
SPORES: Sum-Product Optimization via Relational
Equality Saturation for Large Scale Linear Algebra

Yisu Remy Wang
University of Washington

remywang@uw.edu

Shana Hutchison
University of Washington

shutchis@uw.edu

Jonathan Leang
University of Washington

jleang@uw.edu
Bill Howe

University of Washington

billhowe@uw.edu

Dan Suciu
University of Washington

suciu@uw.edu

ABSTRACT
Machine learning algorithms are commonly specified in lin-
ear algebra (LA). LA expressions can be rewritten into more
efficient forms, by taking advantage of input properties such
as sparsity, as well as program properties such as common
subexpressions and fusible operators. The complex interac-
tion among these properties’ impact on the execution cost
poses a challenge to optimizing compilers. Existing compil-
ers resort to intricate heuristics that complicate the codebase
and add maintenance cost, but fail to search through the
large space of equivalent LA expressions to find the cheap-
est one. We introduce a general optimization technique for
LA expressions, by converting the LA expressions into Rela-
tional Algebra (RA) expressions, optimizing the latter, then
converting the result back to (optimized) LA expressions.
The rewrite rules we design in this approach are complete,
meaning that any equivalent LA expression is covered in
the search space. The challenge is the major size of the
search space, and we address this by adopting and extend-
ing a technique used in compilers, called equality saturation.
Our optimizer, SPORES, uses rule sampling to quickly cover
vast portions of the search space; it then uses a constraint
solver to extract the optimal plan from the covered space,
or alternatively uses a greedy algorithm to shorten compile
time. We integrate SPORES into SystemML and validate
it empirically across a spectrum of machine learning tasks;
SPORES can derive all existing hand-coded optimizations
in SystemML, and perform new optimizations that lead to
up to 10X speedup.

PVLDB Reference Format:
Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe,
Dan Suciu. SPORES: Sum-Product Optimization via Relational
Equality Saturation for Large Scale Linear Algebra. PVLDB,
13(11): 1919-1932, 2020.
DOI: https://doi.org/10.14778/3407790.3407799

1. INTRODUCTION
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407799

Consider the Linear Algebra (LA) expression sum((X −
UV T)2) which defines a typical loss function for approxi-
mating a matrix X with a low-rank matrix UV T . Here,
sum() computes the sum of all matrix entries in its argu-
ment, and A2 squares the matrix A element-wise. Suppose
X is a sparse, 1M x 500k matrix, and suppose U and V
are dense vectors of dimensions 1M and 500k respectively.
Thus, UV T is a rank 1 matrix of size 1M x 500k, and com-
puting it naively requires 0.5 trillion multiplications, plus
memory allocation. Fortunately, the expression is equiva-
lent to sum(X2) − 2UTXV + UTU ∗ V TV . Here UTXV
is a scalar that can be computed efficiently by taking ad-
vantage of the sparsity of X, and, similarly, UTU and V TV
are scalar values requiring only 1M and 500k multiplications
respectively.

Optimization opportunities like this are ubiquitous in ma-
chine learning programs. State-of-the-art optimizing com-
pilers such as SystemML [3], OptiML[38], and Cumulon[16]
commonly implement syntactic rewrite rules that exploit the
algebraic properties of the LA expressions. For example,
SystemML includes a rule that rewrites the preceding ex-
ample to a specialized operator1 to compute the result in
a streaming fashion. However, such syntactic rules fail on
the simplest variations, for example SystemML fails to op-
timize sum((X + UV T)2), where we just replaced − with
+. Moreover, rules may interact with each other in com-
plex ways. In addition, complex ML programs often have
many common subexpressions (CSE), that further interact
with syntactic rules, for example the same expression UV T

may occur in multiple contexts, each requiring different op-
timization rules.

In this paper we describe SPORES, a novel optimization
approach for complex linear algebra programs that leverages
relational algebra as an intermediate representation to com-
pletely represent the search space. SPORES first transforms
LA expressions into traditional Relational Algebra (RA) ex-
pressions consisting of joins, unions and aggregates. It then
performs a cost-based optimizations on the resulting Rela-
tional Algebra expressions, using only standard identities in
RA. Finally, the resulting RA expression is converted back
to LA, and executed.

A major advantage of SPORES is that the rewrite rules
in RA are complete. Linear Algebra seems to require an

1See the SystemML Engine Developer Guide for details on
the weighted-square loss operator wsloss.

1919

https://systemml.apache.org/docs/0.12.0/engine-dev-guide.html

endless supply of clever rewrite rules, but, in contrast, by
converting to RA, we can prove that our set of just 13 rules
are complete. The RA expressions in this paper are over K-
relations [13]; a tuple X(i, j) is no longer true or false, but
has a numerical value, e.g. 5, which could be interpreted,
e.g., as the multiplicity of that tuple. In other words, the
RA expressions that result from LA expressions are inter-
preted over bags instead of sets. The problem of check-
ing equivalence of queries under bag semantics has a unique
history. Chaudhuri and Vardi first studied the containment
and equivalence problem under bag semantics, and claimed
that two conjunctive queries are equivalent iff they are iso-
morphic: Theorem 5.2 in [6]. However, a proof was never
produced. A rather long proof for this claim was given for
the bag-set semantics in [8]. Green provided a comprehen-
sive proof, showing that two unions of conjunctive queries
(UCQ) are equivalent under bag semantics iff they are iso-
morphic, by using sophisticated techniques involving multi-
ple semirings [12]. The completeness result of our 13 rules
relies on a similar result, but stated for tensors rather than
bags; we present here a simple and self-contained proof in
Sec. 2.3. We note that, in contrast, containment of two
UCQs with bag semantics is undecidable [18]; we do not
consider containment in this paper. Finally, we prove that
our optimizer rules are sufficient to convert any RA expres-
sion into its canonical form, i.e. to an UCQ, and thus can,
in principle, discover all equivalent rewritings.

However, we faced a major challenge in trying to exploit
the completeness of the rules. The search space is very
large, typically larger than that encountered in standard
database optimizers, because of the prevalence of unions +,
large number of aggregates

∑
, and frequent common subex-

pressions. To tackle this, SPORES adopts and extends a
technique from compilers called equality saturation [40]. It
uses a data structure called the E-Graph [32] to compactly
represent the space of equivalent expressions, and equality
rules to populate the E-Graph, then leverages constraint
solvers to extract the optimal expression from the E-Graph.
We extend equality saturation with rule sampling and use
a greedy extraction algorithm to quickly cover vast portions
of the search space, and trade the guarantee of optimality
for shorter compile time.

We have integrated SPORES into SystemML [3], and show
that it can derive all hand-coded rules of SystemML. We
evaluated SPORES on a spectrum of machine learning tasks,
showing competitive performance improvement compared
with more mature heuristic-based optimizers. Our optimizer
rediscovers all optimizations by the latter, and also finds new
optimizations that contribute to up to 10X speedup.

We make the following contributions in this paper:

1. We describe a novel approach for optimizing complex
Linear Algebra expressions by converting them to Re-
lational Algebra, and prove the completeness of our
rewrite rules (Sec. 2).

2. We present a search algorithm based on Equality Sat-
uration that can explore a large search space while
reusing memory (Sec. 3).

3. We conduct an empirical evaluation of the optimizer
using several real-world machine learning tasks, and
demonstrate it’s superiority over an heuristics-driven
optimizer in SystemML (Sec. 4).

Table 1: Representation of expressions in LA and RA.

A x A ∗ xT Ax

LA

[
0 5
7 0

] [
3
2

] [
0 10
21 0

] [
10
21

]

RA
i j #
1 2 5
2 1 7

j #
1 3
2 2

i j #
1 2 10
2 1 21

i #
1 10
2 21

2. REPRESENTING THE SEARCH SPACE

2.1 Rules RLR: from LA to RA and Back
In this section we describe our approach of optimizing LA

expressions by converting them to RA. The rules converting
from LA to RA and back are denoted RLR.

To justify our approach, let us revisit our example loss
function written in LA and attempt to optimize it using
standard LA identities. Here we focus on algebraic rewrites
and put aside concerns about the cost model. Using the
usual identities on linear algebra expressions, one may at-
tempt to rewrite the original expression as follows:

sum((X − UV T)2)

=sum((X − UV T) ∗ (X − UV T))

=sum(X2 − 2X ∗ UV T + (UV T)2)

=sum(X2)− 2sum(X ∗ UV T) + sum((UV T)2)

At this point we are stuck trying to rewrite sum(X ∗UV T)
(recall that ∗ is element-wise multiplication); it turns out
to be equal to sum(UTXV), for any matrices X,U, V (and
it is equal to the scalar UTXV when U, V are column vec-
tors), but this does not seem to follow from standard LA
identities like associativity, commutativity, and distributiv-
ity. Similarly, we are stuck trying to rewrite sum((UV T)2)
to sum(UTU ∗ V TV). Current systems manually add syn-
tactic rewrite rules, whenever such a special case is deemed
frequent enough to justify extending the optimizer.

Instead, our approach is to expand out the LA expres-
sion element-wise. For example, assuming for simplicity that
U, V are column vectors, we obtain

sum((UV T)2) =
∑
i,j(Ui × Vj)× (Ui × Vj)

=
∑
i,j(Ui × Ui)× (Vj × Vj)

= (
∑
iUi × Ui)× (

∑
jVj × Vj)

= UTU × V TV

The expressions using indices represent Relational Algebra
expressions. More precisely, we interpret every vector, or
matrix, or tensor, as a K-relation [13] over the reals. In
other words we view Xij as a tuple X(i, j) whose “multiplic-
ity” is the real value of that matrix element. We interpret
point-wise multiply as natural join; addition as union; sum
as aggregate; and matrix multiply as aggregate over a join2.
Table 1 illustrates the correspondence between LA and RA.
We treat each matrix entry Aij as the multiplicity of tu-
ple (i, j) in relation A under bag semantics. For example
A2,1 = 7, therefore the tuple (2, 1) has multiplicity of 7 in
the corresponding relation. The relation schema stores the

2In the implementation, we use outer join for point-wise
multiply and addition, where we multiply and add the ma-
trix entries accordingly. In this paper we use join and union
to simplify presentation.

1920

Table 2: LA and RA operators. The type MM,N is a matrix of size
M ×N ; [i, j] is a list of attribute names; Ri:M,j:N is a relation with
attributes i of size M and j of size N ; S1, S2, S, and U are sets of
attributes. elemmult and elemplus are broadcasting.

name type syntax

L
A

mmult MM,L ×ML,N →MM,N AB
elemmult MM,N ×MM,N →MM,N A ∗B
elemplus MM,N ×MM,N →MM,N A+B
rowagg MM,N →MM,1 sumrowA
colagg MM,N →M1,N sumcolA
agg MM,N →M1,1 sumA
transpose MM,N →MN,M AT

co
n
v
.

bind MM,N × [i, j]→ Ri:M,j:N [i,j]A
unbind Ri:M,j:N × [i, j]→MM,N [−i,−j]A

R
A join RS1 ×RS2 → RS1∪S2 A×B

union RS1 ×RS2 → RS1∪S2 A+B
agg RS × U → RS\U

∑
U A

1. A ∗B → [−i,−j] ([i,j]A× [i,j]B).

2. A+B → [−i,−j] ([i,j]A+ [i,j]B).

3. sumrowA→ [−i,]
∑
j [i,j]A. Similar for sumcol, sum.

4. AB → [−i,−k]
∑
j([i,j]A× [j,k]B).

5. AT → [−j,−i] [i,j]A.

6. A−B → A+ (−1) ∗B

Figure 1: LA-to-RA Ruleset RLR.

size of each dimension. A ∗ xT denotes element-wise multi-
plication, where each element Aij of the matrix is multiplied
with the element xj of the row-vector xT . In RA it is nat-
urally interpreted as the natural join A(i, j) 1 x(j), which
we write as A(i, j) × x(j). Similarly, Ax is the standard
matrix-vector multiplication in LA, while in RA it becomes
a query with a group by and aggregate, which we write as∑
j A(i, j) × x(j). Our K-relations are more general than

bags, since the entry of a matrix can be a real number, or
a negative number; they correspond to K-relations over the
semiring of reals (R, 0, 1,+,×).

We now describe the general approach in SPORES. The
definition of LA and RA are in Table 2. LA consists of
seven operators, which are those supported in SystemML [3].
These operators all implement sum-product operations and
take up the majority of run time in machine learning pro-
grams as we show in Section 4.2. We also support common
operations like division and logarithm as we discuss in Sec-
tion 3.3. RA consists of only three operators: × (natural
join), + (union), and

∑
(group-by aggregate). Difference

is represented as A − B = A + (−1)B (this is difference in
R; we do not support bag difference, i.e. difference in N like
3 − 5 = 0, because there is no corresponding operation in
LA), while selection can be encoded by multiplication with
relations with 0/1 entries. We call an expression using these
three RA operators an RPlan, for Relational Plan, and use
the terms RPlan and RA/relational algebra interchangeably.
Finally, there are two operators, bind and unbind for con-
verting between matrices/vectors and K-relations.

The translation from LA to RA is achieved by a set of
rules, denoted RLR, and shown in Figure 1. The bind oper-
ator [i,j] converts a matrix to a relation by giving attributes
i, j to its two dimensions; the unbind operator [−i,−j] con-
verts a relation back to a matrix. For example, [−j,−i] [i,j]A
binds A’s row indices to i and its column indices to j, then
unbinds them in the opposite order, thereby transposing A.

1. A× (B + C) = A×B +A× C
2.
∑
i(A+B) =

∑
iA+

∑
iB

3. If i 6∈ A, A×
∑
iB =

∑
i(A×B) (else rename i)

4.
∑
i

∑
j A =

∑
i,j A

5. If i 6∈ Attr(A), then
∑
iA = A× dim(i)

6. A+ (B + C) = +(A,B,C) (assoc. & comm.)

7. A× (B × C) = ×(A,B,C) (assoc. & comm.)

Figure 2: RA equality rules REQ.

SPORES translates a complex LA expression into RA by
first applying the rules RLR in Figure 1 to each LA oper-
ator, replacing it with an RA operator, preceded by bind
and followed by unbind. Next, it eliminates consecutive
unbind/bind operators, possibly renaming attributes, e.g.
[k,l] [−i,−j]A becomes A[i → k, j → l], which indicates that
the attributes i and j in A’s schema should be renamed to
k and l, by propagating the rename downward into A. As a
result, the entire LA expression becomes an RA expression
(RPlan), with bind on the leaves and unbind at the top.

2.2 Rules REQ : from RA to RA
The equational rules for RA consists of seven identities

shown in Figure 2, and denoted by REQ. The seven rules are
natural relational algebra identities, where × corresponds to
natural join, + to union (of relations with the same schema)
and

∑
i to group-by and aggregate. In rule 5, i /∈ Attr(A)

means that i is not an attribute of A, and dim(i) is the di-
mension of index i. For a very simple illustration of this rule,
consider

∑
i 5. Here 5 is a constant, i.e. a relation of zero

arity, with no attributes. The rule rewrites it to 5dim(i),
where dim(i) is a number representing the dimension of i.

2.3 Completeness of the Optimization Rules
As we have seen at the beginning of this section, when

rewriting LA expressions using identities in linear algebra
we may get stuck. Instead, by rewriting the expressions to
RA, the seven identities in REQ are much more powerful,
and can discover more rewrites. We prove here that this
approach is complete, meaning that, if two LA expressions
are semantically equivalent, then their equivalence can be
proven by using rules REQ. The proof consists of two parts:
(1) the rules REQ are sufficient to convert any RA expression
e to its normal form (also called canonical form) C(e), and
back, (2) two RA expressions e, e′ are semantically equiva-
lent iff they have isomorphic normal forms, C(e) ≡ C(e′).

We first give formal definitions for several important con-
structs. First, we interpret a relation as a function from
tuples to a semiring. For simplicity we assume all attributes
have the same domain D.

Definition 2.1. (Relations) Fix a semiring S. An S-
relation is a function A : Da → S where a is the arity of
the relation.

When S = N, then an N-relation is a standard relation un-
der bag semantics. When the domain is D = [n] for some
natural number n and S = R, then an R-relation is a tensor
over the reals. Next we define expressions over operators
from Table 2.

Definition 2.2. (Expressions) An expression in RA is
either 1. an atom r of the form R(x1, ..., xa) where R is

1921

a relation name and (x1, ..., xa) a tuple of variables and/or
constants, or 2. a natural join of two expressions e1× e2, or
3. a union of two expressions, e1 + e2, or 4. an aggregate,∑
x e.

Because the order of consecutive aggregates does not matter,
we write

∑
{x1,...,xn} e for

∑
x1
· · ·
∑
xn
e. Given an expres-

sion e, we say that a variable x is bound in e, if e contains
an aggregate of the form

∑
x e
′; otherwise it is free. We

write vars(e) for the set of variables in e, bv(t) for the set of
bound variables, and fv(t) for the set of free variables. We
interpret every expression e as a lambda expression λfv(e).e
where the parameters fv(e) may follow a given order, e.g.
from an unbind operator if e was converted from LA3. In
the body of the lambda expression, any atom R(x1, . . . , xa)
evaluates to some s ∈ S, and +,× and

∑
compute over S.

We say two RA expressions are equivalent iff they evaluate
to the same result given any same inputs:

Definition 2.3. (Equivalence of Expressions) Fix expres-
sions e1, e2 over the relation symbols R1, . . . , Rn. We say
that e1, e2 are equivalent over the semiring S and the do-
main D if they have the same free variables, and for all
interpretations III = (RI1, . . . , R

I
n) where RIj : Daj → S for

j = 1, . . . , n the two expressions return the same answer,
e1(III) = e2(III). We write e1 =S,D e2 to mean e1 and e2 are
equivalent. When e1 =S,D e2 for all domains D, then we
abbreviate e1 =S e2; when this holds for all semirings S,
then we write e1 = e2.

Now we give names for special forms of expressions at each
level of the normal form.

Definition 2.4. (R-monomials, Terms, R-polynomials)
An R-monomial, m, is a product of any number of atoms.
A term, t, is a summation expression of the form

∑
xxxm,

where xxx is a set of variables and m is an R-monomial. An
R-polynomial, e, is an expression of the form c0 + c1t1 +
· · · + cntn where c0, . . . , cn are constants in the semiring S
and t1, . . . , tn are terms. In summary:

m := r1 × · · · × rn R-monomials (1)

t :=
∑
xxxm terms (2)

e := c0 + c1t1 + · · ·+ cntn R-polynomials (3)

We identify the R-monomial m with a bag of atoms denoted

by bag(m)
def
= {r1, . . . , rn}.

Example 1. An R-polynomial over N-relations is a union
of conjunctive queries precisely. For example, the polyno-
mial

∑
j A(i, j) × A(i, j) × B(j, k) × B(j, k) +

∑
`A(i, `) ×

C(`, k) is precisely the UCQ Q(i, k) ≡ ∃j(A(i, j) ∧ A(i, j) ∧
B(j, k)∧B(j, k))∨∃`(A(i, l)∧C(l, k)) under bag semantics.
Notice that the monomial A(i, j)×A(i, j)×B(j, k)×B(j, k)
is the same as A(i, j) × B(j, k) × A(i, j) × B(j, k), and we
view it as the bag {A(i, j), A(i, j), B(j, k), B(j, k)}, and also
abbreviate it as A2(i, j)×B2(j, k).

Before we formally define our canonical form, we need to
define two syntactical relationships between our expressions,
namely homomorphism and isomorphism. Fix terms t =∑
xxxm and t′ =

∑
x′x′x′ m

′, and let f : xxx→ xxx′ be any function.

3A bind operator [i, j] converts a matrix A to an atom
A(i, j).

Let r ∈ bag(m) be an atom ofm. We write f(r) for the result
of applying f to all variables of r. We write f(bag(m)) for
the bag obtained by applying f to each atom r ∈ bag(m).

Definition 2.5. (Homomorphism) Fix two terms t, t′. A
homomorphism, f : t → t′, is a function f : xxx → xxx′ such
that f(bag(m)) = bag(m′).

Example 2. Let t1 =
∑
vwsA(i, v) × B(v, w) × A(i, s)

t2 =
∑
jk A

2(i, j) × B(j, k) and t3 =
∑
jk A(i, j) × B(j, k),

and consider the function f : {v, w, s} → {j, k} defined by
v 7→ j, w 7→ k, s 7→ j. Then this is a homomorphism f : t1 →
t2. On the other hand f is not a homomorphism from t1 →
t3, because f(bag(t1)) = {A(i, j), B(j, k), A(i, j)} contains
the atom A(i, j) twice, while bag(t3) contains it only once.

Notice that t1, t2 must have exactly the same free variables.
By convention, we extend f to be the identity on the free
variables. The following facts are easily verified:

Fact 1. Every homomorphism f : t1 → t2 is a surjec-
tive function vars(t1)→ vars(t2).

Fact 2. Homomorphisms are closed under composition.

A stronger correspondence between terms is an isomorphism:

Definition 2.6 (Term Isomorphism). Fix two terms
t, t′. An isomorphism is a homomorphism f : t → t′ that
is a bijection from vars(t) to vars(t′). If an isomorphism
exists, then we say that t, t′ are isomorphic and write t ≡
t′.

Lemma 2.1. Fix two terms t1 and t2. If there exists hom-
morphisms f : t1 → t2 and g : t2 → t1 then the terms are
isomorphic, t1 ≡ t2. More generally, any cycle of homomor-
phisms t1 → t2 → t3 → . . .→ tn → t1 implies that all terms
are isomorphic.

Proof. The composition g ◦ f is a homomorphism t1 →
t1 which, by Fact 1, is a surjective function vars(t1) →
vars(t1); since vars(t1) is a finite set, it follows that g ◦ f is
a bijection, hence so are f and g.

We are now ready to formally define the canonical form for
RA expressions:

Definition 2.7. (Canonical Form) An RPlan expression
(as defined in Table 2) is canonical if it is a R-polynomial
(Definition 2.4) containing no isomorphic terms.

We can canonicalize any expression by pulling + to the top
and pushing × to the bottom, while combining isomorphic
terms c1t+ c2t into (c1 + c2)t:

Lemma 2.2. For every RPlan expression there is a canon-
ical expression equivalent to it.

Proof. The proof is a standard application of the rewrite
rules REQ in Figure 2.

We can identify canonical expressions syntactically using
term isomorphism:

Definition 2.8. (Isomorphic Canonical Expressions) Fix
two R-polynomials e = c0 + c1t1 + · · · + cntn and e′ =
c′0 + c′1t

′
1 + · · · + c′mt

′
m. We say that e and e′ are isomor-

phic if m = n, c0 = c′0, and there exists a permutation
σ : [n]→ [n] such that ∀i ∈ [n], ci = c′σ(i), and ti ≡ t′σ(i).

1922

In other words, e, e′ are isomorphic if they are essentially
the same expression, up to commutativity of + and up to
replacing terms ti with isomorphic terms t′σ(i). In partic-
ular, isomorphic expressions have same free variables. Our
ultimate goal is to identify canonical form isomorphism with
equivalence. That is, two canonical expressions are equiva-
lent iff they are isomorphic. For any R-polynomial e = c0 +

c1t1 + · · · cntn, we denote by |vars(e)| def= maxi(|vars(ti)|).
Our main result is the following:

Theorem 2.3. (Isomorphism Captures Equivalence)
Let e1, e2 be two canonical expressions. Then the following
conditions are equivalent:

1. e1 ≡ e2
2. e1 = e2 3. e1 =C e2 4. e1 =R e2 5. e1 =N e2

6. e1 =N,D e2, for some finite domain D s.t. |D| ≥
max(|vars(e1)|, |vars(e2)|).

The implications (1) ⇒ (2) ⇒ · · · ⇒ (6) are straightfor-
ward. We prove below that (6) ⇒ (1). In other words,
we prove that, if e1, e2 are equivalent over the semiring of
natural numbers N and over some domain “large enough”,
then their canonical forms must be isomorpic. Requiring
|D| to be large enough is necessary, because otherwise two
non-isomorphic expressions may be equivalent. For exam-
ple, if we restrict the relations X,Y to be matrices of di-
mensions 1 × 1, then the expressions

∑
i,j X(i, j) × Y (i, j)

and
∑
i,j X(i, j)× Y (j, i) have the same semantics, but dif-

ferent canonical form. For another example, if x, y, z are
vectors of length 2, these two expressions are equivalent:∑
i,j,k x(i)×y(j)×z(k)+2

∑
i x(i)×y(i)×z(i) and

∑
i,j x(i)×

y(i)× z(j) +
∑
i,j x(i)× y(j)× z(i) +

∑
i,j x(j)× y(i)× z(i),

although they are not equivalent when x, y, z are vectors of
length ≥ 3.

Proof. We prove (6) ⇒ (1). Assume that e1(III) = e2(III)
for all interpretations III over the domain D. We start by
observing that the constant terms in e1 and e2 must be
equal, i.e. if e1 = c0 + . . . , e2 = c′0 + . . . then c0 = c′0.
This follows by choosing III to consists of empty relations,
in which case e1(III) = c0 and e2(III) = c′0, proving c0 = c′0.
Thus, we can cancel the constant terms and assume w.l.o.g.
that e1, e2 have no constant terms. Next, we show that we
can assume w.l.o.g. that e1 and e2 have no free variables.
Otherwise, denote by xxx the free variables in e1 and e2 (they
must be the same in order for e1, e2 to be equivalent), and
define e′1 =

∑
xxx e2 and e′2 =

∑
xxx e2. It is easy to check

that e′1, e
′
2 are also equivalent and, if we prove that they

are isomorphic, then so are e1, e2. Thus, we will assume
w.l.o.g. that e1, e2 have no free variables. Suppose that e1
and e2 contain two terms that are isomorphic: that is, e1
contains citi, e2 contains c′jt

′
j , and ti ≡ t′j . In particular,

ti = t′j i.e. they are also equivalent. Assuming ci ≥ c′j , we
subtract c′jt

′
j from both e1 and e2; now e1 contains (ci−c′j)ti,

while e2 no longer contains t′j . By repeating this process,
we remove any pair of isomorphic terms from e1, e2. If e1, e2
were isomorphic, then after this process we remove all terms
and both e1, e2 becomes 0. Suppose by contradiction that
this is not the case, thus e1 = c1t1 + c2t2 + . . . cmtm, e2 =

c′1t
′
1 + · · ·+ c′nt

′
n, and, denoting T

def
= {t1, . . . , tm, t′1, . . . , t′n}

the set of terms in both expressions, no two terms in T
are isomorphic. Assuming m > 0 or n > 0, we prove that
e1 =N,D e2 is a contradiction.

Let us denote by t < t′ when there exists a homomorphism
t→ t′. Then < defines a partial order on T , i.e. there is no
<-cycle, otherwise Lemma 2.1 would imply that some terms
are isomorphic. Let t1 ∈ T be any minimal element under
<, in other words there is no t′ ∈ T s.t. t′ < t1. Assume
w.l.o.g. that t1 is a term in e1. We will construct an instance
III that is “canonical” for t1, and prove that e1(III) 6= e2(III).

Assume t1 =
∑
xxx r

k1
1 × · · · rkmm , where r1, . . . , rk are distinct

atoms, and rkii
def
= ri × · · · × ri (ki times). Let n = |xxx|, and

recall that, by assumption, |D| ≥ n. Choose any injective
function θ : xxx → D; to reduce clutter we assume w.l.o.g.
that D = {1, 2, . . . , n} and θ(x1) = 1, . . . , θ(xn) = n. Let
u1, . . . , um be m variables over N, one for each distinct atom
in t1. We define the canonical III as follows. For each rela-
tional symbol R, and for any atom ri = R(xj1 , . . . , xja)

that uses the symbol R, we define RI(j1, . . . , ja)
def
= ui; for

all other tuples in Da we define R(. . .) = 0. This com-
pletes the definition of III. We make two claims. First,
t1(III) is a multivariate polynomial containing the monomial

cuk11 · · ·ukmm . To see this, write t =
∑
yyy r
′
1 × · · · × r′q, and

observe that t(III) =
∑
τ :yyy→D τ(r′1)×· · ·×τ(r′q). When τ = θ

the R-monomial τ(r′1)× · · · × τ(r′q) = θ(r′1)× · · · × θ(r′q) is

precisely uk11 · · ·ukmm . Second, we claim that, for any other
term t ∈ T , its value t(III) on the canonical instance is some
multivariate polynomial in u1, . . . , um that does not contain
the monomial uk11 · · ·ukmm . Indeed, suppose it contained this
monomial: then we prove that there exists a homomorphism
t→ t1, contradicting the assumption that t1 is minimal. To
see this, consider again t(III) =

∑
τ :yyy→D τ(r′1) × · · · × τ(r′q).

If this expression includes the monomial uk11 · · ·ukmm , then
for some function τ : yyy → D, the bag {θ′(r′1), . . . , θ′(r′q)}
must contain precisely the atom θ(r1) k1-times, the atom
θ(r2) k2-times, etc. But that means that τ is a homomor-
phism t → t1 (since D and vars(t1) are isomorphic via θ),
contradicting our assumption that t1 is minimal.

Thus, we have established that both e1(III) and e2(III) are
multivariate polynomials in u1, . . . , um, but the first expres-
sion contains the monomial uk11 · · ·ukmm while the second
does not contain it. Since e1 = e2, these two polynomials
must have the same values for all choices of natural numbers
u1, . . . , um ∈ N. It is well known from classical algebra that,
in this case, the two polynomials are identical, which is a
contradiction.

For a simple illustration, assume e1 = t1 and e2 = t2,
where t1 =

∑
x,y,z R(x, y) × R(y, z) × R(z, x) and t2 =∑

iR(i, i)3. They are not isomorphic, and our proof es-
sentially constructs an instance III on which their answers
differ. Since we have a homomorphism t1 → t2 but not
vice versa, the instance is the canonical instance for t1,

i.e. RI(1, 2)
def
= u1, RI(2, 3)

def
= u2, RI(3, 1)

def
= u3, and

all the other entries are 0. Then it is easy to verify that
t1(III) = 3u1u2u3 (there are three isomorphisms t1 → t1),
while t2(III) = 0. Notice that the canonical instance for t2,

RI(1, 1)
def
= u1 and all other entries are 0, does not make the

two expressions different: t1(III) = t2(III) = u3
1.

We are now ready to establish the completeness of RA
equalities, by showing any equivalent LA expressions can be
rewritten to each other through the translation rules RLR
and the canonicalization rules REQ:

1923

Theorem 2.4. (Completeness of REQ) Two LA ex-
pressions are semantically equivalent if and only if their rela-
tional form can be rewritten to each other by following REQ.

In the following RLR(e) translates LA expression e into RA
and C(e) returns the normal form of e.

Proof. Translating e1 and e2 to RA preserves seman-
tics under RLR. By Lemma 2.2, normalizing RLR(e1) and
RLR(e2) preserves semantics. By Theorem 2.3,

RLR(e1) =R RLR(e2) ⇐⇒ C(RLR(e1)) ≡ C(RLR(e2))

Since every rule in REQ is reversible, the right-hand-side is
true iff RLR(e1) and RLR(e2) can be rewritten to each other
via REQ.

3. EXPLORING THE SEARCH SPACE
With a complete representation of the search space by re-

lational algebra, our next step is to explore this space and
find the optimal expression in it. Traditional optimizing
compilers commonly resort to heuristics to select from avail-
able rewrites to apply. SystemML implements a number of
heuristics for its algebraic rewrite rules, and we discuss a
few categories of them here.

Competing or Conflicting Rewrites The same ex-
pression may be eligible for more than one rewrites. For ex-
ample, sum(AB) rewrites to sum(sumcol(A)T ∗sumrow(B)),
but when both A and B are vectors the expression can also
be rewritten to a single dot product. SystemML then im-
plements heuristics to only perform the first rewrite when
the expression is not a dot product. In the worst case, a set
of rules interacting with each other may create a quadratic
number of such conflicts, complicating the codebase.

Order of Rewrites Some rewrite should be applied
after others to be effective. For example, X/y could be
rewritten to X ∗ 1/y which may be more efficient, since Sys-
temML provides efficient implementation for sparse multi-
plication but not for division. This rewrite should occur
before constant folding; otherwise it may create spurious
expressions like X/(1/y)→ X ∗ (1/(1/y)), and without con-
stant folding the double division will persist. However, a
rewrite like 1/(1 + exp(−X)) → sigmoid(X) should come
after constant folding, in order to cover expressions like
(3−2)/(1+exp(−X)). Since SystemML requires all rewrites
to happen in one phase and constant folding another, it has
to leave out4 rewrites like X/y → X ∗ 1/y.

Dependency on Input/Program Properties Our ex-
ample optimization from sum((X − UV T)2) to sum(X2)−
2UTXV + UTU ∗ V TV improves performance only if X is
sparse. Otherwise, computing X2 and X ∗UV T would both
create dense intermediates. Similarly, some rewrites depend
on program properties like common subexpressions. Usu-
ally, these rewrites only apply when the matched expres-
sion shares no CSE with others in order to leverage com-
mon subexpression elimination. Testing input and program
properties like this becomes boilerplate code, making imple-
mentation tedious and adds burden to maintenance.

Composing Rewrites Even more relevant to us is the
problem of composing larger rewrites out of smaller ones.
Our equality rules REQ are very fine-grained, and any rule

4Another reason to leave out this rewrite is that X ∗ 1/y
rounds twice, whereas X/y only rounds once.

*

YX

*

*

YX

* *

* 1

4

2

0

4

Figure 3: Left: E-Graph representing (X × Y) × Y , and the graph
after applying associativity to the root (middle). New nodes are in
gray. Each dashed box is an E-Class. Right: the CSE problem. Each
node shows its cost.

is unlikely to improve performance on its own. Our ex-
ample optimization from sum((X − UV T)2) to sum(X2)−
2UTXV +UTU ∗V TV takes around 10 applications of REQ
rules. If an optimizer applies rewrites one by one, it is then
very difficult, if not impossible, for it to discover the correct
sequence of rewrites that compose together and lead to the
best performance.

Stepping back, the challenge of orchestrating rewrites is
known as the phase-ordering problem in compiler optimiza-
tion. Tate et al. [40] proposed a solution dubbed equality
saturation which we adapt and extend in SPORES.

3.1 Equality Saturation
Equality saturation optimizes an expression in two steps:
Saturation: given the input expression, the optimizer enu-

merates equivalent expressions and collects them into a com-
pact representation called the E-Graph [32].

Extraction: given a cost function, the optimizer selects the
optimal expression from the E-Graph. An expression is rep-
resented by a subgraph of the E-Graph, and the optimizer
uses a constraint solver to find the subgraph equivalent to
the input that is optimal according to the cost function.

The E-Graph Data Structure
An E-Graph represents sets of equivalent expressions. A
node in the graph is called an E-Class, which contains the
root operators of a set of equivalent expressions. The edges
are similar to the edges in an abstract syntax tree; but in-
stead of pointing from an operator directly to a child, each
edge points from an operator to an E-Class of expressions.
For example, in Figure 3 the top class in the middle repre-
sents the set of equivalent expressions {(X×Y)×Y,X×(Y ×
Y)}. Note that the class represents two expressions, each
with 2 appearances of Y and one appearance of X, whereas
each variable only appears once in the E-Graph. This is
because the E-Graph makes sure its expressions share all
possible common subexpressions. As the size of the graph
grows, this compression becomes more and more notable;
in some cases a graph can represent a number of expres-
sions exponential to its size [40]. We take advantage of this
compression in SPORES to efficiently cover vast portions of
the search space. If saturation, as described below, carries
out to convergence, the E-Graph represents the search space
exhaustively.

An E-Graph can also be seen as an AND-OR DAG over
expressions. Each E-Class is an OR node whose children
are equivalent expressions from which the optimizer chooses
from. Each operator is an AND node whose children must
all be picked if the operator itself is picked. In this paper
we favor the terms E-Graph and E-Class to emphasize each
OR node is an equivalence class.

1924

1 def saturate(egraph , equations):
2 for eq in equations:
3 matches = egraph.match(eq.lhs)
4 for eclass in matches:
5 ec = egraph.add(eq.rhs)
6 egraph.merge(eclass , c)
7
8 def add(expr):
9 ID = egraph.find(expr)

10 if ID != NULL:
11 return ID
12 else:
13 cids = expr.children.map(add)
14 ID = egraph.insert(expr.op , cids)
15 return ID

Figure 4: Equality saturation pseudocode.

Saturating the E-Graph
At the beginning of the optimization process, the optimizer
instantiates the graph by inserting the nodes in the syntax
tree of the input expression one by one in post order. For ex-
ample, for input (X×Y)×Y , we construct the left graph in
Figure 3 bottom-up. By inserting in post order, we readily
exploit existing common subexpressions in the input. Once
the entire input expression is inserted, the optimizer starts
to extend the graph with new expressions equivalent to the
input. It considers a list of equations, and matches either
side of the equation to subgraphs of the E-Graph. If an
equation matches, the optimizer then inserts the expression
on the other side of the equation to the graph. For exam-
ple, applying the associativity rule extends the left graph in
Figure 3 with X×(Y ×Y), resulting in the right graph. Fig-
ure 4 shows the pseudo code for this process. While inserting
new expressions, the optimizer checks if any subexpression
of the new expression is already in the graph. If so, it reuses
the existing node, thereby exploiting all possible common-
subexpressions to keep the E-Graph compact. In Figure 3,
only two × are added since the variables X and Y are al-
ready in the graph. Once the entire new expression has been
added, the optimizer then merges the newly created E-Class
at its root with the E-Class containing the matched expres-
sion, asserting them equal. Importantly, the optimizer also
propagates the congruent closure of this new equality. For
example, when A+A is merged with 2×A, the optimizer also
merges (A+A)2 with (2×A)2. Figure 4 shows the pseudo
code for adding an expression to E-Graph. This process of
match-and-insert is repeated until the graph stops changing,
or reaching a user-specified bound on the number of satu-
ration iterations. If this process does converge, that means
no rule can add new expressions to the graph any more. If
the set of rules are complete, as is our REQ, convergence
of saturation implies the resulting E-Graph represents the
transitive closure of the equality rules applied to the ini-
tial expression. In other words, it contains all expressions
equivalent to the input under the equality rules.

The outer loop that matches equations to the graph can
be implemented by a more efficient algorithm like the Rete
algorithm [10] when the number of equations is large. How-
ever, we did not find matching to be expensive and simply
match by traversing the graph. Our implementation uses
the E-Graph data structure from the egg [44] library.

Dealing with Expansive Rules
While in theory equality saturation will converge with well-
constructed rewrite rules, in practice the E-Graph may ex-
plode for certain inputs under certain rules. For example,

a long chain of multiplication can be rewritten to an ex-
ponential number of permutations under associativity and
commutativity (AC rules). If we apply AC rules every-
where applicable in each iteration, the graph would soon
use up available memory. We call this application strategy
the depth-first strategy because it eagerly applies expansive
rules like AC. AC rules by themselves rarely affect perfor-
mance [23], and SystemML also provides the fused mmchain

operator that efficiently computes multiplication chains, so
permuting a chain is likely futile. In practice, AC rules are
useful because they can enable other rewrites. Suppose we
have a rule Rfactor : A ×X + B ×X → (A + B) ×X and
an expression U × Y + Y × V . Applying commutativity to
Y × V would then transform the expression to be eligible
for Rfactor. With this insight, we change each saturation
iteration to sample a limited number of matches to apply
per rule, instead of applying all matches. This amounts to
adding matches = sample(matches, limit) between line 3
and line 4 in Figure 4. Sampling encourages each rule to be
considered equally often and prevents any single rule from
exploding the graph. This helps ensure good exploration
of the search space when exhaustive search is impractical.
But when it is possible for saturation to converge and be
exhaustive, it still converges with high probability when we
sample matches. Our experiments in Section 4.3 show sam-
pling always preserve convergence in practice.

Extracting the Optimal Plan
A greedy strategy to extract the best plan from the satu-
rated E-Graph is to traverse the graph bottom-up, picking
the best plan at each level. This assumes the best plan
for any expression also contains the best plan for any of its
subexpressions. However, the presence of common subex-
pressions breaks this assumption. In the right-most graph
in Figure 3 each operator node is annotated with its cost.
Between the nodes with costs 1 and 2, a greedy strategy
would choose 1, which incurs total cost of 1 + 4 = 5. The
greedy strategy then needs to pick the root node with cost
0 and the other node with cost 4, incurring a total cost of
9. However, the optimal strategy is to pick the nodes with
0, 2 and share the same node with cost 4, incurring a total
cost of 6.

We handle the complexity of the search problem with a
constraint solver. We assign a variable to each operator and
each E-Class, then construct constraints over the variables
for the solver to select operators that make up a valid expres-
sion. The solver will then optimize a cost function defined
over the variables; the solution then corresponds to the op-
timal expression equivalent to the input. We implement
both the greedy strategy and the solver-based strategy and
compare them in Section 4.3.

Constraint Solving and Cost Function
We encode the problem of extracting the cheapest plan from
the E-Graph with integer linear programming (ILP). Fig-
ure 5 shows this encoding. For each operator in the graph,
we generate a boolean variable Bop; for each E-Class we
generate a variable Bc. For the root class, we use the vari-
able Br. Constraint F (op) states that if the solver selects
an operator, it must also select all its children; constraint
G(c) states that if the solver selects an E-Class, it must
select at least one of its members. Finally, we assert Br
must be selected, which constrains the extracted expression

1925

Constraints ≡ Br ∧
∧
op

F (op) ∧
∧
c

G(c)

F (op) ≡ Bop →
∧

c∈op.children

Bc

G(c) ≡ Bc →
∨

op∈c.nodes

Bop

minimize
∑
op

Bop · Cop s.t. Constraints

Figure 5: ILP constraint and objective for extraction.

S[X × Y] = min(S[X],S[Y])

S[X + Y] = min(1,S[X] + S[Y])

S[
∑
i

X] = min(1, |i| · S[X])

Figure 6: Sparsity estimation. We define sparsity = nnz/size,
i.e. a 0 matrix has sparsity 0.05. |i| is the size of the aggregated
dimension.

to be in the same E-Class as the unoptimized expression.
These three constraints together ensure the selected nodes
form a valid expression equivalent to the unoptimized in-
put. Satisfying these constraints, the solver now minimizes
the cost function given by the total cost of the selected oper-
ators. Because each Bop represents an operator node in the
E-Graph which can be shared by multiple parents, this en-
coding only assigns the cost once for every shared common
subexpression. In our implementation, we use Gurobi [14]
to solve the ILP problem.

Each operation usually has cost proportional to the out-
put size in terms of memory allocation and computation.
Since the size of a matrix is proportional to its the number
of non-zeroes (nnz), we use SystemML’s estimate of nnz as
the cost for each operation. Under our relational interpreta-
tion, this corresponds to the cardinality of relational queries.
We use the simple estimation scheme in Figure 6, which we
find to work well. We rely on SystemML’s estimation for
non-sum-product operators. Future work can hinge on the
vast literature on sparsity and cardinality estimation to im-
prove the cost model.

3.2 Schema and Sparsity as Class Invariant
In the rules REQ used by the saturation process, Rule (3)

If i 6∈ A, A ×
∑
iB =

∑
i(A × B) contains a condition on

attribute i which may be deeply nested in the expression.
This means the optimizer cannot find a match with a sim-
ple pattern match. Fortunately, all expressions in the same
class must contain the same set of free attributes (attributes
not bound by aggregates). In other words, the set of free
variables is invariant under equality. This corresponds pre-
cisely to the schema of a database - equivalent queries must
share the same schema. We therefore annotate each class
with its schema, and also enable each equation to match on
the schema.

In general, we find class invariants to be a powerful con-
struct for programming with E-Graphs. For each class we
track as class invariant if there is a constant scalar in the
class. As soon as all the children of an operator are found
to contain constants, we can fold the operator with the con-
stant it computes. This seamlessly integrates constant fold-

5Some may find this definition counter-intuitive; we define
it so to be consistent with SystemML.

ing with the rest of the rewrites. We also treat sparsity as
a class invariant and track it throughout equality satura-
tion. Because our sparsity estimation is conservative, equal
expressions that use different operators may have different
estimates. But as soon as we identify them as equal, we can
merge their sparsity estimates by picking the tighter one,
thereby improving our cost function. Finally, we also take
advantage of the schema invariant during constraint genera-
tion. Because we are only interested in RA expressions that
can be translated to LA, we only generate symbolic vari-
ables for classes that have no more than two attributes in
their schema. This prunes away a large number of invalid
candidates and helps the solver avoid wasting time on them.
We implement class invariants using egg’s Metadata API.

3.3 Translation, Fusion and Custom Functions
Since equality saturation can rewrite any expression given

a set of equations, we can directly perform the translation
between LA and RA within saturation, simply by adding
the translation rules RLR from Figure 1. Furthermore, sat-
uration has flexible support for custom functions. The sim-
plest option is to treat a custom functions as a black box, so
saturation can still optimize below and above them. With a
little more effort, we have the option to extend our equations
REQ to reason about custom functions, removing the opti-
mization barrier. We take this option for common operators
that are not part of the core RA semantics, e.g. square, mi-
nus and divide. In the best scenario, if the custom function
can be modeled by a combination of basic operators, we can
add a rule equating the two, and retain both versions in the
same graph for consideration. In fact, this last option en-
ables us to encode fused operators and seamlessly integrate
fusion with other rewrite rules. As a result, the compiler no
longer need to struggle with ordering fusion and rewrites,
because saturation simultaneously considers all possible or-
dering. We note that although supporting custom functions
require additional rules in SPORES, these rules are all iden-
tities, and they are much simpler than the heuristics rules in
SystemML which need to specify when to fire a rule and how
each rule interacts with another. Finally, although Sys-
temML does not directly expose “physical” operators, e.g.
different matrix multiplication algorithms, SPORES read-
ily supports optimization of physical plans. For example,
we could use two distinct operators for two matrix multi-
plication algorithms, and both would always appear in the
same E-Class. Both operators would share the same child
E-Classes, therefore the additional operator only adds one
node for every class that contains a matrix multiply.

3.4 Saturation v.s. Heuristics
Using equality saturation, SPORES elegantly remedies

the drawbacks of heuristics mentioned in the beginning of
section 3. First, when two or more conflicting rewrites ap-
ply, they would be added to the same E-Class, and the ex-
traction step will pick the more effective one based on the
global cost estimate. Second, there is no need to carefully
order rewrites, because saturation simultaneously considers
all possible orders. For example, when rules R1 and R2

can rewrite expression e to either R1(R2(e)) or R2(R1(e)),
one iteration of saturation would add R1(e) and R2(e) to the
graph, and another iteration would add both R1(R2(e)) and
R2(R1(e)) to the same E-Class. Third, rules do not need to
reason about their dependency on input or program proper-

1926

ties, because extraction uses a global cost model that holis-
tically incorporates factors like input sparsity and common
subexpressions. Finally, every rule application in saturation
applies one step of rewrite on top of those already applied,
naturally composing complex rewrites out of simple ones.

3.5 Integration within SystemML
We integrate SPORES into SystemML to leverage its com-

piler infrastructure. SPORES plugs into the algebraic rewrite
pass in SystemML; it takes in a DAG of linear algebra oper-
ations, and outputs the optimized DAG. Within SPORES,
it first translates the LA DAG into relational algebra, per-
forms equality saturation, and finally translates the optimal
expression back into LA. We obtain matrix characteristics
such as dimensions and sparsity estimation from SystemML.
Since we did not focus our efforts in supporting various op-
erators and data types unrelated to linear algebra computa-
tion (e.g. string manipulation), we only invoke SPORES on
important LA expressions from the inner loops of the input
program.

4. EVALUATION
We evaluate SPORES to answer three research questions

about our approach of relational equality saturation:

• Section 4.1: can SPORES derive hand-coded rewrite
rules for sum-product optimization?

• Section 4.2: can SPORES find optimizations that
lead to greater performance improvement than hand-
coded rewrites and heuristics?

• Section 4.3: does SPORES induce compilation over-
head afforded by its performance gain?

We ran experiments on a single node with Intel E74890 v2
@ 2.80GHz with hyper-threading, 1008 GB RAM, 1 Nvidia
P100 GPU, 8TB disk, and Ubuntu 16.04.6. We used Open-
JDK 1.8.0, Apache Hadoop 2.7.3, and Apache Spark 2.4.4.
Spark was configured to run locally with 6 executors, 8
cores/executor, 50GB driver memory, and 100GB executor
memory. Our baselines are from Apache SystemML 1.2.0
and TensorFlow r2.1. We compile all TensorFlow functions
with XLA through tf.function, and enable GPU.

4.1 Completeness of Relational Rules
Theoretically, our first hypothesis is validated by the fact

that our relational equality rules are complete w.r.t. linear
algebra semantics. To test completeness in practice6, our
first set of experiments check if SPORES can derive the
hand-coded sum product rewrite rules in SystemML. To do
this, we input the left hand side of each rule into SPORES,
perform equality saturation, then check if the rule’s right
hand side is present in the saturated graph. The optimizer is
able to derive all 84 sum-product rewrite rules in SystemML
using relational equality rules. Refer to the long version
of this paper [43] for a list of these rewrites. We believe
replacing the 84 ad-hoc rules with our translation rules RLR
and equality rules REQ would greatly simplify SystemML’s
codebase. Together with equality saturation, our relational
rules can also lead to better performance, as we demonstrate
in the next set of experiments.

6“I have only proved it correct, not tried it” – Donald Knuth

A-A A-N G-F G-M M-F M-M P-A P-N S-F S-M
Program-Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
/ T

ot
al

 T
im

e

mmul + * sum other

Figure 7: Run-time profile of benchmark programs.

4.2 Run Time Measurement
We compare SPORES against SystemML’s native opti-

mizations for their performance impact. As baseline, we
run SystemML with optimization level 2 (opt2), which is its
default and includes all advanced rewrites like constant fold-
ing and common subexpression elimination. We additionally
enable SystemML’s native sum-product rewrites and opera-
tor fusion. When using SPORES, we disable SystemML’s
native sum-product rewrites, which means disabling the 84
rules discussed in Section 4.1. We compile and execute 5
real-world algorithms including Generalized Linear Model
(GLM), Multinomial Logistic Regression (MLR), Support
Vector Machine (SVM), Poisson Nonnegative Matrix Fac-
torization (PNMF), and Alternating Least Square Factoriza-
tion (ALS). We configure GLM and MLR to learn a probit
model as a binary classifier. We take the implementation
of these algorithms from SystemML’s performance bench-
mark suite [39]. All algorithms were used as benchmarks in
previous optimization research [9] [4]. We use the same in-
put datasets from [4], specifically the Amazon books review
dataset (Amazon/A) [15], the Airline on-time performance
dataset (Flights/F) [1], the Netflix movie rating dataset
(Netflix/N) [22], and the MNIST8M dataset (MNIST/M)
[5]. In order to fit the computation in memory, we down
sample each dataset to obtain inputs of small, medium and
large sizes. For the Amazon and Netflix data, AS/NS con-
tian 25k reviews, AM/NM 50k, and AL/NL 100k. We con-
vert the data to a review matrix, where columns are items
and rows are customers, then use it as input to ALS and
PNMF. For the Flights and MNIST datasets, FS/MS con-
tain 2.5M rows, FM/MM 5M, and FL/ML 10M. We use
these datasets as input to GLM / MLR / SVM. Each algo-
rithm learns if a flight is delayed more than 5 hours, or if
an image shows the digit 2. In TensorFlow experiments we
generate random inputs that match the size of the interme-
diate data in the corresponding benchmark. Our approach
focuses on optimizing sum-product operations with the as-
sumption that these operations take up the majority of run
time in machine learning programs. We test this assump-
tion by profiling our benchmark programs on the largest
version of each dataset. Figure 7 shows that for each pro-
gram on each input dataset, sum-product operations includ-
ing matrix multiply, addition, point-wise multiply and sum-
mation together take up the great majority of run time (from
77.4% to 98.9%). For other heavy-hitting operations, we im-
plement standard rewrite rules as discussed in Section 3.3.
Figure 8 shows the program run time under SPORES op-
timization against SystemML’s optimization. SPORES is
competitive with the hand-coded rules in SystemML: for

1927

NS NM NL AS AM AL
100

101

102

103

Ru
n

Ti
m

e
[s

ec
]

ALS

NS NM NL AS AM AL

PNFM

MS MM ML FS FM FL

L2SVM

MS MM ML FS FM FL
100

101

102

103

Ru
n

Ti
m

e
[s

ec
]

MLR

MS MM ML FS FM FL
Dataset

GLM

SystemML
SPORES

Figure 8: Run time under SystemML/SPORES compilation.

GLM and SVM, SPORES discovers the same optimizations
as SystemML does. For ALS, MLR and PNMF, SPORES
found new optimizations that lead to up to 10X speedup.
We next analyze each benchmark in detail.

For ALS, SPORES leads to up to 10X speedup beyond
SystemML’s optimizations using our relational rules. Inves-
tigating the optimized code reveals the speedup comes from
a rather simple optimization: SPORES expands (UV T −
X)V to UV TV −XV to exploit the sparsity in X. Before the
optimization, all three operations (2 matrix multiply and 1
minus) in the expression create dense intermediates because
U and V are dense. After the optimization, XV can be com-
puted efficiently thanks to the sparsity in X. UV TV can be
computed in one go without intermediates, taking advantage
of SystemML’s mmchain operator for matrix multiply chains.
Although the optimization is straightforward, it is counter-
intuitive because one expects computing A(B + C) is more
efficient than AB + AC if one does not consider sparsity.
For the same reason, SystemML simply does not consider
distributing the multiplication and misses the optimization.

For PNMF, the speedup of up to 3.5X using RA rules at-
tributes to rewriting sum(WH) to sumcol(W) · sumrow(H)
which avoids materializing a dense intermediate WH. In-
terestingly, SystemML includes this rewrite rule but did not
apply it during optimization. In fact, SystemML only ap-
plies the rule when WH does not appear elsewhere, in order
to preserve common subexpression. However, although WH
is shared by another expression in PNMF, the other expres-
sion can also be optimized away by another rule. Because
both rules uses heuristics to favor sharing CSE, neither fires.
This precisely demonstrates the limitation of heuristics.

For MLR, SPORES leads to up to 1.3X speedup. The
important optimization7 is P ∗ X − P ∗ sumrow(P) ∗ X to
P ∗(1−P)∗X, where P is a column vector. This takes advan-
tage of the sprop fused operator in SystemML to compute
P ∗(1−P), therefore allocating only one intermediate. Note
that the optimization factors out P , which is the exact op-
posite to the optimization in ALS that distributes multiply.
Naive rewrite rules would have to choose between the two
directions, or resort to heuristics to break ties.

In summary, SPORES improves performance consistently
for ALS, PNMF and MLR across different data sizes. The
impact of sparsity on performance can be gleaned from the

7Simplified here for presentation. In the source code P and
X are not variables but consist of subexpressions.

S M L
10−1

100

101

102

R
u

n
T

im
e

[s
ec

]

(UV T −X)V

S M L

Dataset

sum(WH)

S M L

P ∗ (1− P) ∗X
before

after

Figure 9: Run time before- and after-rewrite in TensorFlow.

A G S M P
0

1

2

Co
m

pi
le

 T
im

e
[s

ec
]

DFS+greedy

A G S M P

sample+greedy

A G S M P

sample+ILP

A G S M P

SystemML
trans.
sat.
extr.
SysML

Program
Figure 10: Compile time breakdown for different saturation and
extraction strategies. Depth-first saturation reaches the 2.5s timeout
compiling GLM and SVM.

particular optimizations: ALS optimization takes advantage
of sparsity, while PNMF and MLR optimizations apply for
either dense or sparse inputs.

For SVM and GLM, equality saturation finds the same
optimizations as SystemML does, leading to speedup mainly
due to operator fusion. Upon inspection, we could not iden-
tify better optimizations for SVM. For GLM, however, we
discovered a manual optimization that should improve per-
formance in theory, but did not have an effect in practice
since SystemML cannot accurately estimate sparsity to in-
form execution.

Comparison Against TensorFlow
We ran additional experiments in TensorFlow to see if it
can also benefit from SPORES’s optimizations. For each of
the 3 rewrites we discussed in Section 4.2, we coded the ex-
pressions before- and after-rewrite in TensorFlow. Then we
compile each version with TensorFlow XLA and measure its
run time. Figure 9 shows up to 90X and 50X speedup from
the rewrites taken from ALS ((UV T − X)V) and PNMF
(sum(WH)) respectively. Upon inspection of the compiled
code, we found XLA performs no optimization on the input
expressions, likely due to certain heuristics preferring the un-
optimized versions. For MLR (P ∗(1−P)∗X), XLA compiles
the before- and after-rewrite expressions to the same code,
so the run time stays the same. We were unable to compile
our full benchmarks with XLA because the latter cannot
compile certain operations on sparse matrices. When this
improves, we expect to see SPORES bring its full potential
to TensorFlow.

4.3 Compilation Overhead
In our initial experiments, SPORES induces nontrivial

compilation overhead compared to SystemML’s native rule-
based rewrites. Figure 10 (sampling, ILP extraction) shows
the compile time breakdown for each benchmark, and the
majority of time is spent in the ILP solver. We therefore ex-
periment with the greedy algorithm described in Section 3.1
to see if we can trade off guarantees of optimality for a
shorter compile time. Figure 11 shows the performance im-
pact of greedy extraction, and Figure 10 (sampling, greedy

1928

ALS GLM SVM MLR PNMF
100

101

102

103

Ru
n

Ti
m

e
[s

ec
]

SystemML
D+greedy
S+ILP
S+greedy

Figure 11: Performance impact of different saturation and extrac-
tion strategies. S is saturation with sampling, and D is depth-first
saturation. Depth-first saturation runs into timeout compiling GLM
and SVM.

extraction) shows the compile time with it. Greedy extrac-
tion significantly reduces compile time without sacrificing
any performance gain! This is not surprising in light of
the optimizations we discussed in Section 4.2: all of these
optimizations improve performance regardless of common
subexpressions, so they are selected by both the ILP-based
and the greedy extractor.

We also compare saturation with sampling against depth-
first saturation in terms of performance impact and compile
time. Recall the depth-first saturation strategy applies all
matches per rule per iteration. As Figure 10 shows, sampling
is slightly slower for ALS, MLR and PNMF, but resolves the
timeout for GLM and SVM. This is because sampling takes
longer to converge when full saturation is possible, and oth-
erwise prevents the graph from blowing up before reaching
the iteration limit. Indeed, saturation converges for ALS,
MLR and PNMF, which means SPORES can guarantee the
optimality of its result under the given cost model. Sat-
uration does not not converge before reaching the iteration
limit for GLM and SVM because of deeply nested ∗ and + in
the programs. Convergence may come as a surprise despite
E-Graph’s compaction – expansive rules like associativity
and commutativity commonly apply in practice. However,
the expression DAGs we encounter are often small (no more
than 15 operators), and large DAGs are cut into small pieces
by optimization barriers like uninterpreted functions.

Figure 10 compares the overall DAG compilation over-
head of SystemML against SPORES with different extrac-
tion strategies. Note that the overhead of SystemML also in-
cludes optimizations unrelated to sum-product rewrites that
are difficult to disentangle, therefore it only gives a sense
of the base compilation time and does not serve as head-
to-head comparison against SPORES. Although SPORES
induces significant compilation overhead in light of the to-
tal DAG compilation time of SystemML, the overhead is
afforded by its performance gain. As we did not focus our
efforts on reducing compile time, we believe there is plenty
room for improvement, for example organizing rewrite rules
to speed up saturation.

4.4 Numerical Considerations
Although our rewrite rules preserve semantics for the re-

als, they do not preserve semantics under floating point
arithmetics. We therefore run experiments to see if SPORES
sacrifices numerical accuracy. For L2SVM, we compare the
accuracy of the trained model under SPORES / SystemML
optimization; for MLR and GLM we compare the R2 value;
PNMF and ALS terminate after some loss falls below a
threshold, therefore we compare the number of iterations

Table 3: Numerical characteristics of compiled programs.

Optimizer SysML SPORES SysML SPORES

Dataset Airline MNIST
SVM (acc.) 82.4% 82.4% 96.8% 96.8%
MLR (R2) 0.773 0.773 0.742 0.742
GLM (R2) 0.618 0.618 0.671 0.671

Dataset Netflix Amazon
PNMF (iter.) 18 18 36 36
ALS (iter.) 8 8 9 9

until termination. Table 3 shows all these statistics are iden-
tical under SPORES / SystemML optimzation. Although
SPORES does not optimize for numerical accuracy, equality
saturation was used by Herbie [33] for that exact purpose.
We are actively collaborating with Herbie’s authors to de-
velop a multi-objective optimizer for accuracy and run time.

5. RELATED WORK
There is a vast body of literature for both relational query

optimization and optimizing compilers for machine learning.
Since we optimize machine learning programs through a re-
lational lens, our work relates to research in both fields.
As we have pointed out, numerous state-of-the-art opti-
mizing compilers for machine learning resort to syntactic
rewrites and heuristics to optimize linear algebra expres-
sions [3] [38] [16]. We distinguish our work which performs
optimization based on a relational semantics of linear alge-
bra and holistically explore the complex search space. A
majority of relational query optimization focus on join or-
der optimization [11] [29] [30] [35]; we distinguish our work
which optimizes programs with join (product), union (ad-
dition), and aggregate (sum) operations. Sum-product op-
timization considers operators other than join while opti-
mizing relational queries. Recent years have seen a line of
excellent theoretical and practical research in this area [25]
[20]. These work gives significant improvement for queries
involving× and

∑
, but fall short of LA workloads that occur

in practice. We step past these frameworks by incorporating
common subexpressions and incorporating addition (+).

In terms of approach, our design of relational IR ties in to
research that explores the connection between linear algebra
and relational algebra. Our design and implementation of
the optimizer ties into research that leverage equality satura-
tion and and-or dags for query optimization and compiler
optimization for programming languages. Since we focus on
optimizing sum-product expressions in linear algebra, our
work naturally relates to research in sum-product optimiza-
tion. We now discuss these three lines of research in detail.

5.1 Relational Algebra and Linear Algebra
Elgamal et al. [9] envisions spoof, a compiler for machine

learning programs that leverages relational query optimiza-
tion techniques for LA sum-product optimization. We re-
alize this vision by providing the translation rules from LA
to RA and the relational equality rules that completely rep-
resents the search space for sum-product expressions. One
important distinction is, Elgamal et al. proposes restricted
relational algebra where every expression must have at most
two free attributes. This ensures every relational expression
in every step of the optimization process to be expressible in
LA. In contrast, we remove this restriction and only require
the optimized output to be in linear algebra. This allows us
to trek out to spaces not covered by linear algebra equality

1929

rules and achieve completeness. In addition to sum-product
expressions, Elgamal et al. also considers selection and pro-
jection operations like selecting the positive entries of a ma-
trix. We plan to explore supporting selection and projection
in the future. Elgamal et al. also proposes compile-time gen-
eration of fused operators, which is implemented by Boehm
et al. [4]. SPORES readily takes advantage of existing fused
operators, and we plan to explore combining sum-product
rewrite with fusion generation in the future.

MorpheusFI by Li et al. [28] and LARA by Hutchison
et al. [17] explore optimizations across the interface of ma-
chine learning and database systems. In particular, Mor-
pheusFI speeds up machine learning algorithms over large
joins by pushing computation into each joined table, thereby
avoiding expensive materialization. LARA implements lin-
ear algebra operations with relational operations and shows
competitive optimizations alongside popular data processing
systems. Schleich et al.[34] and Khamis et al.[24] explore in-
database learning, which aims to push entire machine learn-
ing algorithms into the database system. We contribute in
this space by showing that even without a relational engine,
the relational abstraction can still benefit machine learn-
ing tasks as a powerful intermediate abstraction. Kotlyar
et.al. [27] explore compiling sparse linear algebra via a rela-
tional abstraction. We contribute by providing a simple set
of rewrite rules and prove them complete.

5.2 Equality Saturation and AND-OR DAGs
Equality saturation and and-or dags have been applied

to optimize low-level assembly code [21], Java programs [40],
database queries [11], floating point arithmetics [33], and
even computer-aided design models [31]. The design of our
relational IR brings unique challenges in adopting equality
saturation. Compared to database query optimizers that fo-
cus on optimizing join orders, unions and aggregates play a
central role in our relational IR and are prevalent in real-
world programs. As a result, our equality rules depend on
the expression schema which is not immediately accessible
from the syntax. We propose class invariants as a solution
to access schema information, and show it to be a powerful
construct that enables constant folding and improves cost
estimation. Compared to optimizers for low-level assem-
bly code or Java program, we commonly encounter linear
algebra expressions that trigger expansive rules and make
saturation convergence impractical. We propose to sample
rewrite matches in order to achieve good exploration with-
out full saturation. Equality saturation takes advantage
of constraint solvers which have also been applied to pro-
gram optimization and query optimization. In particular,
the use of solvers for satisfiability modulo theories by [36]
has spawned a paradigm now known as program synthesis.
In query optimization research, [41] applies Mixed Integer
Linear Programming for optimizing join ordering. Although
constraint solvers offer pleasing guarantees of optimality, our
experiments show their overhead does not bring significant
gains for optimizing LA expressions.

5.3 Low-level Code Generation
Novel machine learning compilers including TACO [26],

TVM [7], TensorComprehension [42] and Tiramisu [2] gen-
erate efficient low-level code for kernel operators. These
kernels are small expressions that consist of a few opera-

tors. For example the MATTRANSMUL kernel in TACO
implements αATx+ βz. The kernels are of interest because
they commonly appear in machine learning programs, and
generating efficient low-level implementation for them can
greatly impact performance. However, these compilers can-
not perform algebraic rewrite on large programs as SPORES
does. For example, TACO supports only plus, multiply and
aggregate, whereas SPORES supports any custom functions
as discussed in Section 3.3; Tiramisu requires tens of lines of
code just to specify matrix multiply which is a single opera-
tor in SPORES. Furthermore, the basic polyhedral model
in Tiramisu and TensorComprehension does not support
sparse matrices. Sparse extensions exist, but require the
user to make subtle tradeoffs between expressivity and per-
formance [37]. At a high level, we view these kernel com-
pilers as complementary to SPORES. The former can pro-
vide efficient kernel implementation just like the fused oper-
ators in SystemML, and we can easily include these kernels
in SPORES for whole-program rewrite. The TASO com-
piler [19] combines kernel-level rewrite with whole-program
rewrite, and is also driven by a set of equality rules like
SPORES. However, it induces significant overhead – gener-
ating operator graphs with just up to 4 operators takes 5
minutes, and while [19] does not include detailed time for
compiling whole programs, it reports the compilation fin-
ishes in “less than ten minutes”. In contrast, SPORES takes
seconds instead of minutes in compilation.

6. LIMITATIONS AND FUTURE WORK
We intend SPORES to be used to optimize machine learn-

ing programs that perform linear algebra operations. As
such, SPORES is not a linear algebra solver, and operations
like matrix inversion and calculating eigenvalues are out of
scope. SPORES does not include a matrix decomposition
operator, but the programmer can implement decomposi-
tion algorithms like our ALS and PNMF benchmarks. The
operations we support already cover a variety of algorithms
as we show in the evaluation. Similar scope is shared by
existing research [4] [9] [26]. Although SPORES does not
focus on deep learning, its design can be adapted to op-
timize deep models. We are experimenting to incorporate
the identity rules from TASO into our framework. It would
be challenging to extend the completeness theorem to the
complex operators used in deep learning, but we expect our
extension of equality saturation can find high-impact op-
timizations with short compile time. Finally, although our
rewrite rules are complete, we had to resort to rule sampling
and greedy extraction to cut down the overhead. Future
work can investigate more intelligent rule application and
extraction strategies. For example, the optimizer can learn
which rules more likely lead to performance improvement
and prioritizes firing those rules. Another direction is to in-
corporate plus into theoretical sum-product frameworks like
FAQ [25] and guarantee optimality.

Acknowledgement
We would like to thank Alexandre Evfimievski, Matthias
Boehm, and Berthold Reinwald for their insights in Sys-
temML internals; Zachary Tatlock, Max Willsey and Chan-
drakana Nandi for their valuable feedback. This work is
funded by NSF #1954222 and #1907997.

1930

7. REFERENCES
[1] A. S. A. (ASA). Airline on-time performance dataset.

stat-computing.org/dataexpo/2009/the-data.html.

[2] R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo,
A. Akkas, Y. Zhang, P. Suriana, S. Kamil, and S. P.
Amarasinghe. Tiramisu: A polyhedral compiler for
expressing fast and portable code. In M. T. Kandemir,
A. Jimborean, and T. Moseley, editors, IEEE/ACM
International Symposium on Code Generation and
Optimization, CGO 2019, Washington, DC, USA,
February 16-20, 2019, pages 193–205. IEEE, 2019.

[3] M. Boehm. Apache systemml. In S. Sakr and A. Y.
Zomaya, editors, Encyclopedia of Big Data
Technologies. Springer, 2019.

[4] M. Boehm, B. Reinwald, D. Hutchison, P. Sen, A. V.
Evfimievski, and N. Pansare. On optimizing operator
fusion plans for large-scale machine learning in
systemml. PVLDB, 11(12):1755–1768, 2018.

[5] L. Bottou. The infinite mnist dataset.
leon.bottou.org/projects/infimnist.

[6] S. Chaudhuri and M. Y. Vardi. Optimization of Real
conjunctive queries. In Proceedings of the Twelfth
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, May 25-28, 1993,
Washington, DC, USA, pages 59–70, 1993.

[7] T. Chen, L. Zheng, E. Q. Yan, Z. Jiang, T. Moreau,
L. Ceze, C. Guestrin, and A. Krishnamurthy. Learning
to optimize tensor programs. In S. Bengio, H. M.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural
Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada, pages 3393–3404, 2018.

[8] S. Cohen, Y. Sagiv, and W. Nutt. Equivalences among
aggregate queries with negation. ACM Trans.
Comput. Log., 6(2):328–360, 2005.

[9] T. Elgamal, S. Luo, M. Boehm, A. V. Evfimievski,
S. Tatikonda, B. Reinwald, and P. Sen. SPOOF:
Sum-Product Optimization and Operator Fusion for
Large-Scale Machine Learning. In CIDR, 2017.

[10] C. Forgy. Rete: A fast algorithm for the many
patterns/many objects match problem. Artif. Intell.,
19(1):17–37, 1982.

[11] G. Graefe. The Cascades Framework for Query
Optimization. IEEE Data Eng. Bull., 18(3), 1995.

[12] T. J. Green. Containment of conjunctive queries on
annotated relations. In Database Theory - ICDT 2009,
12th International Conference, St. Petersburg, Russia,
March 23-25, 2009, Proceedings, pages 296–309, 2009.

[13] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In L. Libkin, editor,
Proceedings of the Twenty-Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 11-13, 2007, Beijing,
China, pages 31–40. ACM, 2007.

[14] L. Gurobi Optimization. Gurobi optimizer reference
manual, 2019.

[15] R. He and J. J. McAuley. Ups and downs: Modeling
the visual evolution of fashion trends with one-class
collaborative filtering. In J. Bourdeau, J. Hendler,
R. Nkambou, I. Horrocks, and B. Y. Zhao, editors,

Proceedings of the 25th International Conference on
World Wide Web, WWW 2016, Montreal, Canada,
April 11 - 15, 2016, pages 507–517. ACM, 2016.

[16] B. Huang, S. Babu, and J. Yang. Cumulon: optimizing
statistical data analysis in the cloud. In K. A. Ross,
D. Srivastava, and D. Papadias, editors, Proceedings of
the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013, pages 1–12. ACM, 2013.

[17] D. Hutchison, B. Howe, and D. Suciu. Laradb: A
minimalist kernel for linear and relational algebra
computation. CoRR, abs/1703.07342, 2017.

[18] Y. E. Ioannidis and R. Ramakrishnan. Containment of
conjunctive queries: Beyond relations as sets. ACM
Trans. Database Syst., 20(3):288–324, 1995.

[19] Z. Jia, O. Padon, J. J. Thomas, T. Warszawski,
M. Zaharia, and A. Aiken. TASO: optimizing deep
learning computation with automatic generation of
graph substitutions. In T. Brecht and C. Williamson,
editors, Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP 2019, Huntsville,
ON, Canada, October 27-30, 2019, pages 47–62.
ACM, 2019.

[20] M. R. Joglekar, R. Puttagunta, and C. Ré. Ajar:
Aggregations and joins over annotated relations. In
PODS. ACM, 2016.

[21] R. Joshi, G. Nelson, and K. H. Randall. Denali: A
goal-directed superoptimizer. In J. Knoop and L. J.
Hendren, editors, Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Berlin, Germany,
June 17-19, 2002, pages 304–314. ACM, 2002.

[22] Kaggle. Netflix prize data.
kaggle.com/netflix-inc/netflix-prize-data.

[23] D. Kernert, F. Köhler, and W. Lehner. Spmacho -
optimizing sparse linear algebra expressions with
probabilistic density estimation. In G. Alonso,
F. Geerts, L. Popa, P. Barceló, J. Teubner, M. Ugarte,
J. V. den Bussche, and J. Paredaens, editors,
Proceedings of the 18th International Conference on
Extending Database Technology, EDBT 2015,
Brussels, Belgium, March 23-27, 2015, pages 289–300.
OpenProceedings.org, 2015.

[24] M. A. Khamis, H. Q. Ngo, X. Nguyen, D. Olteanu,
and M. Schleich. In-database learning with sparse
tensors. CoRR, abs/1703.04780, 2017.

[25] M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ:
Questions Asked Frequently. In PODS. ACM, 2016.

[26] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. P.
Amarasinghe. The tensor algebra compiler. Proc.
ACM Program. Lang., 1(OOPSLA):77:1–77:29, 2017.

[27] V. Kotlyar, K. Pingali, and P. Stodghill. A relational
approach to the compilation of sparse matrix
programs. In C. Lengauer, M. Griebl, and S. Gorlatch,
editors, Euro-Par ’97 Parallel Processing, Third
International Euro-Par Conference, Passau,
Germany, August 26-29, 1997, Proceedings, volume
1300 of Lecture Notes in Computer Science, pages
318–327. Springer, 1997.

[28] S. Li, L. Chen, and A. Kumar. Enabling and
optimizing non-linear feature interactions in factorized
linear algebra. In P. A. Boncz, S. Manegold,

1931

stat-computing.org/dataexpo/2009/the-data.html
leon.bottou.org/ projects/infimnist
kaggle.com/netflix-inc/ netflix-prize-data

A. Ailamaki, A. Deshpande, and T. Kraska, editors,
Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019,
Amsterdam, The Netherlands, June 30 - July 5, 2019,
pages 1571–1588. ACM, 2019.

[29] G. Moerkotte and T. Neumann. Analysis of Two
Existing and One New Dynamic Programming
Algorithm for the Generation of Optimal Bushy Join
Trees without Cross Products. In VLDB, 2006.

[30] G. Moerkotte and T. Neumann. Dynamic
Programming Strikes Back. In SIGMOD, 2008.

[31] C. Nandi, A. Anderson, M. Willsey, J. R. Wilcox,
E. Darulova, D. Grossman, and Z. Tatlock. Using
e-graphs for CAD parameter inference. CoRR,
abs/1909.12252, 2019.

[32] C. G. Nelson. Techniques for Program Verification.
PhD thesis, Stanford University, Stanford, CA, USA,
1980. AAI8011683.

[33] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and
Z. Tatlock. Automatically improving accuracy for
floating point expressions. In D. Grove and
S. Blackburn, editors, Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, Portland, OR, USA,
June 15-17, 2015, pages 1–11. ACM, 2015.

[34] M. Schleich, D. Olteanu, and R. Ciucanu. Learning
linear regression models over factorized joins. In
F. Özcan, G. Koutrika, and S. Madden, editors,
Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages
3–18. ACM, 2016.

[35] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In
Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, pages 23–34.
ACM, 1979.

[36] A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia,
and V. A. Saraswat. Combinatorial sketching for finite
programs. In J. P. Shen and M. Martonosi, editors,

Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2006, San Jose, CA,
USA, October 21-25, 2006, pages 404–415. ACM,
2006.

[37] M. M. Strout, M. W. Hall, and C. Olschanowsky. The
sparse polyhedral framework: Composing
compiler-generated inspector-executor code.
Proceedings of the IEEE, 106(11):1921–1934, 2018.

[38] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf,
H. Chafi, M. Wu, A. R. Atreya, M. Odersky, and
K. Olukotun. Optiml: An implicitly parallel
domain-specific language for machine learning. In
L. Getoor and T. Scheffer, editors, Proceedings of the
28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 -
July 2, 2011, pages 609–616. Omnipress, 2011.

[39] SystemML. Systemml performance tests.
https://github.com/apache/systemml/tree/

master/scripts/perftest.

[40] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality
saturation: A new approach to optimization. Logical
Methods in Computer Science, 7(1), 2011.

[41] I. Trummer and C. Koch. Solving the join ordering
problem via mixed integer linear programming. In
S. Salihoglu, W. Zhou, R. Chirkova, J. Yang, and
D. Suciu, editors, Proceedings of the 2017 ACM
International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May
14-19, 2017, pages 1025–1040. ACM, 2017.

[42] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal,
Z. DeVito, W. S. Moses, S. Verdoolaege, A. Adams,
and A. Cohen. Tensor comprehensions:
Framework-agnostic high-performance machine
learning abstractions. CoRR, abs/1802.04730, 2018.

[43] Y. R. Wang, S. Hutchison, J. Leang, B. Howe, and
D. Suciu. SPORES: sum-product optimization via
relational equality saturation for large scale linear
algebra. CoRR, abs/2002.07951, 2020.

[44] M. Willsey, Y. R. Wang, O. Flatt, C. Nandi,
P. Panchekha, and Z. Tatlock. egg: Easy, efficient, and
extensible e-graphs, 2020.

1932

https://github.com/apache/systemml/tree/master/scripts/perftest
https://github.com/apache/systemml/tree/master/scripts/perftest

	Introduction
	Representing the Search Space
	Rules R_LR: from LA to RA and Back
	Rules R_EQ : from RA to RA
	 Completeness of the Optimization Rules

	Exploring the Search Space
	Equality Saturation
	Schema and Sparsity as Class Invariant
	Translation, Fusion and Custom Functions
	Saturation v.s. Heuristics
	Integration within SystemML

	Evaluation
	Completeness of Relational Rules
	Run Time Measurement
	Compilation Overhead
	Numerical Considerations

	Related Work
	Relational Algebra and Linear Algebra
	Equality Saturation and AND-OR DAGs
	Low-level Code Generation

	Limitations and Future Work
	References

