before, accesses to public
memory to be oblivious but also that the amount of local
memory used by the program is bounded by a constant.
In practice, the exact size of this constant depends on the
amount of available CPU register and cache memory, which
can be used for example, to compute the condition for a
branch or to perform an arithmetic operation on two words
read (obliviously) from RAM. Any such accesses must be
on inputs that �t in one cache line so as to not cause non-
oblivious RAM accesses due to cache evictions.
Making the distinction between this level and the pre-

vious is motivated by the fact that hardware enclaves like
Intel SGX are vulnerable to side-channel attacks based on
page-level accesses patterns to enclave memory itself [37,41],
which have been shown to be extremely powerful, often suc-
ceeding in extracting sensitive data and even whole �les.
Therefore one cannot assume that the Enclave Page Cache
provides oblivious memory. In works like Oblix [30] level II
programs are called doubly-oblivious since, in the hardware
enclave context, their accesses to both regular and enclave
memory are oblivious.
Although it may seem that a level II program is safe

against the above attacks, this is not quite the case, though
it certainly fares better in this respect than a level I pro-
gram. The data of the program will be accessed obliviously,
but its actual machine code, which is stored in memory, will
be accessed based on the control �ow of the program. The
program may branch in a data-dependent way and though
the memory accesses to public data in both branches are
required to be the same, each branch will access a di�er-
ent fragment of the program's machine code, thus leaking
information about the data that was branched on.

Level III
This is a strong notion of obliviousness where we require
that the control �ow of the program, down to the level of
the exact processor instructions it executes, be completely
independent of its input, except possibly its length. In other
words, the program counter has to always goes through the
same sequence of values for all inputs of the same length. We
can think of such a program as a family of circuits, one for
each input size; as such, it is very well-suited for secure mul-
tiparty computation (and fully homomorphic encryption).

This de�nition is also motivated by the fact that addi-
tional measures are required to provide protection against
attacks based on accesses to machine code as well as the fact
that hardware enclaves have also been shown to be vulnera-
ble to a variety of other side-channel attacks such as cache-
timing [9, 23, 39], branching [26], or other types of timing
attacks. Such attacks can infer data based on the control
�ow of a program at the instruction level: this includes the
way it accesses the registers and cache of the processor, as
well as the exact number of instructions it performs. A level
III program will be secure against these attacks so long as
care is taken to prevent the compiler from introducing data-
dependent optimizations. (Many compilers such as GCC
support selectively chosen optimizations, but the speci�cs
of using this approach for oblivious programs is outside the
scope of this paper.)

Revealing Output Length
By producing an output of length m, a program reveals
data-dependent information about the input. We can always
eliminate this problem by padding the output to its max-
imum possible size; however, this can result in suboptimal
running time. For instance, the join operator can produce
an output of up to O(n2) on an input of size n, which means
that any join algorithm that pads its output must have at
least quadratic runtime. For this reason, we will only con-
sider programs that do not pad their output and thus leak
the output size m, as well as their runtime.

3.3 Oblivious RAM (ORAM)
The most general approach to making arbitrary programs

oblivious (in any of the above senses) is to use an Oblivious
RAM (ORAM), a primitive �rst introduced by Goldreich
and Ostrovsky [16,19]. An ORAM simulates a regular RAM
in such a way that its apparent physical memory accesses
are independent of those being simulated, thus providing a
general approach to compiling general programs to oblivious
ones. In other words, by using an ORAM as an interface
through which we store and access sensitive data, we can
eliminate access pattern leaks, though in doing so we incur
at least a logarithmic overhead per memory access according
to the Goldreich-Ostrovsky lower bound [19]. Even if such
overhead is acceptable in terms of the overall asymptotic
complexity, ORAM constructions tend to have prohibitively
large constant overhead, which make them impractical to
use on reasonably-sized inputs.
One of the well-known ORAM schemes is Path ORAM

[36], which produces programs that satisfy level I oblivi-
ousness (Oblix [30] gives a modi�cation that is oblivious at
level II). Various schemes have been introduced that make
ORAM more suitable for SMC by optimizing its resulting
circuit complexity (i.e., how close it is to producing a level III
program) [11, 15, 40, 44]. Despite the abundance of ORAM
schemes, their high performance cost [24, 25, 35, 43] (due to
their polylogarithmic complexity overhead, their large hid-
den constants, and issues with parallelizability), calls for a
need for problem-speci�c oblivious algorithm design.

3.4 From Oblivious Programs to Circuits
Given a program that satis�es level II obliviousness, ap-

proaches exist to transform it into a a circuit-like level III
program while introducing only a constant overhead [28,29,
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31, 34]. There are three additional constrains that the con-
trol �ow of the program must satisfy for this to be the case:
1. Any loop condition must depend on either a constant

or the input size. This corresponds to the fact that all loops
must be unrolled if one wishes to obtain a literal boolean
circuit. For instance if secret is a variable that depends on
the contents of the input data, we cannot allow behaviour
like:

i← 0
while i < secret do

i← i+ 1

Though this code will make no memory accesses if the i
counter is stored in a register, it is very hard to automat-
ically protect such code against timing attacks in general
(though in this case the �x is obvious: replace the while
loop with i← secret).
2. The branching depth of the program � the maximum

number of conditional branches encountered by any given
run � is constant. This requirement allows us to eliminate
conditional statements without a�ecting runtime complex-
ity. A statement like

if secret then
x1 ← y1
x3 ← y3

else
x1 ← z1
x2 ← z2

can be replaced by

x1 ← y1 · secret+ z1 · (¬secret)
x2 ← z2 · 0 + z2 · (¬secret)
x3 ← y3 · secret+ y3 · 0

This increases the total computation by a factor of 2. On
the other hand, if we have a sequence of d nested conditional
statements, the computational overhead will be on the order
of 2d, which is why we require d to be constant.
3. If the program reveals the output length m, it does

so only after allocating m0 ∈ Ω(m) memory. This is so the
level II program can be split into two circuit-like level III
programs that are to be run in sequence: one parameterized
by n that computes the value of m0, and a second parame-
terized by both n and m0.

3.5 Oblivious Sorting
Sorting networks such as bitonic sorters [7] provide

an in-place input-independent way to sort n elements in
O(n log2 n) time, taking the form of an O(log2 n)-depth
circuit. Although O(n logn) constructions also exist, they
are either very ine�cient in practice (due to large constant
overheads) or non-parallelizable [21]. Each non-recursive
step of a bitonic sorter reads two elements at �xed input-
independent locations, runs a comparison procedure be-
tween the two elements and swaps the entries depending
on the result. To ensure obliviousness, even if the elements
are not to be swapped, the same (re-encrypted) entries are
written to their original locations. When a probabilistic en-
cryption scheme is used, this leaks no information about
whether the two elements were swapped.
We parameterize our calls to a bitonic sorter with a lexico-

graphic ordering on chosen element attributes. For example,

if A is a list of elements where each element has attributes
x, y, z, . . ., then

Bitonic-Sort〈x ↑, y ↑, z ↓〉(A)

will sort the elements in A by increasing x attribute, followed
by increasing y attribute, and then by decreasing z attribute.
We can use sorting networks as �lters. For instance, we

will use ∅ to designate a void (null) entry that is marked to
be discarded (or often a �dummy� entry) so that if we know
that A of size n has k non-null elements, we can run

Bitonic-Sort〈6= ∅ ↑〉(A)

and collect the �rst k non-null elements in the output. Alter-
natively, Goodrich [20] has proposed an e�cient O(n logn)
oblivious algorithm speci�cally for this problem (there re-
ferred to as compaction).

4. PROBLEM OVERVIEW
In this section, we describe the general problem, the secu-

rity goals our solution will satisfy, and prior work in similar
directions. We then brie�y outline the general idea behind
our approach.

4.1 Problem Definition
We are given as input two unsorted tables and are in-

terested in computing the binary equi-join of both tables
(though the ideas extend to some more general types of inner
joins). That is, our input consists of two tables T1 and T2,
each consisting of respectively n1 and n2 (possibly-repeated)
pairs (j, d) (we call j a join (attribute) value and d a data
(attribute) value). The output we would like to compute is

T1 ./ T2 = {(d1, d2) | (j, d1) ∈ T1, (j, d2) ∈ T2}.

The tables T1, T2, and T1 ./ T2 are not assumed to be
ordered.

4.2 Related Work
The design of oblivious join operators has been studied

both in isolation and also as part of larger privacy-oriented
database systems, where it is emphasized as the most chal-
lenging component; we compare several di�erent approaches
in Table 1. Agrawal et al. [3] propose several join algo-
rithms for use in a setting similar to ours; however, their
roughly O(n1n2) complexity is close to that of a trivial
O(n1n2 log2(n1n1)) oblivious algorithm based on a nested
loop join. Additionally, their security de�nition allows leak-
age of a certain property of the inputs (as pointed out in
[27], where the issue was �xed without signi�cant improve-
ments in runtime). SMCQL [8] is capable of processing SQL
queries through secure computation primitives but its secure
join also runs in O(n1n2) time. Conclave [38] implements
join operators for SMC; however, its approach involves re-
vealing entries to a �selectively-trusted party�.
Opaque, which is geared towards private database queries

in a distributed setting, implements an oblivious sort-merge
algorithm [45] (as well as its variant in ObliDB [13]) but
handles only the speci�c case of primary-foreign key joins
(in which case m = O(n) and their O(n log2(n/t)) complex-
ity matches ours for constant t). Though Opaque makes use
of the O(t) available enclave memory to optimize its run-
ning time, such optimizations rely on �enclave designs that
protect against access patterns to the EPC� such as �Sanc-
tum, GhostRider, and T-SGX� to obtain a pool of oblivious
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memory (meaning that the optimized versions are only level
I oblivious). Such constructions could potentially introduce
an computational overhead that outweigh any optimizations
(GhostRider for instance relies on ORAM) or introduce ad-
ditional hardware requirements and security assumptions.
The closest to our work is that of Arasu et al. [5], which

mirrors the overall structure of our algorithm but ultimately
reduces to a di�erent (arguably more challenging) prob-
lem than the one we deal with (�obliviously reordering [se-
quences] to make [them] barely pre�x heavy�). The details
for the proposed solution to this problem are incomplete and
the authors have not provided a proof-of-concept implemen-
tation that shows empirical results. We believe that even if
a solution to this problem exists, the overall algorithm will
be less e�cient than ours due to the high constant overheads
from repeated sorts. Lastly, their approach also assumes, by
default, a local memory of O(log(m+n)) entries (thus being
level I oblivious) since it is intended for use in a secure copro-
cessor setting. For use in more practical settings like Intel
SGX, such memory would either have to be obtained in the
same manner as was argued above for the case of Opaque
or through an O(log(m+ n)) time complexity overhead for
each local memory access (that is, if each access achieves
obliviousness by reading all entries in local memory).
Encrypted databases like CryptDB [33] employ de-

terministic and partial homomorphic encryption to pro-
cess databases in a hardware-independent way but such
databases are non-oblivious. Private Set Intersection (PSI)
and Private Record Linkage (PRL) are somewhat similar
problems to the one considered in this paper in that they
involve �nding matching entries among di�erent databases.
Although some protocols for these problems rely solely on
SMC techniques (by constructing circuits as in our work),
more e�cient protocols make use of cryptographic primitives
like oblivious transfer (extension) that are not applicable to
database joins (see the survey on PSI in [32]).

4.3 Security Characteristics
Intuitively, our algorithm will be oblivious with regards

to the way it accesses any memory with non-constant size.
More precisely, we will provide security in the form of level
II obliviousness, as described in � 3.2. Hence, our condition
will be that for all inputs of length n that produce outputs
of equal length m, the sequence of memory accesses our
algorithm makes on each the inputs is always the same (or
identically distributed if we make use of randomness).
We will use a constant amount of local memory on the

order of the size of a single database entry, which we will
use to process entries and keep counters. That is, our ac-
cesses to public memory (where the the input, output and
intermediate tables are stored) will be of the form

e
?← T [i]

. . .
(sequence of operations on e)
. . .
T [i]

?← e

The notation e
?← T [i] explicitly signi�es that the i-th en-

try of the table T , which is stored in public memory, is read
into the variable e stored in local memory. Our code will

be such that the memory trace consisting of all
?← opera-

tions (distinguished by whether they read or write to public
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Figure 1: Main idea of the algorithm: The input tables
T1 and T2 are expanded to produce S1 and S2, and S2 is
aligned to S1. The output table is then readily obtained by
�zipping� together the d values from S1 and S2.

memory), are independent of the input sizes n1 and n2, and
the output size m.
As argued in � 3.4, a level II program can easily be trans-

formed to a level III program with constant computational
overhead as long as no loop conditions depend on the input
and the branching depth is constant. Our approach will sat-
isfy these properties and thus yield a program that is secure
against many of the side-channel attacks listed in � 3.2.

4.4 Overview of Approach
If j1, . . . , jt are the unique join attribute values appearing

at least once in each table, then T1 ./ T2 can be written as
the union of t partitions:

T1 ./ T2 =
⋃t

i=1{(d1, d2) | (ji, d1) ∈ T1, (ji, d2) ∈ T2}.

Each partition (henceforth referred to as group) corresponds
to a Cartesian product on sets of size α1(ji) = |{(ji,d1)∈ T1}|
and α2(ji) = |{(ji,d2)∈ T2}|, respectively, which we call the
dimensions of the group.
Each entry (ji, d1) ∈ T1, needs to be matched with α2(ji)

elements in T2; similarly each element (ji, d2) ∈ T2 needs to
be matched with α1(ji) elements in T1. To this end, and in
similar vein to the work of Arasu et al. [5], we form two ex-
panded tables S1 and S2 (this terminology is borrowed from
their paper), each of size m = |T1 ./ T2|, such that there
are α2(ji) copies in S1 of each element (ji, d1) ∈ T1 and
α1(ji) copies in S2 of each element (ji, d2) ∈ T2. Once the
expanded tables are obtained, it only remains to reorder S2

to align with S1 so that each copy of (ji, d2) ∈ T2 appears
at indices in S2 that align with each of its α1(ji) matching
elements from T1. At this point, obtaining the �nal output
is simply a matter of iterating through both tables simulta-
neously and collecting the d values from each pair of rows
(see Figure 1).
The approach we use to obtain the expanded tables is

very simple, relying on an oblivious primitive that sends
elements to speci�ed distinct indices in a destination array.
Namely, to expand a table T to S we will �rst obliviously
distribute each entry of T to the index in S where it ought
to �rst occur; this is achieved by sorting the entries in T
by their destination index and then performing O(m logm)
data-independent swaps so that the entries �trickle down� to
their assigned indices. To complete the expansion, we then
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Algorithm 1 The full oblivious join algorithm

1: function Oblivious-Join(T1(j, d), T2(j, d))
2: T1, T2(j, d, α1, α2)← Augment-Tables(T1, T2)
3: S1(j, d, α1, α2)← Oblivious-Expand(T1, α2)
4: S2(j, d, α1, α2)← Oblivious-Expand(T2, α1)
5: S2 ← Align-Table(S2)
6: initialize TD(d1, d2) of size |S1| = |S2| = m
7: for i← 1 . . .m do
8: TD[i].d1 ← S1[i].d
9: TD[i].d2 ← S2[i].d

10: return TD

perform a single linear pass through the resulting array to
duplicate each non-null entry to the empty slots (containing
null entries) that succeed it.

5. ALGORITHM DESCRIPTION
The complete algorithm is outlined in Algorithm 1, and

its subprocedures are described in the following subsections.
We use the notation T (a1, . . . , al) when we want to explicitly
list the attributes a1, . . . , an of table T , for clarity.
We �rst call Augment-Tables to augment each of the

input tables with attributes α1 and α2 corresponding to
group dimensions: this process is described in � 5.1. Then,
as detailed in � 5.3, we obliviously expand T1 and T2 into
two tables S1 and S2 of size m each: namely, S1 will con-
sist of α2 (contiguous) copies of each entry (j, d1, α1, α2) ∈
T 1, and likewise S2 will consist of α1 copies of each entry
(j, d1, α1, α2) ∈ T 2. To achieve this, we rely on the obliv-
ious primitive, Oblivious-Distribute, which is the focus
of � 5.2. After expanding both tables, we call Align-Table
to align S2 with S1 (with the help of the α1 and α2 val-
ues stored in S2): this amounts to properly ordering S2,
as described in � 5.4. Finally, we collect the d values from
matching rows in S1 and S2 to obtain the output table TD.

5.1 Obtaining Group Dimensions

Algorithm 2 Augment the tables T1 and T2 with the di-
mensions α1 and α2 of each entry's corresponding group.
The resulting tables are sorted lexicographically by (j, d).
n1 = |T1|, n2 = |T2|, n = n1 + n2.

1: function Augment-Tables(T1, T2) . O(n log2 n)
2: TC(j, d, tid)← (T1 × {tid = 1}) ∪ (T2 × {tid = 2})
3: TC ← Bitonic-Sort〈j ↑, tid ↑〉(TC)
4: TC(j, d, tid, α1, α2)← Fill-Dimensions(TC)
5: TC ← Bitonic-Sort〈tid ↑, j ↑, d ↑〉(TC)
6: T1(j, d, α1, α2)← TC [1 . . . n1]
7: T2(j, d, α1, α2)← TC [n1 + 1 . . . n1 + n2]
8: return T1, T2

Before we expand the two input tables, we need to aug-
ment them with the α1(ji) and α2(ji) values corresponding
to each join value ji, storing these in each entry that matches
ji (Algorithm 2). To this end, we need to group all entries
with common join values together into contiguous blocks,
further grouping by them by their table ID. This is achieved
by concatenating both tables (augmented with table IDs)
together and sorting the result lexicographically by (j, tid),
thus obtaining a table TC of size n = n1 + n2.
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Figure 2: Example group dimension calculation. The
dimensions of each group can be computed by storing tem-
porary counts during a forward pass through TC , and then
propagating the totals backwards.

The α1 and α2 values for each group can then be ob-
tained by counting the number of entries originating from
table 1 and table 2, respectively. Since such entries ap-
pear in contiguous blocks after the sort, this is a matter of
keeping count of all entries with the same ID and storing
these counts within all entries of the same group; in this
manner, we can compute all α1 and α2 values in two lin-
ear passes through T (one forward and one backward), as
detailed in Fill-Dimensions and shown in Figure 2. Note
that by keeping a sum of the products α1α2, we also obtain
the output size m, which is needed in subsequent stages.
Take for example the join value x, which corresponds to

a group with dimensions α1 = 2 and α2 = 3 (since these are
the number of entries with ID 1 and 2, respectively). While
encountering entries with j = x and tid = 1 during the for-
ward pass, we temporarily store in the α1 attribute of each
entry an incremental count of all previously encountered en-
tries with j = x. When we reach entries with tid = 2, we
can propagate the �nal count α1 = 2 to all these entries,
while starting a new incremental count, stored in α2. Af-
ter iterating through the whole table TC in this manner, TC

holds corrects α1 and α2 values in each �boundary� entry
(the last entry within a group, such as (x, u3, . . .)), which
can then be propagated to all remaining entries within the
same group by iterating through TC backwards.
It remains for us to extract the augmented T1 and T2

from TC : to accomplish this, we re-sort TC lexicographically
by (tid, j, d): the �rst n1 values of TC then correspond to
T1 (augmented and sorted lexicographically by (j, d)) , the
remaining n2 values correspond to T2.

5.2 Oblivious Distribution
We will reduce expansion to a slightly generalized version

of the following problem: given an input X = (x1, . . . , xn)
of n elements each indexed by an injective map f : X →
{1, . . . ,m} wherem ≥ n, the goal of Oblivious-Distribute
(as visualized in Figure 3) is to store element xi at index
f(xi) of an array A of size m. Note that for m = n, the
problem is equivalent to that of sorting obliviously; however
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Figure 3: Example oblivious distribution with n = 5
and m = 8. The intermediate step involves sorting the ele-
ments by their target indices. The elements are then passed
through a routing network, which for m = 8 has hop inter-
vals of size 4, 2 and 1.

for m > n, we cannot directly use a sorting network since
the output A needs to contain m− n elements that are not
part of the output (such as placeholder ∅ values), and we
do not know what indices to assign to such elements so that
the xi appear at their target locations after sorting.
One approach to this problem is probabilistic and requires

us to �rst compute a pseudorandom permutation π of size
m. We scan through the n elements, storing element xi at
index π(f(xi)) of A. We then use a bitonic sorter to sort the
m elements of A by increasing values of π−1 applied to each
element's index in A. This has the e�ect of �undoing� the
masking e�ect of the permutation π so that if xi is stored
at index π(f(xi)) of A, then as soon as A is sorted, it will
appear in its correct destination at index f(xi) of A. An
adversary observing the accesses of this procedure observes
writes at locations π(f(x1)), . . . , π(f(xn)) of A, followed by
the input-independent accesses of the bitonic sorter. Since
f is injective, f(x1), . . . , f(xn) are distinct and so the val-
ues π(f(x1)), . . . , π(f(xn)) will correspond to a uniformly-
random n-sized subset of {1, . . . ,m}. This approach is there-
fore oblivious in the probabilistic sense.
The second approach, which we use in our implemen-

tation and outlined in Algorithm 3, is deterministic and
does not require the use of a pseudorandom permutation,
which can be expensive in practice and also introduces an
extra cryptographic assumption. This method is similar to
the routing network used by Goodrich et al. [20] for tight
order-preserving compaction, except here it used in the re-
verse direction (instead of compacting elements together it
spreads them out). It makes the whole algorithm determin-
istic (making it easy to empirically test for obliviousness)
and has running time O(n log2 n+m logm): the sort takes
O(n log2 n) time, the outer loop performs O(logm) itera-
tions, and the inner loop performs O(m). Intuitively, it is
oblivious since the loops do not depend on the values of A[i],
and though the conditional statement statement depends on
f(A[i]), both branches make the same accesses to A.
The idea is to �rst sort the xi by increasing des-

tination indices according to f (by using the notation
Bitonic-Sort〈f〉(A), we assume that the f value of each
element is stored as an attribute). Each element can then
be sent to its destination index by a series of O(logm) hops,

Algorithm 3 Obliviously map each x ∈ X to index f(x) of
an array of size m ≥ n, where f : X → {1 . . .m} is injective.
1: function Oblivious-Distribute(X, f,m)
2: A[1 . . . n]← X
3: Bitonic-Sort〈f ↑〉(A) . O(n log2 n)
4: A[n+ 1 . . .m]← ∅ values

5: extend f to f̂ such that f̂(∅) = 0

6: j ← 2dlog2 me−1

7: while j ≥ 1 do . O(m logm)
8: for i← m− j . . . 1 do

9: y
?← A[i]

10: y′
?← A[i+ j]

11: if f̂(y) ≥ i+ j then

12: A[i]
?← y′

13: A[i+ j]
?← y

14: else
15: A[i]

?← y

16: A[i+ j]
?← y′

17: j ← j/2

18: return A

where each hop corresponds to an interval j that is a power
of two. For decreasing values of j, we iterate through A
backwards and perform reads and writes to elements j apart.
Most of these will be dummy accesses producing no e�ect;
however, if we encounter an xi such that xi can hop down
a distance of j and not exceed its target index, we perform
an actual swap with the element stored at that location.
This will always be a ∅ element since the non-null elements
ahead of xi make faster progress, as we will formally show.
Therefore each xi will make progress at the values of j that
correspond to its binary expansion, and it will never be the
case that it regresses backwards by virtue of being swapped
with a non-null element that precedes it in A.
In Figure 3, for example, each element must move a dis-

tance that for m = 8, has a binary expansion involving the
numbers 4, 2 and 1. No xi can make a hop of length 4
in this example; however, for the next hop length, 2, ele-
ment x4 will advance to index 7, after which element x5 will
advance to index 6 (which at this point corresponds to an
empty cell containing a ∅ value). Finally, for a hop length
of 1, element x4 will advance to index 8, element x1 will
advance to index 4 and element x3 will advance to index 3,
in that order; at this point all the elements will be stored at
their desired locations.
We deal with correctness in the following theorem:

Theorem 1. If m > n and f : {x1, . . . , xn} → {1, . . . ,m}
is injective, then Oblivious-distribute(X, f,m) returns
an A such that for 1 ≤ i ≤ n, A[f(xi)] = xi (and the
remaining elements of A are ∅ values).

Proof. Note that after A is initialized, any write to A is
either part of a swap or leaves A unchanged; thus at the end
of the procedure, A is a permutation of its initial elements
and therefore still contains all the n elements of X andm−n
∅ values. After A is sorted, its �rst n elements, y1, . . . , yn,
are the elements of X sorted by their values under f (their
destination indices).
Let k = dlog2me − 1 and let Ir(yi) be the index of yi at

the end of the r-th outer iteration (for 0 ≤ r ≤ k + 1 with
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r = 0 corresponding to the state at the start of the loop).
We want to show that for all i, Ik+1(yi) = f(yi); this will
follow from Equation (3) of the following invariant: at the
end of the r-th outer iteration, we have that

Ir(yi) < Ir(yj), (1)

f(yi)− Ir(yi) ≥ f(yj)− Ir(yj) (2)

for all i < j, and

0 ≤ f(yi)− Ir(yi) < 2k+1−r (3)

for all i.
For r = 0, (1) holds since I0(yi) = i for all i, (2) and the

left inequality of (3) follows from the fact the yi are sorted
by their values under f and the fact that f is injective. The
right inequality of (3) is simply the bound f(yi)−i ≤ f(yi) ≤
m < 2k+1.
Assuming the invariant holds at iteration r, we show that

it holds at iteration r+1 as well. Consider all (non-dummy)
swaps that happen at iteration r + 1 between y = yi for
some i (y 6= ∅ since f̂(∅) = 0) and some element y′ at
the index Ir(yi) + 2k−r > Ir(yi) (which means that f(yi) ≥
Ir(yi)+2k−1). It must be the case that y′ = ∅; for if y = yj
for some j < i, then yj must still be at index Ir(yj) <
Ir(yi) < Ir(yi) + 2k−r, and if y = yj for some j > i, then
the two facts

f(yi) ≥ Ir(yi) + 2k−1

f(yi)− Ir(yi) ≥ f(yj)− Ir(yj)

imply that f(yj) ≥ Ir(yj)+2k−r, which means that yj must
have been swapped with the element at Ir(yj) + 2k−r >
Ir(yi) + 2k−r in a previous iteration of the inner loop. It
follows that no two elements yi and yj are ever swapped
together, and

Ir+1(yi) =

{
Ir(yi) + 2k−r, Ir(yi) + 2k−r ≤ f(yi)

Ir(yi), otherwise.

That the sequence {Ir+1(yi)}i is strictly increasing fol-
lows from the fact that {Ir(yi)}i is strictly increasing and
as argued, if Ir+1(yi) = Ir(yi) + 2k−r ≤ f(yi), then Ir(yj) +
2k−r ≤ f(yj) for all j > i. We now show that for j > i,

f(yi)− Ir+1(yi) ≥ f(yj)− Ir+1(yj).

If Ir(yi) + 2k−r ≤ f(yi), then

f(yi)− Ir+1(yi) = f(yi)− Ir(yi)− 2k−r

≥ f(yj)− Ir(yi)− 2k−r

= f(yj)− Ir+1(yj),

otherwise,

f(yi)− Ir+1(yi) = f(yi)− Ir(yi)

≥ f(yj)− Ir(yj)

= f(yj)− Ir+1(yj).

Lastly, we need to show that

0 ≤ f(yi)− Ir+1(yi) < 2k−r.

If Ir(yi) + 2k−r ≤ f(yi), then

f(yi)− Ir+1(yi) = f(yi)− Ir(yi)− 2k−r ≥ 0,

and

f(yi)− Ir+1(yi) = f(yi)− Ir(yi)− 2k−r

< 2k+1−r − 2k−r

= 2k−r.

If Ir(yi) + 2k−r > f(yi), then

f(yi)− Ir+1(yi) = f(yi)− Ir(yi) ≥ 0

f(yi)− Ir+1(yi) = f(yi)− Ir(yi) < 2k−r,

which �nishes the proof of the invariant.
It then follows from (3) that Ik+1(yi) = f(yi), and so

when the k + 1 iterations of the outer loop complete, each
yi will appear in its correct index according to f .

5.3 Oblivious Expansion

Algorithm 4 Obliviously duplicate each x ∈ X g(x) times.

1: function Oblivious-Expand(X, g)
2: . obtain f values and distribute according to f
3: s← 1
4: for i← 1 . . . n do . O(n)

5: x
?← X[i]

6: if g(x) = 0 then
7: mark x as ∅
8: else
9: set f(x) = s

10: s← s+ g(x)

11: X[i]
?← x

12: A← Ext-Oblivious-Distribute(X, f, s− 1)
13: . �ll in missing entries
14: px← ∅
15: for i← 1 . . . s− 1 do . O(m)

16: x
?← A[i]

17: if x = ∅ then
18: x← px
19: else
20: px← x

21: A[i]
?← x

22: return A
23:
24: function Ext-Oblivious-Distribute(X, f,m)
25: A[1 . . . n]← X
26: Bitonic-Sort〈6= ∅ ↑, f ↑〉(A) . O(n log2 n)
27: if m ≥ n then
28: A[n+ 1 . . .m]← ∅ values

29: extend f to f̂ such that f̂(∅) = 0
30: continue as in O(m logm) loop of Algorithm 3...
31: return A[1 . . .m]

Oblivious-Expand takes an array X = (x1, . . . , xn) and
a function g on X which assigns non-negative integer counts
to each x, and outputs

A = (x1, . . . , x1︸ ︷︷ ︸
g(x1) times

, x2, . . . , x2︸ ︷︷ ︸
g(x2) times

, . . . ).

This can easily be achieved using Oblivious-Distribute
(see Figure 4) if we assume m ≥ n and g(xi) > 0 for all

xi: we compute the cumulative sum f(xi) = 1 +
∑i−1

j=1 xj ,
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Figure 4: Example oblivious expansion. This is
achieved by obliviously distributing each element to where
it ought to �rst appear and then scanning through the re-
sulting array to duplicate each entry in the null slots that
follow.

Algorithm 5 Reorder S2 so that its m entries align with
those of S1.

1: function Align-Table(S2)
2: S2(j, d, α1, α2, ii)← S2 × {ii = NULL}
3: for i← 1 . . . |S2| do . O(m)

4: e
?← S2[i]

5: q ← (0-based) index of e within block for e.j
6: e.ii← bq/e.α2c+ (q mod e.α2) · e.α1

7: S2[i]
?← e

8: S2 ← Bitonic-Sort〈j, ii〉(S2) . O(m log2m)
9: return S2

and obliviously distribute the xi according to f (in practice,
the values of f are stored as attributes in augmented en-
tries). The resulting array A is such that each xi is stored
in the �rst location that it needs to appear in the output of
Oblivious-Expand; the next g(xi) − 1 values following xi
are all ∅. Thus we only need to iterate through A, storing
the last encountered entry and using it to overwrite the ∅
entries that follow.
To account for the possibility that g(xi) = 0 for cer-

tain xi (which means that m may possibly be less than
n), we simply need to modify Oblivious-Distribute to
take as input an n-sized array X such that the subset X ′

of X of entries not marked as ∅ has size n′ ≤ m and
f ′ : X ′ → {1 . . .m} is injective. The output will be an
array A with each xi ∈ X ′ stored at index f(xi) of A; the
remainder of A will consist of ∅ values as before. This mod-
i�ed version of Oblivious-Distribute (Ext-Oblivious-
Distribute) will allowOblivious-Expand to mark entries
xi with g(xi) = 0 as ∅ (done in practice by �rst making
sure the entries are augmented with an extra �ag bit for
this purpose) to the e�ect that they can be discarded by
Ext-Oblivious-Distribute, as shown in Algorithm 4.

5.4 Table Alignment
Recall that S1 is obtained from T1 based on the counts

stored in α2 since for each entry (ji, d1) ∈ T1, α2(ji) is
the number of entries in T2 matching ji, and these are all
the entries that (ji, d1) must be matched with. Likewise
S2 is obtained from T2 based on the counts stored in α1.
It remains for us to properly align S2 to S1 so that each
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Figure 5: Example table alignment. S2 is reordered
to align with S1. In this example, each of the two copies
of (x, u1) in S2 ends up appearing at two indices matching
both (x, a1) and (x, a2) from S1; the same applies to the
copies of (x, u2) and (x, u3).

output entry corresponds to a row of S1 and a row of S2

with matching index. More precisely, we need to sort S2 so
that the sequence of pairs {(S1[i].d1, S2[i].d2)}mi=1 is a lexi-
cographic ordering of all the pairs in T1 ./ T2. For example,
in Figure 5, the α2(x) = 2 copies of (x, u1) in S2, need to be
matched with α2(x) = 2 entries from T1: (x, a1) and (x, a2).
Since the entries in S1 occur in blocks of size α1(x) = 3,
this means that the copies of (x, u1) in S2 need to occur a
distance of α1(x) = 3 apart: at indices 1 and 4 in S2. In
general, these indices can be computed from the α1 and α2

attributes, as outlined in Algorithm 5. Note that q is simply
a counter that is reset when a new join value is encountered,
similarly to the counter c in Algorithm 2.

6. EVALUATION
We implemented a (sequential) C++ prototype of the gen-

eral algorithm, which we then readily adapted as an SGX
application whose entire execution takes place within the en-
clave (code available at https://git.uwaterloo.ca/skrastni/
obliv-join-impl). We empirically tested for correctness on
varying input sizes n (10 to 1,000,000): for each n, we au-
tomatically generated 20 tests consisting of various di�erent
inputs of size n (for instance, one inducing n 1 × 1 groups,
one inducing a single 1 × n group, and several where the
group sizes were drawn from a power law distribution). The
outputs were correct in all the cases.

6.1 Security Analysis
We veri�ed the obliviousness of our prototype both for-

mally, through the use of a dedicated type system, and em-
pirically, by comparing the logs of array accesses for di�erent
inputs. To ensure that that the actual low-level memory ac-
cesses were also oblivious, we transformed it as per � 3.4 and
inspected its accesses using an instrumentation tool.

Verification of Obliviousness through Typing
Liu et al. [28] showed that programming language techniques
can be used to verify the obliviousness of programs. The
authors formally de�ne the concept of memory trace obliv-
iousness (roughly corresponding to our notion of level III
obliviousness), and de�ne a type system in which only pro-
grams satisfying this property are well-typed. We adapted
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T-Var
Γ(x) = Var l

Γ ` x : Var l; ε
T-Const

Γ ` Var L; ε

T-Op
Γ ` x : Var l1; ε Γ ` y : Var l2 : ε

Γ ` x op y : Var l1 t l2; ε

T-Asgn
Γ(x) = Var l1; ε Γ ` y : Var l2; ε l2 v l1

Γ ` x← y; ε

Γ(y) = Arr l′ l′ v l

T-Read
Γ ` i : Var L; ε Γ ` x : Var l; ε

Γ ` x ?← y[i]; 〈R, y, i〉

Γ(y) = Arr l′ l v l′

T-Write
Γ ` i : Var L; ε Γ ` x : Var l; ε

Γ ` y[i]
?← x; 〈W, y, i〉

T-Cond
Γ ` c : Var l; ε Γ ` s1; T Γ ` s2; T

Γ ` if c then s1 else s2; T

T-For
Γ ` t : Var L; ε Γ ` s; T

Γ ` for i← 1 . . . t do s; T || . . . ||T︸ ︷︷ ︸
t copies

T-Seq
Γ ` s1; T1 Γ ` s2; T2

Γ ` s1; s2; T1||T2

Figure 6: Summary of type system used to model
level II obliviousness and verify implementation.

a simpli�ed version of their system that does not incorpo-
rate the use of ORAM (since we do not use any), and which
corresponds to level II obliviousness in accordance with our
high-level description in the previous section.
The type system is presented in Figure 6, in a condensed

format. Each type is a pair of the form τ ; T , where τ is
either Var l, Array l, or a statement, and T is a correspond-
ing trace. In the case when τ is Var l or Array l, the label
l is either L (�low� security) if the variable or array stores
input-independent data, or H (�high� security) otherwise.
The ordering relation on labels, l1 v l2, is satis�ed when
l1 = l2 = L, or l1 = L and l1 = H. We de�ne l1 t l2 to
be H if at least one of l1 or l2 is H and L otherwise. In
an actual program, we would set to L the label of variables
corresponding to the values of n and m, and set to H the la-
bel of all allocated arrays that will contain input-dependent
data (in our program all arrays are such). The trace T is
a sequence of memory accesses 〈R, y, i〉 (reads) or 〈W, y, i〉
(writes), where y is the accessed array and i is the accessed
index. We use ε to denote an empty trace and || to denote
the concatenation operator.
All judgements for expressions are of the form Γ ` exp :

τ ; T, where Γ is an environment mapping variables and
arrays to types, exp is an expression and τ is its type, and

T is the trace produced when evaluating exp. Judgments
for statements are of the form Γ ` s; T.
Note that all rules that involve reads and writes to only

Var types emit no trace since they model our notion of local
memory. The rule T-Asgn models the �ow of high-security
data: a variable x that is the target of an assignment in-
volving an H variable y must always be labeled H. The
rules T-Read and T-Write are similar to T-Asgn but also en-
sure two other properties: that arrays are always indexed by
variables labeled L (for otherwise the memory access would
leak data-dependent data), and that the reads and writes
to arrays emit a trace consisting of the corresponding mem-
ory access. The two rules that play an important role in
modeling obliviousness are T-Cond, which ensures that the
two branches of any conditional statement emit the same
memory traces, and T-For, which ensures the number of
iterations of any loop is a low-security variable (such as a
constant, n, or m).
We manually veri�ed that our implementation is well-

typed in this system by annotating the code with the cor-
rectly inferred types. For example, every if statement was
annotated with the matching trace of its branches.

Experiments: Memory Access Logs
In our prototype all contents of (heap-allocated) memory
that correspond to public memory � all except a constant
number of variables such as counters and those used to store
the results of a constant number of read entries � are ac-
cessed through a wrapper class which is used to keep a log
of such accesses. For small n (n ≤ 10), we manually cre-
ated di�erent test classes (around 5), where each test class
corresponds to values of n1 and n2 (summing to n), and an
output length m. We veri�ed, by direct comparison, that
the memory access logs for each of the inputs in the same
class were identical. Figure 7 visualizes the full sequence of
memory accesses for n1 = n2 = 4 and m = 8.
For larger values of n where the logs were too large to �t

in memory, we kept a hash of the log instead. That is, we
set H = 0, and for every access to an index i of an array Ar

allocated by our program, we updated H as follows:

H ← h(H||r||t||i),

where h is a cryptographic hash function (SHA-256 in our
case) and t is 0 or 1 depending on whether the access is a
read or a write to Ar. With n ranging from 10 to 10,000, we
generated a diverse range of tests, in the manner described
at the start of this section, but also under the restriction that
the tests for each n produce outputs of the same size. We
veri�ed that for each n the tests produced the same hash.

Experiments: Memory Trace Instrumentation
Through a mix of manual and automated code transforma-
tions similar to those outlined in � 3.4, we obtained a pro-
gram where all virtual memory accesses of the program are
oblivious. To verify this we ran the same hash-based tests
as previously described except that the target memory ac-
cesses were obtained by using Intel's Pin instrumentation
framework to inject the hash computation at every program
instruction involving a memory operand. The veri�cation
was successful when the program was compiled with GCC
7.5.0 with an -O2 optimization level (whereas -O3 did not
preserve the intended properties of our transformation).
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Figure 7: Visualization of our implementation's input-independent pattern of memory access as it joins two
tables of size 4 into a table of size 8. Horizontal axis is (discretized) time, vertical axis is the memory index; light shade
denotes a read; dark denotes a write.

Table 3: For each (non-linear) component of the al-
gorithm: approximate counts of total comparisons
(or swaps) when m ≈ n1 = n2, as well as empirical
share of total implementation runtime for n = 106.

Subroutine Comparisons Runtime

initial sorts on TC n(log2 n)2/2 60%
o.d. on T1, T2 (sort) n1(log2 n1)2/2 25%
o.d. on T1, T2 (route) 2m log2m 3%

align sort on S2 m(log2m)2/4 12%

total
n(log2 n)2 + n log2 n 100%

(when m ≈ n1 = n2)

6.2 Performance Analysis
Taking into account the fact that performing a bitonic

sort on input n makes roughly n(log2 n)2/4 comparisons,
the cost breakdown of the full algorithm is summarized in
Table 3, which supports the fact that our time complexity
of O(n log2 n+m logm) does not hide large constants that
would make the algorithm impractical.
In terms of space usage, the total (non-oblivious) memory

we use is max(n1,m)+max(n2,m) entries since the table TC

has size n1+n2, the augmented tables T1 and T2 correspond
to two regions of TC , and the expanded tables S1 and S2 can
be obtained from T1 and T2 by only allocating as many extra
entries as needed to expand T1 and T2 to tables of size m (if
one of the original tables has size less than m, then no extra
entries will be allocated for that table's expansion).
We ran the di�erent variants of our implementation on a

single core of an Intel Core i5-7300U 2.60 GHz laptop with
8 GB RAM; the runtime of the prototype, the SGX ver-
sion, and the transformed SGX version is shown in Figure
8 and compared to a non-oblivious sort-merge join. Since
our SGX versions exclusively use the limited Enclave Page
Cache (EPC) of size approximately 93 MiB for all allocated
memory, we anticipate a drop in performance for input sizes
where the EPC size is insu�cient (due to swapping). How-
ever, this size is expected to be increased considerably in
future versions of SGX.
The only related join algorithm with an implementation

that has been evaluated on input sizes up to 106 is the
one proposed by Opaque, which we remind is restricted to
primary-foreign key joins. Its SGX implementation, despite
being evaluated on better hardware and on multiple cores,
runs approximately �ve times slower for an input size of
n = 106.
Although our implementation is non-parallel, almost all

parts of our algorithm are amenable to parallelization since
they heavily rely on sorting networks, whose depth is
O(log2 n). The only exception is the sequence of O(m logm)
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Figure 8: Performance results for sequential proto-
type implementation. The inputs are such that m ≈
n1 = n2 = n/2.

operations following the sorts in each of the two calls to
Oblivious-Distribute. However, as is shown in Table 3,
these operations account for a negligibly small fraction of
the total runtime.

7. CONCLUSIONS AND FUTURE WORK
Our algorithm for oblivious joins has a runtime that closely

approaches that of the standard sort-merge join and has a
low total operation count. Being based on sorting networks
and similar constructions, it has very low circuit complexity
and introduces novel data-independent techniques for query
processing. There is an increasing demand for such ap-
proaches due to their resistance against side-channel attacks
and suitability for secure computation.
We have not yet considered whether compound queries

involving joins (including multi-way joins) can be readily
obtained using the techniques for this paper. Grouping ag-
gregations over joins could be computed using fewer sorting
steps than a full join would require, for example, by com-
bining the work of Arasu et al. [5] in this direction with the
primitives we provide. These primitives, especially oblivious
distribution and expansion, could also potentially be useful
in providing a general framework for oblivious algorithm de-
sign or have direct applications in various di�erent problem
areas with similar security goals.
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