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ABSTRACT
Due to the falling costs of data acquisition and storage, researchers
and industry analysts often want to find all instances of rare events
in large datasets. For instance, scientists can cheaply capture thou-
sands of hours of video, but are limited by the need to manually
inspect long videos to identify relevant objects and events. To re-
duce this cost, recent work proposes to use cheap proxy models,
such as image classifiers, to identify an approximate set of data
points satisfying a data selection filter. Unfortunately, this recent
work does not provide the statistical accuracy guarantees necessary
in scientific and production settings.

In this work, we introduce novel algorithms for approximate se-
lection queries with statistical accuracy guarantees. Namely, given
a limited number of exact identifications from an oracle, often a
human or an expensive machine learning model, our algorithms
meet a minimum precision or recall target with high probability. In
contrast, existing approaches can catastrophically fail in satisfying
these recall and precision targets. We show that our algorithms can
improve query result quality by up to 30× for both the precision
and recall targets in both real and synthetic datasets.
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1. INTRODUCTION
As organizations are now able to collect large datasets, they reg-

ularly aim to find all instances of rare events in these datasets. For
example, biologists in a lab at Stanford have collected months of
video of a flower field and wish to identify timestamps when hum-
mingbirds are feeding so they can match hummingbird feeding pat-
terns with microbial readings from the flowers. Furthermore, our
contacts at an autonomous vehicle company are interested in au-
diting when their labeled data may be wrong, e.g., missing pedes-
trians [23], so they can correct them. Other recent work has also
studied this problem [5, 39, 44, 47]. Importantly, these events are
∗Authors contributed equally

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407804

20 40 60 80 100
Precision

Naive

SUPGM
et

ho
d

ImageNet

Figure 1: Box plot of achieved precisions of naive sampling from
recent work [44, 47] and our improved algorithm. Over 100 runs
targeting a precision of 90%, the naive algorithm returns precisions
as low as 65% for over half the runs. In contrast, our algorithms
(SUPG) achieve the precision target with high probability.

rare (e.g., at most 0.1-1% of frames contain hummingbirds) and
users are interested in the set of matching records as opposed to
aggregate measures (e.g., counts).

Unfortunately, executing oracle predicates (e.g., human labelers
or deep neural networks) to find such events can be prohibitively
expensive, so many applications have a budget on executing oracle
predicates. For example, biologists can watch only so many hours
of video and companies have fixed labeling budgets.

To reduce the cost of such queries, recent work, such as NO-
SCOPE and probabilistic predicates [5, 39, 44, 47], has proposed to
use cheap proxy models that approximate ground truth oracle la-
bels (e.g., labels from biologists). These proxy models are typically
small machine learning models that provide a confidence score for
the label and selection predicate. If the proxy model’s confidence
scores are reliable and consistent with the oracle, they can be used
to filter out the vast majority of data unlikely to match.

There are two major challenges in using these proxy models to
reduce the labeling cost subject to a budget: reliability of proxy
models and oracle labeling efficiency.

First, given the budget, using an unreliable proxy model can re-
sult in false negatives or positives, making it difficult to guaran-
tee the accuracy of query results. Existing systems do not provide
guarantees on the accuracy. In fact they can fail unpredictably and
catastrophically, providing results with low accuracy a significant
fraction of the time [5, 13, 39, 43, 44, 47]. For example, when users
request a precision of at least 90%, over repeated runs, existing
systems return results with less than 65% precision over half the
time, with some runs low as 20% (Figure 1). These failures can
be even worse in the face of shifting data distributions, i.e., model
drift (Section 6.2). Such failures are unacceptable in production
deployment and for scientific inference.
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Second, existing systems do not make efficient use of limited
oracle labels to maximize the quality of query results. To avoid
vacuous results (e.g., achieving a perfect recall by returning the
whole dataset will have poor precision), NOSCOPE, probabilistic
predicates, and other recent work uniformly sample records to la-
bel with the oracle in order to decide on the final set of records
to return. We show that this is wasteful. In the common case
where records matching the predicate are rare, the vast majority
of uniformly sampled records will be negatives, with too few pos-
itives. Thus, naively extending existing techniques yields results
with accuracy guarantees can fail to maintain high result quality
given these uninformative labels.

In response we develop novel algorithms that provide both sta-
tistical guarantees and efficient use of oracle labels for approximate
selection. We further develop query semantics for the two settings
we consider: the recall target and precision target settings.

Accuracy guarantees. To address the challenge of guarantees on
failure probability, we first define probabilistic guarantees for two
classes of approximate selection queries. We have found that users
are interested in queries targeting a minimum recall (RT queries)
or targeting a minimum precision (PT queries), subject to an oracle
label budget and a failure probability on the query returning an in-
valid result (Section 3). For instances, the biologist are interested
in 90% recall and a failure probability of at most 5%.

We develop novel algorithms (SUPG algorithms) that provide
these guarantees by using the oracle budget to randomly sample
records to label, and estimating a proxy confidence threshold τ
for which it is safe to return all records with proxy score above τ .
Naive use of uniform sampling will not account for the probability
that there is a deviation between observed labels and proxy scores,
and will further introduce multiple hypothesis testing issues. This
will result in a high probability of failure. In response, we make
careful use of confidence intervals and multiple hypotheses correc-
tions to ensure that the failure probability is controlled.

Oracle sample efficiency. A key challenge is deciding which
data points to label with the oracle given the limited budget: as we
show, uniform sampling is inefficient. Instead, we develop novel,
optimal importance sampling estimators that use of the correlation
between the proxy and the oracle, while taking into account pos-
sible mismatches between the binary oracle and continuous proxy.
Intuitively, importance sampling upweights the probability of sam-
pling data points with high proxy scores, which are more likely to
contain the events of interest.

However, naive use of importance sampling results in poor per-
formance when sampling according to proxy scores. Using a vari-
ance decomposition, we find that a standard approach for obtaining
importance weights (i.e., using weights proportional to the proxy)
is suboptimal and, excluding edge cases, performs no better than
uniform random sampling.

Instead, we show that sampling proportional to the square root
of the proxy scores allows for more efficient estimates of the proxy
threshold when the proxy scores are confident and reliable (Sec-
tion 5.3.1). For precision target queries, we additionally extend
importance sampling to use a two-stage sampling procedure. In the
first stage, our algorithm estimates a safe interval to further sample.
In the second stage, our algorithm samples directly from this range,
which we show greatly improves sample efficiency.

Careless of use of importance sampling can hurt result quality
when used with poor proxy models. If proxy scores are uncorre-
lated with the true labels, importance sampling will in fact increase
the variance of sampling. To address these issues, we defensively
incorporate uniform samples to guard against situations where the

(a) Hummingbird present (b) No hummingbirds

Figure 2: Sample matching (a) and non-matching (b) frames for a
selection query over a video stream used by our biologist collabora-
tors. Only a small (< .1%) fraction of frames have hummingbirds
present and match the filter predicate, making manual inspection
difficult. DNNs can serve as proxies to identify hummingbirds as
shown in (a), but the confidence scores can be unreliable.

proxy may be adversarial [49]. This procedure still maintains the
probabilistic accuracy guarantees.

We implement and evaluate these algorithms on real and syn-
thetic datasets and show that our algorithms achieve desired ac-
curacy guarantees, even in the presence of model drift. We further
show that our algorithms outperform alternative methods in provid-
ing higher result quality, by as much as 30× higher recall/precision
under precision/recall constraints respectively.

In summary, our contributions are:
1. We introduce semantics for approximate selection queries

with probabilistic accuracy guarantees under a limited ora-
cle budget.

2. We develop algorithms for approximate selection queries that
satisfy bounded failure probabilities while making efficient
use of the oracle labels.

3. We implement and evaluate our algorithms on six real-world
and synthetic datasets, showing up to 30× improvements in
quality and consistent ability to achieve target accuracies.

2. USE CASES
To provide additional context and motivation for approximate

selection queries, we describe scenarios where statistically efficient
queries with guarantees are essential. Each scenario is informed by
discussions with academic and industry collaborations.

2.1 Biological Discovery
Scenario. We are actively collaborating with the Fukami lab at
Stanford University, who study bacterial colonies in flowers [52].
The Fukami lab is interested in hummingbirds that move bacteria
between flowers as they feed, as this bacterial movement can af-
fect both the micro-ecology of the flowers and later hummingbird
feeding patterns. To study such phenomena, they have collected
videos of bushes with tagged flowers at the Jasper Ridge biological
preserve. They have recorded six views of the scene with a total of
approximately 9 months of video. At 60 fps, this is approximately
1.4B frames of video. To perform downstream analyses, our collab-
orators want to select all frames in the video that contain humming-
birds. Due to the rarity of hummingbird appearances (< 0.1%) and
the length of the video, they have been unable to manually review
the video in its entirety. We illustrate the challenge in Figure 2.

Proxy model. Prior to our collaboration, the Fukami lab used mo-
tion detectors as a proxy for identifying frames with birds. How-
ever, the motion detectors have severe limitations: their precision
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SELECT * FROM table_name
WHERE filter_predicate
ORACLE LIMIT o
USING proxy_estimates
[RECALL | PRECISION] TARGET t
WITH PROBABILITY p

Figure 3: Syntax for specifying approximate selection queries.
Users provide a precision or recall target, a budget for the num-
ber of oracle predicate evaluations, and a probability of success.

is extremely low (approximately 2%) and they do not cover the full
field of view of the bush. As an alternative, we are actively us-
ing DNN object detector models to identify hummingbirds directly
from frames of the video [8,31]. These DNN models are more pre-
cise than motion detectors, and can provide a confidence score in
addition to a Boolean predicate result.

During discussion with the Fukami lab, we have found that the
scientists require high probability guarantees on recall, as finding
the majority of hummingbirds is critical for downstream analysis.
Furthermore, they are interested in improving precision relative to
the motion detectors. The scientists have specified that they need
a recall of at least 90% and a precision that is as high as possible,
ideally above 20%.

2.2 Autonomous Vehicle Training
Scenario. An autonomous vehicle company may collect data in a
new area. To train the DNNs used in the vehicle, the company may
extract point cloud or visual data and use a labeling service to label
pedestrians. Unfortunately, labeling services are known to be noisy
and may not label pedestrians even when they are visible [23].

To ensure that all pedestrians are labeled, an analyst may wish to
select all frames where pedestrians are present but are not annotated
in the labeled data. However, as autonomous vehicle fleets collect
enormous amounts of data (petabytes per day), the analyst is not
able to manually inspect all the data.

Proxy model. As the proxy model, the analyst can use an object
detection method and remove boxes that are in the labeled dataset.
The analyst can then use the confidences from the remaining boxes
from the object detection as the proxy scores.

As this is a mission-critical setting, the analyst is interested in
guarantees on recall. Missing pedestrians in the labeled dataset
can transfer to missing pedestrians at deployment time, which can
cause fatal accidents.

We further note that the analyst may also be interested in using
other proxies, such as 3D detections from LIDAR data. In this
work, we only study the use of a single proxy model, but we see
extending our algorithms to multiple proxy models as an exciting
area of future work (Section 8).

We note that this scenario is not limited to autonomous vehicles
but can apply to other scenarios where curating high quality ma-
chine learning datasets is of paramount concern.

2.3 Legal Discovery and Analysis
Scenario. Lawyers are often tasked with analyzing large corpora
of data, e.g., they may inspect a corpus of emails as part of legal
discovery, or may be tasked to analyze if private information was
leaked in a data breach [40,41]. This process is expensive as hiring
contract lawyers to manually inspect documents is time consuming
and expensive. As a result, a number of companies are interested

in leveraging automatic methods to select all records that match
sensitive named entities or reference relevant legal concepts.

Proxy model. As the proxy model, an analyst may fine-tune a
sophisticated language understanding model, such as BERT [22].
The analyst can deploy this model over the corpus of text data and
extract noisy labels to help the lawyers. For sensitive issues, com-
panies would benefit from tools that can provide either recall or
precision guarantees depending on the scenario.

3. APPROXIMATE SELECTION QUERIES
We introduce our definitions for our approximate selection

queries (SUPG queries), describe the probabilistic guarantees they
respect, and define metrics for comparing the quality of the results.

3.1 Query Semantics
A SUPG query is a selection query for set of records match-

ing a predicate, with syntax given in Figure 3. Unlike much of
the existing work in approximate query processing, SUPG queries
return a set of matching records rather than a scalar or vector ag-
gregate [4,34]. We defined these semantics to formalize a common
class of queries our collaborators and industrial contacts are inter-
ested in executing.

The query specifies a filter predicate given by a “ground truth”
oracle, as well as a limited budget of total calls to the oracle over
the course of query execution. We use the term oracle to refer to
any expensive predicate the user wishes to approximate. In some
cases, the oracle may be an expensive DNN (e.g., the highly ac-
curate Mask R-CNN [31]) that may not exactly match the ground
truth labels that a human labeler would provide. However, the use
of proxies to approximate powerful deep learning models is com-
mon in the literature [5, 39, 43, 44, 47], so we study how to provide
guarantees in applications that use a larger DNN as an oracle.

Since oracle usage is limited, queries also specify proxy confi-
dence scores for whether a record matches the predicate. The proxy
scores must be correlated with the probability that a record matches
the filter predicate to be useful. Nonetheless, our novel algorithms
will return valid results even if proxy scores are not correlated.

The accuracy of the set of results can be measured using either
recall (the fraction of true matches returned) or precision (the frac-
tion of returned results that are true matches). Based on the ap-
plication, a user can specify either a minimum recall or precision
target as well as a desired probability of achieving this target. We
refer to these two options as precision target (PT) and recall target
(RT) queries. As an example, consider the following RT query:

SELECT * FROM hummingbird_video
WHERE HUMMINGBIRD_PRESENT(frame) = True
ORACLE LIMIT 10,000
USING DNN_CLASSIFIER(frame) = "hummingbird"
RECALL TARGET 95%
WITH PROBABILITY 95%

where both HUMMINGBIRD_PRESENT and DNN_CLASSIFIER
are user-defined functions (UDFs). This query selects the frames
of the video that contains a hummingbird with recall at least 95%,
using at most 10,000 oracle evaluations, and a failure probability of
at most 5%, using confidence probabilities from a DNN classifier
as a proxy. The oracle could be a human labeler or expensive DNN.

Finally, we note that some queries may require both a recall and
precision target. Unfortunately, jointly achieving both targets may
require an unbounded number of oracle queries. Since all use cases
we consider have limited budgets, we defer our discussion of these
queries to an extended version of this paper [45].
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3.2 Probabilistic Guarantees
More formally, a SUPG query Q is defined by an oracle pred-

icate O(x) ∈ {0, 1} over a set of records x from a dataset D.
The ideal result for the query would be the matching records
O+ := {x ∈ D : O(x) = 1}. However, since the oracle is as-
sumed to be expensive, the query specifies a budget of s calls to
the oracle O(x), as well as a proxy model A(x) ∈ [0, 1] whose use
is unrestricted. The query specifies a minimum recall or precision
target γ. Then, a valid query result would be a set of records R
such that Precision(R) > γp or Recall(R) > γr depending on the
query type. Recall that

Precision(R) :=
|R ∩O+|
|R| Recall(R) :=

|R ∩O+|
|O+| .

A SUPG query further specifies a failure probability δ. Many
precision or recall targets γ may be impossible to achieve determin-
istically given a limited budget of s calls to the oracle, as they re-
quire exhaustive search. Thus, it is common in approximate query
processing and statistical inference to use randomized procedures
with a bounded failure probability [20]. A randomized algorithm
satisfies the guarantees inQ if it produces valid resultsRwith high
probability. That is, for PT queries:

Pr[Precision(R) ≥ γp] ≥ 1− δ (1)

and for RT queries:

Pr[Recall(R) ≥ γr] ≥ 1− δ. (2)

These high probability guarantees are much stronger than merely
achieving an average recall or precision as many existing systems
do [5,39,44,47]. For example, in Figure 6 we illustrate the true re-
call provided for queries targeting 90% recall to NOSCOPE system,
and compare them with the recall provided by SUPG which satis-
fies the stronger guarantee in Equation 2. NOSCOPE only achieves
the target recall approximately half of the time, with many runs
failing to achieve the recall target by a significant margin. Such
results that fail to achieve the recall target would have a significant
negative impact on downstream statistical analyses.

3.3 Result Quality
Since SUPG queries only specify a target for either precision or

recall (the target metric), there are many valid results for a given
query which may be more or less useful. For instance, if a user
targets 99% recall the entire dataset is always a valid result, even
though this may not be useful to the user. In this case, it would
be more useful to return a smaller set of records to minimize false
positives. Similarly, if a user targets high precision the empty set
is always a valid result, and is equally useless. Thus, we define
selection query quality in this paper as follows:

Definition 1. For RT/PT queries, a higher quality result in one
with higher precision/recall, respectively.

There is an inherent trade-off between returning valid results and
maximizing result quality, analogous to the trade-off between max-
imizing precision and maximizing recall in binary classification
[11, 28], but efficient use of oracle labels will allow us to develop
more efficient importance sampling based query techniques.

4. ALGORITHM OVERVIEW
In this section, we describe the system setting that our SUPG

algorithms operate in, and outline the major stages in the algorithm:
sampling oracle labels, choosing a proxy threshold, and returning a
set of data record results.
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Figure 4: Our SUPG algorithms uses sampled oracle labels and
proxy scores to identify a subset of records that satisfy a recall or
precision target with high probability. Naive selection methods,
as used by recent work, would make less efficient use of limited
oracle labels, and provide weaker guarantees: in fact they often fail
to achieve a target recall or precision.

4.1 Operational Architecture
Our algorithms are designed for batch query systems that per-

form selection on datasets of existing records. Users can issue
queries over the data with specified predicates and parameters as
described earlier. Note that the oracle and proxy models used
to evaluate the filter predicate are provided by the user as UDFs
(callback functions) and are not inferred by the system. Thus, a
user must provide either a ground truth DNN or interface to ob-
tain human input as an oracle, as well as pre-trained inexpensive
proxy models. In practice, one can provide user interfaces for in-
teractively requesting human labels [1] as well as scripts for auto-
matically constructing smaller proxy models from an existing ora-
cle [44, 47], though those are outside the scope of this paper.

We illustrate how SUPG uses oracle and proxy models in Fig-
ure 4. For all query types, SUPG first executes the proxy model
over the complete set of records D as we assume the proxy model
is cheap relative to the oracle model. Then, SUPG samples a set S
of s records to label using the oracle model. The choice of which
records to label using the oracle is done adaptively, that is, the
choice of samples may depend on the results of previous oracle
calls for a given query.

Algorithm 1 SUPG query processing
function SUPGQUERY(D, A, O)
S ← SampleOracle(D)
τ ← EstimateTau(S)
R1 ← {x : x ∈ S ∧O(x) = 1}
R2 ← {x : x ∈ D ∧A(x) ≥ τ}
returnR1 ∪R2

We summarize this sequence of operations SUPG uses to return
query results in Algorithm 1. After calling the oracle to obtain pred-
icate labels over a sample S, SUPG sets a proxy score threshold τ
and then returns resultsR that consist of both labeled records in S
matching the oracle predicate as well as records with proxy scores
above the threshold τ . τ is tuned so that the final results R satisfy
minimum recall or precision targets with high probability, and we
describe the process for setting τ below.

4.2 Choosing a Proxy Threshold
Since the proxy scores are the only source of information on the

query predicate besides the oracle model, SUPG naturally returns
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Table 1: Notation Summary

Symbol Description
O(x) Oracle predicate value
A(x) Proxy confidence score
δ Failure probability
γ Target Recall / Precision
τ Proxy score threshold for selection
S Records sampled for oracle evaluation

records corresponding to all records with scores above a threshold
τ . This strategy is known to be optimal in the context of retrieval
and ranking as long as proxy scores grow monotonically with an
underlying probability that the record matches a predicate [48]. We
have observed in practice that this is approximately true for proxy
models by computing empirical match rates for bucketed ranges of
the proxy scores, so we use this as the default strategy in SUPG.
For proxy models that are completely uncorrelated or have non-
monotonic relationships with the oracle, all algorithms using prox-
ies will have increasingly poor quality, but SUPG will still provide
accuracy guarantees.

Thus, the key task is selecting the threshold τ to maintain result
validity while maximizing result quality. This threshold must be
set at query time since the relation between proxy scores and the
predicate is unknown, especially when production model drift is
an issue. Existing systems have often relied on pre-set thresholds
determined ahead of time, which we show in Section 6.2 can lead
to severe violations of result validity.

One naive strategy for selecting τ at query time is to uniform
randomly sample records to label with the oracle until the budget is
exhausted, and then select τ that achieves a target accuracy over the
sample. However, this strategy on its own does not provide strong
accuracy guarantees or make efficient use of the sample budget.
Thus, in Section 5 we introduce more sophisticated methods for
sampling records and estimating the threshold: that is, implemen-
tations of SampleOracle and EstimateTau.

5. ESTIMATING PROXY THRESHOLDS
Recall that SUPG selects all records with proxy scores above a

threshold τ . Denote this set of records

D(τ) := {x : A(x) ≥ τ}.

SUPG query accuracy thus critically depends on the choice of τ . In
this section we describe our algorithms for estimating a threshold
that can guarantee valid results with high probability, while max-
imizing result quality. While precision target (PT) and recall tar-
get (RT) queries require slightly different threshold estimation rou-
tines, in both cases SUPG samples records to label with the oracle.
Using this sample, SUPG will select a threshold τ that achieves
the target metric on the dataset D with high probability.

In order to explain our algorithms and compare them with ex-
isting work, we will also describe a number of baseline techniques
which do not provide statistical guarantees, and do not make effi-
cient use of oracle labels to improve result quality.

We now describe baselines without guarantees, how to correct
these baselines for statistical guarantees on failure probability, and
finally our novel importance sampling algorithms.

5.1 Baselines Without Guarantees
The simplest strategy for estimating a valid threshold would be to

take a uniform i.i.d. random sample of records S, label the records
with the oracle, and then use S as an exact representative of the
dataset D when choosing a threshold. This is the approach used

by probabilistic predicates and NOSCOPE [44,47], and we call this
approach U-NOCI because it uses a uniform sample and does not
account for failure probabilities using confidence intervals (CI). Let
RecallS(τ) and PrecisionS(τ) denote the empirical recall and pre-
cision for the sampled data S, and 1c denote the indicator function
that condition c holds:

RecallS(τ) :=

∑
x∈S 1A(x)≥τO(x)∑

x∈S O(x)
(3)

PrecisionS(τ) :=

∑
x∈S 1A(x)≥τO(x)

|S| . (4)

The U-NOCI-P approach maximizes result quality subject to
constraints on these empirical recall and precision estimates. For
PT queries this results in finding the minimal τ (minimizing false
negatives) that achieves the target metric on S, and for RT queries
this results in finding the maximum τ (minimizing false positives).
Formally this is defined as,

τU-NOCI-P(S) = min{τ : PrecisionS(τ) ≥ γ} (5)
τU-NOCI-R(S) = max{τ : RecallS(τ) ≥ γ}. (6)

However, we have no guarantee that the thresholds selected in this
way will provide valid results on the complete dataset, due to the
random variance in choosing a threshold based on the limited sam-
ple. We empirically show that such algorithms fail to achieve tar-
gets up to 80% of the time in Section 6.2.

5.2 Guarantees through Confidence Intervals
In order to provide probabilistic guarantees, we form confidence

intervals over τ and take the appropriate upper or lower bound.

Normal approximation. In Lemma 1 we describe an asymptotic
bound relating sample averages to population averages, allowing us
to bound the discrepancy between recall and precision achieved on
S vs D. This approximation is commonly used in the approximate
query processing literature [3, 29, 34].

For ease of notation we will refer to the upper and lower bounds
provided by Lemma 1 using helper functions

UB(µ, σ, s, δ) := µ+
σ√
s

√
2 log

1

δ
(7)

LB(µ, σ, s, δ) := µ− σ√
s

√
2 log

1

δ
. (8)

LEMMA 1. Let S be a set of s i.i.d. random variables x ∼ X
with mean µ and finite variance σ2 and sample mean µ̂. Then,

lim
s→∞

Pr [µ̂ ≥ UB(µ, σ, s, δ)] ≤ δ

and

lim
s→∞

Pr [µ̂ ≤ LB(µ, σ, s, δ)] ≤ δ.

Lemma 1 defines the expected variation in recall and precision
estimates as s grows large, and follows from the Central Limit The-
orem [56]. Using this, we can select conservative thresholds that
with high probability still provide valid results on the underlying
dataset D. Though this bound is an asymptotic result for large s,
quantitative convergence rates for such statistics are known to be
fast [9] and we found that this approach provides the appropriate
probabilistic guarantees at sample sizes s > 100.

Other confidence intervals. Throughout, we use Lemma 1 to
compute confidence intervals. There are other methods to compute
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confidence intervals, e.g., the bootstrap [24], Hoeffding’s inequal-
ity [37], and “exact” methods for Binomial proportions (Clopper-
Pearson interval) [19]. We show that the normal approximation
matches or outperforms alternative methods of computing confi-
dence intervals (Section 6.4). Since the normal approximation is
straightforward to implement and applies to both uniform and im-
portance sampling we use it throughout.

We will now describe baseline uniform sampling based methods
for estimating τ in both RT and PT queries.

5.2.1 Recall Target
For recall target queries, we want to estimate a threshold τ such

that RecallD(τ) ≥ γ with probability at least 1 − δ. To maximize
result quality we would further like to make τ as large as possible.
We present the pseudocode for a threshold selection routine U-CI-
R that provides guarantees on recall in Algorithm 2.

Note that Algorithm 2 finds a cutoff τ that achieves a conserva-
tive recall of γ′ on S instead of the target recall γ. This inflated
recall target accounts for the potential random variation from form-
ing the threshold on S rather than D.

Validity justification. Let τo be the largest threshold providing
valid recall on D:

τo := max{τ : RecallD(τ) ≥ γ}

If RecallS(τo) ≤ γ′ then Algorithm 1 will select a threshold τ ′

where τ ′ ≤ τo since recall varies inversely with the threshold.
Then, RecallD(τ ′) ≥ RecallD(τ) ≥ γ and the results derived from
τ ′ would be valid.

It remains to show that with probability 1− δ, γ′ satisfies:

RecallS(τo) ≤ γ′. (9)

Let Z1(τ), Z2(τ) be sample indicator random variables for
matching records above and below τo, corresponding to the sam-
ples in S.

Z1(τ) := {1A(x)≥τO(x) : x ∈ S}
Z2(τ) := {1A(x)<τO(x) : x ∈ S}.

Note that
µ̂Z1(τ)

µ̂Z1(τ)+µ̂Z2(τ)
= RecallS(τ), which increases with

µ̂Z1(τ) and decreases with µ̂Z2(τ). Thus, if we let

γ∗ =
UB(µZ1(τo), σZ1(τo), s,

δ
2
)

UB(µZ1(τo), σZ1(τo), s,
δ
2
) + LB(µZ2(τo), σZ2(τo), s,

δ
2
)

then asymptotically as s → ∞ Lemma 1 ensures RecallS(τo) =
µ̂Z1(τo)

µ̂Z1(τo)
+µ̂Z2(τo)

≤ γ∗ with probability 1−δ. γ∗ is not computable
from our sample so we use plug-in estimates for τo, µ, and σ to
estimate a γ′ → γ∗ as s→∞.

5.2.2 Precision Target
For precision target queries, we want to estimate a threshold τ

such that PrecisionD(τ) ≥ γ with high probability. To maximize
result quality (i.e., maximize recall), we would further like to make
τ as small as possible.

Unlike for recall target queries, there is no monotonic relation-
ship between PrecisionD(τ) and τ : PrecisionD(τ1) may be greater
than PrecisionD(τ2) even if τ1 < τ2. Thus, for PT queries we
calculate lower bounds on the precision provided by a large set of
candidate thresholds τ , and return the smallest candidate threshold
that provides results with precision above the target.

We provide pseudocode for U-CI-R which uses confidence in-
tervals over a uniform sample (Algorithm 3). Since the procedure

Algorithm 2 Uniform threshold estimation (RT)
function τU-CI-R(D)
S ← UniformSample(D, s)
τ̂o ← max{τ : RecallS(τ) ≥ γ}
Z1 ← {1A(x)≥τ̂oO(x) : x ∈ S}
Z2 ← {1A(x)<τ̂oO(x) : x ∈ S}
γ′ ← UB(µ̂z1 ,σ̂z1 ,s,δ/2)

UB(µ̂z1 ,σ̂z1 ,s,δ/2)+LB(µ̂z2 ,σ̂z2 ,s,δ/2)

τ ′ ← max{τ : RecallS(τ) ≥ γ′}
return τ ′

Algorithm 3 Uniform threshold estimation (PT)
m← 100 . Minimum step size
function τU−CI−P(D)
S ← UniformSample(D, s)
AS ← Sort({A(x) : x ∈ S})
M ← ds/me
Candidates← {}
for i← m, 2m, . . . , s do

τ ← AS [i]
Z ← {O(x) : x ∈ S ∧A(x) ≥ τ}
pl ← LB(µ̂Z , σ̂Z , |Z|, δ/M) . Precision Bound
if pl > γ then

Candidates← Candidates ∪ {τ}
return minτ Candidates

uses Lemma 1 M times by union bound we need each usage to
hold with probability 1 − δ/M for the final returned threshold to
be valid with probability 1− δ.

Validity justification. Let

Z(τ) = {O(x) : x ∈ S ∧A(x) ≥ τ},

then µ̂Z(τ) = PrecisionS(τ) and µZ(τ) = PrecisionD(τ). Asymp-
totically by Lemma 1, with probability 1− δ/M

LB(µ̂Z(τ), σZ(τ), |Z(τ)|, δ/M) ≤ µZ(τ).

By the union bound, as long as each τ in the Candidate set has
LB(µ̂Z(τ), σZ(τ), |Z(τ)|, δ/M) > γ, the precision for each of the
candidates over the dataset also exceeds γ. Since we do not know
σ, in Algorithm 3 we use sample plug-in estimates for σZ(τ). Al-
ternatively one could use a t-test (both are asymptotically valid).

5.3 Importance Sampling
The U-CI routines for estimating τ in Algorithms 2 and 3 pro-

vide valid results with probability 1 − δ. However if the random
sample chosen for oracle labeling S is uninformative, the confi-
dence bounds we use will be wide and the threshold estimation
routines will return results that have lower quality in order to pro-
vide valid results. Thus, we explain how SUPG uses importance
sampling to select a set of points that improve upon uniform sam-
pling. We refer to these more efficient routines as IS-CI estimators.

Importance sampling chooses records x with replacement from
the dataset D with weighted probabilities w(x) as opposed to uni-
formly with base probability u(x). One can compute the expected
value of a quantity f(x) with reduced variance by then sampling
according to w rather than u and using the reweighting identity:

E
x∼u

[f(x)] = E
x∼w

[
f(x)

u(x)

w(x)

]
. (10)
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Algorithm 4 Importance threshold estimation (RT)
function τIS-CI-R(D)

~w ← {
√
A(x) : x ∈ D}

~w ← .9 · ~w/‖~w‖1 + .1 ·~1/|D| . Defensive Mixing
S ← WeightedSample(D, ~w, s)
m(x)← 1/|D|

w(x)

τo ← max{τ : RecallSw (τ) ≥ γ}
ẑ1 ← {1A(x)≥τoO(x)m(x) : x ∈ S}
ẑ2 ← {1A(x)<τoO(x)m(x) : x ∈ S}
γ′ ← UB(µ̂z1 ,σ̂z1 ,s,δ/2)

UB(µ̂z1 ,σ̂z1 ,s,δ/2)+LB(µ̂z2 ,σ̂z2 ,s,δ/2)

τ ′ ← max{τ : RecallSw (τ) ≥ γ′}
return τ ′

Abbreviating the reweighting factor asm(x) := u(x)/w(x), we
can then define reweighted estimates for recall and precision on a
weighted sample Sw:

RecallSw (τ) :=

∑
x∈S 1A(x)≥τO(x)m(x)∑

x∈Sw O(x)m(x)
(11)

PrecisionSw (τ) :=

∑
x∈S 1A(x)≥τO(x)m(x)∑

x∈Sw m(x)
(12)

If we can reduce the variance of these estimates, we can use the
tighter bounds to improve the quality of the results at a given recall
or precision target.

The optimal choice of w(x) for the standard importance sam-
pling setting is w(x) ∝ f(x)u(x) [56]. However, this assumes
f(x) is a known function. In our setting, we want f(x) =
1A(x)≥τO(x) which is both stochastic and a priori unknown. This
prevents us from directly applying traditional importance sampling
weights based on f(x). Instead, we can use the proxy A(x) to
define sampling weights.

Our approach solves for the optimal sample weights for prox-
ies that are highly correlated with the oracle, i.e. calibrated with
A(x) = Prx∼u[O(x) = 1|A(x)]. In practice this will not hold
exactly, but as long as the proxy scores are approximately propor-
tional to the probability we can use them to derive useful sample
weights. We show in Section 5.3.1 that the optimal weights which
minimize the variance are proportional to

√
A(x)1A(x)≥τu(x). To

guard against situations where the proxy could be inaccurate, we
defensively mix a uniform distribution with these optimal weights
in our algorithms [49].

Note that the validity of our results does not depend on the proxy
being calibrated, but this importance sampling scheme allows us to
obtain lower variance threshold estimates and thus more efficient
query results when the proxy is close to calibrated.

Recall target. For recall target queries, we extend Algorithm 2 to
use weighted samples according to Theorem 1. We use the weights
to optimize the variance of E[O(x)] as a proxy for reducing the
variance of E[1A(x)≥τoO(x)] and E[1A(x)<τoO(x)]. We present
this weighted method, IS-CI-R, in Algorithm 4. The justification
for high probability validity is the same as before.

Precision target. For PT queries we can combine Theorem 1 with
an additional observation: if we know there are at most nmatch posi-
tive matching records inD, then there is no need to consider thresh-
olds lower than the nmatch/γ-th highest proxy score in D, since
any lower thresholds cannot achieve a precision of γ. SUPG thus
devotes half of the oracle sample budget to estimating the upper
bound nmatch and the remaining half for running a weighted version

Algorithm 5 Importance threshold estimation (PT)
m← 100 . Minimum step size
function τIS-CI-P(D)

~w ← {
√
A(x) : x ∈ D}

~w ← .9 · ~w/‖~w‖1 + .1 ·~1/|D| . Defensive Mixing
S0 ← WeightedSample(D, w, s/2) . Stage 1
m(x)← 1/|D|

w(x)

Z ← {O(x)m(x) : x ∈ S0}
nmatch ← |D| · UB(µ̂Z , σ̂Z , s/2, δ/2)
A← SortDescending({A(x) : x ∈ D})
D′ ← {x : A(x) ≥ A[nmatch/γ]}
S1 ← WeightedSample(D′, w, s/2) . Stage 2
AS1 = A ∩ S1
M ← ds/me
Candidates← {}
for i← m, 2m, . . . , s do

τ ← AS1 [i]
Z ← {O(x) : x ∈ S1 ∧A(x) ≥ τ}
pl ← LB(µ̂Z , σ̂Z , |Z|, δ/(2M)) . Precision Bound
if pl > γ then

Candidates← Candidates ∪ {τ}
return minτ Candidates

of Algorithm 3 on candidate thresholds. We present this two-stage
weighted sampling algorithm, IS-CI-P, in Algorithm 5.

We set the failure probability of each stage to δ/2 which guar-
antees the overall failure probability of the algorithm via the union
bound. The remaining arguments for high probability validity fol-
lows the argument for the unweighted algorithm.

5.3.1 Statistical Efficiency

Algorithm. Theorem 1 formally states the optimal sampling
weights used by our importance sampling τ estimation routines.
The proof is deferred to Section 10.1.

THEOREM 1. For an importance sampling routine estimat-
ing Ex∼u[f(x)], when f(x) = {0, 1}, a(x) is a calibrated
proxy Prx∼u[f(x) = 1|a(x)] = a(x), and we sample knowing
a(x), u(x), but not f(x), then importance sampling with w(x) ∝√
a(x)u(x) minimizes the variance of the reweighted estimator.

We apply can this to our algorithms using f(x) = O(x) ·
1A(x)≥τ and a(x) = A(x) · 1A(x)≥τ . To illustrate the impact of
these weights, we can quantify the maximum improvement in vari-
ance they provide. Compared with uniform sampling or sampling
proportional to a(x), these weights provide a variance reduction
of at least ∆v = Varx∼u[

√
a(x)], which is significant when the

proxy confidences are concentrated near 0 and 1, while the differ-
ences vanish when there is little variation in the proxy scores. For
more details see Section 10.2.

Intuition. In standard importance sampling, the variance mini-
mizing weights are proportional to the function values. However, in
our setting, we only have access to probabilities (i.e., A(x)) for the
function we wish to compute expectations over (i.e., O(x)). Since
O(x) is a randomized realization of A(x), up-weighing x propor-
tionally to A(x) results in “overconfident” sampling. Thus, the
square root weights effectively down-weights the confidence that
A(x) accurately reflects O(x). We show in Section 6.4 the effect
of the exponent in weighing A(x) on the sample efficiency.
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Table 2: Summary of datasets, oracle models, proxy models, and true positive rates. We use both synthetic and real datasets that vary in true
positive rate and type of proxy/oracle models.

Dataset Oracle Proxy TPR Task description
ImageNet Human labels ResNet-50 0.1% Finding hummingbirds in the ImageNet validation set
night-street Mask R-CNN ResNet-50 4% Finding cars in the night-street video
OntoNotes Human labels LSTM 2.5% Finding city relationships
TACRED Human labels SpanBERT 2.4% Finding employees relationships
Beta(0.01, 1) True values Probabilities 0.5% A(x) = Beta(0.01, 1) and O(x) = Bernoulli(A(x))
Beta(0.01, 2) True values Probabilities 1% We use the same procedure as directly above but with Beta(0.01, 2)

6. EVALUATION
We evaluate our algorithms on six real-world and synthetic

datasets. We describe the experimental setup, demonstrate that
naive algorithms fail to respect failure probabilities, demonstrate
that our algorithms outperform uniform sampling (as used by prior
work), and that our algorithms are robust to proxy choices.

6.1 Experimental Setup

6.1.1 Metrics
Following the query definitions in Section 3, we are interested in

two primary evaluation metrics:

1. We measure the empirical failure rate of the different algo-
rithms: the rate at which they do not achieve a target recall
or precision.

2. We measure the quality of query results using achieved pre-
cision when there is a minimum target recall, and achieved
recall when there is a minimum target precision.

6.1.2 Methods Evaluated
In our evaluation we compare methods that all select records

based on a proxy threshold as in Algorithm 1. The methods dif-
fer in their sampling routine and routine for estimating the proxy
threshold τ as described in Section 5. Note that NOSCOPE and
probabilistic predicates correspond to the baseline algorithms U-
NOCI-R and U-NOCI-P with no guarantees. We can extend these
algorithms to provide probabilistic guarantees in the U-CI-R and
U-CI-P algorithms. Finally, our system SUPG uses the IS-CI-R
and IS-CI-P algorithms which introduce importance sampling.1

Many systems additionally compare against full scans. However,
this baseline always requires executing the oracle model on the en-
tire dataset D, requiring |D| oracle model invocations. On large
datasets, this approach was infeasible for our collaborators and in-
dustry contacts, so we exclude this baseline from comparison.

6.1.3 Datasets and Proxy Models
We show a summary of datasets used in Table 2.

Beta (synthetic). We construct synthetic datasets using proxy
scores A(x) drawn from a Beta(α, β) distribution, allowing us to
vary the relationship between the proxy model and oracle labels.
We assign ground truth oracle labels as independent Bernoulli trials
based on the proxy score probability. These synthetic datasets have
106 records and we use two pairs of (α, β): (0.01, 1) and (0.01, 2).

ImageNet and night-street (image). We use two real-world
image datasets to evaluate SUPG. First, we use the ImageNet val-
idation dataset [51] and select instances of hummingbirds. There

1Code for our algorithms is available at https://github.
com/stanford-futuredata/supg.

Table 3: Summary of distributionally shifted datasets. These shifts
are natural (weather related, different day of video) and synthetic.

Dataset Shifted dataset Description
ImageNet ImageNet-C, Fog ImageNet with fog
night-street Day 2 Different days
Beta(0.01, 1) Beta(0.01, 2) Shifted β parameter

are 50 instances of hummingbirds out of 50,000 images or an occur-
rence rate of 0.1%. The oracle model is human labeling. Second,
we use the commonly used night-street video [13,43,44,57]
and select cars from the video. The oracle model is an expensive,
state-of-the-art object detection method [31]. We resample the pos-
itive instances of cars to set the true positive rate to 4% to better
model real-world scenarios where matches are rare. Note that our
algorithms typically perform better under higher class imbalance.

The proxy model for both datasets is a ResNet-50 [32], which is
significantly cheaper than the oracle model.

OntoNotes and TACRED (text). We use two real-world text
datasets (OntoNotes [38] with fine-grained entities [18] and TA-
CRED [59]) to evaluate SUPG. The task for both datasets is re-
lation extraction, in which the goal is to extract semantic relation-
ships from text, e.g., “organization” and “founded by.” We searched
for city and employees relationships for OntoNotes and TACRED
respectively. The oracle model is human labeling for both datasets.

The proxy model for OntoNotes is a baseline provided by with
the fine-grained entities [18]. The proxy model for TACRED is the
state-of-the-art SpanBERT model [42]. We choose different mod-
els to demonstrate that SUPG is agnostic to proxy model choice.

6.2 Baseline Methods Fail to
Achieve Guarantees

We demonstrate that baseline methods fail to achieve guarantees
on failure probability. First, we show that U-NOCI (i.e., uniform
sampling from the universe and choosing the empirical cutoff, Sec-
tion 5) fails. Note that U-NOCI is used by prior work. Second, we
show that using U-NOCI on other data, as other systems do, also
fails to achieve the failure probabilities.

U-NOCI fails. To demonstrate that U-NOCI fails to achieve the
failure probability, we show the distribution of precisions and re-
calls under 100 trials of this algorithm and SUPG’s optimized im-
portance sampling algorithm. For SUPG, we set δ = 0.05. We
targeted a precision and recall of 90% for both methods.

As shown in Figures 5 and 6, U-NOCI can fail as much as 75%
of the time. Furthermore, U-NOCI can catastrophically fail, re-
turning recalls of under 20% when 90% was requested. In contrast,
SUPG’s algorithms respect the recall targets within the given δ.

U-NOCI fails under model drift. We further show that U-NOCI
on different data distributions also fails to achieve the failure prob-
ability. This procedure is used by existing systems such as NO-
SCOPE and probabilistic predicates on a given set of data; the cutoff
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Figure 5: Precision of 100 trials of U-NOCI and SUPG’s impor-
tance sampling algorithm with a precision target of 90%. We show
a box plot, in which the box 25th, 50th, and 75th quantiles; the
minimum and maximum excluding outliers are the “whiskers.” As
shown, U-NOCI can fail up to 75% of the time. Furthermore, it
can return precisions as low as 20%.
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Figure 6: Recall of 100 trials of U-NOCI and SUPG’s impor-
tance sampling algorithm with a recall target of 90%. As shown,
U-NOCI can fail up to 50% of the time and even catastrophically
fail on ImageNet, returning a recall of as low at 20%.

is then used on other data. These systems assume the data distribu-
tion is fixed, a known limitation.

To evaluate the effect of model drift, we allow the U-NOCI to
choose a proxy threshold using oracle labels on the entire training
dataset and then perform selection on test datasets with distribu-
tional shift. We compare this with applying the SUPG algorithms
using a limited number of oracle labels from the shifted test set as
usual. We summarize the shifted datasets in Table 3. We use natu-

Table 4: Achieved accuracy of queries when using the empirical
cutoff method and SUPG on data with distributional shift. We
show the average of 100 runs for SUPG. All methods targeted a
success rate of 95%. As shown, the naive algorithm deterministi-
cally fails to achieve the targets, i.e., has a failure rate of 100%.

Query Naive SUPG
Dataset type Target accuracy accuracy
ImageNet-C Precision 95% 77% 100%
ImageNet-C Recall 95% 54% 100%
night-street Precision 95% 89% 97%
night-street Recall 95% 89% 96%
Beta Precision 95% 89% 100%
Beta Recall 95% 90% 98%

rally occurring instances of drift (obscuration by fog [36], different
day of video) and synthetic drift (change of Beta parameters).

As shown in Table 4, baseline methods that do not use labels
from the shifted dataset fail to achieve the target in all settings,
even under mild conditions such as different days of a video. In
fact, using the empirical cutoff in U-NOCI can result in achieved
targets as much as 41% lower. In contrast, our algorithms will al-
ways respect the failure probability despite model drift, addressing
a limitation in prior work [5, 39, 43, 44, 47].

6.3 SUPG Outperforms Uniform Sampling
We show that SUPG’s novel algorithms for selection outper-

forms U-CI (i.e., uniform sampling with guarantees) in both the
precision target and recall target settings. Recall that the goal is to
maximize or minimize the size of the returned set in the precision
target and recall target settings, respectively.

Precision target setting. For the datasets and models described
in Table 2, we executed U-CI, one-stage importance sampling, and
two-stage importance sampling for the precision target setting. We
used a budget of 1,000 oracle queries for ImageNet and 10,000 for
night-street and the synthetic dataset. We targeted precisions
of 0.75, 0.8, 0.9, 0.95, and 0.99.

We show the achieved precision and recall for the various meth-
ods in Figure 7. As shown, the importance sampling method out-
performs U-CI in all cases. Furthermore, the two-stage algorithm
outperforms or matches the one-stage algorithm in all cases except
ImageNet. While the specific recalls that are achieved vary per
dataset, this is largely due to the performance of the proxy model.

We note that the ImageNet dataset and proxy model are espe-
cially favorable to SUPG’s importance sampling algorithms. This
dataset has a true positive rate of 0.1% and a highly calibrated
proxy. A low true positive rate will result in uniform sampling
drawing few positives. In contrast, a highly calibrated proxy will
result in many positive draws for importance sampling.

Recall target setting. For the datasets and models in Table 2, we
executed U-CI, standard importance sampling with linear weights
∝ A(x) (Importance, prop), and the SUPG methods that use sqrt
weights. We used the same budgets as in the precision target set-
ting. We targeted recalls of 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, and 0.95.

We show the achieved recall and the returned set size for the
various methods in Figure 8. As shown, the importance sampling
method outperforms U-CI in all cases. Furthermore, using

√
A(x)

weights outperforms using linear weights in all cases.

6.4 Sensitivity Analysis
We analyze how sensitive our novel algorithms are to: 1) the

performance of the proxy model, 2) the class imbalance ratio, and
3) the parameters in our algorithms.
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Figure 7: Targeted precision vs achieved recall. As shown, both
importance sampling methods outperform U-CI in all cases. Two-
stage importance sampling outperforms all methods and matches
the one-stage importance sampling for ImageNet.
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Figure 9: Noise level vs recall/precision for the precision/recall
target settings, respectively. The noise level is given as a percent
of the standard deviation of the original probabilities. As shown,
SUPG outperforms uniform sampling at all noise levels, even up
to 100% noise.
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Figure 10: True positive rate vs recall/precision for the preci-
sion/recall target settings, respectively. As shown, SUPG outper-
forms uniform sampling in all scenarios, even as the true positive
rate is as high as 7%. SUPG especially outperforms uniform sam-
pling at low true positive rates, outperforming by as much as 47×.

Sensitivity to proxy model. We analyze the sensitivity to the
proxy model in two ways: 1) we add noise to the generating dis-
tribution for the synthetic dataset and 2) we vary the parameters α
and β to vary the sharpness of the generating distribution.

First, we generate oracle values from Beta(0.01, 2). After or-
acle values are generated, we add Gaussian noise to the proxy
scores and clip them to [0, 1]. We add Gaussian noise with stan-
dard deviations of 0.01, 0.02, 0.03, and 0.04, which corresponds to
25%, 50%, 75%, and 100% of the standard deviation of the orig-
inal probabilities. We targeted a precision and recall of 95% and
90% respectively. We show results in Figure 9. As shown, while
the performance of our algorithms degrades with higher noise, im-
portance sampling still outperforms uniform sampling at all noise
levels. Furthermore, SUPG’s algorithms degrade gracefully with
higher noise, especially in the precision target setting.

Second, we vary α and β to vary the sharpness. We find that
varying β as described below (class imbalance) also changes the
sharpness of the distribution, as measured by the standard devi-
ation of the probabilities. As the results are the same, we defer
the discussion to below. We note that SUPG outperforms uniform
sampling in all cases and degrades gracefully as the sharpness of
the proxy model decreases.

Sensitivity to class imbalance. We analyze the sensitivity of our
algorithms to class imbalance by varying α and β. We fix α at 0.01
and set β ∈ {0.125, 0.25, 0.5, 1.0, 2.0}.

We show results for varying these values in Figure 10. As shown,
our algorithms outperform uniform sampling more as the class im-
balance is higher. High class imbalance is common in practice, so
we optimize our algorithms for such cases. For these cases, SUPG
outperforms by as much as 47×. As the data becomes more bal-
anced, our algorithms outperform uniform sampling less, but still
outperforms uniform sampling.
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Figure 11: Effect of parameter settings on algorithm performance.
As shown, SUPG performs well across a range of parameter set-
tings, indicating that parameters are not difficult to set.
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Figure 12: Exponent in importance sampling weights vs precision
for the recall target setting. As shown, exponents closer to 0.5 per-
form better.
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Figure 13: Performance of U-CI-R using various confidence in-
terval methods. As shown, the normal approximation matches or
outperforms alternatives, within error margins.

Sensitivity to parameters. We analyze the sensitivity of our al-
gorithms to parameter settings (m in Algorithm 5 and the defensive
mixing ratio in Algorithm 4). We vary m from 100 to 500 in in-
crements of 100 and the mixing ratio from 0.1 to 0.5 in increments
of 0.1 for Beta(0.01, 2). As shown in Figure 11, SUPG performs
well across a range of parameters. We note that some defensive
mixing is required to avoid catastrophic failing, but these results
indicate that our parameters are not difficult to set by choosing any
value away from 0 and 1.

Sensitivity to exponent. We analyze the sensitivity to the impor-
tance weight exponent by varying it from 0 to 1 for the recall target
for Beta(0.01, 2). As shown in Figure 12, exponents correspond-
ing to uniform (0) and proportional (1) sampling do not perform
well. Square root weighting is close to optimal. We note that while
our proof shows square root weighting is optimal for estimating
counts, optimal end-to-end performance may require slightly dif-
ferent weights. Nonetheless, it outperforms exponents of 0 and 1
and performs well in practice.

Sensitivity to confidence interval method. We analyze how
the confidence interval method affects performance. We consider
the normal approximation [9], Hoeffding’s inequality [37], and the
bootstrap [24] to compute confidence intervals for both U-CI-R

Table 5: Cost of SUPG’s query processing, executing the proxy
model, executing the oracle predicate, and exhaustive labeling. The
oracle are human labelers for all datasets except night, for which
the oracle is an expensive DNN (Table 2). As shown, SUPG’s
query processing is orders of magnitude cheaper than the other
parts of the computation.

SUPG Exhaustive

Dataset Sampling
(AWS)

Proxy
(AWS) Oracle Total Oracle

night $1.7× 10−4 $0.02 $2.5 $2.52 $243
ImageNet $7.7× 10−5 $0.01 $80 $80.01 $4,000
OntoNotes $7.7× 10−5 $0.02 $80 $80.02 $893
TACRED $7.7× 10−5 $0.07 $80 $80.07 $1810

and IS-CI-R. For U-CI-R, we also consider the Clopper-Pearson
interval [19]. For all settings, we use Beta(0.01, 1) data with a tar-
get recall of 90%. As shown in Figure 13, the normal approxima-
tion matches or outperforms other methods within error margins. In
particular, Hoeffding’s inequality does not use any property of the
data in its confidence interval (e.g., the variance) so it returns vac-
uous bounds. Since Clopper-Pearson only applies to uniform sam-
pling, we use the normal approximation throughout to standardize
confidence interval computation.

6.5 Cost Analysis
We analyze the costs of query processing and executing the prox-

y/oracle methods. For oracle predicates that are human labels, we
approximate the cost by using Scale API’s [1] public costs, at $0.08
per example. We approximate the cost of computation by taking the
cost per hour ($3.06) of the Amazon Web Services p3.2xlarge
instance. The p3.2xlarge instance contains a single V100 GPU
and is commonly used for deep learning.

We show the breakdown of costs in Table 5. As shown, our algo-
rithms are significantly cheaper than exhaustive labeling. Further-
more, the oracle predicate dominates the proxy models. Finally,
SUPG query processing costs are negligible compared to the cost
of both the proxy and oracle methods.

7. RELATED WORK
Approximate query processing (AQP). AQP aims to return ap-
proximate answers to queries for reduced computational complex-
ity [4, 34]. Most AQP systems focus on computing aggregates,
such as SUM [14, 50], DISTINCT COUNT [16, 27, 30], and quan-
tiles [2, 21, 26]. Namely, these systems do not aim to answer selec-
tion queries. A smaller body of work has studied approximate se-
lection queries [46] with guarantees on precision and recall, though
to the best of our knowledge they do not provide probabilistic guar-
antees or impose hard limits on usage of the predicate oracle, and
assume stronger semantics for the proxy.

Optimizing relational predicates. Researchers have proposed
numerous methods of reducing the cost of relational queries that
contain expensive predicates [17,33,35]. To the best of our knowl-
edge, this line of work does not consider approximate selection se-
mantics. In this work, we only consider a single proxy model and
a single oracle model, but existing optimization techniques may be
useful if multiple oracle models must be applied.

Information retrieval (IR), top-k queries. IR and top-k queries
typically aim to rank or select a limited number of data points. Re-
searchers have developed exact [10, 15, 53] and approximate algo-
rithms [7, 12] for these queries. Other algorithms use proxy mod-
els for such queries [25, 55]. To the best of our knowledge, these
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methods and systems do not aim to do exhaustive selection. Fur-
thermore, we introduce notions of statistical guarantees on failure.

Proxy models. Approximate and proxy models have a long his-
tory in the machine learning literature, e.g., cascades have been
studied in the context of reducing computational costs of classi-
fiers [6, 54, 58]. However, these methods aim to maximize a single
metric, such as classification accuracy.

Contemporary visual analytics systems use a specific form of
proxy model in the form of specialized neural networks [5, 13, 39,
43,44,47]. These specialized neural networks are used to accelerate
queries, largely in the form of binary detection [5, 13, 39, 44, 47].
We make use of these models in our algorithms, but the choice
and training of the proxy models is orthogonal to our work. Other
systems use proxy models to accelerate other query types, such as
selection with LIMIT constraints or aggregation queries [43].

8. DISCUSSION AND FUTURE WORK
While our novel algorithms for approximate selection queries

with statistical guarantees show promise, we highlight exciting ar-
eas of future work.

First, we have analyzed our algorithms in the asymptotic regime,
in which the number of samples goes to infinity. We believe finite-
sample complexity bounds will be a fruitful area of future research.

Second, we believe that information-theoretic lower bounds on
sample complexity are a fruitful area of future research. If these
lower bounds on sample complexity match the upper bounds from
the algorithmic analysis, then these algorithms are optimal up to
constant factors. As such, we believe these bounds will be helpful
in informing future research.

Third, many scenarios naturally can have multiple proxy models.
Our algorithms have been developed for single proxy models and
show the promise of statistically improved algorithms for approxi-
mate selection with guarantees. Furthermore, we believe these al-
gorithms can improve statistical rates relative to single proxy mod-
els in certain scenarios.

9. CONCLUSION
In this work, we develop novel, sample-efficient algorithms to

execute approximate selection queries with guarantees. We de-
fine query semantics for precision-target and recall-target queries
with guarantees on failure probabilities. We implement and evalu-
ate our algorithms, showing that they outperform existing baselines
in prior work in all settings we evaluated. These results indicate
the promise of probabilistic algorithms to answer selection queries
with statistical guarantees. Supporting multiple proxies and even
more sample efficient algorithms are avenues for future research.
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10. ADDITIONAL PROOFS

10.1 Theorem 1
PROOF. We decompose the variance conditioned on a(x):

V := Var
x∼w

[f(x)u(x)/w(x)]

= E
x∼w

[
Var
x∼w

[f(x)
u(x)

w(x)
|a(x)]

]
+

Var
x∼w

[
E
x∼w

[f(x)
u(x)

w(x)
|a(x)]

]
.

Since u(x), w(x) are known given a(x) but f(x) is not,

V = E
x∼w

[
a(x)(1− a(x))

u(x)2

w(x)2

]
+ Var
x∼w

[
a(x)

u(x)

w(x)

]
= E
x∼w

[
a(x)

u(x)2

w(x)2

]
− E
x∼w

[
a(x)

u(x)

w(x)

]2
=
∑
x

[
a(x)

u(x)2

w(x)

]
− E
x∼u

[a(x)]2

In order to solve for the w(x) minimizing V , we introduce the La-
grangian dual for the constraint

∑
x w(x) = 1 and then take partial

derivatives of

L :=
∑
x

[
a(x)

u(x)2

w(x)

]
− E
x∼u

[a(x)]2 − λ

(∑
x

w(x)− 1

)
w.r.t. w(x) to find that −w(x)−2a(x)u(x)2 = λ, so w(x) =

C
√
a(x)u(x) for a normalizing constant C.

10.2 Variance comparisons
Let V1 :=

∑
x

[
a(x)u(x)

2

w(x)

]
so that V = V1 − Eu[a(x)]2. In

this derivation we assume a uniform distribution u(x). For uniform
w(x), we have that

V
(u)
1 =

∑
x

a(x)u(x) = E
x∼u

[a(x)]

For w(x) ∝ a(x):

V
(p)
1 =

1

n2

∑
{x:a(x)>0}

a(x) ·
∑
x′ a(x′)

a(x)

= Pr(a(x) > 0) E
x∼u

[a(x)]

For w(x) ∝
√
a(x):

V
(s)
1 =

1

n2

∑
x

a(x) ·
∑
x′

√
a(x′)√

a(x)
= E
x∼u

[
√
a(x)]2

We now show that these variances satisfy V (s)
1 ≤ V (p)

1 ≤ V (u)
1 .

First, note that Pr(a(x) > 0) ≤ 1 implies V (p)
1 ≤ V (u)

1 .
Using Hölder’s inequality, we have that

E
x∼u

[
√
a(x)1a(x)>0] ≤ E

x∼u
[a(x)]1/2 E

x∼u
[1a(x)>0]1/2.

Squaring both sides yields

E
x∼u

[
√
a(x)]2 ≤ E

x∼u
[a(x)] Pr(a(x) > 0).

Finally, note that the gap between the optimal and uniform
weights has a simple form

V
(u)
1 − V (s)

1 = Var
x∼u

[
√
a(x)].
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