
Baran: Effective Error Correction via a Unified Context
Representation and Transfer Learning

Mohammad Mahdavi
Technische Universität Berlin

mahdavilahijani@tu-berlin.de

Ziawasch Abedjan
Technische Universität Berlin
abedjan@tu-berlin.de

ABSTRACT
Traditional error correction solutions leverage handmaid rules
or master data to find the correct values. Both are often
amiss in real-world scenarios. Therefore, it is desirable to
additionally learn corrections from a limited number of ex-
ample repairs. To effectively generalize example repairs, it
is necessary to capture the entire context of each erroneous
value. A context comprises the value itself, the co-occurring
values inside the same tuple, and all values that define the
attribute type. Typically, an error corrector based on any of
these context information undergoes an individual process
of operations that is not always easy to integrate with other
types of error correctors. In this paper, we present a new
error correction system, Baran, which provides a unifying
abstraction for integrating multiple error corrector models
that can be pretrained and updated in the same way. Be-
cause of the holistic nature of our approach, we generate
more correction candidates than state of the art and, be-
cause of the underlying context-aware data representation,
we achieve high precision. We show that, by pretraining
our models based on Wikipedia revisions, our system can
further improve its overall precision and recall. In our ex-
periments, Baran significantly outperforms state-of-the-art
error correction systems in terms of effectiveness and human
involvement requiring only 20 labeled tuples.

PVLDB Reference Format:
Mohammad Mahdavi and Ziawasch Abedjan. Baran: Effective
Error Correction via a Unified Context Representation and Trans-
fer Learning. PVLDB, 13(11): 1948-1961, 2020.
DOI: https://doi.org/10.14778/3407790.3407801

1. INTRODUCTION
Data cleaning is one of the most important but time-

consuming tasks for data scientists [14]. The data cleaning
task consists of two major steps: (1) error detection and (2)
error correction (i.e., data repairing). The goal of error de-
tection is to identify wrong data values [3]. The goal of error
correction is to fix these wrong values to correct values [37].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407801

Traditional data cleaning systems follow the preconfigu-
ration paradigm, where the user has to provide upfront a
correct and complete set of rules and parameters, such as
functional dependencies and desired data patterns [3, 37,
11, 13, 48]. For most non-expert users, this is a major im-
pediment as they need to know both the dataset and the
data cleaning system upfront to be able to configure the
systems properly [3, 27, 48]. Recently, we have promoted
the configuration-free paradigm, where user supervision is
in the form of annotating a few data values [27]. In fact,
the user only provides a few examples of data errors and
their correction and the system learns to generalize the er-
ror detection/correction operation. This paradigm is more
suitable for three scenarios: (1) the dataset is novel and data
constraints are not available, (2) users are domain experts
who are not adept at generating the right rules/parameters
for complex data cleaning systems, or (3) they prefer to
additionally annotate a few data values to improve the per-
formance of traditional data cleaning systems.
Due to the promises of our configuration-free error detec-

tion system, Raha [27], here, we study the application of the
same intuition for the subsequent task of error correction.
Configuration-free error correction is much more challeng-
ing than its pendant for error detection. Error detection is
a binary classification task with two possible classes for each
value inside a dataset, namely clean or dirty. However, the
class space for error correction is infinite as, theoretically,
any possible string could be a correction for an erroneous
value. Thus, there is always a high chance of choosing a
wrong correction from this infinite search space, which af-
fects the precision in error correction. To tackle this issue,
previous approaches confine the space of possible corrections
by only considering the values that reside inside the dataset
itself [48, 37] or trusted external sources [12]. These prun-
ing strategies limit the error correction recall as the actual
correction may not exist in the provided resources.
Our approach. We propose a new configuration-free error
correction system, Baran, that achieves both high precision
and recall. For this purpose, Baran combines so-called error
corrector models that capture the context information sur-
rounding a data error. Given a dirty dataset with already
detected data errors, Baran fixes data errors with a novel
two-step formulation of the error correction task. First, each
error corrector model generates an initial set of potential
corrections for each detected data error. This step partic-
ularly increases the achievable recall bound of error correc-
tion. Then, Baran ensembles the output of these models into
one final correction for each data error in a semi-supervised

1948

manner. In fact, Baran iteratively asks the user to label
a tuple with data errors from the dataset and leverage the
provided user corrections to update the corrector models,
incrementally. Training one classifier per column, Baran
identifies the most accurate correction among all the pro-
posed correction candidates for each data error. This step
particularly preserves the high precision of error correction.
To design a complete set of error corrector models, we

need to leverage all data error contexts. In principle, to fix
a data error in a given dataset, we can leverage three data
error contexts:
1. Value of data errors. Some data errors can be fixed by

only taking the erroneous value itself into consideration.
In this case, we just need to transform the erroneous data
value into the correct value. For example, an erroneous
date value “16/11/1990” can be fixed by transforming it
into the correct format, i.e., “16.11.1990”.

2. Vicinity of data errors. The correction of some data
errors requires information on their vicinity, i.e., informa-
tion about other clean data values in the same data row.
For example, we cannot fix the erroneous value “Paris” in
column Capital with the data value itself as “Paris” is not
an erroneous value on its own. But, if we check its clean
neighboring data values in the same tuple and observe
“Germany” in column Country, then we can fix “Paris” to
“Berlin” to make it consistent with its vicinity.

3. Domain of data errors. Fixing some data errors needs
domain information, i.e., information about other clean
data values inside the same column. For example, to
fix an outlier temperature value, we can use other clean
values inside the same column Temperature to impute the
correct value.

As the examples above show, each data error context can be
leveraged in an entirely different way to generate a correc-
tion candidate. These correction procedures are not easy to
integrate although they can independently lead to the same
correction candidate.
Another benefit of our two-step task formulation is that

error corrector models can be pretrained for expanding the
space of possible corrections without requiring the user to
do it manually. In fact, Baran can also leverage transfer
learning, which is the act of gaining knowledge from one
task and then applying this knowledge to a different but re-
lated task [31]. A natural fit for transfer learning is when
training data is scarce and expensive in one domain while
it is widely available in a similar domain. In this case, the
learning model can be pretrained on the related domain and
then be fine-tuned on the current dataset [15]. The same sit-
uation holds in our example-driven error correction task. In
addition to the clean values of the current dataset, we need
further correction candidates to improve the achievable re-
call bound. These correction candidates have to be either
provided by the user or learned from external sources. While
user labeling is expensive on the current dataset, value-based
corrections are widely available in external sources, such as
the Wikipedia page revision history. Therefore, we can ex-
tract value updates from external sources that serve as ad-
ditional correction examples to pretrain the error corrector
models. The pretraining aims at learning corrections for
common typos and mistakes, such as the wrong usage of
“Holland” instead of “Netherlands”. The pretrained models
can then be fine-tuned on the dataset at hand with the help
of user labels. Thus, Baran can also learn dataset-specific

preferences and select the best correction among all correc-
tion candidates. We leverage the Wikipedia page revision
history as a rich source that contains terabytes of human-
committed revisions. In practice, any other source of data
updates can be leveraged the same way.
Challenges. To design such an error correction system, we
addressed the following questions:
• How can we design uniformly and incrementally updatable
error corrector models that can propose various correction
candidates for different data errors?
• How can we formulate a semi-supervised classification task
for error correction that effectively and efficiently identi-
fies the actual correction among many candidates?
• How can we extract value-based corrections from publicly
available revision data histories and pretrain the error cor-
rector models with them?

Contributions. To address these challenges, we make the
following contributions:
• We propose a new configuration-free error correction sys-
tem, named Baran, that fixes data errors without any
user-given rules or parameters (Section 3).
• We propose simple, general, and incrementally updatable
error corrector models (Section 4). These models leverage
the value, the vicinity, and the domain contexts of data
errors to propose correction candidates for any data error.
• We design a novel binary classification task that benefits
from a dense feature representation and a tuple sampling
approach that selects the most informative tuples for gen-
eralizing user corrections (Section 4). The task effectively
and efficiently ensembles the output of the error corrector
models into one final correction for each data error.
• We propose an approach to segment and align the
Wikipedia page revision history to collect additional train-
ing data for pretraining value-based models (Section 5).
• We conduct extensive experiments to evaluate our system
in terms of effectiveness, efficiency, and human involve-
ment (Section 6). As our experiments show, Baran signif-
icantly outperforms 4 recent error correction systems on
7 well-known datasets.

2. FOUNDATIONS
We first formally define the problem statement and then

review state-of-the-art solutions and their limitations.

2.1 Problem Statement
The error correction problem is the task of replacing de-

tected data errors with the corresponding correct values. Let
d = {t1, t2, ..., t|d|} be a relational dataset of size |d|, where
each ti denotes a tuple. Let A = {a1, a2, ..., a|A|} be the
schema of dataset d, with |A| attributes. We denote d[i, j]
as the data value in tuple ti and attribute aj . Let d∗ be the
ground truth of the same dataset with only clean values.
A data error is a data value inside a dataset that deviates

from the unavailable ground truth. We consider both major
syntactic and semantic data error categories [27] and their
subsequent data error types, such as missing values, typos,
formatting issues, and violated attribute dependencies [36].
Let E = {d[i, j] | d[i, j] 6= d∗[i, j]} be the set of detected data
errors, as the output of an upstream error detection step.
The quality of the detected data errors generally can impact
the downstream error correction step. Similar to prior work,
we discuss our approach based on the assumption that the

1949

Table 1: A dirty dataset d and its cleaned version d∗.
ID Name Address
1 H 5th Str
2 Hana -
3 Gandom 7th Street
4 Chris 9th Str

ID Name Address
1 Hana 5th Street
2 Hana 5th Street
3 Gandom 7th Street
4 Christopher 9th Street

error detection step was correct and complete [37, 48]. In our
experiments (Section 6.6), we also evaluate the performance
of our system on top of Raha [27], which delivers imperfect
error detection results.
Given as input a dirty dataset d, the set of detected data

errors E, and a labeling budget θLabels to annotate tuples,
the goal is to fix as many detected data errors as possible.

2.2 State of the Art
State-of-the-art error correction systems follow the pre-

configuration paradigm. They need the user to preconfigure
the system with integrity rules (e.g., Holistic [11]), statis-
tical parameters (e.g., SCARE [48]), or both (e.g., Holo-
Clean [37]). Their idea is to minimally swap the values in
the dataset with respect to a cost function, such as the num-
ber of value changes, until the dataset becomes consistent
with respect to the integrity rules and statistical likelihoods.
In the lack of redundancy in data and a correct and com-
plete set of predefined user-given rules and parameters to
define consistency, these systems struggle to achieve both
high precision and recall across many datasets.

Example 1 (Limitations of the existing systems). Ta-
ble 1 shows a dirty dataset with its already detected data
errors marked in red. The goal is to fix these data errors
and generate the depicted cleaned dataset d∗. The afore-
mentioned systems would not be able to effectively fix these
data errors because of the mentioned limitations. First, be-
cause the dataset does not have a high degree of redundancy,
these systems cannot find the correction of the data error
“9th Str”, as the correct value “9th Street” does not appear
anywhere in the dataset. Second, there are no general in-
tegrity rules that we can define on this dataset. The func-
tional dependency Name → Address is still not enough to
fix the data error “5th Str” because tuples 1 and 2 do not
have the same value in column Name. 2

3. BARAN OVERVIEW
Figure 1 illustrates the workflow of Baran. Given a dirty

dataset with marked data errors and an optional revision
dataset, Baran fixes data errors with the help of user feed-
back and returns a cleaned version of the dataset. The work-
flow consists of an online phase and an optional offline phase.

3.1 Online Phase
The online phase aims to fine-tune the error corrector

models on the current dataset and ensemble them to fix
data errors. If the error corrector models have been already
pretrained, Baran incrementally updates them. Otherwise,
Baran trains the error corrector models from scratch on the
current dataset. Baran conducts the following steps in each
iteration of the online phase.
Steps 1 and 2: Sampling and labeling a tuple. In each
iteration, Baran samples one tuple to be labeled by the user.
Thus, the total number of iterations is bound by the user

labeling budget θLabels. Then, Baran asks the user to fix
the marked data errors in the sampled tuple. To optimally
leverage the limited number of user labels, the set of sampled
tuples should cover as many data error types as possible
inside the dataset. We detail these steps in Section 4.2.1.
Step 3: Fine-tuning error corrector models. Baran
updates error corrector models based on the user-corrected
data errors. In Section 4.1, we define a unified model for all
different error corrector models so that we can incrementally
update all of them in the same way with every new user-
corrected data error.
Steps 4 and 5: Generating correction candidates and
features. Each error corrector model proposes various cor-
rection candidates for each data error. We need to represent
the fitness of each particular correction candidate for each
particular data error. As detailed in Section 4.2.2, Baran
generates a feature vector that represents the mutual fitness
of each pair of a data error and a correction candidate.
Steps 6 and 7: Training and applying classifiers.
Since the user fixes data errors in the sampled tuples, we
have the actual correction of a small subset of data errors.
Thus, we can design a binary classification task, where a
classifier decides whether a correction candidate is the actual
correction of a data error or not. In Section 4.2.2, we dis-
cuss how Baran trains a binary classifier per column based
on the feature vectors and the user labels. Baran applies
the trained classifiers to predict the final correction for the
rest of the data errors.

3.2 Offline Phase
In the optional offline phase, Baran pretrains value-based

error corrector models by processing any external source
that provides value-based corrections.
Step 1: Extracting training data. An external dataset
with value-based corrections may not necessarily be fully
structured. That is why we need to first extract value-based
corrections from non/semi-structured external sources, as
discussed in Section 5.
Step 2: Pretraining error corrector models. Baran
pretrains value-based error corrector models based on the
extracted training data. We detail this step in Section 5.

4. THE ERROR CORRECTION ENGINE
We first introduce our error corrector models and how

they can be fine-tuned. Then, we explain our approach to
ensemble the output of these models and fix data errors.

4.1 Error Corrector Models
An error corrector model is any algorithm that can pro-

pose a correction to a data error based on a logic that uses
an error context. The set of error corrector models should
be ideally complete and contain correct and automated cor-
rectors. In fact, their combination should be able to fix all
data errors (completeness) accurately (correctness) without
any user involvement (automation). Choosing error correc-
tor models under these three requirements simultaneously is
not trivial because there is typically a trade-off among them.
For example, a data scientist may assess data errors of a
dataset and then write a script to transform wrongly format-
ted date values “dd/mm/yyyy” to the format “dd.mm.yyyy”.
Although this error corrector model is accurate, it involves
the user (not automated) and may not fix other potential

1950

Input Output

Offline Online

User

𝑎1 … 𝑎 𝐴

𝑡1

…

𝑡 𝑑

Dirty
Dataset

𝑎1 … 𝑎 𝐴

𝑡1

…

𝑡 𝑑

Cleaned
Dataset

Revision Data
History

𝐿 ← 𝐿 ∪ 𝑡∗

𝑒1 → 𝑐1
…

𝑒𝑛 → 𝑐𝑛

…

𝐸 𝐶 𝑚1 𝑚2 … 𝑚|𝑀| 𝐿

𝑒1 𝑐1 0.75 0.0 0.62 ✔

𝑒1 𝑐2 0.32 0.12 0.37 ×

…5. Generating Features

6. Training Classifiers

7. Predicting Final Corrections

2. Labeling Data Errors

…

Model 𝒎𝟏

Model 𝒎|𝑴|

1. Sampling a Tuple

3. Fine-Tuning Error Corrector Models

1. Extracting Training Data

𝑒1 → 𝑐1
…

𝑒𝑛 → 𝑐𝑛

2. Pretraining Error Corrector Models

𝑚1: 𝑃(𝑒1 → 𝑐1) = 0.75

𝑚2: 𝑃(𝑒1 → 𝑐2) = 0.12

…

4. Generating Potential Corrections

(While 𝑳 < 𝜽𝑳𝒂𝒃𝒆𝒍𝒔)

Figure 1: The workflow of Baran.

data errors (not complete). Therefore, we have to handle
the natural trade-off of correctness, completeness, and au-
tomation in designing error corrector models.
We address this trade-off by first ignoring the precision of

the error corrector models. Our error corrector models are
designed to propose as many potential corrections as possi-
ble in the first place. This way, we increase the achievable
recall bound by automatically generating a set of correction
candidates. Many of these correction candidates might be
irrelevant. However, we will avoid false positives later as
well, when we train classifiers on top of these automatically
proposed correction candidates.
To this end, we design a set of error corrector models, each

of which leverages one context of a data error in the form
of a heuristic. To keep the error corrector models simple,
general, and incrementally updatable, we define an error
corrector model m formally as the conditional probability

P (c|em) =
count(c|em)

count(em)
, (1)

where em is a context of the data error e that the model m
uses; count(em) is the number of times that the data error
context em is observed; and count(c|em) is the number of
times that the context em is leveraged to fix the data error e
to the correction c. The intuition is that the more often a
data error context em is leveraged to fix a data error e to a
correction c, the more it is likely that c will be the actual
correction of data error e. Note that we can incrementally
update this model by storing count(c|em) and count(em) for
each pair of data error context em and correction c. This
definition of error corrector models is abstract and needs to
be implemented for each type of models accordingly.
While we propose a default and general set of error correc-

tor models, which are applicable on a wide range of datasets,
the set of models can be extended with optional custom er-
ror corrector models provided by the user. In particular,
the user can optionally implement data constraints in the
form of error corrector models and incorporate them into
Baran. Since Baran considers the error corrector models
as black boxes, it generalizes the previous error correction
aggregators [35, 37].

4.1.1 Value-Based Models
Value-based error corrector models learn to fix data er-

rors e using only the erroneous value itself [19]. Here, data
error e and its context eval = d[i, j] are identical. Whenever

an erroneous value eval is corrected to a value e∗val, Baran
updates the value-based error corrector models by encoding
the erroneous value and its correction operation.
Erroneous value encoding. Abstracting erroneous val-
ues is an essential technique for training value-based error
corrector models. There are different levels of abstraction to
encode data values, such as abstracting the character cate-
gory or string length. We leverage two simple and general
encoders. Our first encoder is the identity encoder, which
encodes the value with its original characters. This encod-
ing is suitable for fixing semantic data errors. For example,
to fix the wrong country name “Holland” to “Netherlands”,
our value-based error corrector models need to see the exact
wrong value “Holland”. Our second encoder is the Unicode
encoder, which encodes each character of a data value with
its equivalent Unicode category [47]. For example, an up-
percase character will be replaced with its category symbol
“<Lu>” and a number will be replaced with its category
symbol “<Nd>”. This encoding enables the value-based
models to learn syntactic error corrections faster by gen-
eralizing the syntax of data errors.

Example 2 (Erroneous value encoding). Considering
the erroneous value eval = “16/11/1990” and the corrected
value e∗val = “16.11.1990”, we have two methods to en-
code this erroneous value. The identity encoder encodes
the erroneous value with its original characters: When-
ever an erroneous value is equal to “16/11/1990”, a poten-
tial correction operation could be to replace “/” with “.”.
On the other hand, the Unicode encoder encodes this erro-
neous value by abstracting its characters to their Unicode
category: Whenever an erroneous value is in the format
“<Nd><Nd><Po><Nd><Nd><Po><Nd><Nd><Nd><Nd>”, a
potential correction operation could be to replace “/” with
“.”. While the first encoding is very accurate, the second one
improves the overall recall. 2

Correction operation encoding. After encoding the er-
roneous value, we need to encode the required correction
operations. In general, there are four kinds of correction
operators that can be applied on any erroneous value.
1. Remover operator. This operator removes substrings.

For example, if we want to fix the erroneous value “U.S.”
to the value “US”, the remover operator can remove “.”.

2. Adder operator. The adder operator adds substrings. For
example, if we want to fix the erroneous value “US” to the
value “U.S.”, the adder operator can add “.”.

1951

3. Replacer operator. The replacer operator both removes
and adds substrings simultaneously. For example, if we
want to fix the erroneous value “16/11/1990” to the value
“16.11.1990”, the replacer operator can remove “/” and,
instead of it, add “.”.

4. Swapper operator. The swapper operator substitutes the
entire erroneous value with another value. While the pre-
vious value-based operators are suitable for syntactic er-
rors, the swapper operator is useful for fixing semantic
data errors. For example, if we want to fix the erroneous
value “Holland” to the value “Netherlands”, the swapper
operator can substitute these values.
We train value-based models, each of which learns to per-

form one of these correction operations on an encoded erro-
neous value. With this set of operators, we can generate any
value-based correction. Given a user-corrected data error,
Baran calculates the difference of the erroneous value eval
and the corrected value e∗val on the character level, according
to the diff checking technique [22], and extracts operators.

Example 3 (Diff checking). Considering the erroneous
value eval = “Chris Edward NoLan” and the user-corrected
value e∗val = “Christopher Nolan” as the source and tar-
get character sequences, respectively, the output of the diff
checker algorithm is as follows:

diff(eval, e∗val) =


Add “topher” after “Chris”.

Remove “Edward ”.

Replace “L” with “l”.

Thus, we can update the value-based models of the four
operators with this user-corrected example. 2

Overall, we have 2 × 4 = 8 value-based error corrector
models because of 2 erroneous value encoders and 4 cor-
rection operators. To implement the abstract definition of
error corrector models in Equation 1, a value-based model
considers the encoded erroneous value encode(eval) as the
context em and the correction operation o that has to be
applied on this erroneous value as the correction c. For-
mally, P (c|em) = P (o|encode(eval)) = count(o|encode(eval))

count(encode(eval))
.

Example 4 (Value-based models). Assume that we have
a value-based error corrector model equipped with the iden-
tity encoder and the swapper operator. Assume that the
model encounters the erroneous value “Holland” 5 times in
different spots of the dataset, i.e., count(encode(eval)) = 5.
Assume that the user fixes this data error to “Netherlands”
4 times, and to “HL” 1 time. Let us call these two swapping
operations o1 and o2, respectively. Therefore, this value-
based error corrector model proposes two correction candi-
dates “Netherlands” with P (o1|encode(eval)) = 0.8 and “HL”
with P (o2|encode(eval)) = 0.2 for any detected data error e
that holds the value “Holland”. 2

4.1.2 Vicinity-Based Models
Vicinity-based error corrector models learn to fix data er-

rors based on column relationships. A vicinity-based model
proposes clean values of the active domain as potential cor-
rections based on their relationship with clean data values
of other columns. We limit all kinds of column relation-
ships and correlations [4] to functional dependencies that
have one attribute on their left-hand side. This way, we
reasonably limit the exponential space of all the functional
dependencies as these functional dependencies have been

known to be more useful for data cleaning [32]. Similar
to our error detection system Raha [27], we consider ev-
ery j1 → j2 to be a functional dependency for each pair of
columns ∀j1 6= j2 ∈ [1, |A|]. To implement the abstract defi-
nition of error corrector models in Equation 1, for each func-
tional dependency j1 → j2, a vicinity-based model considers
the clean co-occurring value d[i, j1] in the vicinity context
evic = d[i, :] as the context em and the clean value d[i, j2] as
the correction c. Formally, P (c|em) = P (d[i, j2]|d[i, j1]) =
count(d[i,j2]|d[i,j1]))

count(d[i,j1])
. This conditional probability shows how

often the left-hand-side value d[i, j1] determines the right-
hand-side value d[i, j2].
Overall, we have |A|×(|A|−1) vicinity-based error correc-

tor models as we consider the functional dependencies from
and to each attribute.

Example 5 (Vicinity-based models). Considering the
functional dependency Name → Address in Example 1, a
vicinity-based model learns that a name value “Gandom”
must always have the address value “7th Street”. Thus, the
corresponding vicinity-based model proposes one correction
candidate P (“7th Street” |“Gandom”) = 1.0 for any data er-
ror e in columnAddress that has the neighboring value “Gan-
dom” in neighboring column Name. 2

4.1.3 Domain-Based Models
Domain-based error corrector models learn to fix data

errors using the existing values inside their columns. A
domain-based model proposes the most relevant clean val-
ues from the active domain as potential corrections. As
tuples inside a dataset are generally independent of each
other, the order, distance, or neighborhood of values inside
a column does not indicate any relevance. However, the fre-
quency of clean values can be used as a signal to estimate
their relevance. More frequent clean values inside a column
are more likely to also be corrections for a data error in
the same column. Thus, to implement the abstract defi-
nition of error corrector models in Equation 1, a domain-
based model considers the domain context edom = d[:, j]
as the context em and each clean value inside this domain
as the correction c. Formally, P (c|em) = P (d[i, j]|edom) =
count(d[i,j]|edom)

count(edom)
, where count(edom) is the number of clean

values and count(d[i, j]|edom) is the frequency of clean value
d[i, j] in the active domain of the data error. This con-
ditional probability shows the chance of observing a clean
value d[i, j] in column j.
Overall, we have one domain-based error corrector model

per column, resulting in |A| domain-based models.

Example 6 (Domain-based models). Considering the
clean values of column Name in Example 1, a domain-based
model learns that all the clean values have the same proba-
bility to be a correction for each data error inside this column
because they all appear just once. Thus, the correspond-
ing domain-based model proposes two correction candidates
P (“Hana”|Name) = 0.5 and P (“Gandom” |Name) = 0.5 for
any data error e in column Name. 2

4.2 Learning to Ensemble Models
The trained error corrector models generate various po-

tential corrections for any data error using its value, vicin-
ity, and domain contexts. Thus, we need to identify the
actual correction among all the proposed correction candi-
dates from the different models. First, we need to define an

1952

appropriate sampling and labeling strategy to collect user la-
bels. Then, we need to design a feature representation and a
classification task in a way that all generated corrections for
all data errors can be effectively and efficiently evaluated.

4.2.1 Tuple Sampling and Labeling
Baran incorporates user supervision in the form of a lim-

ited number of manual corrections for data error examples.
It leverages these examples to update all error corrector
models and to train classifiers. To sample tuples for user
labeling, Baran follows an iterative procedure. In each it-
eration, Baran draws a tuple t∗ that maximizes the tuple
scoring formula

t∗ = argmax
t∈d

∏
d[i,j]∈t∩E′j

exp(
|E′j |
|Ej |

) exp(
count(d[i, j]|E′j)

|E′j |
), (2)

where Ej is the set of all data errors in column j; E′j is the set
of those data errors in column j that have not been fixed yet;
and count(d[i, j]|E′j) is the number of unfixed data errors in
column j whose value is exactly d[i, j]. This scoring formula
benefits tuples that (1) contain more unfixed data errors, (2)
their data errors reside in columns that have a high number
of unfixed data errors, and (3) their erroneous values are
frequent among the unfixed data errors. This way, Baran
obtains informative labeled data points for the classifiers of
underlabeled columns. Once the user fixes data errors of
the sampled tuple t∗, the value-based, vicinity-based, and
domain-based models will be updated accordingly.

Example 7 (Updating models). Assume that Baran sam-
ples the first tuple in Example 1. The user fixes the data
errors in this tuple. Therefore, the value-based models will
be updated with the new example of erroneous value “5th
Str” that is corrected to the value “5th Street”. In partic-
ular, a value-based model with the Unicode encoder and
the adder operator learns to add “eet” after “Str” for all en-
counters of erroneous values with a similar pattern to “5th
Str”. The corresponding vicinity-based model of Name →
Address will be updated with a new association between the
value “Hana” and the value “5th Street”. Furthermore, the
domain-based model of column Address will be updated as
now we have two clean values in this column. 2

Choosing the right form of human supervision has been al-
ways a challenge in data cleaning. Most data cleaning tasks
need to incorporate human supervision as the desired correc-
tions might be use case dependent or subjective. However,
if human supervision is erroneous itself, the data cleaning
task will be flawed as well. This problem has been identified
in the previous constraint-based approaches in the form of
obsolete [43] or inaccurate [9] integrity constraints.
In our example-driven system, this problem may appear

in the form of wrong user correction examples. However,
we argue that Baran is more robust against this issue than
constraint-based approaches because of three reasons. First,
example-based supervision is less complicated and thus less
error-prone than rule generation. For example, it is more
intuitive for the user to fix erroneous value “November (16,
1990)” to “16 November 1990” instead of writing a regular
expression rule to do so. Note that a rule is always a gen-
eralization of many examples and has to undergo several
tests before it can be considered as a trustworthy business
rule [42]. Second, Baran limits all means of human supervi-
sion, such as providing rules, parameters, external sources,

and annotations, to just labeling a few tuples. While, in ex-
isting approaches, the number of labels scales with the size
of dataset (e.g., 1%−10% of dataset [20, 41]), in Baran, the
number of labels scales with the number of data error types
of dataset (i.e., 10−20 tuples). This limited human interac-
tion naturally diminishes the possibility of human mistakes
as well. At the same time, the user can always skip examples
that are hard to label. Third, when learning through exam-
ples, one can compensate human labeling errors by simply
considering more user-provided examples. Constraint-based
approaches however are not that flexible as wrong input
rules are harder to be compensated by other rules inside
a dataset.

4.2.2 Feature Generation and Classification
We can now leverage user labels to train classifiers that

predict the final correction of a data error. A straightfor-
ward approach is to define a multiclass classification task,
where each correction candidate resembles a target class
and the classifier has to choose one of these target classes
for each data error. However, formulating this classifica-
tion task as a multiclass classification leads to the spar-
sity issue of the feature vector [10]. In the use case at
hand, the feature vector has to encode the probabilities
of all the error corrector models for each correction can-
didate. Formally, the feature vector of data error e would
be v(e) = [P (c|em) | ∀m ∈ M,∀c ∈ C], where M is the set
of all models and C is the set of all correction candidates.
Thus, the size of the feature vector would scale with the
number of correction candidates, while not every correction
candidate is relevant for each data error. As a result, there
will be a large number of zero elements in the feature vector.

Example 8 (Multiclass classification). Assume we have
20 error corrector models, each proposing 100 correction
candidates for any data error. In the multiclass classifica-
tion task, we have to encode all the 20× 100 = 2000 model
probabilities into the feature vector of each data error. 2

To avoid the sparsity issue of the multiclass classification,
we formulate the classification task as a binary decision. The
role of the binary classifier is to decide whether a correction
candidate is the actual correction of a data error or not. We
generate a feature vector that represents the fitness of one
particular correction for one particular data error inside a
column. Thus, for any combination of data error e and cor-
rection candidate c, we collect all the error corrector model
probabilities as a feature vector. Formally,

v(e, c) = [P (c|em) | ∀m ∈M], (3)

where M is the set of all the error corrector models. When
a feature vector contains mostly close-to-one probabilities
(i.e., P (c|em) ≈ 1.0 for the most of models m ∈ M), it is
more likely that the correction candidate c is the actual cor-
rection of the data error e; Because, in this case, most error
corrector models with high confidence propose this correc-
tion candidate for this data error. Hence, the set of feature
vectors of data errors inside a particular column j is

Vj = {v(e, c) | ∀e ∈ Ej , ∀c ∈ Ce}, (4)

where Ej is the set of data errors of column j and Ce is the
set of all correction candidates for a data error e. The num-
ber of feature vectors depends on the number of correction
candidates that the error corrector models propose.

1953

This feature representation has three benefits in contrast
to the feature representation of the multiclass classification
task. First, this feature vector is small and dense. The num-
ber of features is equal to the number of error corrector mod-
els and the ratio of non-zero features is higher because the
considered models are relevant for the pair at hand. Second,
this feature representation leads to fast performance conver-
gence with only a few user labels as we can transform one
user label into several training data points. Assume that
the user fixes data error e with correction c∗. Baran ex-
tends this one user label into multiple training data points.
Naturally, we have a positive data point that indicates cor-
rection c∗ ∈ Ce is the actual correction of data error e.
Furthermore, we have many negative data points that indi-
cate all corrections c ∈ Ce\{c∗} are not the actual correction
of data error e. Third, this highly imbalanced training set,
with a few positive and a large number of negative data
points, makes our classifier conservative in predicting a cor-
rection. In fact, our classifier is more biased towards the
negative class and prevents false positive corrections. That
is why the precision of our system is generally high.
Instead of training one classifier for the whole dataset, we

train one binary classifier per column because data errors,
their required correction techniques, and the usefulness of
their contexts are better comparable inside their domain.
Although Baran trains one classifier per column, it preserves
all inter-column dependency signals via the vicinity-based
error corrector models, which are encoded as features for
each pair of a data error and a correction candidate. The
vicinity-based models propose corrections for a data error
based on the functional dependency of the given column
with a different column.
In each iteration, Baran trains all the classifiers and ap-

plies each on all data errors of the corresponding column.
The classifiers do not overwrite corrections provided by the
user. For each pair of data error e and correction candi-
date c, the corresponding classifier predicts a label with a
confidence score. For a data error e, the classifier can de-
termine zero or multiple correction candidates c as the final
corrections. If the binary classifier predicts the label 0 for
every correction candidate, no correction will be selected
for the corresponding data error. If it predicts the label 1
for multiple correction candidates, Baran selects the correc-
tion with the highest confidence score as the final correction.
This iterative procedure is repeated as long as |L| < θLabels,
where |L| is the number of labeled tuples. Baran considers
the output of the last iteration as the final system output.

Example 9 (Feature generation and classification).
Considering column Address in Example 1, the following
table contains pairs of data errors and correction candi-
dates and their corresponding features. For brevity, we
just demonstrate a few pairs and features. The features
are a value-based model with the Unicode encoder and
the adder operator (mUnicode+Adder), a vicinity-based model
(mName→Address), and a domain-based model (mAddress).
The first two pairs are labeled as the user already validated
tuple 1 of our toy dataset in Example 7.
Error Correction mUnicode+Adder mName→Address mAddress Label
5th Str 5th Street 1.0** 1.0* 0.5 1
5th Str 7th Street 0.0 0.0 0.5 0

- 5th Street 0.0 1.0* 0.5
- 7th Street 0.0 0.0 0.5
9th Str 5th Street 0.0 0.0 0.5
9th Str 7th Street 0.0 0.0 0.5
9th Str 9th Street 1.0** 0.0 0.0

The classifier of column Address receives these pairs as
data points. It trains with the first two labeled data points
and then predicts the label of the rest of unlabeled data
points. In particular, the classifier predicts “5th Street” as
the final correction of erroneous value “-” because of the
vicinity-based feature mName→Address (marked with *). This
model returns the probability of 1.0 for the pair (“-”, “5th
Street”) because, after labeling tuple 1 and updating models
in Example 7, the vicinity-based model learned the associa-
tion of value “Hana” in column Name and value “5th Street”
in column Address. Furthermore, the classifier predicts “9th
Street” as the final correction of erroneous value “9th Str”
because of the value-based feature mUnicode+Adder (marked
with **). This model returns the probability of 1.0 for the
pair (“9th Str”, “9th Street”) because data error “5th Str”
matches “9th Str” based on the Unicode encoding and the
correction candidate “9th Street” is generated with the same
adder operator that generates “5th Street” for “5th Str”. 2

5. PRETRAINING MODELS
So far, the correction candidates were either provided by

the correct values inside the given dataset or through user
corrections. This approach might face two general limita-
tions. First, the limited number of user corrections might
not be enough to train the error corrector models suffi-
ciently. Second, some out-of-dataset corrections might never
be found. Fortunately, our problem formulation allows us
to extract additional correction candidates from external
sources to pretrain the error corrector models.
As mentioned, we have three groups of error corrector

models. Since the vicinity-based and domain-based error
corrector models are schema dependent, they should be pre-
trained on datasets with the same schema. Thus, pretrain-
ing them would be straightforward as the historical data
would be a structured dataset with the same schema. The
value-based error corrector models can be schema indepen-
dent and hence can be pretrained on any dataset where
value corrections can be extracted. In the absence of struc-
tured datasets with ground truth, we can resort to non/semi-
structured datasets with user-committed corrections. There
are publicly available general-purpose revision histories, such
as the Wikipedia page revision history. Extracting value-
based corrections from these revision histories requires two
main steps. First, we need to break down the non/semi-
structured revision texts into text segments (i.e., chunks).
Second, we need to align text segments across subsequent
revisions to collect value-based corrections. Here, we briefly
discuss the implementation of these steps for the Wikipedia
page revision history as a general-purpose and publicly avail-
able revision dataset. To apply the same approach on other
similar revision histories, such as web pages’, we just need
to adapt the text segmenter to the corresponding markup
language, e.g., HTML.
The Wikipedia page revision history contains terabytes of

human-committed revisions. It is available in Wikipedia re-
leased dumps [1]. The semi-structured Wikipedia pages are
written in the Wikitext markup language, which recognizes
a set of entities [2]. To segment texts, Baran recursively
breaks each page revision text down into its entities. Baran
then aligns the corresponding segments in every consecu-
tive segment lists by performing diff checking again, but
this time on the segment level. Baran discards value-based
corrections that involve null values. Finally, Baran pretrains

1954

the value-based error corrector models with these additional
correction examples. The pretrained models generate more
correction candidates for data errors of the dataset at hand.
Therefore, Baran can fix more data errors with the same
user labeling budget as more correction candidates are now
available and, at the same time, the corresponding features
of the pretrained models exhibit more evidence for the clas-
sifiers. Note that Baran can still avoid irrelevant correction
candidates with the help of the user labels. The user la-
bels let the classifier learn and prioritize across all available
correction candidates.

Example 10 (Pretraining models). A Wikipedia page
P = {r1, r2} with a history of two revisions could be as
follows:

r1 = “”’Chris Nolan”’ (born on ”30/07/1970”) is a
well-known [[British]] film-maker.”

r2 = “”’Christopher Nolan”’ (born on ”30.07.1970”)
is a well-known [[English]] filmmaker.”

Baran breaks down these page revision texts into two lists
of text segments:

S1 = [“Chris Nolan”, “(born on ”, “30/07/1970”, “)
is a well-known ”, “British”, “ film-maker.”]

S2 = [“Christopher Nolan”, “(born on ”, “30.07.1970”,
“) is a well-known ”, “English”, “ filmmaker.”]

Baran then aligns the corresponding segments of the two
consecutive segment lists:

diff(S1, S2) =


Replace “Chris Nolan” with “Christopher Nolan”.

Replace “30/07/1970” with “30.07.1970”.

Replace “British” with “English”.

Replace “ film-maker.” with “ filmmaker.”.

Thus, we obtain more value-based corrections as training
data, such as fixing “Chris Nolan” to “Christopher Nolan”.
We also tokenize each segment and increase the training data
with finer granular value-based correction examples, such as
fixing “Chris” to “Christopher”.
Pretraining the value-based models with these new correc-

tion examples makes it possible to fix the last remaining data
error of our toy dataset from Example 1, without any fur-
ther user label. Considering column Name in Example 1, the
following table contains pairs of data errors and correction
candidates and their corresponding features. For brevity,
we just demonstrate a few pairs and features. The features
are a value-based model with the identity encoder and the
adder operator (mIdentity+Adder) and a domain-based model
(mName). The first two pairs are labeled as the user already
validated tuple 1 of our toy dataset in Example 7.

Error Correction mIdentity+Adder mName Label

H Hana 1.0* 0.67 1
H Gandom 0.0 0.33 0

Chris Hana 0.0 0.67
Chris Gandom 0.0 0.33

The classifier of column Name receives these pairs as data
points. It trains with the first two labeled data points and
then predicts the label of the rest of unlabeled data points.
With only these two labeled data points, the classifier has
no chance to fix the erroneous value “Chris” to its actual cor-
rection “Christopher”, because it is not among the correction
candidates at all. However, if we pretrain the value-based
modelmIdentity+Adder with the previously extracted example
of fixing “Chris” to “Christopher” from Wikipedia, we will
have the following new pair of a data error and a correction
candidate as a new data point.

Error Correction mIdentity+Adder mName Label

Chris Christopher 1.0* 0.0

The classifier now has enough evidence to fix the erroneous
value “Chris” without any further user label. Since the user
already fixed the erroneous value “H” to “Hana”, the classifier
learned that the value-based model mIdentity+Adder (marked
with *) is an important feature. The classifier also ob-
serves that the same value-based feature mIdentity+Adder has
a high probability for the pair (“Chris”, “Christopher”), as
the model learned this probability in the pretraining phase.
Therefore, the classifier can predict “Christopher” as the fi-
nal correction of the erroneous value “Chris”. 2

6. EXPERIMENTS
Our experiments aim to answer the following questions.

(1) How does Baran, with and without transfer learning,
compare to the existing error correction systems? (2) How
do the error corrector models affect the system performance?
(3) What is the impact of our tuple sampling approach?
(4) How does the choice of the classifier affect the system
performance? (5) How does the result quality of the up-
stream error detection engine affect the correction perfor-
mance? We first introduce our experimental setting and
then detail our experiments.

6.1 Setup
Datasets. We evaluate our system on 7 well-known datasets
from existing literature as described in Table 2. The diffi-
culty level of the error correction task depends on the error
rate, the diversity of error types, and the availability of er-
ror context signals. We manually examined the datasets
to identify prevalent data error types and useful contextual
information for correcting these data errors.
Hospital [37] and Flights [25, 37] have rich contextual in-

formation, including a high degree of data redundancy in
the form of duplicate tuples and correlated columns. At
the same time, they are challenging datasets for different
reasons. Since the data errors of Hospital are scarce and
randomly imposed, sampling informative tuples is particu-
larly challenging on this dataset. On the other hand, since
Flights has a high error rate, the degree of trustworthy con-
textual information is lower. Address is a proprietary and
Tax is a synthetic dataset from the BART repository [7].
Both datasets are large, contain various data error types,
but contain fewer duplicate tuples and correlated columns.
Their large size leads to a huge search space for finding ac-
tual corrections. Beers [21], Rayyan [30], and IT [3] are also
real-world datasets that were cleaned by the dataset owners.
These three datasets lack data redundancy, which makes it
challenging to fix data errors.
Baselines. We compare Baran to 4 recent baseline systems.
• KATARA [12] is a data cleaning system powered by knowl-
edge bases that takes a set of entity relationships as input
and fixes the violating data errors accordingly. We ran
KATARA with all the entity relationships that are avail-
able in the DBpedia knowledge base [8].
• SCARE [48] is an error correction system that partitions
the dataset and uses the clean values to choose corrections
of data errors based on their statistical likelihood. We
ran SCARE with random data partitioning. We set its
maximum number of value corrections to the number of
detected errors (δ = |E|) to accommodate all data errors.

1955

Table 2: Dataset characteristics. The error types are missing value (MV), typo (T), formatting issue (FI),
and violated attribute dependency (VAD) [36].

Name Size Error Rate Error Types Data Constraints

Hospital 1000 × 20 3% T, VAD city → zip, city → county, zip → city, zip → state, zip → county, county → state, index (digits), provider number (digits),
zip (5 digits), state (2 letters), phone (digits)

Flights 2376 × 7 30% MV, FI, VAD flight → actual departure time, flight → actual arrival time, flight → scheduled departure time, flight → scheduled arrival time

Address 94306 × 12 14% MV, FI, VAD address → state, address → zip, zip → state, state (2 letters), zip (digits), ssn (digits)

Beers 2410 × 11 16% MV, FI, VAD brewery id → brewery name, brewery id → city, brewery id → state, brewery id (digits), state (2 letters)

Rayyan 1000 × 11 9% MV, T, FI, VAD journal abbreviation → journal title, journal abbreviation → journal issn, journal issn → journal title, authors list (not null),
article pagination (not null), journal abbreviation (not null), article title (not null), article language (not null), journal title (not
null), journal issn (not null), article journal issue (not null), article journal volume (not null), journal created at (date)

IT 2262 × 61 20% MV, FI support level (not null), app status (not null), curr status (not null), tower (not null), end users (not null), account manager (not
null), decomm dt (not null), decomm start (not null), decomm end (not null), end users (not 0), retirement (predefined list),
emp dta (predefined list), retire plan (predefined list), division (predefined list), bus import (predefined list)

Tax 200000 × 15 4% T, FI, VAD zip→ city, zip→ state, first name→ gender, area code→ state, gender (predefined list), area code (3 digits), phone (7 formatted
digits), state (2 letters), zip (non-zero-leading digits), material status (predefined list), has child (predefined list), salary (digits)

• Holistic [11] is a data cleaning system that uses denial con-
straints. We ran Holistic with all the data constraints (i.e.,
integrity rules and column patterns) provided by datasets
owners (Table 2).
• HoloClean [37] is an error correction system that leverages
integrity rules, matching dependencies, and statistical sig-
nals to fix data errors holistically. We ran HoloClean with
all the data constraints and matching dependencies that
are provided by datasets owners (Table 2).

Evaluation measures. We report precision, recall, and the
F1 score to evaluate the effectiveness. Precision is the num-
ber of correctly fixed data errors divided by the number of
all fixed data errors. Recall is the number of correctly fixed
data errors divided by the number of all data errors. The
F1 score is the harmonic mean of precision and recall. We
also report the runtime in seconds. We report the number
of labeled tuples to evaluate the human involvement. For
each metric, we report the mean of 10 independent runs.
Baran default setting. By default, we run Baran with all
described error corrector models, without pretraining them.
We use AdaBoost [16] as the classifier and set the label-
ing budget to θLabels = 20. We run the experiments on
an Ubuntu 16.04 LTS machine with 28 2.60 GHz cores and
264 GB memory. Baran is integrated with our error detec-
tion system Raha and is available online1.

6.2 Comparison with the Baselines
We compare the performance of Baran with the baselines

in terms of effectiveness, efficiency, and human involvement.
All the error correction systems in this section take as the
input the same correct and complete set of data errors.
Effectiveness. Table 3 shows the effectiveness of all sys-
tems in error correction. Baran outperforms all the baselines
in terms of the F1 score on all the datasets as our approach
in formulating error correction achieves both high precision
and recall. In fact, since Baran trains a comprehensive set
of error corrector models based on different contexts of data
errors, these models propose a large set of potential correc-
tions that increases the achievable recall bound significantly.
Later, when Baran leverages a few user labels to ensemble
these potential corrections into the final corrections, the high
error correction precision is also maintained.
The effectiveness of Baran depends on the amount of value-

based, vicinity-based, and domain-based context informa-
tion that each dataset provides. On information-rich datasets,
such as Hospital and Flights, with many duplicate rows and

1https://github.com/BigDaMa/raha

correlated columns, Baran can train and ensemble effective
error corrector models leveraging all the three data error
contexts. Therefore, Baran achieves high F1 scores on these
datasets. In particular, Baran achieves perfect performance
on the Flights dataset, which has a high degree of redun-
dancy. On the other hand, on datasets with less error con-
text information, such as Address, where the erroneous val-
ues are often missing values, Baran cannot fix all the data
errors accurately.
Pretraining value-based models on the revision history of

more than 300000 Wikipedia pages (row Baran (with TL) in
Table 3) improves the F1 score more significantly on datasets
with prevalent syntactic data issues, such as Hospital and
Rayyan. The pretraining provides more evidence for the
classifiers to predict the actual correction. In particular,
the pretrained value-based models generate additional cor-
rection candidates that enable Baran to converge to its re-
ported F1 score, with fewer than 20 labeled tuples for the
same F1 score. On the Hospital dataset, pertaining gener-
ates 455390 new correction candidates. As a result, we just
need 13 labeled tuples to achieve the same F1 score achieved
with 20 labeled tuples. On the Rayyan dataset, pertain-
ing generates 77569 new correction candidates. With pre-
training, we reach the same F1 score that previously needed
20 labeled tuples with only 18 labeled tuples. On the Tax
dataset, pretraining generates 7134254 new correction candi-
dates. As a result, we just need 19 labeled tuples to achieve
the same F1 score achieved with 20 labeled tuples. Contrary,
the effectiveness improvement is minor on datasets like IT,
where most of the erroneous values are missing values. Here,
the value-based models cannot propose potential corrections
effectively, regardless of being pretrained or not.
KATARA has poor precision because the ambiguity of

concepts leads to a mismatch between the dataset and the
knowledge base. This system also has poor recall because
most parts of datasets cannot be matched to knowledge
bases. Holistic has poor precision and recall because the
provided integrity rules can only fix a portion of data er-
rors. Although HoloClean has relatively high precision and
recall on datasets with a high degree of redundancy, such as
Hospital and Flights, it cannot achieve the same effective-
ness on the rest of datasets. On datasets with lower degrees
of redundancy or fewer predefined data constraints, Holo-
Clean cannot find the correction of data errors accurately;
Because the actual correction either does not exist anywhere
in data or is not covered by data constraints. SCARE suffers
from the same drawbacks as HoloClean.
As long as a dataset provides rich contextual information,

the error rate does not affect the effectiveness of Baran sig-

1956

https://github.com/BigDaMa/raha

Table 3: System effectiveness in comparison to the baselines.
System Hospital Flights Address Beers Rayyan IT Tax

P R F P R F P R F P R F P R F P R F P R F
KATARA 0.98 0.24 0.39 0.00 0.00 0.00 0.79 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.02 0.59 0.01 0.02
SCARE 0.67 0.53 0.59 0.57 0.06 0.11 0.10 0.10 0.10 0.16 0.07 0.10 0.00 0.00 0.00 0.20 0.10 0.13 0.01 0.01 0.01
Holistic 0.52 0.38 0.44 0.21 0.01 0.02 0.41 0.31 0.35 0.49 0.01 0.02 0.85 0.07 0.13 1.00 0.78 0.88 0.96 0.26 0.41
HoloClean 1.00 0.71 0.83 0.89 0.67 0.76 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.11 0.11 0.11

Baran 0.88 0.86 0.87 1.00 1.00 1.00 0.67 0.32 0.43 0.91 0.89 0.90 0.76 0.40 0.52 0.98 0.98 0.98 0.84 0.78 0.81
Baran (with TL) 0.94 0.88 0.91 1.00 1.00 1.00 0.67 0.32 0.43 0.94 0.87 0.90 0.80 0.44 0.57 0.98 0.98 0.98 0.95 0.73 0.83

0 10 30 50 70
0

0.2

0.4

0.6

0.8

1

Data Error Rate (%)

F
1

Sc
or

e KATARA
SCARE
Holistic

HoloClean
Baran

Figure 2: Scaling the error rate on Flights.

nificantly. For example, Baran achieves high effectiveness on
both context-rich datasets Hospital and Flights although the
former has a low (3%) and latter has a high (30%) data error
rate. To further analyze the effect of the data error rate, we
select our most erroneous dataset Flights and generate four
without-replacement samples of it with 10%, 30%, 50%, and
70% erroneous data cells. Figure 2 shows the F1 score of the
error correction systems on these four datasets. As the error
rate increases, the F1 score of all the systems naturally drops
because trustworthy evidence diminishes. However, Baran
consistently outperforms all the other systems because it
leverages the remaining scarce trustworthy contexts of data
errors more effectively.
Human involvement. Figure 3 shows the effectiveness
of systems in error correction with respect to the number of
labeled tuples. The F1 score of Baran quickly converges with
only a few labeled tuples and outperforms the F1 score of
all the other systems. This fast convergence speed is due to
the Baran’s tuple sampling and feature generation approach
that generates a large number of informative training data
points with a few user labels. Since KATARA, SCARE,
Holistic, and HoloClean do not leverage user labels, their
F1 score is independent of the number of labeled tuples.
However, we argue that they leverage human supervision
in other more tedious forms. KATARA needs the user to
provide related knowledge bases. SCARE needs the user to
provide statistical parameters. Holistic and HoloClean need
the user to provide the correct and complete set of integrity
rules and matching dependencies.
Efficiency. Table 4 shows the runtime of the systems in sec-
onds. Although efficiency is not the main concern of Baran,
it displays a competitive runtime in comparison to the other
baselines. The reported runtime captures the online phase
of Baran as the offline phase is totally independent of the
input dataset. Optimizing machine runtime efficiency has
not been the main goal of data cleaning systems as optimiz-
ing effectiveness and human involvement are more impor-
tant objectives [3, 37]. However, it is important to develop
systems that can work in a reasonable runtime.

6.3 Error Corrector Models Impact Analysis
We conduct an ablation experiment on the error correc-

tor models to better understand their effect on the overall

Table 4: System runtime (in seconds).
System Hospital Flights Address Beers Rayyan IT Tax
KATARA 234 116 5739 180 134 2031 15992
SCARE 76 123 11853 363 216 8717 55495
Holistic 15 10 69 9 8 3 247
HoloClean 148 39 17582 96 112 885 25778

Baran 23 22 11073 114 26 247 11936

effectiveness of Baran. First, we run Baran with all the de-
fault error corrector models (row All in Table 5). Then, we
exclude each type of models, one at a time, to analyze its
impact. For example, All - VaM means that Baran lever-
ages all the models but the value-based ones. Finally, we
also evaluate the performance of Baran with all the default
models together with custom dataset-specific models (row
All + CM) obtained from the data constraints in Table 2.
Baran leverages these data constraints as hard-coded cor-
rectors that overwrite our default models if necessary.
As shown in Table 5, Baran has the highest F1 score

with all the default error corrector models on most of the
datasets. By collecting the proposed potential corrections
from all the error corrector models, Baran has more con-
text information to fix the data errors. However, on some
datasets, we observe that excluding one type of error correc-
tor models can lead to a higher F1 score. Excluding vicinity-
based or domain-based models improves the F1 score on
the Tax dataset. The reason is that, on this large dataset
with thousands of rows, these models propose thousands of
clean values from the active domain of the data error as
potential corrections. Learning to find the actual correction
among this huge search space needs more learning iterations
and user labels. Excluding value-based models improves the
F1 score on the Hospital dataset. Since this dataset has
randomly imposed typos, the value-based models cannot
effectively learn value-based corrections from this random-
ness. That is why the F1 score is higher on the Hospital
dataset when the value-based models are excluded. Exclud-
ing the vicinity-based error corrector models significantly
drops the F1 score on datasets with high inter-column de-
pendencies, such as Hospital and Flights. This decline shows
that Baran effectively fixes inter-column dependency viola-
tions with including vicinity-based models. Adding custom
dataset-specific models to the default set of error correc-
tor models does not affect F1 score on most of the datasets
as our default models are general enough and already cover
these prevalent data constraints. For example, one-attribute
to one-attribute functional dependencies are already incor-
porated into our system due to the vicinity-based models.

6.4 Tuple Sampling Impact Analysis
We analyze the impact of our tuple sampling approach on

the effectiveness of Baran by comparing two versions of our
system with two different sampling approaches. the Uniform
sampling approach selects erroneous tuples for user labeling
according to a uniform probability distribution. Our tuple

1957

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Labeled Tuples Count

F
1

Sc
or

e

(a) Hospital

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Labeled Tuples Count

F
1

Sc
or

e

(b) Flights

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Labeled Tuples Count

F
1

Sc
or

e

(c) Address

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Labeled Tuples Count

F
1

Sc
or

e

(d) Beers

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Labeled Tuples Count

F
1

Sc
or

e

(e) Rayyan

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Labeled Tuples Count

F
1

Sc
or

e

(f) IT

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Labeled Tuples Count

F
1

Sc
or

e KATARA
SCARE
Holistic

HoloClean
Baran

(g) Tax

Figure 3: System effectiveness with respect to the number of labeled tuples.

Table 5: System effectiveness with different error corrector models: value-based models (VaM), vicinity-based
models (ViM), domain-based models (DoM), all default models (All), and custom models (CM).
Error Corrector Hospital Flights Address Beers Rayyan IT Tax
Models P R F P R F P R F P R F P R F P R F P R F
All - VaM 0.95 0.88 0.91 1.00 1.00 1.00 0.61 0.06 0.11 0.67 0.42 0.52 0.19 0.07 0.10 0.98 0.95 0.96 0.44 0.24 0.31
All - ViM 0.64 0.31 0.42 0.08 0.06 0.07 0.40 0.25 0.31 0.87 0.86 0.86 0.48 0.34 0.40 0.98 0.98 0.98 0.88 0.88 0.88
All - DoM 0.88 0.87 0.87 1.00 1.00 1.00 0.56 0.25 0.35 0.91 0.88 0.89 0.54 0.35 0.42 0.98 0.98 0.98 0.90 0.81 0.85

All 0.88 0.86 0.87 1.00 1.00 1.00 0.67 0.32 0.43 0.91 0.89 0.90 0.76 0.40 0.52 0.98 0.98 0.98 0.84 0.78 0.81

All + CM 0.90 0.89 0.89 1.00 1.00 1.00 0.67 0.32 0.43 0.91 0.89 0.90 0.76 0.40 0.52 0.98 0.98 0.98 0.84 0.78 0.81

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Labeled Tuples Count

F
1

Sc
or

e

Uniform
Baran

(a) Hospital

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Labeled Tuples Count

F
1

Sc
or

e

Uniform
Baran

(b) Flights

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Labeled Tuples Count

F
1

Sc
or

e

Uniform
Baran

(c) Address

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Labeled Tuples Count

F
1

Sc
or

e

Uniform
Baran

(d) Rayyan

Figure 4: System effectiveness with different tuple sampling approaches.

sampling approach selects tuples according to their informa-
tiveness for the classifiers.
As shown in Figure 4, our tuple sampling approach speeds

up the convergence of the system. This higher convergence
speed is more significant on datasets with more randomly
dispersed data errors, such as Hospital and Rayyan. On
these datasets, the classifiers need to have enough labeled
data errors from each column and data error type to be able
to fix all the data errors accurately. That is why our tu-
ple sampling approach that oversamples the underlabeled
columns converges faster. Due to the space limitation, we
just report the results on 4 datasets. Baran’s sampling im-
provement is only minor on the remaining datasets.

6.5 Classifier Impact Analysis
We analyze the impact of the classifier on the effective-

ness of Baran. We tested AdaBoost, Decision Tree, Gradient

Boosting, and Stochastic Gradient Descent, all implemented
in scikit-learn Python module [33]. We applied grid search
to find the best hyperparameters for each classifier.
Table 6 shows that the choice of the classifier does not

have a significant impact on the effectiveness of the system.
Although on some datasets, such as Address, the F1 score
varies more, there are always multiple classifiers that achieve
almost the same F1 score. In our current prototype, we de-
ploy AdaBoost because it is an advanced ensemble classi-
fier [16], which is less susceptible to overfitting [38].

6.6 Error Detection Impact Analysis
Although error detection and error correction have been

considered as two orthogonal tasks in literature [3, 20, 37,
48], it is important to analyze the influence of imperfect er-
ror detection on the downstream error correction effective-
ness. Naturally, the effectiveness of error correction depends

1958

Table 6: System effectiveness with different classifiers.
Classifier Hospital Flights Address Beers Rayyan IT Tax

P R F P R F P R F P R F P R F P R F P R F
AdaBoost 0.88 0.86 0.87 1.00 1.00 1.00 0.67 0.32 0.43 0.91 0.89 0.90 0.76 0.40 0.52 0.98 0.98 0.98 0.84 0.78 0.81
Decision Tree 0.88 0.85 0.86 1.00 1.00 1.00 0.70 0.34 0.46 0.91 0.89 0.90 0.62 0.34 0.44 0.98 0.98 0.98 0.74 0.73 0.73
Gradient Boosting 0.94 0.68 0.79 1.00 1.00 1.00 0.63 0.12 0.20 0.92 0.81 0.86 0.66 0.41 0.51 0.99 0.98 0.98 0.97 0.59 0.73
Stochastic Gradient Descent 0.95 0.92 0.93 1.00 1.00 1.00 0.66 0.25 0.36 0.95 0.87 0.91 0.59 0.21 0.31 0.99 0.98 0.98 0.83 0.63 0.72

Table 7: System effectiveness with imperfect and perfect error detection (ED) and error correction (EC).
System Hospital Flights Address Beers Rayyan IT Tax

P R F P R F P R F P R F P R F P R F P R F
Perfect ED + Baran 0.88 0.86 0.87 1.00 1.00 1.00 0.67 0.32 0.43 0.91 0.89 0.90 0.76 0.40 0.52 0.98 0.98 0.98 0.84 0.78 0.81

Raha + Perfect EC 0.98 0.58 0.73 0.97 0.75 0.85 0.83 0.85 0.84 0.98 1.00 0.99 0.83 0.79 0.81 0.99 0.98 0.98 0.97 0.98 0.97

Raha + HoloClean 0.19 0.41 0.26 0.08 0.16 0.11 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.11 0.11 0.11
Raha + Baran 0.89 0.52 0.66 0.88 0.53 0.66 0.57 0.32 0.41 0.93 0.87 0.90 0.50 0.27 0.35 0.98 0.96 0.97 0.84 0.66 0.74
Raha + Baran (In) 0.95 0.52 0.67 0.84 0.56 0.67 0.53 0.32 0.40 0.93 0.87 0.90 0.44 0.21 0.28 0.99 0.97 0.98 0.84 0.77 0.80

on the effectiveness of error detection. Typically, the error
detection recall is the upper bound of the error correction
recall [37]. We leverage Raha [27], a state-of-the-art error
detection system, to test the performance of end-to-end data
cleaning pipelines. Raha is also a configuration-free system
and needs only a few labeled tuples of each dataset to detect
data errors. We compare the effectiveness of three end-to-
end data cleaning scenarios. The first scenario is as before,
Baran takes the perfectly detected data errors as the input
and fixes them (row Perfect ED + Baran in Table 7). In
the second scenario, Raha detects data errors of the dataset
and then the user fixes all the detected data errors perfectly
(row Raha + Perfect EC). The effectiveness of this virtual
approach is the upper bound of error correction systems. Fi-
nally, in the last scenario, Raha detects data errors and then
an error correction system, such as Baran or HoloClean, fixes
the detected data errors. In particular, we study the effec-
tiveness of two versions of end-to-end data cleaning pipelines
with Raha and Baran. In the first pipeline, Raha and Baran
work orthogonal and each of them separately asks the user
to label 20 tuples (row Raha + Baran). In the second inte-
grated pipeline, only Raha asks the user to label 20 tuples
and then it passes these labels along with the detected data
errors to Baran (row Raha + Baran (In)). We also report
the effectiveness of HoloClean when it takes the same set of
detected data errors (row Raha + HoloClean).
As shown in Table 7, imperfect error detection naturally

leads to a slight drop of Baran’s error correction effective-
ness. This decline is minor on most of the datasets, such as
Beers and IT. Both pipelines with Raha and Baran achieve
almost the same F1 score and both clearly outperform the
pipeline with HoloClean. Interestingly, the second pipeline
achieves higher effectiveness on large datasets, such as Tax.
This is promising as it shows Raha’s clustering-based sam-
pling [27] is effective enough to sample informative tuples
for both error detection and correction tasks and we do not
need separate user labels for Baran.

7. RELATED WORK
We review related research in error correction and trans-

fer learning as they were the main focus of this work. Fur-
thermore, we discuss data transformation, programming by
example, spell checking, and error detection as these areas
are partially touched by our system.
Error correction. Existing error correction systems lever-
age various signals, such as integrity rules [11, 13, 17, 18],

external sources [12], active learning [24, 49], cleaned sam-
ples [45], statistical likelihoods [48], and a combination of
rules and statistics [37]. These approaches show promises
in settings where data redundancy and user-provided rules
and parameters are available. Baran offers a new task for-
mulation that does not need these prerequisites.
Transfer learning. Transfer learning has been used for en-
tity matching [50], missing value imputation [44], and per-
formance estimation [26]. Baran is the first system that
leverages transfer learning for the error correction task.
Data transformation and programming by example.
Data transformation is the task of transforming data values
from one format into another [6, 23, 5]. Programming by
example is the task of synthesizing a program that satisfies
a set of input-output examples [19, 39, 40]. Baran leverages
data transformation and programming by example as one
type of error correction, i.e., value-based correction.
Spell checking. Spell checking is the task of identifying
and fixing typos (i.e., misspellings) in texts [34, 28]. Baran
not only fixes spell and other linguistic mistakes via value-
based models, but also fixes other types of data errors, such
as missing values and formatting issues [36].
Error detection. Error detection is the task of detecting
data values that are wrong [3]. Previous approaches lever-
age various techniques to detect data errors, such as data
augmentation [20], web tables [46], metadata [41], active
learning [29], and combining error detection algorithms [27].
The task of Baran is orthogonal to the error detection task,
as the output of any error detection approaches can be fed
as the input into Baran.

8. CONCLUSION
We proposed a new error correction system that fixes data

errors with respect to their value, vicinity, and domain con-
texts. Baran trains multiple error corrector models based
on these different contexts and then combines them into
a final correction for each data error. Furthermore, Baran
provides the option of transfer learning. As our experiments
show, Baran significantly outperforms existing error correc-
tion systems. Despite Baran’s promises, there are still future
directions for improvement. In particular, designing an ef-
fective data cleaning dashboard is an important direction
that could support the user to avoid correction mistakes.
Acknowledgements. This project has been supported by
the German Research Foundation (DFG) under grant agree-
ment 387872445.

1959

9. REFERENCES
[1] Wikipedia:database download. https://en.

wikipedia.org/wiki/Wikipedia:Database_download,
2019. Accessed: 12.09.2019.

[2] Wikitext. https://www.mediawiki.org/wiki/
Wikitext, 2019. Accessed: 12.09.2019.

[3] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F.
Ilyas, M. Ouzzani, P. Papotti, M. Stonebraker, and
N. Tang. Detecting data errors: Where are we and what
needs to be done? PVLDB, 9(12):993–1004, 2016.

[4] Z. Abedjan, L. Golab, and F. Naumann. Profiling rela-
tional data: A survey. VLDBJ, 24(4):557–581, 2015.

[5] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Pa-
potti, and M. Stonebraker. Dataxformer: A robust
transformation discovery system. In ICDE, pages 1134–
1145, 2016.

[6] A. Arasu, S. Chaudhuri, and R. Kaushik. Learn-
ing string transformations from examples. PVLDB,
2(1):514–525, 2009.

[7] P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller,
P. Papotti, and D. Santoro. Messing up with bart: Er-
ror generation for evaluating data-cleaning algorithms.
PVLDB, 9(2):36–47, 2015.

[8] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cy-
ganiak, and Z. Ives. Dbpedia: A nucleus for a web of
open data. In ISWC, pages 722–735, 2007.

[9] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin. On
the relative trust between inconsistent data and inac-
curate constraints. In ICDE, pages 541–552, 2013.

[10] M. Blondel, K. Seki, and K. Uehara. Block coordinate
descent algorithms for large-scale sparse multiclass clas-
sification. Machine learning, 93(1):31–52, 2013.

[11] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data clean-
ing: Putting violations into context. In ICDE, pages
458–469, 2013.

[12] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Pa-
potti, N. Tang, and Y. Ye. Katara: A data cleaning
system powered by knowledge bases and crowdsourc-
ing. In SIGMOD, pages 1247–1261, 2015.

[13] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid,
I. F. Ilyas, M. Ouzzani, and N. Tang. Nadeef: A com-
modity data cleaning system. In SIGMOD, pages 541–
552, 2013.

[14] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang,
M. Stonebraker, A. K. Elmagarmid, I. F. Ilyas, S. Mad-
den, M. Ouzzani, and N. Tang. The data civilizer sys-
tem. In CIDR, 2017.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transform-
ers for language understanding. In arXiv preprint
arXiv:1810.04805, 2018.

[16] Y. Freund and R. E. Schapire. A decision-theoretic gen-
eralization of on-line learning and an application to
boosting. JCSS, 55(1):119–139, 1997.

[17] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The
llunatic data-cleaning framework. PVLDB, 6(9):625–
636, 2013.

[18] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. Clean-
ing data with llunatic. VLDBJ, pages 1–26, 2019.

[19] S. Gulwani. Programming by examples: Applications,
algorithms, and ambiguity resolution. In IJCAR, pages

9–14, 2016.
[20] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas.

Holodetect: Few-shot learning for error detection. In
SIGMOD, pages 829–846, 2019.

[21] J.-N. Hould. Craft beers dataset. https://www.kaggle.
com/nickhould/craft-cans, 2017. Version 1.

[22] J. W. Hunt and M. D. MacIlroy. An algorithm for dif-
ferential file comparison. Bell Laboratories Murray Hill,
1976.

[23] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Wrangler: Interactive visual specification of data trans-
formation scripts. In SIGCHI, pages 3363–3372, 2011.

[24] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and
K. Goldberg. Activeclean: Interactive data cleaning for
statistical modeling. PVLDB, 9(12):948–959, 2016.

[25] X. Li, X. L. Dong, K. Lyons, W. Meng, and D. Srivas-
tava. Truth finding on the deep web: Is the problem
solved? arXiv preprint arXiv:1503.00303, 2015.

[26] M. Mahdavi and Z. Abedjan. Reds: Estimating the per-
formance of error detection strategies based on dirtiness
profiles. In SSDBM, pages 193–196, 2019.

[27] M. Mahdavi, Z. Abedjan, R. Castro Fernandez, S. Mad-
den, M. Ouzzani, M. Stonebraker, and N. Tang. Raha:
A configuration-free error detection system. In SIG-
MOD, pages 865–882, 2019.

[28] A. Max and G. Wisniewski. Mining naturally-occurring
corrections and paraphrases from wikipedia’s revision
history. In LREC, 2010.

[29] F. Neutatz, M. Mahdavi, and Z. Abedjan. Ed2: A case
for active learning in error detection. In CIKM, pages
2249–2252, 2019.

[30] M. Ouzzani, H. Hammady, Z. Fedorowicz, and A. Elma-
garmid. Rayyan—a web and mobile app for systematic
reviews. Systematic reviews, 5(1):210, 2016.

[31] S. J. Pan and Q. Yang. A survey on transfer learning.
TKDE, 22(10):1345–1359, 2009.

[32] T. Papenbrock and F. Naumann. A hybrid approach
to functional dependency discovery. In SIGMOD, pages
821–833, 2016.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. JMLR, 12(Oct):2825–2830, 2011.

[34] T. A. Pirinen and K. Lindén. State-of-the-art in
weighted finite-state spell-checking. In CICLing, pages
519–532, 2014.

[35] N. Prokoshyna, J. Szlichta, F. Chiang, R. J. Miller, and
D. Srivastava. Combining quantitative and logical data
cleaning. PVLDB, 9(4):300–311, 2015.

[36] E. Rahm and H. H. Do. Data cleaning: Problems and
current approaches. DE, 23(4):3–13, 2000.

[37] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holo-
clean: Holistic data repairs with probabilistic inference.
PVLDB, 10(11):1190–1201, 2017.

[38] R. E. Schapire. Explaining adaboost. In Empirical in-
ference, pages 37–52. 2013.

[39] R. Singh. Blinkfill: Semi-supervised programming by
example for syntactic string transformations. PVLDB,
9(10):816–827, 2016.

[40] R. Singh and S. Gulwani. Transforming spreadsheet
data types using examples. In POPL, pages 343–356,

1960

https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://www.mediawiki.org/wiki/Wikitext
https://www.mediawiki.org/wiki/Wikitext
https://www.kaggle.com/nickhould/craft-cans
https://www.kaggle.com/nickhould/craft-cans

2016.
[41] L. Visengeriyeva and Z. Abedjan. Metadata-driven er-

ror detection. In SSDBM, pages 1–12, 2018.
[42] L. Visengeriyeva and Z. Abedjan. Anatomy of metadata

for data curation. JDIQ, 12(3), 2020.
[43] M. Volkovs, F. Chiang, J. Szlichta, and R. J. Miller.

Continuous data cleaning. In ICDE, pages 244–255,
2014.

[44] G. Wang, J. Lu, K.-S. Choi, and G. Zhang. A transfer-
based additive ls-svm classifier for handling missing
data. IEEE transactions on cybernetics, 50(2):739–752,
2018.

[45] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg,
T. Kraska, and T. Milo. A sample-and-clean framework
for fast and accurate query processing on dirty data. In
SIGMOD, pages 469–480, 2014.

[46] P. Wang and Y. He. Uni-detect: A unified approach to
automated error detection in tables. In SIGMOD, pages
811–828, 2019.

[47] K. Whistler and L. Iancu. Unicode character database.
http://www.unicode.org/reports/tr44/, 2019. Ac-
cessed: 12.09.2019.

[48] M. Yakout, L. Berti-Équille, and A. K. Elmagarmid.
Don’t be scared: Use scalable automatic repairing with
maximal likelihood and bounded changes. In SIGMOD,
pages 553–564, 2013.

[49] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani,
and I. F. Ilyas. Guided data repair. PVLDB, 4(5):279–
289, 2011.

[50] C. Zhao and Y. He. Auto-em: End-to-end fuzzy entity-
matching using pre-trained deep models and transfer
learning. In WWW, pages 2413–2424, 2019.

1961

http://www.unicode.org/reports/tr44/

	Introduction
	Foundations
	Problem Statement
	State of the Art

	BARAN Overview
	Online Phase
	Offline Phase

	The Error Correction Engine
	Error Corrector Models
	Value-Based Models
	Vicinity-Based Models
	Domain-Based Models

	Learning to Ensemble Models
	Tuple Sampling and Labeling
	Feature Generation and Classification

	Pretraining Models
	Experiments
	Setup
	Comparison with the Baselines
	Error Corrector Models Impact Analysis
	Tuple Sampling Impact Analysis
	Classifier Impact Analysis
	Error Detection Impact Analysis

	Related Work
	Conclusion
	References

