Aria: A Fast and Practical Deterministic OLTP Database

YiLuT, Xiangyao Yu 2, Lei Cao 1, Samuel Madden
I\Massachusetts Institute of Technology, Cambridge, MA, USA
QUmversity of Wisconsin-Madison, Madison, WI, USA

{yilu,lcao,madden}@csail.mit.edu, yxy@cs.wisc.edu

ABSTRACT

Deterministic databases are able to efficiently run transac-
tions across different replicas without coordination. How-
ever, existing state-of-the-art deterministic databases require
that transaction read/write sets are known before execution,
making such systems impractical in many OLTP applica-
tions. In this paper, we present Aria, a new distributed and
deterministic OLTP database that does not have this lim-
itation. The key idea behind Aria is that it first executes
a batch of transactions against the same database snapshot
in an execution phase, and then deterministically (without
communication between replicas) chooses those that should
commit to ensure serializability in a commit phase. We also
propose a novel deterministic reordering mechanism that al-
lows Aria to order transactions in a way that reduces the
number of conflicts. Our experiments on a cluster of eight
nodes show that Aria outperforms systems with conven-
tional nondeterministic concurrency control algorithms and
the state-of-the-art deterministic databases by up to a factor
of two on two popular benchmarks (YCSB and TPC-C).

PVLDB Reference Format:

Yi Lu, Xiangyao Yu, Lei Cao and Samuel Madden. Aria: A Fast
and Practical Deterministic OLTP Database. PVLDB, 13(11):
2047-2060, 2020.

DOI: https://doi.org/10.14778/3407790.3407808

1. INTRODUCTION

Modern database systems employ replication for high avail-
ability and data partitioning for scale-out. Replication al-
lows systems to provide high availability, i.e., tolerance to
machine failures, but also incurs additional network round
trips to ensure writes are synchronized to replicas. Parti-
tioning across several nodes allows systems to scale to larger
databases. However, most implementations require the use
of two-phase commit (2PC) [37] to address the issues caused
by nondeterministic events such as system failures and race
conditions in concurrency control. This introduces addi-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 11

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3407790.3407808

2047

tional latency to distributed transactions and impairs scal-
ability and availability (e.g., due to coordinator failures).

Deterministic concurrency control algorithms [18, 19, 51,
52] provide a new way of building distributed and highly
available database systems. They avoid the use of expen-
sive commit and replication protocols by ensuring different
replicas always independently produce the same results as
long as the same input transactions are given. Therefore,
rather than replicating and synchronizing the updates of
distributed transactions, deterministic databases only have
to replicate the input transactions across different replicas,
which can be done asynchronously and often with much less
communication. In addition, deterministic databases avoid
the use of two-phase commit, since they naturally eliminate
nondeterministic race conditions in concurrency control and
are able to recover from system failures by re-executing the
same original input transactions.

The state-of-the-art deterministic databases, BOHM [19],
PWV [18], and Calvin [52], achieve determinism through
dependency graphs or ordered locks. The key idea in BOHM
and PWYV is that a dependency graph is built from a batch of
input transactions based on the read/write sets. In this way,
the database can produce deterministic results as long as the
transactions are run following the dependency graph. The
key idea in Calvin is that read /write locks are acquired prior
to executing the transaction, and according to the ordering
of input transactions. A transaction is assigned to a worker
thread for execution once all needed locks are granted. As
shown in the left side of Figure 1, existing deterministic
databases perform dependency analysis before transaction
execution, which requires that the read/write set of a trans-
action be known a priori. For very simple transactions, e.g.,
that only access to records via equality lookups on a primary
key, this can be done easily. However, in reality, many trans-
actions access records through complex predicates over non-
key attributes; for such queries, these systems must execute
the query at least twice: once to determine the read/write
set, once to execute the query, and possibly more times if
the pre-determined read/write set changes between these
two executions. In addition, Calvin requires the use of a
single-threaded lock manager per database partition, which
significantly limits the concurrency it can achieve.

In this paper, we propose a new system, Aria, to address
the limitations in previous deterministic OLTP databases
with a fundamentally different mechanism, which does not
require any analysis or pre-execution of input transactions.
Aria runs transactions in batches. The key idea is that each
replica runs an identical batch of transactions on an iden-

BOHM/PWV/Calvin — read/write set required

Step 1: dependency Step 2: blocking
analysis parallel execution

Sa/ O\

-

Aria — no need to know read/write set

Step 1: non-blocking
parallel execution

—

Step 2: conflict detection

X
Sa O\

—

Figure 1: Comparison of Aria, BOHM, PWYV, and Calvin

tical database snapshot, and resolves conflicts in the same
way, ensuring deterministic execution. As shown in the right
side of Figure 1, each replica reads from the current snapshot
of the database and executes all transactions to completion
in an ezecution phase, and then chooses deterministically
which transactions should commit and which should abort to
ensure serializability in a commit phase. For good scalability
and high transaction throughput, the serializability check in
the commit phase is performed in parallel on each transac-
tion independently and no central coordination is required.
Aborted transactions will be scheduled for re-execution at
the beginning of the next batch. In this way, Aria can en-
force determinism without needing to know the read or write
sets of input transactions in advance. Note that although
optimistic concurrency control (OCC) algorithms [29] also
resolve conflicts after execution, transactions in OCC can
commit in a non-deterministic order depending on schedul-
ing variations, which is fundamentally different from Aria.

We also introduce a novel deterministic reordering mech-
anism that brings a new opportunity for reducing conflicts
and improving the throughput of Aria. Unlike existing de-
terministic databases [19, 51] that execute transactions strict
ly following the ordering of the input, our reordering mecha-
nism allows Aria to commit transactions in an order that re-
duces aborts. Furthermore, the reordering is done in parallel
as a part of the process of identifying aborted transactions
and imposes minimal execution overhead.

Our evaluation on a single multicore node shows that Aria
outperforms conventional nondeterministic concurrency con-
trol algorithms and state-of-the-art deterministic databases
by a large margin on YCSB [11]. Further, Aria is able to
achieve higher transaction throughput by up to a factor of
three with deterministic reordering on a YCSB workload
with skewed access. On a subset of TPC-C [1], in which
more conflicts exist, Aria achieves competitive performance
to PWYV and higher performance than all other deterministic
databases. Our evaluation on a cluster of eight nodes run-
ning on Amazon EC2 shows that Aria outperforms Calvin
by up to a factor of two on YCSB and TPC-C. Finally, we
show Aria achieves near linear scalability to 16 nodes.

In summary, we make the following major contributions:

e We present Aria, a fast and practical deterministic
OLTP database. It supports deterministic transaction
execution without any prior knowledge of the input
transactions.

We introduce a deterministic reordering scheme to re-
duce conflicts during the commit phase in Aria.

We describe an implementation of Aria and report a
detailed evaluation on two popular benchmarks. Over-
all, Aria outperforms the state-of-the-art deterministic
databases by a large margin on a single node and up
to a factor of two on a cluster of eight nodes.

2048

2. BACKGROUND

In this section, we summarize the challenges with using
replication as a means to achieve high availability, with re-
spect to both existing nondeterministic and deterministic
concurrency control protocols.

2.1 Replication in Nondeterministic Databases

Highly available systems normally replicate data across
multiple machines, such that the system still provides some
degree of availability when one or more servers fail. We
broadly classify existing replication strategies into two cat-
egories: (1) asynchronous replication [10, 14], and (2) syn-
chronous replication [27]. In asynchronous replication, data
is asynchronously propagated between replicas, meaning a
transaction can commit before writes arrive at all repli-
cas. Asynchronous replication reduces the latency to com-
mit transactions, but may suffer from data loss when fail-
ures occur. Instead, in synchronous replication, writes are
propagated across all replicas before a transaction commits.
Synchronous replication increases latency but ensures strong
consistency between replicas and has been a recent focus of
the research community [12, 35, 62].

Most transactional systems provide serializability, which
requires transactions to produce the results following some
serial order. Most concurrency control algorithms (e.g., op-
timistic concurrency control [29] and strict two-phase lock-
ing [17]) are nondeterministic, meaning different replicas
may diverge when given the same input, because of timing
and performance differences on replicas executing transac-
tions in parallel. As a result, some care is needed to guaran-
tee consistency between replicas; most replication protocols
adopt either a primary-backup scheme [7] or a state ma-
chine replication scheme [30]. In a primary-backup system,
the primary runs transactions and ships the results to one or
more backups. The backups apply the changes in order to
the database and periodically acknowledge the writes back
to the primary. A transaction can commit after the writes
have been acknowledged by backups. In systems using state
machine replication, transactions can run on any replica,
but read/write operations need to be sequenced using con-
sensus protocols (e.g., Paxos [30] or Raft [42]). Thus, non-
deterministic systems are able to stay consistent but suffer
from several limitations, including needing multiple rounds
of synchronous communication to commit transactions, and
a need to synchronize typically large output values rather
than smaller input operations.

2.2 Deterministic Concurrency Control

Deterministic concurrency control algorithms [51] were
proposed to address these challenges. In a deterministic
database, each replica runs the same set of ordered transac-
tions deterministically, and converts the database from the

same initial state to the same final state. Typically, in these
systems, transactions first go through a sequencing layer
before execution. This sequencing layer acts as the middle
layer between clients and the database, and decides a total
ordering of transactions submitted by clients. Usually the
sequencing layer runs over multiple machines to avoid hav-
ing a single point of failure and achieves consensus through
a replicated log built on top of Paxos [30] or Raft [42] in-
stances. To avoid non-determinism (e.g., due to system
calls to get the current time or generate a random number),
the sequencing layer pre-processes incoming transactions to
eliminate this non-determinism by replacing such function
calls with constant values before passing to replicas. As a re-
sult, replicas do not need to communicate with one another
to remain consistent, making replication simpler and more
efficient. In addition, deterministic databases also reduce
the overhead of distributed transactions by avoiding two-
phase commit (2PC) [37]. In nondeterministic databases,
2PC is used to ensure that the participants in a distributed
transaction reach a single commit/abort decision. In con-
trast, the failure of one participating node does not affect
the commit/abort decision in deterministic databases [51].

More recently, deterministic protocols based on depen-
dency graphs [18, 19] or ordered locks [51, 52] have been
proposed to provide more parallelism while ensuring deter-
minism. Although the systems above take an important step
towards building deterministic databases, they still have one
limitation that makes them impractical: the dependency
analysis requires that the read/write sets of a transaction
(i.e., a collection of primary keys) must be known a pri-
ori before execution. For transactions with secondary index
lookups or other data dependencies, it may not be possi-
ble to determine reads/writes in advance. In such cases,
a transaction must run over the database to determine its
read/write sets. The transaction then aborts and uses these
pre-computed read/write sets for re-execution. However, the
transaction may be executed multiple times if any key in the
read/write sets changes during this re-execution. We next
discuss why the design of existing deterministic databases
can lead to undesirable performance.

BOHM, a single-node deterministic database, runs trans-
actions in two steps. In the first step, it inserts placeholders
for the primary keys in each input transaction’s write set
along with the transaction ID (TID) into a multi-version
storage layer. In the second step, a transaction must read
a particular version for each key in its read set — the one
with the largest TID up to the transaction’s TID — to en-
force determinism. When all the keys in a transaction’s
read set are ready, the transaction can execute and update
the placeholders that were inserted earlier. To avoid con-
tention when inserting placeholders into the storage layer,
each worker thread in BOHM scans all input transactions
to look for the primary keys for update in its own partition.

PWYV, a single-node deterministic database, first decom-
poses each input transaction into a set of pieces (i.e., sub-
transactions) such that each piece only reads from or writes
into one partition. It next builds a dependency graph, in
which an edge indicates conflicts between pieces within a
partition, and uses it to schedule the execution of each piece
to meet the requirement of both data dependencies and com-
mit dependencies. Different from BOHM, PWV commits
the writes of each transaction at a finer granularity of pieces
instead of the whole transaction. In this way, later transac-

2049

Data: write reservations: writes

##H# the execution phase of batch i ###
for each transaction T in batch i:
Execute(T, db)
ReserveWrite(T, writes)

#iH# the commit phase of batch i #i##
for each transaction T in batch i:
Commit(T, db, writes)

O OWOONO A WN =

-

Figure 2: Execution and commit phases in Aria

tions spend less time waiting to see the writes from earlier
transactions at the cost of a more expensive fine-grained
dependency graph analysis.

Calvin, a distributed deterministic database, uses a single-
threaded lock manager to scan the input transactions and
grants read/write locks based on pre-declared read/write
sets. Once all locks of a transaction are acquired, the lock
manager next assigns the transaction to an available worker
thread for execution. Once the execution finishes, the worker
thread releases the locks. The separate roles of lock man-
ager threads and worker threads increase the system’s over-
all synchronization cost, and locks on one partition must be
granted by a single lock manager thread. In machines with
many cores, it is difficult to saturate system resource with
one single-threaded lock manger, as many worker threads are
idle waiting for locks. To solve this issue, the database can
be partitioned into multiple partitions per machine, but this
introduces additional overhead by introducing more multi-
partition transactions with overhead due to redundant ex-
ecution [52]. For example, a transaction updating both y;
and y2 to f(z) must run f(z) twice, if locks on y1 and ys
are granted by two different lock mangers.

Note that both BOHM and PWYV enforce determinism
through dependency graphs, which are built before trans-
action execution. Calvin runs transactions following depen-
dency graphs as well, but it is achieved implicitly through
ordered locks. We will discuss how Aria achieves determin-
ism and addresses the issues above in the following sections.

3. SYSTEM OVERVIEW

Given background, we now give a high level overview how
Aria achieves deterministic execution. As in existing de-
terministic databases, replicas in Aria do not need to com-
municate with one another, and run transactions indepen-
dently. This is because the same results will always be
produced under deterministic execution. Each transaction
passes through a sequencing layer and is assigned a unique
transaction ID (TID). The TID indicates a total ordering
among transactions; by default it indicates the commit order
of transactions, but our deterministic reordering technique,
which we will describe in Section 5, may commit transac-
tions in a different order.

Aria runs transactions in batches in two different phases:
an ezxecution phase and a commit phase, separated by a bar-
rier. Within a batch, each Aria replica runs transactions in
parallel and in any order with multiple worker threads. The
transactions are assigned to worker threads in a round-robin
fashion. As shown in Figure 2, in the execution phase, each
transaction reads from the current snapshot of the database
and keeps the writes in a local write set. Unlike BOHM,
Aria adopts a single-version approach, even though it buffers

Batch i Ty o -
Batch i + 1 ‘Tz ‘ ‘Ts ‘ ‘Te ‘ \T7 ‘ | ‘Ts ‘

Committed D Aborted D Unprocessed I Batch cutoff
Figure 3: Batch processing in Aria

writes for transactions until the end of a batch. Once all
transactions in the batch finish execution on a replica, it en-
ters the commit phase. The commit phase on a replica also
runs on multiple worker threads, each executing indepen-
dently. In the commit phase, a thread aborts transactions
that performed conflicting operations with earlier transac-
tions, i.e., those with smaller TIDs. For example, a transac-
tion would abort if it reads a record modified by some earlier
transaction. Aborted transactions are automatically sched-
uled at the beginning of the next batch for execution, unless
the transaction is aborted explicitly (e.g., for violating some
integrity constraint). If a transaction does not have conflicts
with earlier transactions, the system applies its changes to
the database. Consider the example in Figure 3, with four
transactions in a batch. Transaction 75 has conflicts with
Ti. To ensure serializability, transaction 75 aborts and is
scheduled at the beginning of the next batch for execution.

In addition to resolving conflicts following the ordering
of input transactions, Aria uses a deterministic reordering
technique that reduces conflicts in the commit phase. For
example, consider a sequence of n transactions, in which T;
reads record ¢ and updates record i + 1, for 0 < 7 < n.
Thus, each transaction (except T1) reads a record that has
been modified by the previous transaction. Following the
default algorithm in Aria, the first transaction is the only
transaction that can commit. However, these “conflicting”
transactions can still commit under the serial order 7, —
Th—1 — -+ — Ti. With deterministic reordering, Aria does
not physically reorder the input transactions. Instead, it
commits more transactions so that the results are still seri-
alizable but equivalent to a different ordering.

4. DETERMINISTIC BATCH EXECUTION

In this section, we describe the details of how Aria runs
transactions deterministically in two phases, such that the
serial order of committed transactions strictly follows the
ordering of input transactions. In Section 5, we will present
the reordering technique to relax this constraint. We also
give a proof to show that Aria produces serializable results.
Finally, we discuss the phantom problem and limitations.

4.1 The Execution Phase

During this phase, each transaction reads from the current
snapshot of the database, executes its logic, and writes the
result to a local write set, as shown from line 1 to line 3 in
Figure 4. Since the changes made by transactions are kept
locally and are not directly committed to the database, the
snapshot read by each transaction in the execution phase is
always the same.

Once a transaction finishes execution, it goes through its
local write set and makes write reservations for each entry
in its write set, as shown from line 5 to line 7 in Figure 4.

A write reservation on a previously reserved value can be
made only when the reserving transaction has a smaller TID

2050

1|Function: Execute(T, db)
2 Read from the latest snapshot of db
3 Execute to compute T’s read/write set # (RS & WS)
4
5|Function: ReserveWrite(T, writes)
6 for each key in T.WS:
7 writes[key] = min(writes[key], T.TID)
8
9[Function: Commit(T, db, writes)
10 # T aborts if writes are notinstalled
11 if HasConflicts(T.TID, T.RS U T.WS, writes) == false:
12 Install(T, db)
13
14 |Function: HasConflicts(TID, keys, reservations)
15 for each key in keys:
16 if key in reservations and reservations[key] < TID:
17 return true
18 return false
19
20|Function: Install(T, db)
21 for each key in T.WS:
22 write(key, db)

Figure 4: Execution and commit protocols in Aria

than the previous reserver. If a reservation from a larger
TID already exists, the old reservation will be voided and
a new reservation with the smaller TID will be made. If a
transaction cannot make a reservation, the transaction must
abort. In addition, the transaction can also skip the commit
phase as a performance optimization, since it knows at least
one reservation is not successful. Note that a transaction
is not allowed to skip the rest of reservations due to an
earlier unsuccessful reservation and must continue making
all reservations. This is because reservations are made in
parallel by multiple worker threads and omitting the rest of
reservations will produce nondeterministic results.

We now use an example to show how transactions make
write reservations.

EXAMPLE 1. Consider the following three transactions:
Ti:x=x+1,Te:y=xz—y,andI3: x=x+y

The reservation table is initially empty. Transaction T3 first
makes reservations for its writes. The reservation succeeds
and the table now has an entry {« : T1}. Transaction T
then makes its reservation successfully by creating an entry
{y : T»} in the reservation table. Finally, transaction T3
tries to make a reservation for record z. Since record x has
been reserved by transaction 77, and 73 has a larger TID,
the reservation fails and 75 must abort. Note that, even
though we describe the reservation process in a sequential
manner, the whole process can be conducted in parallel and
in any order, and the same result will always be produced.
Once all transactions finish execution and reservations are
made for writes, the system enters the commit phase.

4.2 The Commit Phase

Aria separates concurrency control from transaction ex-
ecution. During the commit phase, each transaction is de-
termined to commit or abort deterministically based on the
write reservations made in the execution phase. Aria does
not require two-phase commit to commit distributed trans-
actions as in non-deterministic databases. The reasons are
twofold: (1) the write reservations made in the execution
phase do not affect the value of each record in the database,
i.e., no rollback is required, and (2) a transaction can al-
ways commit (i.e., by applying writes to the database) even

a failure occurs, since determinism guarantees that the same
result is always produced after re-execution.

We now introduce three types of dependencies that Aria
uses to determine whether a transaction can commit or not:
(1) transaction T; has a write-after-write (WAW) depen-
dency on transaction Tj if T; tries to update some record
after T; has updated it, (2) transaction T; has a write-after-
read (WAR) dependency on transaction T if T; tries to up-
date some record after T; has read it, and (3) transaction
T; has a read-after-write (RAW) dependency on transaction
Ty if T; tries to read some record after T; has updated it.

Aria decides if a transaction T; can commit or not by
checking if it has certain types of dependencies with any ear-
lier transaction 7}, Vj < i. There are two types of dependen-
cies that the system must check: (1) WAW-dependency: if
T; WAW-depends on some T3, it must abort. This is because
the updates are installed independently and more than one
update goes to the same record, and (2) RAW-dependency:
if T; RAW-depends on some Tj, it must abort as well, be-
cause it should have seen T};’s write but did not. In contrast,
it’s safe for a transaction to update some record that has
been read by some earlier transaction. Thus, by default,
Aria does not check WAR-dependencies, however, WAR-
dependencies can help reduce dependency conflicts with de-
terministic reordering as will be noted in Section 5.

Note that by aborting transactions with WAW-dependen-
cies or RAW-dependencies, Aria ensures that the serial order
of committed transactions is the same as the input order.

RULE 1. A transaction commits if it has no WAW-depen-
dencies or RAW-dependencies on any earlier transaction.

Aria does not have to go through all earlier transactions to
check WAW-dependencies and RAW-dependencies. Instead,
it uses a transaction’s read set and write set to probe the
write reservation table. Note that some transactions may
have aborted in the execution phase and can simply skip
the commit phase, e.g., a reservation on some write failed.
As shown in Figure 4 (line 9 — 12), function HasConflicts
returns false when none of the keys in a transaction’s read set
and write set exists in the write reservation table. When no
dependencies exist, the transaction commits and all writes
are applied to the database.

As in the execution phase, the process of checking depen-
dencies can be done in parallel and in any order for every
transaction. Aborted transactions are automatically sched-
uled at the beginning of the next batch for execution, unless
the transaction is aborted explicitly (e.g., violating some in-
tegrity constraint). The relative ordering of aborted trans-
actions is kept the same. As a result, every transaction can
commit eventually, since the first transaction in a batch al-
ways commits and the position of an aborted transaction
always moves forward across batches.

4.3 Determinism and Serializability

We now show how the system achieves determinism and
serializability with batch execution.

THEOREM 1. Aria following Rule 1 enforces determinism
and serializability.

Determinism: In the execution phase, the system builds
a write reservation table given a batch of transactions. The
reservation table is a collection of key-value pairs. A key x

2051

is a record modified by some transaction and the value T'
is the transaction that modifies record x with the smallest
TID. Specifically, no matter what order transactions execute
in, the collection of key-value pairs always equals to {{az €
WS : T € C(z)} | ID(T) < ID(T'),VT' € C(x)}, where
WS indicates the union of the write sets of all transactions
and C(z) indicates a set of transactions that wrote record .
We use ZD(T) to indicate transaction T7s TID.

In the commit phase, the reservation table does not change
and is used by the system to detect dependencies between
transactions. Following the algorithm in Figure 4, if a trans-
action will commit or abort depends only on its read/write
sets and the reservation table regardless of the order in
which transactions run in the commit phase. Since each
replica runs an identical batch of transactions on an iden-
tical database snapshot, different replicas will produce the
identical read/write sets and the reservation table. There-
fore, Aria achieves determinism.

Serializability: The following proof is by contradiction.

ProoF. (BY CONTRADICTION.) Assume the ordering
of committed transactions is: -+ = T3 — --- = Tj — ...,
and the result produced by Aria is not serializable. Since
transactions are committed by multiple worker threads in
parallel, there are two possible outcomes: (1) transaction
T;’s updates were overwritten by transaction 7T;’s updates,
and (2) transaction T} read transaction 7;’s writes. Since
WAW-dependencies do not exist, T;’s write set does not
overlap with Tj’s, so concurrent transactions must have up-
dated different records. Similarly, since RAW-dependencies
do not exist, the values of records that transaction 7j read
must be the same as in the original database snapshot. By
Rule 1, both outcomes lead to a contradiction. [

Therefore, Aria without deterministic reordering commits
transactions under conflict serializability, and the result of
the database is equivalent to running all committed trans-
actions serially following the input order. Note that the
properties enforced by Aria are sufficient but not necessary
for serializability.

4.4 The Phantom Problem

The phantom problem [17] occurs within a transaction
when the same query runs more than once but produces
different sets of rows. For example, concurrent updates to
secondary indexes can make the same scan query observe
different results if it runs twice. Serializability does not al-
low phantom reads. In Aria, secondary indexes are imple-
mented as regular tables that map secondary keys to a set
of primary keys. When an insert or a delete affects a sec-
ondary index, a reservation must be made in the execution
phase. All transactions that access the secondary index are
guaranteed to observe the updates to the index by checking
RAW-dependencies in the commit phase. Therefore, these
reservations will cause aborts in the usual way, and and
phantoms cannot occur as a result of concurrent reads and
inserts/deletes. Phantoms are also possible in range queries
(e.g., a table scan). However, standard techniques such as
multi-granularity locking [22] can be applied.

4.5 Limitations

In Aria, a previous batch of transactions must finish ex-
ecuting before a new batch can begin, since a barrier ex-
ists across batches. The system could have undesirable per-
formance due to imbalanced workloads among transactions.

©
S
X

Performance
slowdown (%)

20 40 60 80
of transactions that share the fixed amount of delay
(batch size = 1K, delay = 20ms)

100

Figure 5: Effect of barriers on performance

Note that because we use round-robin scheduling and exe-
cute many transactions in a batch, unless there are very long
running transactions, skew in transaction runtimes does not
significantly affect the overall runtime of a transaction.

We ran a YCSB workload (see Section 8 for more details)
to study the effect of imbalanced workloads on our current
implementation. In this experiment, we uniformly distribute
a fixed total amount of 20 ms delay across multiple transac-
tions in a batch. For example, each transaction has a delay
of 2 ms if the total amount of delay is distributed across ten
transactions. In Figure 5, we plot the system’s performance
slowdown when the delay is distributed across different num-
bers of transactions. The maximum throughput is measured
when all transactions share the fixed amount of delay (i.e.,
no stragglers or every transaction is a “straggler”). The
results with different fixed total amount of delay follow the
same trend and are not shown for clarity. In the extreme sce-
nario when only a single transaction has a 20 ms delay (i.e.,
a single straggler), the slowdown is about 81%. As the delay
is distributed across more transactions (i.e., more stragglers
but each one has shorter delay), the slowdown goes down.
For example, when the delay is distributed across more than
100 transactions, the slowdown is less than 20%.

S. DETERMINISTIC REORDERING

The ordering of input transactions affects which transac-
tions can commit within a batch. In this section, we first
introduce a motivating example, and then present the de-
terministic reordering algorithm, which reduces aborts by
transforming RAW-dependencies to WAR-dependencies. Fi-
nally, we prove its correctness and give a theoretical analysis
of its effectiveness. In Section 6, we will discuss a fallback
strategy that Aria adopts when a workload suffers from a
high abort rate due to WAW-dependencies.

5.1 A Motivating Example

We use an example to show how the ordering of transac-
tions changes which and how many transactions can commit.

EXAMPLE 2. Consider the following three transactions:
Tiv:y=zx, Ta: z=1y, and T5: Print y + z

As shown on the top of Figure 6, transaction 7> has a
RAW-dependency on transaction T3, since transaction Th
reads record y after transaction 71’s write. Following Rule 1,
only transaction 77 can commit, since both transaction 75
and T3 have RAW-dependencies. However, if we commit
all three transactions, the result is still serializable with an
equivalent serial order: T3 — T — T7.

The key insight is that by reordering some transactions,
RAW-dependencies can be transformed to WAR-dependen-
cies, allowing more transactions to commit. This is because
our system does not require aborts as a result of WAR-
dependencies.

2052

All transactions can commit

T;: Read(x); Write(y) Ty G

T,: Read(y); Write(z) |:: > ‘

T3: Read(y); Read(z) @ @ Q @
One of Ty, T, or T3 mustabort

T,: Read(x); Write(y) Ty

T,: Write(x); Read(z)
T3: Read(y); Write(z)

® @

shows RAW-dependency

— shows WAR-dependency;

®

Figure 6: Illustrating deterministic reordering

5.2 The Reordering Algorithm

By slightly modifying Rule 1, the reordering algorithm
can commit more transactions within a batch.

RULE 2. A transaction commits if two conditions are met:
(1) it has no WAW-dependencies on any earlier transaction,
and (2) it does not have both WAR-dependencies and RAW-
dependencies on earlier transactions with smaller TIDs.

The pseudocode for this algorithm is given in Figure 7.
Lines 5-10 encode the checking of Rule 2. This code replaces
the Commit function in Figure 4. Like the algorithm pre-
sented in the previous section, this code can be run in par-
allel, allowing each transaction to commit or abort based on
its read/write set and the reservation tables alone. Because
this algorithm allows transactions with RAW-dependencies
to commit as long as they have no WAR-dependencies, it
can result in a serial order that is different from the input
order. For example in Example 2 (shown on the top of Fig-
ure 6), transaction 7> and 75 have RAW-dependencies, but
there are no WAR-dependencies, and all three transactions
can commit with an equivalent order T5 — To — T1.

WAW and RAW-dependencies are detected using the write
reservation table as described in Section 4. To support
WAR-dependency detection, the system also needs to make
read reservations in the execution phase as shown from line
1 to line 3 in Figure 7. With the read reservation table, for
each record in the database, the system knows which trans-
action first read it — i.e., the one with the smallest TID.
In the commit phase, a WAR-dependency will be detected
if any key in a transaction’s write set appears in the read
reservation table and the read is from a different transaction.

5.3 Proof of Correctness

We now show the correctness of our reordering algorithm.

THEOREM 2. Aria following Rule 2 enforces determinism
and serializability.

We next present two definitions for dependency graphs be-
fore presenting the proof of Theorem 2.

DEFINITION 1. Dependency graph: a directed graph whose
vertices are transactions, with edges between transactions
with RAW-dependencies and WAR-dependencies, as shown
in the left side of Figure 6.

For ease of presentation, we do not consider transactions
that have WAW-dependencies on earlier transactions. They
are always aborted in Aria and will be re-executed in the
next batch. An edge from transaction 7; to T; indicates
that T; performed the conflicting operation after T;. This is

1|Function: ReserveRead(T, reads)

2 for each key in T.RS:

3 reads[key] = min(reads[key], T.TID)

4

5|Function: Commit(T, db, reads, writes)

6 # T aborts if writes are not installed

7 if WAW(T, writes):

8 return

9 if WAR(T, reads) == false or RAW(T, writes) == false:
10 Install(T, db)
11
12|Function: WAW(T, writes) = HasConflicts(T.TID, T.WS, writes)
13[Function: WAR(T, reads) = HasConflicts(T.TID, T.WS, reads)
14[Function: RAW(T, writes) = HasConflicts(T.TID, T.RS, writes)

Figure 7: Pseudocode for deterministic reordering

because conflicts are initially resolved in the order of input
transactions for all edges in the graph.

As shown in the right side of Figure 6, RAW-dependencies
can be transformed to WAR-dependencies by reversing the
direction of edges in the transformed dependency graph. Re-
versing a RAW edge from transaction 7; to T; effectively
moves T} before T; in the serial order, and thus creates a
WAR-dependency from T; to T;. Based on this, we define
the transformed dependency graph.

DEFINITION 2. Transformed dependency graph: a depen-
dency graph with all the RAW-dependencies transformed to
WAR-dependencies.

However, not all transactions can commit even with re-
ordering, since a topological ordering may not exist if there
are cycles in the transformed dependency graph.

EXAMPLE 3. Consider the following three transactions:
Tv:y=z,To:x=z2 andT3: z=1y

As shown on the bottom of Figure 6, the transformed de-
pendency graph is not cycle free, and one of 11, 1% or T3
must abort to achieve serializability. To commit as many
transactions as possible, we have to remove as few vertices
(i.e., abort as few transactions) as possible from the trans-
formed dependency graph to make it acyclic. This prob-
lem is well-known as the feedback vertex set problem' and is
shown NP-Complete [26].

Next, we show Aria effectively makes the transformed de-
pendency graph acyclic by applying Rule 2 with Lemma 1,
which will be used to prove Theorem 2.

LEMMA 1. The transformed dependency graph is acyclic
after applying Rule 2.

ProoF. (BY CONTRADICTION.) Suppose the trans-
formed dependency graph is not acyclic. Hence, there must
be a sequence of transactions that forms a cycle, i.e., T; —
T; — -+ = Ty, — T;. Without loss of generality, we assume
i > j and i > k. In the transformed dependency graph,
there is a WAR-dependency from transaction Ty to T;. Since
i > k, this WAR-dependency must be a RAW-dependency
from transaction T; to T} in the original dependency graph.
This is because dependencies only exist from transactions
with larger TIDs to those with smaller TIDs. Similarly,
the WAR-dependency from transaction T; to T; must be a
WAR-dependency in the original dependency graph. Hence,

LA feedback vertex set of a graph is a set of vertices whose
removal leaves a graph without cycles.

2053

transaction 7; has both WAR-dependency to T; and RAW-
dependency to Ty simultaneously. According to Rule 2,
transaction 7T; does not exist, which is a contradiction. [

We now give the proof to Theorem 2 by showing an acyclic
transformed dependency graph indicates that the transac-
tions can commit with a serializable schedule.

Proor. If no cycles exist in the transformed dependency
graph, there exists a topological ordering O such that for
every WAR-dependency from transaction T; to T}, we have
O(T;) < O(Tj). In addition, for any transaction T3, its read
set does not overlap with any earlier transaction’s write set.
This is because only WAR-dependencies exist in the trans-
formed dependency graph. Hence, the serializable schedule
is the same as the topological ordering O and the effect of ex-
ecuting these transactions in parallel is identical to that run-
ning them serially following the topological ordering O. [

For example, the serializable schedule of the transformed
dependency graph on the top of Figure 6 is Th — T> — T5,
which is the same as the topological ordering. In contrast,
there is no equivalent serializable schedule to the trans-
formed dependency graph on the bottom of Figure 6, since
it is not acyclic.

5.4 Effectiveness Analysis

Suppose we have a table with T records. Let R and W be
the number of read and write operations in a transaction and
assume each data access (i.e., a read or a write operation)
is independent and follows a uniform distribution.

We first analyze the probability that an operation does not
access to a record that has been updated by earlier trans-
actions. If the operation is from transaction 7; (numbered
from 0), we have

Pr(an operation has no conflicts) = (1 — g)l
and therefore,
. . Waw
Pr(— WAW-dependencies exist) = (1 — ?)
Pr(— RAW-dependencies exist) = (1 — ¥)1R
likewise, we have
Pr(— WAR-dependencies exist) = (1 — ;)ZW

since WAR-dependencies depend on the number of read op-
erations from earlier transactions.

According to Rule 1, transaction T; can commit if it does
not have any WAW-dependencies or RAW-dependencies:

Pr(— WAW-dependencies exist) *
Pr(— RAW-dependencies exist)

Pr(T; commits)

The commit rule can be relaxed by Rule 2. With determin-
istic reordering, we have

Pr(T; commits with deterministic reordering)
Pr(— WAW-dependencies exist) * {1

—[1 = Pr(—~ WAR-dependencies exist)]

#[1 — Pr(~ RAW-dependencies exist)] }

Our deterministic reordering algorithm allows each trans-
action to execute concurrently without coordination, even

though a serial but more expensive reordering algorithm
could potentially produce a better schedule to reduce more
aborts. Note that aborting more transactions than are strict-
ly needed to improve performance is a tried and true tech-
nique: i.e., using a coarser granularity of locking creates
false sharing, resulting in unnecessary aborts, but can im-
prove performance as fewer locks need to be tracked.

6. THE FALLBACK STRATEGY

Because Aria does not need to determine read/write sets
up front, and can run in parallel on multiple threads within
a replica, it provides superior performance to existing deter-
ministic databases when there are few RAW-dependencies
and WAW-dependencies between transactions in a batch.
The deterministic reordering mechanism can transform RAW-
dependencies to WAR-dependencies, allowing many of con-
flicting transactions to commit under serializability.

In this section, we discuss a fallback strategy that Aria
adopts when a workload suffers from a high abort rate due to
WAW-dependencies, e.g., two transactions update the same
record. The key idea is that we add a new fallback phase at
the end of the commit phase and re-run aborted transactions
following the dependencies between conflicting transactions.
As discussed in Section 3, each transaction reads from the
current snapshot of the database in the execution phase and
then decides if it can commit in the commit phase. The
observation here is that each transaction knows its com-
plete read/write set when the commit phase finishes. The
read/write set of each transaction can be used to analyze
the dependencies between conflicting transactions. There-
fore, many conflicting transactions do not need to be re-
scheduled in the next batch. Instead, Aria can employ the
same mechanism as in existing deterministic databases to
re-run those conflicting transactions.

In our current implementation, we use an approach sim-
ilar to Calvin, which naturally supports distributed trans-
actions, although any deterministic concurrency control is
potentially feasible. In the fallback phase, some worker
threads work as lock managers to grant read/write locks
to each transaction following the TID order. A transaction
is assigned to one of the available worker threads, and exe-
cutes against the current database (i.e., with changes made
by transactions with smaller TIDs) once it obtains all locks.
After the transaction commits, it releases all locks. As long
as the read/write set of the transaction does not change,
the transaction can still commit deterministically. Other-
wise, it will be scheduled and executed in the next batch in
a deterministic fashion.

The original design of Calvin uses only one thread to grant
locks in the pre-determined order. However, on a modern
multicore node, this single-threaded lock manager cannot
saturate all available workers [44]. To better utilize more
CPU resources, our implementation uses multiple lock man-
ager threads to grant locks. Each lock manager is responsi-
ble for a different portion of the database. Our new design
is logically equivalent to but more efficient than the original
design [52], which ran multiple Calvin instances on a sin-
gle node. This is because worker threads now communicate
with each other through shared memory rather than sockets.

A moving average of the abort rate in a workload is mon-
itored by the sequencing layer. When the abort rate ex-
ceeds the threshold, the sequencing layer deterministically
switches the system to using the fallback, and then turns

template <class type> using value_type = std::tuple<uint64_t, uint64_t, type>;

[Batch ID [63... 1] [Lock Bit [0) | [Read TID [63...32] | Write TID [31...0]]

Figure 8: Per-record metadata format in Aria

off the fallback when the abort rate drops. Note that the
fallback strategy guarantees that Aria is at least as effective
as existing deterministic databases in the worst case, since
non-conflicting transactions only run once. However, exist-
ing deterministic databases run input transactions at least
twice: once to determine the read/write set, and once to
execute the query.

7. IMPLEMENTATION

We now describe the data structures used to implement
Aria and how the system supports distributed transactions
and provides fault tolerance across multiple replicas.

7.1 Data Structures

Aria is a distributed deterministic OLTP database. It pro-
vides a relational model, where each table has a pre-defined
schema with typed and named attributes. Clients interact
with the system by calling pre-compiled stored procedures
with different parameters, as in many popular systems [52,
53, 59]. A stored procedure is implemented in C++, in
which arbitrary logic (e.g., read/write operations) is sup-
ported. The system targets one-shot and short-lived trans-
actions and does not support multi-round and interactive
transactions. It does not provide a SQL interface.

Each table has a primary key and some number of at-
tributes. Tables are currently implemented as a primary
hash table and zero or more secondary hash tables as in-
dexes, meaning that range queries are not supported. This
could be easily adapted to tree structures [6, 36, 57]. A
record is accessed via probing the primary hash table. For
secondary lookups, two probes are needed, one in a sec-
ondary hash table to find the primary key of a record, fol-
lowed by a lookup in the primary hash table.

As discussed in previous sections, a transaction makes
reservations for reads and writes in the execution phase,
which are used for conflict detection in the commit phase.
Essentially, these reservations are collections of key-value
pairs. The key is the primary key of the table that a trans-
action accesses and the value is the transaction’s TID. Since
these key-value pairs are table specific, we record the TID
value along with the batch ID with two 64-bit integers and
attach them to each record in the table’s primary hash table,
as shown on the top of Figure 8.

7.2 Distributed Transactions

Aria supports distributed transactions through partition-
ing. Each table is horizontally partitioned across all nodes
and each partition is randomly hashed to one node. Note
that the sequencing layer is allowed to send transactions to
any node for execution. However, if a transaction was sent
to the node having most data it accesses, network commu-
nication could be reduced. In real scenarios, the partitions
that a transaction accesses can be inferred from the parame-
ters of a stored procedure in some cases (e.g., the New-Order
transaction on TPC-C). Otherwise, the transaction can be
send to any node in Aria for execution.

As discussed earlier, the execution phase and the commit
phase are separated with barriers. In the distributed setting,

2054

these barriers are implemented through network round trips.
For example, a designated coordinator (selected from among
all nodes) decides that the system can enter the commit
phase once all nodes finish the execution phase.

In the execution phase, a remote read request is sent,
when a transaction reads a record that does not exist on the
local node. Similarly, read/write reservation requests are
also sent to the corresponding nodes. In the commit phase,
network communication is also needed to detect conflicts
among transactions. Note that worker threads within the
same node do not communicate by exchanging messages. In-
stead, all operations are conducted directly in main memory.
Aria batches these requests to reduce latency and improve
the network’s performance. Once a transaction commits,
write requests are also batched and sent to remote nodes to
commit changes to the database.

7.3 Fault Tolerance

Fault tolerance is significantly simplified in a determinis-
tic database. This is because there is no need to maintain
physical undo/redo logging, instead, the system only needs
to make input transactions durable in the sequencing layer.
In addition, replicas do not communicate with one another,
meaning global barriers do not exist across replicas. We now
discuss when the result of a transaction can be released to
the client and how checkpointing works.

Every transaction first goes to the sequencing layer, in
which it is assigned a batch ID and a transaction ID. The
sequencing layer next forwards the same input transactions
to all replicas. We next discuss how the sequencing layer
communicates with one replica, since the mechanism is the
same for all replicas. Before the execution phase begins,
each node within a replica will receive a different portion of a
batch of transactions. Once all transactions finish execution,
the replica communicates with the sequencing layer again,
notifying it the result of each transaction. If a transaction
aborts due to conflicts, the sequencing layer will put the
transaction into the next batch.

The result of a committed transaction can be released to
the client as soon as it commits in the commit phase. This is
because its input was durable before execution. Once a fail-
ure occurs, every transaction will run again and commit in
the same order due to the nature of deterministic execution.

To bound the recovery time, the system can be configured
to periodically checkpoint the database to disk. During a
checkpoint, a replica stops processing the transactions and
saves a consistent snapshot of the database to disk. As long
as there is more than one replica, clients are not aware of
the pause when checkpoints occur, since each replica can
checkpoint independently and transactions are always run
by the system through other available replicas. On recov-
ery, a replica loads the latest checkpoint from disk to the
database and replays all transactions since the checkpoint.

8. EVALUATION

In this section, we evaluate the performance of Aria fo-
cusing on the following key questions:
e How does Aria perform compared to conventional de-
terministic databases and primary-backup databases?
e What is the scheduling overhead of Aria?
e How effective is the deterministic reordering?
e How does Aria scale?

2055

8.1 Experimental Setup

We ran our experiments on a cluster of m5.4xlarge nodes
running on Amazon EC2 [2]. Each node has 16 2.50 GHz
virtual CPUs and 64 GB RAM running 64-bit Ubuntu 18.04
with Linux kernel 4.15.0 and GCC 7.3.0. The nodes are
connected with a 10 GigE network.

To avoid an apples-to-oranges comparison, we implement-
ed the following concurrency control protocols in C++ in
the same framework: (1) Aria: our algorithm with deter-
ministic reordering. The fallback strategy is disabled, (2)
AriaFB: different from Aria, AriaFB always uses the fall-
back strategy to re-run aborted transactions, (3) BOHM:
a single-node MVCC deterministic database using depen-
dency graphs to enforce determinism [19], (4) PW'V: a sin-
gle-node deterministic database that enables early write vis-
ibility [18], (5) Calvin: a distributed deterministic database
using ordered locks to enforce determinism [52], and (6) PB:
a conventional non-deterministic primary-backup replicated
database.

Our implementation of Calvin has the same optimization
as in the fallback phase of Aria and we use Calvin-z to
denote the number of lock manager threads. The concur-
rency control protocol used in PB is strict two-phase locking
(S2PL). We use a NO_WAIT deadlock prevention strategy,
which previous work has shown to be the most scalable pro-
tocol [24]. Transactions involving multiple nodes are com-
mitted with two-phase commit [37]. PB uses synchronous
replication to prevent loss of durability in high-throughput
environments. In synchronous replication, locks on the pri-
mary are not released until the writes are replicated on the
backup. A transaction commits only after the writes are
acknowledged by backups.

We use two popular benchmarks, YCSB [11] and a subset
of TPC-C [1], to study the performance of Aria. These
benchmarks were selected because they are all key-value
benchmarks where it is possible for existing deterministic
databases to pre-compute read /write sets. Many other work-
loads cannot easily run on them due to the need for this
pre-computation. The Yahoo! Cloud Serving Benchmark
(YCSB) is designed to evaluate the performance of key-value
systems. There is a single table with ten columns. The pri-
mary key of the table is a 64-bit integer and each column has
ten random bytes. To make it a transactional benchmark,
we wrap operations within transactions [56, 61]. By default,
each transaction has 10 operations. The TPC-C benchmark
models an order processing application, in which customers
place orders in one of ten districts within a local warehouse.
We support the New-Order and the Payment transaction in
this benchmark. 88% of the standard mix consists of these
two transactions. The other three transactions require range
scans, which are currently not supported. By default, there
are 10% New-Order and 15% Payment transactions that ac-
cess multiple warehouses. On average, one NewOrder trans-
action is followed by one Payment transaction.

We run 12 worker threads and 2 threads for network com-
munication on each node. Note that, in Calvin-z, there are
x worker threads granting locks and 12-x worker threads
running transactions. By default, we set the number of par-
titions equal to the total number of worker threads in the
cluster, meaning there are 12 partitions on each node. This
is because existing deterministic databases [18, 19, 52] re-
quire the use of partitionings to use multiple worker threads
for better performance. In YCSB, the number of keys per

2

[Systems other than PWV perform identically on YCSB-A & YCSB-B]
750K
500K
250K
0

|
@ LTSI E TR
T o o Y o o o

Figure 9: Performance on YCSB-A and YCSB-B

Throughput (txns/sec)

partition is 40K. In TPC-C, the database is partitioned by
warehouse and the number of partitions is equal to the num-
ber of warehouses.

There is no sequencing layer in our experiments. This is
because the sequencing layer is the same in all deterministic
databases, and adding the sequencing layer or not does not
affect our experimental conclusions. To measure the max-
imum performance that each system is able to achieve, we
use a built-in deterministic workload generator to get an or-
dered batch of transactions on each node. Transactions are
run under serializability. All reported results are the average
of ten runs.

We only measure the performance of Aria, AriaFB, BOHM,
PWYV, and Calvin at one replica, since all replicas achieve
comparable performance. We consider two variations in our
experiments: (1) a single-node setting, used in from Sec-
tion 8.2 to Section 8.5, and (2) a multi-node setting (i.e., a
cluster of eight nodes), used in Section 8.6 and 8.7. In all de-
terministic databases, we set the batch size to 1K on YCSB
and 500 on TPC-C in the single-node setting, and 80K on
YCSB and and 4K on TPC-C in the multi-node settings.
These parameters ensure the database to achieve the best
performance. For PB, a dedicated backup node stands by
for replication in the single-node setting. In the multi-node
setting, each partition has a primary partition and a backup
partition, which are always assigned to two different nodes.

8.2 YCSB Results

We first study the performance of each system on the
YCSB benchmark. We run a workload mix of 80/20, mean-
ing each access in a transaction has an 80% probability of
being a read operation and a 20% probability of being an
update operation. All accesses follow a uniform distribution,
which makes most transactions multi-partition transactions.

We use two variants of YCSB: (1) YCSB-A: each read or
write is independent, and (2) YCSB-B: the value of a write
depends on all reads. Note that only PWV is sensitive to
the two variations above, which affect when the writes of
a transaction are visible to other transactions. In contrast,
conflict detection or dependency analysis stays the same for
Aria, AriaFB, BOHM and Calvin. Likewise, PB always ac-
quires all read/write locks before execution and only releases
them when a transaction commits. In this experiment, we
use PWV-A and PWV-B to denote the performance of PWV
on the two variations above respectively. For other systems,
the results on YCSB-A and YCSB-B are the same and we
only report the result on YCSB-A.

We report the results in Figure 9. AriaFB has a slightly
lower throughput than Aria, since the abort rate in this
workload is about 0.4% and the overhead of the fallback
strategy exceeds its benefits. PWV on YCSB-A performs
the best among all baselines, since each read/write is in-
dependent and it allows early write visibility. In contrast,
PWYV has much lower throughput on YCSB-B, since a write
is only visible to other transactions when all reads are fin-

ished. BOHM has the second highest throughput, but the
overhead of managing multiple versions of each record makes
it achieve only two thirds of Aria’s throughput. The perfor-
mance of Calvin depends on the number of threads used for
granting locks. One lock manager fails to saturate the sys-
tem. Calvin achieves the best performance when two lock
managers are used in this workload. PB’s throughput is
about 11% of Aria’s throughput. This is because one net-
work round trip is needed in PB for each transaction with
write operations due to synchronous replication. In our test
environment, the round trip time is about 100 us.

Overall, Aria achieves 1.1x, 1.6x, 1.4x, 3.3x, 2.4x and
10.3x higher throughput than AriaFB, BOHM, PWV-A,
PWV-B, Calvin and PB on YCSB, respectively.

8.3 Scheduling Overhead

We now study the scheduling overhead of each concur-
rency control algorithm. In this experiment, we use the
same YCSB workload as in Section 8.2, but all transactions
access only one partition. This is because H-Store [49] has
minimal overhead in concurrency control when transactions
do not span partitions.

We first compare Aria with our implementation of H-Store
in the same framework, which can be used to estimate the
upper bound of the transaction throughput that a workload
can achieve. We report the result in Figure 10(a) and ob-
serve that Aria achieves about 75% of H-Store’s throughput.

Second, we show a performance breakdown on Aria in
Figure 10(b). There are three steps in the execution phase,
namely, (1) reading the database snapshot, (2) computing
the transaction logic, and (3) making reservations. Note
that Aria uses read/write reservations to achieve determin-
ism and serializability. Therefore, we consider the third step
to be the scheduling overhead, which is about 7.4%.

Third, we show the scheduling overhead of each deter-
ministic concurrency control in Figure 10(c). Existing de-
terministic databases run transactions following a depen-
dency graph, meaning there exists a scheduling overhead in
each algorithm (e.g., the waiting time wasted in each worker
thread). In addition, we consider the time spent on each lock
manager in Calvin and the time spent on dependency graph
construction in BOHM and PWV to be scheduling overhead.
The time spent on placeholder insertion and garbage collec-
tion in BOHM is also considered to be scheduling overhead.
Among all algorithms, Aria and PWV-A have the lowest
scheduling overhead, which partially explains why they have
the best performance in Figure 9.

8.4 Effectiveness of Deterministic Reordering

In this section, we study the effectiveness of the determin-
istic reordering technique introduced in Section 5. There are
many factors that influence the effectiveness of this tech-
nique, such as the percentage of read-only transactions, ac-
cess distribution, the database size, and the read/write ra-
tio. In this experiment, we ran the same workload as in Sec-
tion 8.2, but varied the skew factor [23] from 0 (i.e. uniform
distribution) to 0.999 in the workload. Aria w/o D.R. shows
the performance of Aria without deterministic reordering.
For clarity, in this experiment and all following experiments,
we only report the performance of Calvin with the optimal
number of lock managers.

We first study the effect of the skew factor on Aria. As
shown in Figure 11, the throughput goes down when the we

2056

—~ 1.6M

Aria

H-Store

100%

o Commit

g Reservation

B 9% —

2 1.2M §

£ ©

5 800K Read =

a Yy

2 =

2 400K S

<] Computation 5]
o

S

F oo

75%

50%

25%

0

B Scheduling W Execution

Aria

BOHM PWV-A PWV-B Calvin-1 Calvin-2 Calvin-3 Calvin-4 Calvin-6

(a) Aria vs. H-Store) Performance breakdown

(¢) Scheduling vs. Execution

Flgure 10: A study of scheduling overhead on each system on YCSB

—o— Aria —-#- AriaFB —&— PWV-A Calvin
%‘ ™ --¥-- Aria w/o D.R. —#— BOHM -4~ PWV-B —— PB
g =3 D Trvy
é 750K B bt Liteist = S
5 500K F e
Q. 2 ~
'§:250K !‘--—+———+———+————+————Q—-——-ll————'b————&'*—..—__-srji.‘”-»‘
] * * * * : —— _
I 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Skew factor

Figure 11: Effectiveness of deterministic reordering

increase the skew factor. For example, when the skew factor
is 0.999, Aria achieves only 39% of its original throughput
when there is no skew. This is because a larger skew factor
leads to a higher abort rate due to conflicts and many trans-
actions have to be re-run multiple times. Similarly, a trans-
action has more difficulty getting read/write locks in PB as
the skew factor increases. For this reason, the throughput of
PB is only about 20% of the original throughput when there
is no skew. BOHM and Calvin also have lower throughput
when the skew factor is larger due to less parallelism. How-
ever, PWYV is less sensitive to the skew factor due to its
early write visibility mechanism. The throughput of Aria
is lower than PWV-A and BOHM when the skew factor is
larger than 0.8 and 0.9 respectively.

We also report the result of AriaFB in this experiment.
When the skew factor is small, AriaFB achieves slightly
lower throughput than Aria, since it’s more efficient to sim-
ply retry the aborts in the next batch than re-running the
aborts with the fallback strategy. As we increase the skew
factor, the throughput of AriaFB exceeds Aria w/o D.R.,
but it is still lower than Aria, showing the effectiveness of
our reordering technique. Under high skew, AriaF'B achieves
similar throughput to Calvin, since most transactions are
executed using the fallback strategy.

We now study how much performance gain that Aria
can achieve with deterministic reordering. When each ac-
cess follows a uniform distribution, deterministic reordering
achieves similar throughput to the one without deterministic
reordering. This is because there are few conflicts and the
number of aborts is low. Note that the deterministic reorder-
ing mechanism does not slow down the system even though
when the contention is low. As we increase the skew factor
in the workload, more conflicts exist and Aria with deter-
ministic reordering achieves significantly higher throughput.
For example, when the skew factor is 0.999, Aria achieves
3.0x higher throughput than Aria w/o D.R. .

Overall, the deterministic reordering technique is effective
to reduce aborts due to RAW-dependencies, making Aria
achieve higher throughput than AriaFB on YCSB.

8.5 TPC-C Results

We next study the performance of each system on TPC-C.
In this experiment, we varied the number of partitions (i.e.,

2057

—o— Aria =+- AriaFB —=— BOHM —— PWV

Calvin —— PB

Qo
2
e
£ : n ' ; : : ; :
= 0 20 40 60 80 100 120 140 160 180
of warehouses
Figure 12: Performance on TPC-C

the number of warehouses) from 1 to 180. As shown in
Figure 12, all other deterministic databases have stable per-
formance when the number of partitions exceeds 12, since
the maximum parallelism is achieved when each thread has
one partition on TPC-C. The throughput of Aria goes up as
more partitions exist due to fewer conflicts. When the num-
ber of partitions is 180, Aria achieves 85% of the throughput
of PWV.

Note that there are contended writes in TPC-C, i.e., writes
made on the d_ytd field in the district table, making Aria
perform worse when there are a small number of warehouses.
However, AriaFB can commit non-conflicting transactions
in the normal commit phase and re-run conflicting transac-
tions with the fallback strategy, making it achieve the best
of both worlds. Therefore, the throughput of AriaFB always
exceeds both Aria and Calvin on TPC-C.

In summary, with 180 partitions, Aria achieves 1.9x, 1.2x
and 7.4x higher throughput than BOHM, Calvin and PB re-
spectively and has comparable throughput to PWYV, which
enables early write visibility but requires complex transac-
tion decomposition.

8.6 Results on Distributed Transactions

In this section, we study the performance of Aria, Ari-
aFB, Calvin, and PB in a multi-node setting using 8 Ama-
zon EC2 [2] instances. We omit the results of BOHM and
PWYV, which are designed to be single-node deterministic
databases.

We first ran a YCSB workload with a varying percentage
of multi-partition transactions and report the results in Fig-
ure 13(a). In this experiment, a multi-partition transaction
only accesses two partitions. Different from the single-node
setting, the throughput of all approaches goes down with
more multi-partition transactions. This is because more net-
work communication occurs. In addition, AriaFB has lower
throughput than Aria, since there are two more barriers per
batch when the fallback strategy is employed. In summary,
Aria achieves up to 1.4x higher throughput than AriaFB,
1.6x - 2.1x higher throughput than Calvin and 2.7x - 4.1x
higher throughput than PB on YCSB.

We also ran a workload of TPC-C and report the result in
Figure 13(b). We set the number of partitions (i.e., the num-
ber of warehouses) to 108 per node, meaning there are 864

Calvin —4—PB

—e—Aria —#- AriaFB

= —o—Aria —#- AriaFB =

® 6M o 2.4M

R4 @ |

%} %)

g amk g 1.8M B

= = 1.2M

Q. Q.

< 2MF <

g S 600K

[3 - o

£ 0 . n : : = 0 .
= 0 20 40 60 80 100 + 0 20

Calvin —+—PB o 12M+0% 1% —4—5% 10% —*—20%

[}
3 8M
H
£ 4M
(2]
3
e

1 1 o 0 1 1 L 1 1 1

60 80 100 F 2 4 6 8 10 12 14 16

% of multi-partition transactions

% of multi-partition transactions

of nodes - batch size: 10K * # of nodes

(a) YCSB - batch size: 10K * 8 = 80K (b) TPC-C - batch size: 500 * 8 = 4K

Figure 13: Performance on YCSB and TPC-C in the multi-node setting

partitions in total. Aria achieves higher throughput than
Calvin when more multi-partition transactions exist. This
is because more work needs to be done in multi-partition
transactions in Calvin as discussed in Section 2. In addition,
Aria and AriaFB achieve similar throughput in this work-
load, since the performance gain from the fallback strategy
is about the same as the overhead of two additional bar-
riers. Overall, Aria achieves up to 1.7x higher throughput
than Calvin and up to 2x higher throughput than PB on
TPC-C.

8.7 Scalability Experiment

Finally, we study the scalability of Aria. We ran the same
YCSB workload as in Section 8.2, but we scale the number
of partitions from 24 to 192. The batch size is set to 10K
times by the number of nodes. We report the results on
five different configurations in Figure 14, in which % de-
notes the percentage of multi-partition transactions. Again,
a multi-partition transaction accesses only two partitions.
We can observe that Aria achieves almost linear scalability
in all configurations. For example, it achieves around 6.3x
higher throughput with 16 nodes compared to the one with
2 nodes when 10% multi-partition transactions exist.

9. RELATED WORK

Aria builds on many pieces of related work for its design,
including transaction processing, highly available systems,
and deterministic databases.

Transaction Processing. There has been a resurgent inter-
est in transaction processing, as both scale-up multicore
databases [15, 28, 32, 41, 53, 60, 61] and scale-out dis-
tributed databases [13, 24, 31, 34, 38, 39, 49] are becom-
ing more popular. Silo [53] avoids shared-memory write by
dividing time into short epochs and each thread generates
its own timestamp by embedding the global epoch. Aria
uses a similar batch-based execution model to run transac-
tions. ROCOCO [38] tracks conflicting constituent pieces
of transactions and reorders them in a serializable order be-
fore execution. Aria deterministically detects conflicts in a
separate commit phase after all transactions finish execu-
tion. Doppel [41] allows different orderings of updates as
long as updates are commutative. Aria can be extended to
support commutative updates as well to reduce conflicts be-
tween transactions. More recent database systems [9, 16,
58, 59] build on RDMA and HTM. Aria can use RDMA
to further decrease the overhead of network communication
and barriers across batches.

Highly Awvailable Systems. Modern database systems sup-
port high availability, such that an end user does not expe-
rience any noticeable downtime when a subset of servers fail.
High availability is usually achieved through replication [8,

Figure 14: Scalability of Aria

21, 48, 54], which itself can be either asynchronous [10, 14] or
synchronous [27]. Asynchronous replication reduces latency
during replication by sacrificing consistency when failures
occur. For this reason, synchronous replication which en-
ables strong consistency is becoming more popular [12, 35].

Many recent protocols [43, 50, 55] are developed with high
availability in mind. TAPIR [63] builds consistent transac-
tions through inconsistent replication. SiloR [64] uses par-
allel recovery via value replication, in which logs can be
replayed in any order. Most existing work above achieves
high availability through shipping the output. Instead, Aria
achieves high availability through replicating the input and
running transactions deterministically across replicas.
Deterministic Databases. The initial design of determinis-
tic database systems dates back to the late 1990s [25, 40].
Each replica achieves consistency through a deterministic
scheduler that produces exactly the same thread interleav-
ing [25]. As more systems favor full ACID properties, de-
terministic systems have attracted a great deal of atten-
tion recently [3, 20, 45, 46, 47, 51]. Existing deterministic
databases [18, 19, 52] require that the read set and write set
of a transaction must be known a priori. Hyder [5], Fuzzy-
Log [33] and Tango [4], unlike conventional deterministic
databases [18, 19, 52], allow each node to read the same
database via a shared log, which establishes a global order
across all updates. However, the result could be different if
multiple shared-log systems are deployed independently. In-
stead, conventional deterministic databases always produce
the same result given the same input transactions.

10. CONCLUSION

In this paper, we presented Aria, a new distributed and
deterministic OLTP database. By employing deterministic
execution, Aria is able to efficiently run transactions across
different replicas without coordination, and without prior
knowledge of read and write sets as in existing work. The
system executes a batch of transactions against the same
database snapshot in an execution phase, and then chooses
deterministically the ones that should commit to ensure se-
rializability in a commit phase. We also propose a novel
deterministic reordering mechanism so that Aria commits
transactions in an order that reduces the number of con-
flicts. Our results on two popular benchmarks show that
Aria outperforms systems with conventional nondeterminis-
tic concurrency control algorithms and state-of-the-art de-
terministic databases by a large margin on a single node and
up to a factor of two on a cluster of eight nodes.

Acknowledgments. We thank the reviewers for their valu-
able comments. Yi Lu is supported by the Facebook PhD
Fellowship.

2058

11.
1]

REFERENCES

TPC Benchmark C. http://www.tpc.org/tpcc/,
2010.

Amazon EC2. https://aws.amazon.com/ec2/, 2020.
D. J. Abadi and J. M. Faleiro. An overview of
deterministic database systems. Commun. ACM,
61(9):78-88, 2018.

M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,

V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou,
and A. Zuck. Tango: distributed data structures over
a shared log. In SOSP, pages 325-340, 2013.

P. A. Bernstein, C. W. Reid, and S. Das. Hyder - A
transactional record manager for shared flash. In
CIDR, pages 9-20, 2011.

R. Binna, E. Zangerle, M. Pichl, G. Specht, and

V. Leis. HOT: A height optimized trie index for
main-memory database systems. In SIGMOD
Conference, pages 521-534, 2018.

T. C. Bressoud and F. B. Schneider. Hypervisor-based
fault-tolerance. In SOSP, pages 1-11, 1995.

E. Cecchet, G. Candea, and A. Ailamaki.
Middleware-based database replication: The gaps
between theory and practice. In SIGMOD Conference,
pages 739-752, 2008.

Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast
and general distributed transactions using RDMA and
HTM. In EuroSys, pages 26:1-26:17, 2016.

B. F. Cooper, R. Ramakrishnan, U. Srivastava,

A. Silberstein, P. Bohannon, H. Jacobsen, N. Puz,

D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. PVLDB, 1(2):1277-1288, 2008.
B. F. Cooper, A. Silberstein, E. Tam,

R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In SoCC, pages 143-154,
2010.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. C. Hsieh, S. Kanthak, E. Kogan,
H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,

S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner:
Google’s globally-distributed database. In OSDI,
pages 251-264, 2012.

J. A. Cowling and B. Liskov. Granola: Low-overhead
distributed transaction coordination. In ATC, pages
223-235, 2012.

G. DeCandia, D. Hastorun, M. Jampani,

G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In SOSP, pages 205220, 2007.

B. Ding, L. Kot, and J. Gehrke. Improving optimistic
concurrency control through transaction batching and
operation reordering. PVLDB, 12(2):169-182, 2018.
A. Dragojevic, D. Narayanan, E. B. Nightingale,

M. Renzelmann, A. Shamis, A. Badam, and

M. Castro. No compromises: Distributed transactions
with consistency, availability, and performance. In
SOSP, pages 54-70, 2015.

K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger.
The notions of consistency and predicate locks in a

2059

(24]

(25]

[26]

27]

(28]

database system. Commun. ACM, 19(11):624-633,
1976.

J. M. Faleiro, D. Abadi, and J. M. Hellerstein. High
performance transactions via early write visibility.
PVLDB, 10(5):613-624, 2017.

J. M. Faleiro and D. J. Abadi. Rethinking serializable
multiversion concurrency control. PVLDB,
8(11):1190-1201, 2015.

J. M. Faleiro, A. Thomson, and D. J. Abadi. Lazy
evaluation of transactions in database systems. In
SIGMOD Conference, pages 15-26, 2014.

J. Gray, P. Helland, P. E. O’Neil, and D. E. Shasha.
The dangers of replication and a solution. In SIGMOD
Conference, pages 173-182, 1996.

J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger.
Granularity of locks in a large shared data base. In
D. S. Kerr, editor, VLDB, pages 428-451. ACM, 1975.
J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and
P. J. Weinberger. Quickly generating billion-record
synthetic databases. In SIGMOD Conference, pages
243-252, 1994.

R. Harding, D. V. Aken, A. Pavlo, and

M. Stonebraker. An evaluation of distributed
concurrency control. PVLDB, 10(5):553-564, 2017.

R. Jiménez-Peris, M. Patino-Martinez, and S. Arévalo.
Deterministic scheduling for transactional
multithreaded replicas. In SRDS, pages 164-173, 2000.
R. M. Karp. Reducibility among combinatorial
problems. In Complexity of Computer Computations,
pages 85-103, 1972.

B. Kemme and G. Alonso. Don’t be lazy, be
consistent: Postgres-r, A new way to implement
database replication. In VLDB, pages 134-143, 2000.
K. Kim, T. Wang, R. Johnson, and I. Pandis. ERMIA:
fast memory-optimized database system for
heterogeneous workloads. In SIGMOD Conference,
pages 1675-1687, 2016.

H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Trans.
Database Syst., 6(2):213-226, 1981.

L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18-25, 2001.

J. Li, E. Michael, and D. R. K. Ports. Eris:
Coordination-free consistent transactions using
in-network concurrency control. In SOSP, pages
104-120, 2017.

H. Lim, M. Kaminsky, and D. G. Andersen. Cicada:
Dependably fast multi-core in-memory transactions.
In SIGMOD Conference, pages 21-35, 2017.

J. Lockerman, J. M. Faleiro, J. Kim, S. Sankaran,

D. J. Abadi, J. Aspnes, S. Sen, and M. Balakrishnan.
The fuzzylog: A partially ordered shared log. In A. C.
Arpaci-Dusseau and G. Voelker, editors, OSDI, pages
357-372.

H. A. Mahmoud, V. Arora, F. Nawab, D. Agrawal,
and A. El Abbadi. MaaT: Effective and scalable
coordination of distributed transactions in the cloud.
PVLDB, 7(5):329-340, 2014.

H. A. Mahmoud, F. Nawab, A. Pucher, D. Agrawal,
and A. El Abbadi. Low-latency multi-datacenter
databases using replicated commit. PVLDB,
6(9):661-672, 2013.

http://www.tpc.org/tpcc/
https://aws.amazon.com/ec2/

[36]

[37]

[41]

[42]

[43]

[44]

[47]

[48]

[49]

[50]

Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. In FuroSys, pages
183-196, 2012.

C. Mohan, B. G. Lindsay, and R. Obermarck.
Transaction management in the R* distributed
database management system. ACM Trans. Database
Syst., 11(4):378-396, 1986.

S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li.
Extracting more concurrency from distributed
transactions. In OSDI, pages 479-494, 2014.

S. Mu, L. Nelson, W. Lloyd, and J. Li. Consolidating
concurrency control and consensus for commits under
conflicts. In OSDI, pages 517-532, 2016.

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.
Enforcing determinism for the consistent replication of
multithreaded CORBA applications. In SRDS, pages
263-273, 1999.

N. Narula, C. Cutler, E. Kohler, and R. T. Morris.
Phase reconciliation for contended in-memory
transactions. In OSDI, pages 511-524, 2014.

D. Ongaro and J. K. Ousterhout. In search of an
understandable consensus algorithm. In AT'C, pages
305-319, 2014.

D. Qin, A. Goel, and A. D. Brown. Scalable
replay-based replication for fast databases. PVLDB,
10(13):2025-2036, 2017.

K. Ren, J. M. Faleiro, and D. J. Abadi. Design
principles for scaling multi-core OLTP under high
contention. In SIGMOD Conference, pages 1583—-1598,
2016.

K. Ren, A. Thomson, and D. J. Abadi. Lightweight
locking for main memory database systems. PVLDB,
6(2):145-156, 2012.

K. Ren, A. Thomson, and D. J. Abadi. An evaluation
of the advantages and disadvantages of deterministic
database systems. PVLDB, 7(10):821-832, 2014.

K. Ren, A. Thomson, and D. J. Abadi. VLL: a lock
manager redesign for main memory database systems.
VLDB J., 24(5):681-705, 2015.

F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299-319, 1990.

M. Stonebraker, S. Madden, D. J. Abadi,

S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era (it’s time for a complete
rewrite). In VLDB, pages 1150-1160, 2007.

Y. Taleb, R. Stutsman, G. Antoniu, and T. Cortes.

2060

Tailwind: Fast and atomic rdma-based replication. In
ATC, pages 851-863, 2018.

A. Thomson and D. J. Abadi. The case for
determinism in database systems. PVLDB,
3(1):70-80, 2010.

A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao,
and D. J. Abadi. Calvin: Fast distributed transactions
for partitioned database systems. In SIGMOD
Conference, pages 1-12, 2012.

S. Tu, W. Zheng, E. Kohler, B. Liskov, and

S. Madden. Speedy transactions in multicore
in-memory databases. In SOSP, pages 18-32, 2013.

B. Vandiver, H. Balakrishnan, B. Liskov, and

S. Madden. Tolerating byzantine faults in transaction
processing systems using commit barrier scheduling.
In SOSP, pages 59-72, 2007.

T. Wang, R. Johnson, and I. Pandis. Query fresh: Log
shipping on steroids. PVLDB, 11(4):406-419, 2017.
T. Wang and H. Kimura. Mostly-optimistic
concurrency control for highly contended dynamic
workloads on a thousand cores. PVLDB, 10(2):49-60,
2016.

Z. Wang, A. Pavlo, H. Lim, V. Leis, H. Zhang,

M. Kaminsky, and D. G. Andersen. Building a bw-tree
takes more than just buzz words. In SIGMOD
Conference, pages 473-488, 2018.

X. Wei, Z. Dong, R. Chen, and H. Chen.
Deconstructing rdma-enabled distributed transactions:
Hybrid is better! In OSDI, pages 233-251, 2018.

X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast
in-memory transaction processing using RDMA and
HTM. In SOSP, pages 87-104, 2015.

Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An
empirical evaluation of in-memory multi-version
concurrency control. PVLDB, 10(7):781-792, 2017.

X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. TicToc:
Time traveling optimistic concurrency control. In
SIGMOD Conference, pages 1629-1642, 2016.

E. Zamanian, X. Yu, M. Stonebraker, and T. Kraska.
Rethinking database high availability with RDMA
networks. PVLDB, 12(11):1637-1650, 2019.

I. Zhang, N. K. Sharma, A. Szekeres,

A. Krishnamurthy, and D. R. K. Ports. Building
consistent transactions with inconsistent replication.
In SOSP, pages 263-278, 2015.

W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast
databases with fast durability and recovery through
multicore parallelism. In OSDI, pages 465-477, 2014.

	Introduction
	Background
	Replication in Nondeterministic Databases
	Deterministic Concurrency Control

	System Overview
	Deterministic Batch Execution
	The Execution Phase
	The Commit Phase
	Determinism and Serializability
	The Phantom Problem
	Limitations

	Deterministic Reordering
	A Motivating Example
	The Reordering Algorithm
	Proof of Correctness
	Effectiveness Analysis

	The Fallback Strategy
	Implementation
	Data Structures
	Distributed Transactions
	Fault Tolerance

	Evaluation
	Experimental Setup
	YCSB Results
	Scheduling Overhead
	Effectiveness of Deterministic Reordering
	TPC-C Results
	Results on Distributed Transactions
	Scalability Experiment

	Related Work
	Conclusion
	References

