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ABSTRACT
Computing an optimal subset repair of an inconsistent data-
base is becoming a standalone research problem and has a
wide range of applications. However, it has not been well-
studied yet. A tight inapproximability bound of the prob-
lem computing optimal subset repairs is still unknown, and
there is still no existing algorithm with a constant approxi-
mation factor better than two. In this paper, we prove a new
tighter inapproximability bound of the problem computing
optimal subset repairs. We show that it is usually NP-hard
to approximate it within a factor better than 17/16. An
algorithm with an approximation ratio (2 � 1/2��1) is de-
veloped, where � is the number of functional dependencies.
It is the current best algorithm in terms of approximation
ratio. The ratio can be further improved if there are a
large amount of quasi-Turán clusters in the input database.
Plenty of experiments are conducted on real data to exam-
ine the performance and the e↵ectiveness of the proposed
approximation algorithms in real-world applications.
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1. INTRODUCTION
A database I is inconsistent if it violates some given in-

tegrity constraints, that is, I contains conflicts or inconsis-
tencies. For example, two tuples conflict with each other, if
they have the same city but di↵erent area code. The incon-
sistency has a serious influence on the quality of databases,
and has been studied for a long time.
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In the research on managing inconsistencies, the notion of
repair was first introduced decades ago [4]. Subset repair is
a popular type of repair [19, 2]. A subset repair of an incon-
sistent database I is a consistent subset of I, which satisfies
all the given integrity constraints, obtained by performing
a minimal set of operations on I. An optimal subset repair

is the subset repair with minimum cost, where the cost can
be defined in di↵erent ways depending on the requirement
of applications.

Nowadays, the computation of optimal subset repairs is
becoming a basic task in a wide-range of applications not
only data cleaning and repairing, but also many other prac-
tical scenarios. Thus, the computation of optimal subset
repairs is becoming a standalone research problem and at-
tracted a lot of attention. In the following, we give three ex-
ample scenarios, in which the computation of optimal subset
repairs is a core task.

Data repairing. As discussed in [40, 20, 11], the ben-
efit of computing optimal subset repairs to data repairing
is twofold. First, computing optimal subset repairs is con-
sidered an important task in automatic data repairing [22,
45, 25]. In those methods, the cost of a subset repair is
the sum of the confidence of each deleted tuple. Therefore,
an optimal subset repair is considered as the best repaired
data. Second, optimal subset repairs are also used as the
best recommendation to enlighten the human how to repair
data from scratch in semi-automatic data repairing meth-
ods [7, 9, 24, 30]. In addition, the deletion cost to obtain an
optimal subset repair also can be used as a measurement to
evaluate the database inconsistency degree [11].

Consistent query answering. Optimal subset repairs
are the key to answer aggregation queries, such as count,
sum and average, in inconsistent databases. For example, a
consistent answer of a sum query is usually defined as the
range between its greatest lower bound (glb) and its least
upper bound (lub). Optimal subset repairs can help deriving
such two bounds.

Consider the inconsistent database GreenVotes shown in
Figure.1(a), due to functional dependency

County,Date!Tally,

tuples s1 and s2 conflict with each other, hence, it has two
repairs J1 : {s1, s3} and J2 : {s2, s3}. Obviously, aggrega-
tion query Q1 has di↵erent answers, such as 554 in J1 but
731 in J2. A smart way to answer such queries, as defined
in [6, 10], is to return the lub and glb which are 554 and 731.

Computing the lub is equivalent to computing optimal
subset repairs since the lub is exactly the sum of weights of
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County Date Tally
A 11/07 541
A 11/07 546
A 11/07 560
A 11/07 550
B 11/07 302

County Date Tally
A 11/07 453
A 11/07 630
B 11/07 101

BrownVotes

GreenVotes

tria
d

Aggregation Q2:

SELECT SUM(Tally)
FROM BrownVotes
CQA of Q2 : [843, 862]

Aggregation Q1:

SELECT SUM(Tally)
FROM GreenVotes
CQA of Q1 : [554, 731]

s1
s2
s3

r1
r2
r3
r4
r5

Σ = {County→ Tally}

(a) Consistent query answering of scalar aggregation

Subsystem Part Vendor Vendor  Rating

#1 a C 3.3
#1 a J 5.0
#1 b J 5.0
#1 b M 4.1
#2 a C 3.3
#2 a J 5.0
#2 c C 3.3
#2 c E 4.6

t1
t2
t3
t4
t5
t6
t7
t8

Procurement Plan

Procurement Plan A (Optimal)
Subsystem Part Vendor Vendor  Rating

#1 a C 3.3
#1 a J 5.0
#1 b J 5.0
#1 b M 2.1
#2 a C 3.3
#2 a J 5.0
#2 c C 3.3
#2 c E 4.6

t1
t2
t3
t4
t5
t6
t7
t8

Procurement Plan A (optimal)
Cost (rating loss): 13.7 (31.6 -17.9)

Procurement Plan B
Cost (rating loss): 16.6 (31.6 -15.0)

Procurement Plan B
Subsystem Part Vendor Vendor  Rating

#1 a C 3.3
#1 a J 5.0
#1 b J 5.0
#1 b M 2.1
#2 a C 3.3
#2 a J 5.0
#2 c C 3.3
#2 c E 4.6

t1
t2
t3
t4
t5
t6
t7
t8

SUM(Vendor Rating)

Σ = {Vendor → Subsystem,
Subsystem, Part → Vendor}

(b) Refine the procurement plan when business constraints change

Figure 1: Example applications of computing optimal subset repairs

tuples in an optimal subset repair, J2, if the vote tallies are
treated as tuple weights.

On the other side, computing the glb can be speed up by
an optimal subset repair. Computing glb is equivalent to find
a weighted maximum minimal vertex cover that is NP-hard
and cannot be approximated within o(n�1/2) [15] but can
be solved in O(2knc) time [49], where k equals to the cost of
an optimal subset repair, and c > 1. If k is clear in advance,
we will be able to decide to run the exact algorithm and tol-
erate exponential running time, or to run an approximation
algorithm and tolerate the unbounded accuracy loss.

Moreover, when the two ranges are computed, one can
safely conclude that Brown won the election, since the max-
imum vote tally for Green is smaller than the minimum vote
tally for Brown.

Optimization. Let us consider an example raised in mar-
keting as shown in Figure.1(b). The procurement plan in
Figure.1(b) lists all the current vendors for all the parts,
and each vendor has a rating representing its production ca-
pacity, after-sales service, supply price and so on [29]. Note
that, all the tuples in the list are correct and consistent.
However, the business consideration recently changes. First,
a vendor is no longer allowed to take part in two or more
subsystems for protection of commercial secrets. Second,
each part should be supplied from the same vendor for con-
venience of maintenance. For now, we need to refine the
plan to satisfy these requirements but preserving high-rating
vendors as possible.

The problem of refining the procurement plan can be
transformed into the problem of computing optimal subset
repairs. First, the business requirements can be written as
the following two functional dependencies

Vendor ! Subsystem,
Subsystem,Part ! Vendor.

Then, an optimal subset repair is the best refined plan if
we treat vendor rating as tuple weight. For example, in
Figure.1(b), plan A is an optimal subset repair and has a
total rating 17.9, which is much better than another plan B.
In fact, there are many other applications of optimal sub-

set repairs, but we can not detail any more here due to space
limitation. As we can see from these applications, comput-
ing optimal subset repairs is becoming a standalone prob-
lem. However, it has not been well-studied yet, especially
on the complexity and algorithms.
Complexity aspects. It is already shown that the problem

of computing optimal subset repair with respect to func-

tional dependencies is NP-complete [6, 10] even if given two
functional dependencies. This result is too rough since it is
just proved by a particular case. The most recent work in
[40] improves the complexity result. The boundary between
polynomial intractable and tractable cases is clearly delin-
eated, such that the problem of computing optimal subset
repairs cannot be approximated within some small constant
unless P 6=NP, if the given constraint set can be simplified
as one of four specific cases, otherwise it is polynomial solv-
able. Other complexity results on computing optimal repairs
exist, such as [22], [37], [12], [41], [28]. They are either re-
stricted to repairs obtained by value modifications instead
of tuple deletions or constraints stronger than functional
dependencies. Complexity results on repair checking exists,
such as [19], [2]. Repair checking is to decide if a given
database is a repair of another database. However, it is a
problem much easier than computing optimal subset repairs.
Due to their restrictions, these results cannot help deriving
tight complexity results for the problem of computing opti-
mal subset repairs. Therefore, a tight lower bound remains
unknown so far.

Algorithm aspects. When the database schema and the
number of functional dependencies are both unbounded, com-
puting optimal subset repairs is equivalent to the weighted
minimum vertex cover problem. Algorithms for vertex cover
can be applied directly to compute optimal subset repairs.
However, even the best algorithm [34] can only give an ap-
proximation with ratio 2 if the data is large enough. For-
tunately, as shown in the applications above, the relation
schema is fixed in practice, and the number of constraints
is bounded by some constant. In such context, the problem
is no longer the general vertex cover problem, but it is not
clear whether the problem can be better approximated.

Although a large body of research on data repairing con-
cerned with the computation of an optimal repair, they do
not tell us if we could do better in terms of approximation
ratio for computing optimal subset repairs. Approximation
algorithms [13, 42, 37] focus on computing repairs obtained
by value modification rather than subset repairs. Heuristic
methods [13, 22, 21] and probabilistic methods [44, 25] are
unable to provide theoretical guarantee on approximation
ratio. SAT-solver based methods [24] su↵er an exponential
time complexity. Other methods [18, 31] try to modify both
data and constraints, which are not able to return an opti-
mal subset repair that we need.
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In addition, as we mentioned above, the notion subset re-

pair was first proposed in the research on consistent query

answering. However, the series of works on consistent query

answering also cannot provide a better approximation to an
optimal subset repair. Their goal is to derive a certain an-
swers for given queries by finding the answers held in all re-
pairs [4, 48]. There are three approaches to achieve the goal.
The first is the answer set programming based approaches [5,
16]. The second is the query rewriting based approaches [46,
47]. The third is the SAT/LP-solver based approaches[38,
39, 27, 26]. All the approaches try to avoid computing ex-
ponentially many repairs in the size of database.

In summary, the following problems for computing opti-
mal subset repairs remain open.

Firstly, a tight lower bound is still unknown so that it is
impossible to decide whether an algorithm for computing
optimal subset repairs is optimal in terms of approximation
ratio.

Secondly, it is unknown whether we can approximate op-
timal subset repairs within a constant better than 2, which
has a very important practical significance.

This paper focuses on the two open problems, and the
main contributions are as follows.

Firstly, a tighter lower bound of the problem of com-
puting optimal subset repair is obtained. Concretely, it is
proved that the problem of approximating optimal subset
repairs within 17/16 is NP-hard for most of the polyno-
mial intractable cases. For the other cases, it is proved that
the problem of approximating optimal subset repairs within
69246103/69246100 is also NP-hard.

Secondly, an algorithm with an approximation ratio (2�
1/2��1) is developed, where � is the number of given func-
tional dependencies. This ratio is a constant better than 2.
It is the current best algorithm in terms of approximation
ratio.

Thirdly, to further improve the approximation ratio, the
quasi-Turán cluster is proposed for extending the algorithm
above. Based on the quasi-Turán cluster, an approximation
algorithm for computing the subset repairs with ratio (2 �
1/2��1 � ✏) is designed, where the factor ✏ � 0 depends on
the characteristic of input database.

Fourthly, plenty of experiments are conducted on real data
to examine the performance and the e↵ectiveness of the pro-
posed approximation algorithms in real-world applications.

The following parts of this paper is organized as follows.
Necessary conceptions and definition of the problem of com-
puting subset repairs are formally stated in Section 2. The
complexity analysis of the problem is shown in Section 3.
The approximation algorithms are given in Section 4. Ex-
periment results are illustrated in Section 5. At last, Section
6 concludes the paper.

2. PROBLEM STATEMENT
Concepts used in database theory and the formal defini-

tion of the problem are given in this section.

2.1 Integrity Constraints
The consistency of databases is usually guaranteed by in-

tegrity constraints. The languages for specifying integrity
constraints can get quite involved. For example, functional
dependency [1] is the most popular type of integrity con-
straint and has a long history. A large body of work on
managing data quality is built on it. An important special

case of functional dependencies are key constraints [1]. Con-
ditional functional dependencies [14] generalize functional
dependencies by conditioning requirements to specific data
values using pattern tableaux. In particular, a single tuple
may violate a conditional functional dependency.

In the research on computing optimal subset repairs, func-
tional dependency is commonly used integrity constraint [6,
40]. For convenience of discussion, this paper also takes
functional dependency as the integrity constraint like [40].
Note that, it is quite straightforward to extend our results
to the other types of integrity constraints mentioned above.

Let R be a relation schema, and I be an instance of R.
Functional dependency. Let X and Y be two sets of at-

tributes of a relation R. A functional dependency ' is an
expression of the form X ! Y, which requires that there
is no pair of tuples t1, t2 in any instance I of R such that
t1[X] = t2[X] but t1[Y] 6= t2[Y].

Inconsistent database. Let ⌃ be a set of functional depen-
dencies for relation schema R and I be an instance of R. I
does not satisfy a given functional dependency ' : X ! Y,
denoted by I 2 ', if there are two tuples t1, t2 2 I such that
t1[X] = t2[X] but t1[Y] 6= t2[Y].

An instance I of R is said to be consistent with respect
to ⌃, denoted by I |= ⌃, if I satisfies every functional de-
pendencies in ⌃. Otherwise, I is inconsistent, denoted by
I 2 ⌃, i.e., 9' 2 ⌃ such that I 2 '.

2.2 Subset Repairs
Let ⌃ be a set of functional dependencies over R. A con-

sistent subset of I with respect to ⌃ is a subset J ✓ I such
that J |= ⌃. A subset repair (a.k.a, S-repair) is a consistent
subset that is not strictly contained in any other consistent
subset. Formally, a consistent subset J of I is a subset repair

of I with respect to ⌃ if J \K 6= J for any other consistent
subset K of I.

Before defining the cost of a subset repair, we need to dis-
cuss the weight of each tuple. The weight of a tuple ti is a
non-negative number, denoted by wi, representing some im-
portant information concerned by applications. The weight
is defined in di↵erent ways for di↵erent applications. The
followings are some examples. In the context of data repair-
ing, the weight of a tuple usually represents the confidence
of its correctness. In the context of answering aggregation
queries, the weight of a tuple usually represents its contri-
bution to query results. In the context of optimizations, the
weight of a tuple represents the benefit of a tuple.

Based on the tuple weights, the cost of a subset repair
J ✓ I is defined as

C(J, I) =
X

ti2I\J

wi,

which represents the cost of obtaining a subset repair. Note
that the cost of a subset repair is |I\J |, which is the distance
between J and I if every tuple has weight 1. This kind of
cost is commonly used in data quality management [11].

Optimal subset repair. A subset repair J ✓ I is an optimal

subset repair of I, optimal S-repair for short, if

C(J⇤, I) = min{C(J, I) : J 2 SI,⌃},

where SI,⌃ is the set of all subset repairs of instance I.
For example, in Figure.1(b), both plan A and B are S-

repairs of procurement plan. A is an optimal S-repair since
it has a minimum cost 13.7.
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2.3 Problem Definition and Remarks
The problem of computing optimal subset repairs is for-

mally defined as follows.

Definition 1. (OPTSR) Let R be a fixed relation schema

and ⌃ be a fixed set of functional dependencies over R. For

any instance I of R, the problem of OPTSR is to compute

an optimal subset repair J⇤ of I with respect to ⌃.

Complexity. In practice, compared with the data size, the
number of attributes in the relation is very small, and so is
the number of functional dependencies. This motivates us to
adopt data complexity as the measure to perform the com-
plexity analysis of OPTSR. In this way, the relation schema
R and the functional dependency set ⌃ are fixed in advance,
and thus, the number of attributes in R and the number of
functional dependencies can be considered as constants. The
instance I of R is considered as the input of OPTSR. This
paper focus on the data complexity.

Approximation. OPTSR is NP-hard under most settings of
R and ⌃. This paper will develop approximation algorithms
for solving the problem OPTSR.

For later use, the approximation of optimal subset repairs
is explicitly defined here. Let J⇤ be an optimal subset repair
of I. For a constant k � 1, a subset repair J is said to be a
k-optimal S-repair if

C(J⇤, I)  C(J, I)  k · C(J⇤, I)

In particular, an optimal S-repair of any instance I is a 1-
optimal S-repair of I.
For example, in Figure.1(b), plan B is a 1.5-optimal S-

repair of procurement plan since its cost 16.6  1.5⇥ 13.7.

3. COMPLEXITY OF PROBLEM OPTSR
In this section, we prove a tighter lower bound of approx-

imation ratio for OPTSR problem. In the rest of the paper,
we refer the lower bound of approximation ratio and the
approximation ratio as lower bound and ratio respectively.
As shown in [40], it is possible to decide for any input FD

set ⌃ if OPTSR is polynomially solvable using the procedure
OSRSucceed. Basically, OSRSucceed iteratively reduces the
left hand side of each FD in ⌃ according to three simple
rules. It terminates in polynomial time until any FD in
⌃ cannot be further simplified, and returns true if there
are only FDs of the form ; ! X left. It is proved that
OPTSR is polynomially solvable if OSRSucceed(⌃) returns
true. Otherwise, ⌃ makes OPTSR polynomially unsolvable,
and there is a fact-wise reduction1 from one of the following
four special FD sets to ⌃,

⌃A!B!C = {A! B,B ! C},
⌃A!B C = {A! B,C ! B},
⌃AB!C!B = {AB ! C,C ! B},
⌃AB$AC$BC = {AB ! C,AC ! B,BC ! A}.

That is, if OPTSR is NP-hard for a given ⌃, then one of
the following cases must happen,
Case 1. There is a fact-wise reduction from ⌃A!B!C or

⌃A!B C to ⌃, and it is NP-hard to compute a (67/66� ✏)-
optimal S-repair.
1Fact-wise reduction is a kind of strict reduction that is for-
mally defined in [40]. For any ✏ > 0, if problem B has
a (1 + ✏)-approximation, then problem A has a (1 + ✏)-
approximation whenever there is a fact-wise reduction from
A to B.

Case 2. There is a fact-wise reduction from ⌃AB!C!B

to ⌃, and it is NP-hard to compute a (57/56 � ✏)-optimal
S-repair.

Case 3. There is a fact-wise reduction from ⌃AB$AC$BC

to ⌃, and it is NP-hard to compute a (1+✏)-optimal S-repair
for a certain ✏ > 0.

Therefore, the lower bound of problem OPTSR can be im-
proved by finding a tighter lower bound for the four special
FD sets.

In this section, we derive a tighter lower bound for case 1
and 2. Moreover, instead of the lengthy proof, we provide a
much conciser proof where all the reductions are built from
the problem MAX-NM-E3SAT [32]. For case 3, we carefully
merge four previous reductions to derive the bound, which
is not shown explicitly in previous research.

Lemma 1. Let FD set be one of ⌃A!B!C , ⌃A!B C and

⌃AB!C!B. Given an ✏ > 0, it is NP-hard to compute a

(17/16� ✏)-optimal S-repair for OPTSR even if every tuple

in the instance has weight 1.

Proof. We here show three similar reductions. All of
them are built from problem MAX-NM-E3SAT [32] which
cannot be approximated better than 7/8. Note that every
input expression � of problem MAX-NM-E3SAT is subject
to the following restrictions, (i) each clause has exactly three
variables, (ii) each clause is monotone as either “x+ y+ z”
or “x̄+ ȳ+ z̄”, and (iii) any variable x does not occur more
than once in each clause.

Specifically, each reduction builds an instance I� of the
relation schema R(A,B,C), in which every tuple has weight
1, for each expression � of MAX-NM-E3SAT.

Reduction for ⌃A!B!C . First, two tuples (j, xj , xj) and
(j, xj , x̄j) are inserted into I� for each variable xi. Second,
a tuple is inserted into I� for each clause ci and each variable
xj in it as follows.

1. If ci contains a positive literal of variable xj , insert
(ci, xj , xj) into I�,

2. If ci contains a negative literal of variable xj , insert
(ci, xj , x̄j) into I�.

Suppose there are n variables and m clauses in �, then
exactly 2n+3m tuples are created in total. Intuitively, A!
B guarantees that exactly one of its three corresponding
tuples survives in any S-repair once a clause is satisfied.
B ! C guarantees that the assignment of each variable
should be valid, i.e., either true or false, but not both.

Reduction for ⌃A!B C . First, two tuples (j, xj , xj) and
(j, x̄j , xj) are inserted into I� for each variable xi. Second,
a tuple is inserted into I� for each clause ci and each variable
xj in it as follows.

1. If ci contains a positive literal of variable xj , insert
(ci, xj , xj) into I�,

2. If ci contains a negative literal of variable xj , insert
(ci, x̄j , xj) into I�.

Suppose � contains n variables and m clauses, then ex-
actly 2n+3m tuples are created in total. Similarly, A! B
guarantees that exactly one of its three corresponding tuples
survives in any S-repair once a clause is satisfied. C ! B
guarantees the consistency of variable assignment.

Reduction for ⌃AB!C!B . First, two tuples (xi, 1, xi) and
(xi, 0, xi) are inserted into I� for each variable xi. Second, a
tuple is inserted into I� for each clause ci and each variable
xj in it as follows,
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1. If ci contains a positive literal of variable xj , insert
(ci, 1, xj) into I�,

2. If ci contains a negative literal of variable xj , insert
(ci, 0, xj) into I�.

Suppose there are n variables and m clauses in �, then
exactly 2n+ 3m tuples are created in total. AB ! C guar-
antees that exactly one of the three tuples survives in any
S-repair once the corresponding clause is satisfied. C ! B
guarantees the consistency of variable assignment.

Deriving lower bound. We here only show the process of
deriving the lower bound for ⌃AB!C!B . The processes of
deriving other two are similar. Let � be an input expression
of problem MAX-NM-E3SAT, and I� be the instance data
built by our reduction.

The functional dependency AB ! C guarantees that any
S-repair J of I� contains at most one of the three tuples with
the same value ci on attribute A, where 1  i  m. The
functional dependency C ! B guarantees that any S-repair
J of I� contains either (ci, 1, xj) or (ci, 0, xj) for 1  i  m
and 1  j  n.

Therefore, we can derive a variable assignment ⌧ from
every S-repair J ,

s.t. ⌧ (xi) =

⇢
1, if (xi, 1, xi) 2 J,
0, otherwise.

⌧(·) is valid such that ⌧(xi) either 0 or 1, but not both, for
each 1  i  n.

Let J⇤ be an optimal S-repair. It can be proved that
I� \ J⇤ does not contain both (xi, 1, xi) and (xi, 0, xi) for
each variable xi. Since if it is not true, there must be some i
such that both (xi, 1, xi) and (xi, 0, xi) are in I�\J⇤. We can
pick one of them and insert it into J⇤ without resulting in
inconsistency. Then, an S-repair J larger than J⇤ is found,
i.e., C(J, I�) > C(J⇤, I�). This is a contradiction.

Let ⌧ be an arbitrary valid variable assignment, and N (�)
be the number of clauses in � satisfied by ⌧ . Let ⌧max be an
optimal variable assignment, and Nmax(�) be the number of
clauses in � satisfied by ⌧max. Thus, we have

Nmax(�) = |I�|� |I� \ J⇤|� n

and for any solution J of I�,

N (�) � |I�|� |I� \ J |� n.

Additionally, we have |I�| = 2n+ 3m.
Let k > 1 and J be a k-optimal S-repair of I� such that

|I� \ J⇤|  |I� \ J |  k · |I� \ J⇤|,

then we have

N (�)
Nmax(�)

� |I�|� |I� \ J |� n
|I�|� |I� \ J⇤|� n

� |I�|� k · |I� \ J⇤|� n
|I�|� |I� \ J⇤|� n

= 1 + (1� k) · |I� \ J⇤|
|I�|� |I� \ J⇤|� n

. (1)

Since each clause has exactly three literals, we have

|I� \ J⇤| � n+ 2 · |I�|� 2n
3

.

Apply this fact in the right hand of inequality (1), the fol-
lowing inequality holds

|I� \ J⇤|
|I�|� |I� \ J⇤|� n

� 2|I�|� n
|I�|� 2n

= 2 +
3

|I�|
n � 2

.

Since |I�| = 2n+ 3m > 2n, we get

|I� \ J⇤|
|I�|� |I� \ J⇤|� n

> 2. (2)

Apply inequality (2) into inequality (1), then

N (�)
Nmax(�)

> 3� 2k

This inequality implies the problemMAX-NM-E3SAT can
be approximated with ratio 3 � 2k if a k-optimal S-repair
can be computed in polynomial time.

Suppose k < 17/16, then 3� 2k > 7/8, which implies the
MAX-NM-E3SAT problem admits an approximation with
ratio better than 7/8. This contraries to the hardness result
obtained in [32]. Therefore, k � 17/16.

Finally, the same bound can be derived in the same way
for ⌃A!B!C and ⌃A!B C . Then the lemma follows im-
mediately.

The following lemma derives the explicit lower bound for
⌃AB$AC$BC .

Lemma 2. For ⌃AB$AC$BC , it is NP-hard to compute

a (69246103/69246100 � ✏)-optimal S-repair for any ✏ > 0,
even if every tuple in the instance has weight 1.

Proof. By merging the following L↵,�-reductions given
in previous literatures,

MAX B29-3SAT �529,1 3DM [33]
3DM �1,1 MAX 3SC [33]

MAX 3SC �55,1 MECT-B [3]
MECT-B � 7

6 ,1 OPTSR(R, ⌃AB$AC$BC) [40]

we can conclude that MAX B29-3SAT can be approxi-
mated within 680/679 if a (69246103/69246100� ✏)-optimal
S-repair can be computed in polynomial time for any ✏ > 0
when ⌃ is ⌃AB$AC$BC , which is contrary to the hardness
result shown in [23].

Based on LEMMA 1 and 2, the following theorem gives a
new complexity result.

Theorem 1. Given a fixed schema R and a fixed FD set

⌃, for any ✏ > 0,

1. If OSRSucceed(⌃) returns true, then an optimal S-

repair can be computed in polynomial time.

2. If OSRSucceed(⌃) returns false, and there is a fact-

wise reduction from ⌃AB$AC$BC to ⌃, then it is NP-

hard to compute a (69246103/69246100 � ✏)-optimal

S-repair.

3. Otherwise, it is NP-hard to compute a (17/16 � ✏)-
optimal S-repair.

Proof. Case 1 has been proved by [40]. Case 2 is proved
by LEMMA 2. Case 3 is proved by LEMMA 1.
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In Figure.1(b), the two functional dependencies form the
case ⌃AB!C!B . Our result implies that no polynomial algo-
rithm could compute a solution with a constant ratio better
than 17/16 for the case in Figure.1(b).

Relation with Vertex Cover. In general, OPTSR is equiva-
lent to the weighted minimum vertex cover problem (WMVC)
if the schema is not fixed and the number of functional
dependencies is unbounded. Therefore, approximation al-
gorithms for WMVC could be directly applied to comput-
ing approximations of optimal S-repairs. On the other side,
the current best known approximation ratio for WMVC is
(2 � ⇥(1/

p
log n)) [34]. However, this is a ratio depending

on the size of input. In fact, there is no polynomial time
(2� ✏)-approximation algorithm for WMVC [36] and ✏ > 0
if the unique game conjecture [35] is true. This rules out
the possibility to compute a (2� ✏)-optimal S-repair for any
constant ✏ > 0 unless unique game conjecture is false.

4. APPROXIMATION ALGORITHMS
Three approximation algorithms are developed for OPTSR

in this section.
The first algorithm, named BL-LP, is a baseline algorithm.

It returns a (2� 1/n)-optimal S-repair. This approximation
ratio dependents on the size of input data.
The second algorithm, named TE-LP, is an improved al-

gorithm. It returns a (2 � 1/2��1)-optimal S-repair, where
� is the number of functional dependencies in ⌃ and it is a
constant.
The third algorithm, named et-TE-LP, is an extension of

algorithm TE-LP. It returns (2�1/2��1�✏)-optimal S-repair
where ✏ � 0 is still a factor independent of the data size. It
outperforms TE-LP when there are a large amount of quasi-
Turán clusters in the input database.

4.1 Algorithm BL-LP
We start from a half-integral linear programming formu-

lated for OPTSR, then show a basic rounding strategy to
obtain an approximation to optimal subset repairs, and fi-
nally analyze the performance of the algorithm.

4.1.1 A Half-Integral Linear Programming
For an input I of OPTSR, we define a 0-1 variable xi for

each tuple ti 2 I as follows,

xi =

⇢
0, if ti is in a feasible S-repair J,
1, otherwise,

OPTSR can be formulated as the following 0-1 integer
linear programming MILP,

minimize
P

ti2I wixi

s. t. xi + xj � 1, 8 ti, tj 2 I, {ti, tj} 2 ⌃,

xi 2 {0, 1}, 8 ti 2 I.

We could routinely relax MILP to a linear program where
any solution x takes value from [0, 1]n. Furthermore, every
extreme point of the linear program relaxation takes value
from {0, 1/2, 1}n as shown in [43]. This gives the following
half-integer programming MHIP,

minimize
P

ti2I wixi

s. t. xi + xj � 1, 8 ti, tj 2 I, {ti, tj} 2 ⌃,

xi 2 {0, 1/2, 1}, 8 ti 2 I.

Let x
⇤ be the optimal solution of MILP, and x

0 be the
optimal solution of MHIP, then

X

ti2I

wix
0
i 

X

ti2I

wix
⇤
i (3)

4.1.2 ⌃-Partition
To obtain a good approximation from the MHIP, we need

first to partition the input I with respect to ⌃, and then
do the rounding based on it. Intuitively, all the tuples of
I are grouped into non-empty consistent subsets in such a
way that every tuple is in exactly one consistent subset.

A ⌃-partition of instance I, say P(I,⌃), is a collection of
disjoint consistent subsets of I such that

- 8K 2 P(I,⌃),K |= ⌃,
-
S

K2P(I,⌃)
K = I,

- 8Ki,Kj 2 P(I,⌃),Ki \Kj = ;.
The size of a ⌃-partition is the number of sets in it. The

smallest ⌃-partition is preferred to do the rounding. Un-
fortunately, the size of a ⌃-partition may be as large as n.
When all the tuples in I are pairwise conflicting with each
other, the size of any ⌃-partition is n. Therefore, the size of
a ⌃-partition cannot be bounded by a constant.

We use greedy search to find a ⌃-partition. For each tuple
t 2 I, the greedy search works as follows.

1. Find an existing consistent set K 2 P such that K [
{t} |= ⌃ and put t into K.

2. If no such K can be found, create a new set K = {t}
and P(I,⌃) = P(I,⌃) [K.

3. Until all the tuples are picked into a consistent set, a
⌃-partition P(I,⌃) is obtained.

4.1.3 Approximate via ⌃-Partition-Based Rounding
A solution of MHIP can be obtained by a ⌃-partition-

based rounding. When a ⌃-partition P(I,⌃) is found, the
rounding of solution x

0 of MHIP is carried out as follows.

1. Let xi = x0i if x
0
i 6= 1/2.

2. Let xi = 0 if x0i = 1/2 and ti 2 K⇤ such that

K⇤  arg max
Kj2P(I,⌃)

��{x0i| ti 2 Kj ^ x0i = 1/2}
�� ,

otherwise, let xi = 1.
3. Output the S-repair J = {ti : xi = 0}.

The baseline algorithm BL-LP based on the rounding method
above is presented as follows.

Algorithm 1 BL-LP

Input: Instance I of R, FD set ⌃, and
⌃-partition P(I,⌃)

Output: Approximate optimal S-repair

1: Formulate the MHIP with respect to I and ⌃;
2: Solve MHIP by LP-solver to obtain a solution x

0;
3: Let J  ;;
4: Find K⇤ from P(I,⌃) such that

K⇤  arg max
Kj2P(I,⌃)

��{x0i| ti 2 Kj ^ x0i = 1/2}
�� ;

5: for each ti 2 I do

6: if x0i = 0 or (x0i = 1/2 and ti 2 K⇤) then
7: J  J [ {ti};
8: return J
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4.1.4 Performance Analysis of BL-LP

Theorem 2. Let p � 2 be the size of the ⌃-partition of

inconsistent instance I. Algorithm BL-LP returns a (2� 2/p)-
optimal S-repair in O(n2) time.

Proof. We first prove J is an S-repair. Let x
0 be the

solution of MHIP. Let ti and tj be any two tuples such that
{ti, tj} 2 ⌃. Without loss of generality, we assume x0i � x0j .
Clearly, either x0i = 1 or x0i = x0j = 1/2.

When x0i = 1, ti /2 J due to the rounding.
When x0i = x0j = 1/2, the following four statements hold

due to the rounding. First, if ti, tj /2 K⇤, ti, tj /2 J . Second,
if ti 2 K⇤, tj /2 K⇤, tj /2 J . Third, if ti /2 K⇤, tj 2 K⇤,
ti /2 J . Finally, if ti, tj 2 K⇤, ti, tj /2 J .

Therefore, J is a consistent subset. Since x0 is the optimal
solution of MHIP, J is maximal. Hence, J is an S-repair.

Now, we analyze the performance of BL-LP. Let

S1 = {x0i : ti 2 I, x0i = 1},
S1/2 = {x0i : ti 2 I, x0i = 1/2} and
SK⇤ = {x0i : ti 2 K⇤, x0i = 1/2}.

Thus, J satisfies the following inequality,

C(J, I) =
X

x0
i2S1

wix
0
i + 2

0

@
X

x02S1/2

wix
0
i �

X

x02SK⇤

wix
0
i

1

A


X

x0
i2S1

wix
0
i + 2

0

@
X

x0
i2S1/2

wix
0
i � 1/p ·

X

x0
i2S1/2

wix
0
i

1

A


X

x0
i2S1

wix
0
i + (2� 2/p) ·

X

x0
i2S1/2

wix
0
i

 (2� 2/p)
X

x0
i2S1[S1/2

wix
0
i

Let x⇤ be the optimal solution of MILP, J
⇤ be the optimal

S-repair. Due to inequality (3), we have
X

x0
i2S1[S1/2

wix
0
i =

X

ti2I

wix
0
i 

X

ti2I

wix
⇤
i = C(J⇤, I)

Therefore, C(J, I)  (2� 2/p) · C(J⇤, I).

Algorithm BL-LP takesO(�n2) time to formulate theMHIP

and find a ⌃-partition. Then, by calling the existing fast
LP-solver, it takes O(n) time to solve the MHIP and do
the rounding. Therefore, the time complexity of algorithm
BL-LP is O(n2) since � is a constant.

Remarks. The value of p in Theorem 2 depends on the
value distribution over input instance I. As mentioned above,
p may be as large as n. Hence, algorithm BL-LP may returns
a (2� o(1))-optimal S-repair. We next show algorithm TE-

LP with a much better approximation ratio.

4.2 Algorithm TE-LP
In this subsection, we develop an improved algorithm TE-

LP which returns a (2 � 1/2��1)-optimal S-repair, where
� is the constant number of functional dependencies in ⌃.
Formally, let J⇤ be an optimal S-repair, algorithm TE-LP

requires O(n2) time and returns a solution J such that

C(J⇤, I)  C(J, I)  (2� 1/2��1) · C(J⇤, I) (4)

4.2.1 Overview of algorithm TE-LP
The algorithm TE-LP consists of three main steps as shown

in algorithm 2.

Algorithm 2 TE-LP

Input: Instance I of R, FD set ⌃
Output: Approximate optimal S-repair J

1: J  ;;
2: I 0  TrimInstance(I,⌃);
3: P(I 0,⌃) FindPartition(I 0,⌃);
4: J  BL-LP (I 0, ⌃, P (I 0,⌃));
5: return J

Step 1 Trim instance. It first trims instance I by elim-
inating all the triads, where a triad is a set of three tuples
such that they are pairwise conflicting with each other.

Step 2 Find partition. After trimming o↵ all the triads
in I, I 0 ✓ I is obtained whose ⌃-partition has a constant
size. Algorithm TE-LP turns to compute such a small ⌃-
partition of I 0.

Step 3 Approximate. Algorithm TE-LP runs BL-LP on
the trimmed instance I 0, and computes an S-repair with a
better ratio based on the small ⌃-partition.

We next detail each step and prove the related theoretical
results.

4.2.2 Trim Instance by Triad Elimination
Triad. Any subset T = {ti, tj , tk} ✓ I is a triad if

- wi 6= 0, wj 6= 0, wk 6= 0,

- 9' 2 ⌃, {ti, tj} 2 ', {ti, tk} 2 ', {tj , tk} 2 '.

For example, in Figure.1(a), {r1, r2, r3} is a triad, and
there is no triad in Figure.1(b). Actually, any three of
{r1, r2, r3, r4} is a triad.

Due to the definition of S-repair, we have the following
observation.

Observation 1. For any triad T ✓ I, any S-repair J of

I contains at most one tuple of T .

By the observation, we can trim o↵ all the triads of input
instance I without a significant loss of approximation accu-
racy. Then the resultant instance has a small ⌃-partition.

Algorithm 3 TrimInstance

Input: Instance I of R and FD set ⌃
Output: Instance I 0 with no triad in it

1: H  ;;
2: while there exists a triad in I do

3: find a triad T = {ti, tj , tk} ✓ I;
4: w(T ) min{wi, wj , wk};
5: for each z 2 {i, j, k} do

6: reweight tz such that wz  wz � w(T );
7: if wz = 0 then H  H [ {tz};
8: I 0  I \H;
9: return I 0

Trim Instance. As shown in algorithm 3, TrimInstance
obtains a new instance I 0 in the following steps.

Step 1. Find a triad T ✓ I.
Step 2. Suppose T = {t1, t2, t3} and w1  w2  w3.

Reweight each tuple by reducing w1, i.e., w1  0, w2  
w2 � w1, w3  w3 � w1.
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Step 3. Remove tuples with weight 0 from instance I.
Step 4. Repeat steps 1-3 until no more triad. Instance

I 0 ✓ I is obtained.
When the iteration terminates, a new instance I 0 is ob-

tained. Obviously, some tuples in I 0 are reweighted while
the others may not. Nevertheless, the weight of each tuple
never increases.

The following lemma shows that trimming o↵ triads does
not result in a significant loss of approximation ratio.

Lemma 3. Let T = {T1, . . . , Tm} be a sequence of triads

processed by TrimInstance as shown in algorithm 3. For

each tuple tz 2 I and each 1  h  m, suppose w(h�1)

z is the

weight of tz before trimming o↵ Th, and w(h)
z is the weight

of tz after trimming o↵ Th. For each 1  h  m, let the

h-th triad Th = {ti, tj , tk} 2 T , and

w(Th) = min{w(h�1)

i , w(h�1)

j , w(h�1)

k },

then for any consistent subset J of I, we have

X

Th2T

2w(Th) 
X

ti2I\J,w
(m)
i <wi

⇣
wi � w(m)

i

⌘
.

Proof. If all triads of T are disjoint, this lemma holds
immediately. In case of the triads of T are not necessarily
disjoint, we prove the lemma by induction.

Base case 1. When |T | = 0, there is no triad in I, and
hence no tuple is reweighted. Then, we have

X

Th2T

2w(Th) = 0 
X

ti2I\J⇤,w(0)
i <wi

⇣
wi � w(0)

i

⌘
= 0

Base case 2. When |T | = 1, only one triad is processed.
Let T = {T}, T = {t1, t2, t3} and w(T ) = min{w1, w2, w3}.
Thus,

X

Th2T

2w(Th) = 2w(T ).

At the same time, Observation 1 states that any consis-
tent subset J of I contains at most one tuple of T . Hence,
I \ J contains at least two tuples of T . Let t2, t3 2 I \ J .

After trimming o↵ T , tuples t2 and t3 are reweighted as
w(1)

2
= w2 � w(T ) and w(1)

3
= w3 � w(T ), that is

X

Th2T

2w(Th) = 2w(T ) = (w2 � w(1)

2
) + (w3 � w(1)

3
)

Therefore,
X

Th2T

2w(Th) 
X

ti2I\J,w
(1)
i <wi

⇣
wi � w(1)

i

⌘
.

Inductive step. Suppose the lemma holds for any |T | < m.
Consider |T | = m. Without loss of generality, let T1 =
{t1, t2, t3} be the first triad trimmed o↵ by TE-LP, and sup-
pose w1  w2  w3. Thus, w(T1) = w1 = min{w1, w2, w3}
and we have

X

Th2T

2w(Th) = 2w1 +
X

Th2T \{T1}

2w(Th) (5)

After trimming o↵ T1 from I, a new instance I(1) is obtained.
I(1) = I \ {t1} if w2 > w1, w3 > w1. I(1) = I \ {t1, t2}, if
w2 = w1, w3 > w1. I(1) = I \ {t1, t2, t3}, if w2 = w1, w3 =
w1.

Let J be an arbitrary consistent subset of I, J \ I(1) is
still a consistent subset of I(1). Now, |T \ {T1}| < m. Due
to the assumption,

X

Th2T \{T1}

2w(Th) 
X

ti2I(1)\J,w
(m)
i <w

(1)
i

⇣
w(1)

i � w(m)

i

⌘

Since only tuples of T1 are reweighted, we have

w(1)

i =

⇢
wi � w1, i 2 {1, 2, 3},
wi, otherwise,

By inequality (5), we have
X

Th2T

2w(Th) = 2w1 +
X

Th2T \{T1}

2w(Th)

 2w1 +
X

ti2I(1)\J,w
(m)
i <w

(1)
i

⇣
w(1)

i � w(m)

i

⌘

 2w1 +
X

ti2I\J,w
(m)
i <w

(1)
i

⇣
w(1)

i � w(m)

i

⌘

= 2w1 +
X

ti2I\J,

w
(m)
i <wi

⇣
wi � w(m)

i

⌘
� 3w1


X

ti2I\J,w
(m)
i <wi

⇣
wi � w(m)

i

⌘

The statement also holds true when |T | = m. This estab-
lishes the inductive step.

Intuitively, after trimming o↵ all the triads from I, the
loss of the cost of any S-repair is at most

P
Th2T 3w(Th).

Lemma 3 states that the loss of the cost of an optimal S-
repair is at least

P
Th2T 2w(Th). Hence, the lost of the

approximation ratio does not exceed 3/2 after the trim.

4.2.3 Find A ⌃-Partition with Constant Size
After trimming o↵ all the triads in I, a new instance I 0 is

obtained. We prove that I 0 has a ⌃-partition with at most
2� consistent subsets. Note that, constant � is the number
of functional dependencies in ⌃.

Let P(I,⌃) be a ⌃-partition of I with respect to ⌃, then
it is said to be a 2�-⌃-partition if

|P(I,⌃)|  2�

The following algorithm is developed to find a 2�-⌃-Partition.

Algorithm 4 FindPartition

Input: Instance I of R and FD set ⌃
Output: A 2�-⌃-Partition P(I,⌃)

1: Let K1  I and Kp  ;, 82  p  2�;

2: P(I,⌃) := {Kp : 1  p  2�};
3: for each ' 2 ⌃ do

4: for each non-empty set K 6= ; 2 P(I,⌃) do
5: Find an empty set K0 = ;;
6: while t 2 K do

7: if K0 [ {t} |= ' then

8: K0  K0 [ {t}, K  K \ {t};
9: return P(I,⌃)
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Given any instance I with no triad, FindPartition itera-
tively partitions I as follows.

Step 1. Initially, P(I,⌃) = {I}.
Step 2. In the i-th iteration, each K 2 P(I,⌃) is par-

titioned into at most two disjoint sets which are consistent
with respect to the i-th functional dependency 'i 2 ⌃.

Step 3. FindPartition terminates until all the functional
dependencies are considered.

Lemma 4. Algorithm 4 returns a 2�-⌃-partition of the

input I with no triad in O(n2) time.

Proof. For each 1  i  �, let 'i be the i-th functional
dependency to be considered, and ⌃

(j) = {'i : 1  i  j}.
Note that, ⌃(0) = ; and ⌃

(�) = ⌃.
Since there are 2� sets in P(I,⌃) returned by algorithm 4,

we only need to prove that each setK 2 P(I,⌃) is consistent
with respect to ⌃

(i) after the i-th iteration.
After the (i� 1)-th iteration, every set K 2 P(I,⌃) satis-

fies K |= ⌃
(i�1). Now, suppose after the i-th iteration, there

is a set K 2 P(I,⌃) such that K 2 ⌃
(i). There must be at

least two t, t0 2 K such that {t, t0} 2 'i. At this point, there
must be another tuple t00 2 K0 such that {t, t00} 2 'i and
{t0, t00} 2 'i. Otherwise, either t or t0 should be put into K0.
Now, a triad {t, t0, t00} is found in I, it contradicts. Hence,
every set K 2 P(I,⌃) satisfies K |= ⌃

(i) after the i-th it-
eration. Therefore, K |= ⌃

(�) = ⌃ for each K 2 P(I,⌃)
returned by algorithm 4.

4.2.4 Performance Analysis of TE-LP

Theorem 3. AlgorithmTE-LP returns a (2�1/2��1)-opti-
mal S-repair J in O(n2) time, and J satisfies

C(J⇤, I)  C(J, I)  (2� 1/2��1) · C(J⇤, I) (6)

Proof. After trimming o↵ all the triads from I, an in-
stance I 0 is obtained. The cost of solution J is

C(J, I) = C(J, I\I 0) + C(J, I 0) (7)

Let T = {T1, . . . , Tm} be the sequence of triads processed

by TE-LP. For each tuple ti 2 I 0, let w(m)

i be the weight of
ti after trimming all the m triads.

First, let us consider C(J, I \ I 0) in equation (7). All the
tuples in I \ I 0 have weight 0. The weight of any tuple ti is
decreased only when trimming o↵ some triad Th, containing
ti, in T . Hence,

C(J, I \ I 0) =
X

ti2I\I0
wi 

X

Th2T

3w(Th)  3/2
X

Th2T

2w(Th)

Let J⇤ be an optimal S-repair of I. By lemma 3,

X

Th2T

2w(Th) 
X

ti2I\J⇤,w(m)
i <wi

⇣
wi � w(m)

i

⌘

Therefore,

C(J, I \ I 0)  3/2
X

ti2I\J⇤,w(m)
i <wi

⇣
wi � w(m)

i

⌘

Note that, 8ti 2 (I \ I 0) \ J⇤, w(m)

i = 0. Therefore, the left
part can be written as

C(J, I\I 0)  3/2

0

BBBB@

X

ti2(I\I0)\J⇤

wi +
X

ti2I0\J⇤,

w
(m)
i <wi

⇣
wi � w(m)

i

⌘

1

CCCCA
(8)

Second, let us consider C(J, I 0) in equation (7). Let K⇤

be an optimal S-repair of I 0. Thus,

C(K⇤, I 0)  C(J⇤, I 0)

Let r = 2� 1/2��1, then by theorem 2,

C(J, I 0)  r · C(K⇤, I 0)  r · C(J⇤, I 0) = r ·
X

ti2I0\J⇤

w(m)

i

Since
X

ti2I0\J⇤

w(m)

i =
X

ti2I0\J⇤,

w
(m)
i <wi

w(m)

i +
X

ti2I0\J⇤,

w
(m)
i =wi

wi,

we have

C(J, I 0)  r ·

0

BBBB@

X

ti2I0\J⇤,

w
(m)
i <wi

w(m)

i +
X

ti2I0\J⇤,

w
(m)
i =wi

wi

1

CCCCA
(9)

Since 3/2  r and inequalities (8), (9) and (7), we have the
bound

C(J, I)  r ·

0

BBBB@

X

ti2(I\I0)\J⇤

wi +
X

ti2I0\J⇤,

w
(m)
i <wi

wi +
X

ti2I0\J⇤,

w
(m)
i =wi

wi

1

CCCCA

= r ·

0

@
X

ti2(I\I0)\J⇤

wi +
X

ti2I0\J⇤

wi

1

A

= r · C(J⇤, I)

= (2� 1/2��1) · C(J⇤, I)

Therefore, J is a (2� 1/2��1)-optimal S-repair.

Algorithm TE-LP takes O(�n2) time to formulate MHIP

and find a ⌃-partition. Then, by calling the existing fast
LP-solver, it takes O(n) time to solve the MHIP and do
the rounding. Therefore, the time complexity of algorithm
TE-LP is O(n2) since � is a constant.

Remarks. The approximation ratio of TE-LP only depends
on the number of functional dependencies other than the
data size. For instance, it will return a 1.5-optimal S-repair
for the cases ⌃A!B!C , ⌃A!B C and ⌃AB!C!B . And it
will return a 1.75-optimal S-repair for the case ⌃AB$AC$BC ,
no matter how large the data is.

4.3 Algorithm et-TE-LP
TE-LP can be extended to a more e�cient algorithm et-

TE-LP when the input instance contains a large portion of
disjoint quasi-Turán clusters defined as follows.

Given an integer h > 1, a subset K ✓ I is an h-quasi-
Turán cluster if there exists a functional dependency of ⌃,
say ' : X! Y, such that
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1. K consists of all tuples of I sharing the same X-value,
and

2. K satisfies

X

ti2K

wi � (h+ 1) ·max
y

8
<

:
X

ti2K,ti[Y]=y

wi

9
=

;

Obviously, the elmination of an h-quasi-Turán cluster may
lead to a loss of the approximation ratio, but the loss can
be bounded by a factor depending on h.

Example. Consider BrownVotes shown in Figure.1(a),
K = {r1, r2, r3, r4} is a 2-quasi-Turán cluster, becuase it
consists of all tuples sharing the same value of County, and
satisfies the constraint: w1 +w2 +w3 +w4 � (2+1)⇥w3 =
3 ⇥ 560, since w3 = 560 is larger than the other three
weights. Any optimal S-repair should drop the weight of
2197 � 560, while any S-repair disjoint with K drops the
weight 2197, therefore, the ratio loss is 560/2197 which is
less than 1/3.

Algorithm et-TE-LP iteratively calls TE-LP to compute
the approximate S-repair. In each iteration, it first elimi-
nate all the disjoint h-quasi-Turán clusters from the input
instance, and then calls TE-LP to compute an approximate
S-repair. At last, the best approximate S-repair among those
already computed is returned. The procedure of et-TE-LP

is shown in algorithm 5.

Algorithm 5 et-TE-LP

Input: Instance I of R and FD set ⌃
Output: Approximate optimal S-repair J

1: Let J  ; and h = 2;
2: for each h < n do

3: I 0  EliminateQuasiTuránClusters(I,⌃, h);
4: J 0  TE-LP(I 0,⌃);
5: if J 0 is better than J then J  J 0;
6: return J

4.3.1 Performance Analysis of et-TE-LP
Let I(h)

1
be the set of all tuples eliminated by Eliminate-

QuasiTuránClusters in the h-th iteration and I(h)
2

= I�I(h)
1

for any integer h > 1. Let J(h) be the approximate S-repair
returned by calling TE-LP in the h-th iteration of et-TE-LP.
Obviously, I(h)

1
✓ I \ J(h). We define ⇢(h) as

⇢(h) =

P
ti2I

(h)
1

wi

P
ti2I\J(h) wi

=
C(J, I(h)

1
)

C(J(h), I(h)
1

) + C(J, I2)
.

The following theorem shows the performance of et-TE-LP.

Theorem 4. Algorithm et-TE-LP returns a (2�1/2��1�
✏)-optimal S-repair in O(n3) time, where

✏ = max
h

{(1� 1/h� 1/2��1) · ⇢h} � 0

for 1 < h < n and ⇢h � 0.

Proof. Let J⇤(h)
1

be the optimal S-repair of I(h)
1

, then

C(J(h), I(h)
1

)

C(J⇤(h)
1

, I(h)
1

)
 h+ 1

h

Let J⇤(h)
2

be the optimal S-repair of I(h)
2

, then

C(J(h), I(h)
2

)

C(J⇤(h)
1

, I(h)
2

)
 2� 1

2��1

If J⇤ is the optimal S-repair of I, then

C(J⇤(h)
1

, I(h)
1

) + C(J⇤(h)
2

, I(h)
2

)  C(J⇤, I).

Now, the bound of approximation ratio is

C(J(h),I)
C(J⇤, I)


h+1

h ·C(J⇤(h)
1

, I(h)
1

) + (2� 1

2��1 )·C(J⇤(h)
2

, I(h)
2

)

C(J⇤(h)
1

, I(h)
1

) + C(J⇤(h)
2

, I2)

 2� 1
2��1

+

�
h+1

h � (2� 1

2��1 )
�
· C(J, I(h)

1
)

C(J(h), I(h)
1

) + C(J, I2)

 2� 1/2��1 +

✓
h+ 1
h
� (2� 1

2��1
)

◆
· ⇢h

= 2� 1/2��1 � (1� 1/h� 1/2��1) · ⇢h.

Since algorithm 5 finally selects the best solution,

C(J(h), I)
C(J⇤, I)

 2� 1/2��1 �max
h

{(1� 1/h� 1/2��1) · ⇢h}.

In each iteration, algorithm et-TE-LP takesO(n log n) time
to eliminate all the h-quasi-Turán clusters by sorting tuples
in I for each functional dependency. And et-TE-LP takes
O(n2) time to run TE-LP in each iteration. Since there are
n iterations in total, the time complexity of algorithm et-

TE-LP is O(n3).

Remarks. As we can see, the performance of et-TE-LP

depends on the characteristics of input rather than the data
size. et-TE-LP has an approximation ratio much better than
TE-LP for a non-zero ⇢(h) where 1 < h < n.

5. EXPERIMENTS
We conducted experiments with both real-life and syn-

thetic data to examine BL-LP, TE-LP and et-TE-LP. Given
the schema and constraint set, both the e�ciency and the
accuracy of the three algorithms were evaluated by varying
data. In addition, taking consistent query answering as an
example, we discovered the e↵ectiveness of our algorithms
in the real-world applications.

5.1 Experimental Settings
Experiments are conducted on a CentOS 7 machine with

eight 16-core Intel Xeon processors and 3072GB of memory.
Datasets. All the datasets used in the experiments were
collected from real-world applications.

PROCP was an instance of the schema Procurement Plan
shown in Figure.1(b). The data in PROCP are the online
product reviews collected from amazon

2 and some other on-
line sales3. The number of tuples was varied from 10K to
40K. The FD set ⌃1 consists of the two functional depen-
dencies shown in Figure.1(b).
ORDER was synthesized by propagating PROCP with zip,
area code

4 and street information
5 for US states. The num-

ber of tuples was varied from 10K to 40K. The FD set ⌃2

consists of {Area, Phone} ! {Street, City, State}, {ID} !
{Name, Price}, {Zip} ! {City, State}, {Street, City} !
{Zip}.
2https://data.world/datafiniti/consumer-reviews-of-
amazon-products
3https://data.world/datafiniti/grammar-and-online-
product-reviews
4http://www.geonames.org/
5http://results.openaddresses.io/
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DBLP was extracted from dblp6 of schema (title,authors,
year,publisher,pages,ee,url), which has 40K tuples. The FD
set ⌃3 includes {url}! {title}, {title}! {author}, {ee}!
{title}, {year, publisher, pages} ! {title, ee, url}.

One can easily verify that ⌃1, ⌃2 and ⌃3 cannot be sim-
plified further by procedure OSRSucceed [40]. Hence, the
problem is NP-hard in each of these cases.

Injecting Inconsistency. PROCP was used to simulate
the procurement plan refinement in marketing, which is al-
ready an inconsistent database with respect to ⌃1. Incon-
sistent versions of ORDER and DBLP were generated by
adding noises only to the attributes that are related to some
functional dependencies. We refer to the initial consistent
data of as I0 and refer to the inconsistent version as I1. The
noise is controlled by the noise rate ⇢. We introduced two
types of noises: typos and values from active domain.

Weights. In accordance to the cost model defined in Section
2.1, we assign weights to the tuples in the following way. A
tuple is called a dirty tuple that there is some attribute
value of t in I1 is di↵erent from its counterpart in I0. For
dirty tuple t of ORDER and DBLP, a random weight w(t)
in [0, a] was assigned to t. For the other tuples t of ORDER
and DBLP, a weight w(t) in [b, 1] was selected randomly
to t. This follows the assumption commonly used in data
repairing that the weight of a dirty tuple is usually slightly
lower than the weight of other tuples. In the experiments,
we set a = 0.3 and b = 0.7. For PROCP, in the e�ciency
and accuracy testing, customer rating was treated as the
tuple weight, which is a number in [0, 5]. In the e↵ectiveness
test, the price is also treated as the tuple weight which may
contribute to the results of aggregation queries.

Methods. We have implemented algorithms BL-LP, TE-LP
and et-TE-LP. As a basic tool, GLPK-LP/MIP-Solver7 was
used to solve large-scale linear programming. We also have
implemented L2VC as a tool to obtain an upper bound line
of approximation, which is the 2-approximation algorithm
for weighted minimum vertex cover given in [8]. All the
algorithms were implemented in C++.

Metrics. To test the accuracy, L2VC was used as an upper
bound of optimal S-repairs. To examine the e�ciency, we
ran each algorithms 10 times at each dataset size and plotted
the average running time. To evaluate the e↵ectiveness of
our algorithms, we issued 100 pairs of aggregation queries
similar to the examples shown in Figure.1(a). Each query
is either SUM on attribute price of PROCP and ORDER,
or SUM on attribute pages of DBLP. For each query pair
(Q,Q0), either lub (Q)  glb (Q0) or lub (Q) > glb (Q0) holds.
We used our algorithms to help deciding such relationship.
Specifically, let J̃ be the approximate optimal S-repair, r be
the approximation ratio of the algorithm used to compute
J̃ , and W (Q) is the maximum value of the query result. We
compute the estimation of the aggregation result of Q by

flub (Q) = W (Q)� C(J̃)
r

.

Note that dividing r is to get rid of the false positive. To
obtain the truth-ground, we employed the FPT algorithm
[17] for weighted minimum vertex cover and another FPT
algorithm [49] for weighted maximum minimal vertex cover

6https://dblp.org/xml/
7https://www.gnu.org/software/glpk/

to compute the exact lub and glb for the query result. Let
Yi be a 0-1 variable such that

Yi =

8
<

:

0, if lub (Qi)  glb (Q0i) and flub (Qi)  glb (Q0i) ,

0, if glb (Qi) � lub (Q0i) and glb (Qi)  flub (Q0i) ,
1, otherwise.

Let Y =
P

100

i=1
Yi be the number of correct decisions made

by our algorithms. Due to the time and space limitation
of the two FPT algorithms, W (Q) was bounded by 120 by
restricting the range of each aggregation in our experiments.
The gap between two query results is defined as

gap(Q,Q0) = max

⇢
lub(Q)
glb(Q0)

,
glb(Q0)
lub(Q)

�

to help quantify the di�culty of query answering.

5.2 Experimental Results
We report our findings concerning about the performance

and e↵ectiveness of our algorithms.

(a) procp (b) order and ⇢ = 10%

(c) dblp and ⇢ = 10% (d) dblp and ⇢ = 20%
Figure 2: The accuracy of approximation algorithms

Accuracy. We first show the accuracy of BL-LP, TE-LP
and et-TE-LP by varying the number of tuples and noise
rate. The x-axis is the number of tuples. The left y-axis
is the cost of approximate S-repairs, and the right y-axis
is the percent of triads or quasi-Turán clusters processed
during the procedure. In Figure 2, we ran them together
with the upper bound L2VC on datasets consisting of 10K
to 40K tuples by a step of 2K with noise rate ⇢ ranging from
5% to 20%. TE-LP and et-TE-LP outperformed BL-LP and
L2VC on PROCP, i.e., the gap in between is larger than
the other cases. This is also consistent with the theoretical
result, that is, their ratio bounds are less than 3/2 which are
much better than 2, recall that ⌃1 contains two functional
dependencies. In theory, TE-LP and et-TE-LP should not
perform as well on PROCP with ⌃1, since ⌃2 and ⌃3 contain
more constraints. However, the theoretical results we proved
are worst-case approximation ratios. In our experiments,
the accuracy was not necessarily better when the FD set
⌃ is smaller, because the accuracy is also a↵ected by other
factors which cannot be controlled by us, such as the ratio of
the number of 1-variables to the number of 1/2-variables in
the solution returned by LP solver and so on. Nevertheless,
on average, TE-LP and et-TE-LP outperformed BL-LP and
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L2VC in our experiments, which is evident from their average
distances to BL-LP and L2VC.

TE-LP performed much better than L2VC and BL-LP on
ORDER and DBLP, as shown in Figure.2(b), 2(c) and 2(d),
since a large percentage of noise was trimmed o↵ as triads.
et-TE-LP was behaving better than L2VC and BL-LP when-
ever the percentage of disjoint quasi-Turán-clusters is large.
TE-LP and et-TE-LP were not doing very well on PROCP,
because the size of greedy ⌃-partition was always small, so
that the results were not improved largely by trimming o↵
triads or quasi-Turán-clusters. Moreover, et-TE-LP is even
better than TE-LP when the percentage of disjoint quasi-
Turán-clusters processed by et-TE-LP is much larger than
that of triads processed by TE-LP. In addition, such two
percentages always vary with the noise rate ⇢. We can see
that the outputs of TE-LP and et-TE-LP were getting bet-
ter when ⇢ became large. As we can see, et-TE-LP is not
significantly better than TE-LP, however, both of them are
much better than the baseline algorithms in most cases.

(a) procp (b) order and ⇢ = 10%

(c) dblp and ⇢ = 5% (d) dblp and ⇢ = 15%

Figure 3: The running time of algorithm

E�ciency. We evaluated the e�ciency of our algorithms
by varying the number of tuples and noise rate. The results
for the three datasets are shown in Figure.3(a)-(d). The left
x-axis is the number of tuples, the left y-axis is the run-
ning time in seconds, and the right y-axis is the percent
of triads or quasi-Turán clusters processed during the pro-
cedure. Since L2VC does not call the LP solver, it took a
running time lower than our algorithms by loosing the ac-
curacy. In theory, et-TE-LP took the largest time cost to
compute a good approximation. This is because it takes a
lot of time to find h-quasi-Turán clusters for every possible
h. In practice, after several iterations, it terminated once h
is large enough, and there is almost no cluster with a large
h value, therefore, et-TE-LP was almost linear with TE-LP.
Observe that et-TE-LP sometimes performed very e�ciently
like TE-LP. This is because the disjoint quasi-Turán clusters
covers most of the inconsistencies. TE-LP took nearly the
same time cost with BL-LP to compute a good approximate
S-repair since it is very fast to do the trimming and those
triads covers most of the inconsistencies. In addition, as
shown in Figure.3(b), TE-LP and et-TE-LP saved more time
when ⇢ = 10% since the percentages of triads and quasi-
Turán clusters could be processed are larger than the cases
with smaller ⇢.

(a) 1.2<Gap(Q,Q0)<1.3

(b) Gap(Q,Q0)<1.12 (c) Gap(Q,Q0)>1.5

Figure 4: Number of correct answers with ⇢ = 10%

E↵ectiveness. We evaluated the precision of our algo-
rithms to help to answer aggregation queries posed on in-
consistent databases. The results for dataset PROCP are
given in Figure.4. In the three figures, the x-axis is for the
combination of dataset and algorithms, and the y-axis is for
precision. We set the noise rate at 10%. The three figures
show that algorithm TE-LP and et-TE-LP are more e↵ective
in average. Specifically, Figure.4(c) and 4(a) imply that
our algorithms with better ratios returned more dependable
answers (i.e., high precision) for those aggregation queries.
When the gap is large (larger than 1.5 in Figure.4(c)), all
the algorithms performed well since the it is easy to distin-
guish lub(Q) and glb(Q0). When the gap is not very small
(around 1.2⇠1.3 in Figure.4(a)), both TE-LP and et-TE-LP

outperformed BL-LP and L2VC much better. The reason
is that the gap is nearly the approximation ratio of TE-LP

and et-TE-LP but much lower than that of the other two.
Indeed, however, all the algorithms proposed in this paper
have a low precision for those query pairs with a small gap
(less than 1.12 in Figure.4(b)). In such cases, the gap is
nearly 0, it is hard to distinguish the values of lub(Q) and
glb(Q0) by using an approximation algorithm unless an exact
algorithm. Nevertheless, when the gap is not very small, the
union of TE-LP and et-TE-LP are always the current best
choice for answering aggregation queries.

6. CONCLUSIONS
Optimal subset repairs are NP-hard to be approximated

within 17/16 for most of the polynomial intractable cases.
For the other cases, the problem approximating optimal
subset repairs within 69246103/69246100 is also NP-hard.
Optimal subset repairs can be approximated within a ra-
tio (2 � 1/2��1) if given � functional dependencies. It is
a constant better than 2. Our results give a way to com-
pute optimal S-repairs e�ciently with both theoretical and
empirical guarantee. However, there is still a large gap be-
tween the upper bound and the lower bound derived in this
paper. Tighter bounds on computing optimal S-repairs are
suggested in the future work.
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