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ABSTRACT
Detecting the semantic types of data columns in relational
tables is important for various data preparation and infor-
mation retrieval tasks such as data cleaning, schema match-
ing, data discovery, and semantic search. However, existing
detection approaches either perform poorly with dirty data,
support only a limited number of semantic types, fail to
incorporate the table context of columns or rely on large
sample sizes for training data. We introduce Sato, a hy-
brid machine learning model to automatically detect the
semantic types of columns in tables, exploiting the signals
from the table context as well as the column values. Sato
combines a deep learning model trained on a large-scale ta-
ble corpus with topic modeling and structured prediction
to achieve support-weighted and macro average F1 scores
of 0.925 and 0.735, respectively, exceeding the state-of-the-
art performance by a significant margin. We extensively
analyze the overall and per-type performance of Sato, dis-
cussing how individual modeling components, as well as fea-
ture categories, contribute to its performance.
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1. INTRODUCTION
Many data preparation and information retrieval tasks in-

cluding data cleaning, integration, discovery and search rely
on the ability to accurately detect data column types. Au-
tomated data cleaning uses transformation and validation
rules that depend on data types [23, 39]. Schema match-
ing for data integration leverages data types to find corre-
spondences between data columns across tables [38]. Sim-
ilarly, data discovery benefits from detecting the types of
data columns in order to return semantically relevant re-
sults for user queries [9, 10]. Discerning the semantics of
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table values helps aggregate information from multiple tab-
ular data sources. Search engines also rely on the detection
of semantically relevant column names to extend support to
tables [48].

We can consider two categories of types for table columns:
atomic and semantic. Atomic types like boolean, integer,
and string provide basic, low-level type information about
a column. On the other hand, semantic types like location,
birthDate, and name, convey finer-grained, richer informa-
tion about column values. Detecting semantic types can be
a powerful tool, and in many cases may be essential for en-
hancing the effectiveness of data preparation and analysis
systems. In fact, commercial systems such as Google Data
Studio [17], Microsoft Power BI [32], Tableau [44], and Tri-
facta [46] attempt to detect semantic types, typically using
a combination of regular expression matching and dictio-
nary lookup. While reliable for detecting atomic types and
simple, well-structured semantic types such as credit card
numbers or e-mail addresses, these rule-based approaches
are not robust enough to process dirty or missing data, sup-
port only a limited variety of types, and fall short for types
without strict validations. However, many tables found in
legacy enterprise databases and on the Web have column
names that are either unhelpful (cryptic, abbreviated, mal-
formed, etc.) or missing altogether.

In response, recent work [22] introduced Sherlock, a deep
learning model for semantic type detection trained on mas-
sive table corpora [21]. Sherlock formulates semantic type
detection as a multi-class classification problem where classes
correspond to semantic types. It leverages more than 600K
columns from real-world tables for learning with a multi-
input feed-forward deep neural network, providing state-of-
the-art results.

While Sherlock represents a significant leap in applying
deep learning to semantic typing, it suffers from two prob-
lems. First, it under-performs for types that do not have
a sufficiently large number of samples in the training data.
Although this is a known issue for deep learning models, it
nevertheless restricts Sherlock’s application to underrepre-
sented types, which form a long tail of data types appearing
in tables at large. Second, Sherlock uses only the values of
a column to predict its type, without considering the col-
umn’s context in the table. Predicting the semantic type of
a column based solely on the column values, however, is an
under-determined problem in many cases.

Consider the example in Figure 1: for a column that con-
tains ‘Florence,’ ‘Warsaw,’ ‘London,’ and ‘Braunschweig’ as
values, location, city, or birthPlace could all be reason-
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Figure 1: Two actual tables with unknown column types (Table A and Table B) from the VizNet corpora. The last column
of Table A and the first column of Table B have identical values: ‘Florence,’ ‘Warsaw,’ ‘London,’ and ‘Braunschweig.’ However
powerful, a prediction model based solely on column values (i.e., single-column prediction) cannot resolve the ambiguity to
infer the correct semantic types, birthplace and city. Sato incorporates signals from table context and performs a multi-
column type prediction to help effectively resolve ambiguities like these and improve the accuracy of semantic type predictions.

able semantic types for the column. It can be hard to resolve
such ambiguities using only column values because the se-
mantic types also depend on the context of the table. Con-
tinuing with the example, it is highly likely that the col-
umn’s type would be birthPlace if it came from Table A
since the table contains biographical information about in-
fluential personalities. However, the same column in Table
B would be more likely to have the type city, as the table’s
other columns present information about European cities.

In this paper, we introduce Sato (SemAntic Type detec-
tion with table cOntext), a hybrid machine learning model
that incorporates table contexts for semantic type predic-
tion. Sato combines topic modeling [4] and structured
learning [25] together with single-column type prediction
based on the Sherlock model. Similar to earlier work [22], we
consider 78 common semantic types and use the WebTables
dataset from the VizNet corpus [21] to train our model.

We summarize our main contributions below:

1. Sato significantly outperforms the state-of-the-art in
semantic type prediction, increasing the macro and
support-weighted F1 scores by as much as 14.4% and
5.3%, respectively. Through a comparative analysis,
we show that Sato’s performance gains are primar-
ily due to improved predictions for underrepresented
semantic types in the long tail. To facilitate future
research and applications, we have released Sato as
an open-source project along with an online demo at
https://github.com/megagonlabs/sato.

2. Sato achieves this high prediction accuracy using a
novel hybrid model that regulates semantic type pre-
diction using signals from the global context (values
from the entire table) and the local context (predicted
types of neighboring columns,) demonstrating the ef-
fectiveness of incorporating table context into semantic
type detection.

3. Sato introduces a new extensible architecture for type
detection with modules for modeling single columns,
global context, and local context. One can easily plug
in a different single-column model while keeping the

rest intact. We demonstrate this extensibility in Sec-
tion 6 by replacing the default single-column predictor
in Sato with BERT [12].

2. PROBLEM FORMULATION
We formulate the problem of semantic type prediction as

multi-class classification, each class corresponding to a pre-
defined semantic type. We consider the training data as a
set of tables. Let c1, c2, . . . , cm be the columns of a given
table and t1, t2, . . . , tm be the true semantic types of these
columns, where ti ∈ T , the set of labels for possible se-
mantic types considered (e.g., city, country, population).
Similarly, let Φ be a feature extractor function that takes a
single column ci and returns an n-dimensional feature vector
Φi. One approach to semantic typing is to learn a mapping
fsingle : Φn → T from values of single columns to semantic
types. We refer to this model as single-column prediction.
The Sherlock [22] model falls into this category.

In Sato, to make the best use of table contexts and re-
solve semantic ambiguity with single-column predictions, we
formulate the problem as multi-column prediction. A multi-
column prediction model learns a mapping fmult : Φn×m →
T m from the entire table (a sequence of columns) to a se-
quence of semantic types. This formulation allows us to in-
corporate table context into semantic type prediction in two
ways. First, we use features generated from the entire table
as table context. For example, the column values ‘Italy,’
‘Poland,’ ... and ‘380,948,’ ‘1,777,972,’ ... are also used to
predict the semantic type of the first column in Table B
(in Figure 1.) Second, we can jointly predict the semantic
types of columns from the same table. Again, for Table B,
with the joint prediction the predicted types country and
population of neighboring columns would help to make a
more accurate prediction for the first column.

3. MODEL
Table context As demonstrated in Figure 1, the contex-
tual information of a column can be used to resolve am-
biguities and improve the semantic type prediction for the
column. To this end, we identify two basic types of context

1836

https://github.com/megagonlabs/sato


that collectively characterize the context of a table column:
global context and local context. We define the global con-
text for a column to be the set of all the cell values in the
table. In this sense, all the columns in a given table have the
same global context. We show in Section 3.2 how the global
context can be used to compute a global descriptor effec-
tively capturing the intent of a table. We define the local
context of a column as the set of independently predicted se-
mantic types of the neighboring columns in the same table.
Local context can be used to resolve semantic type ambi-
guities when combined with single-column predictions. The
scope of such a local neighborhood is flexible and can be ad-
justed based on the desired trade-off between model perfor-
mance and model complexity. In this work, we restrict the
local neighborhood to immediately adjacent columns. We
demonstrate in Section 3.3 how local context can be effec-
tively used to improve the semantic type detection accuracy
through structured predictions.

Next, we will show how Sato effectively captures contex-
tual signals from both global and local sources using a hybrid
machine learning model. It has two modeling components:
(1) A topic-aware prediction component that estimates the
intent (a global descriptor) of a table using topic model-
ing and extends the single-column prediction model with an
additional topic subnetwork. (2) A structured output pre-
diction model that combines the topic-aware predictions for
all m columns and performs multi-column joint semantic
type prediction. Figure 2 illustrates the high-level architec-
ture of Sato. We next discuss each Sato component and
its implementation in detail.

Structured
Prediction

Model

Single-column
Model

Column
Feature
Extractor

Table 
Intent

Estimator

Multi-column
Model

Column-wise
Model

Feature
Extraction

Sato

Topic-aware Model
Topic 

Subnetwork

Figure 2: In Sato, the topic-aware module extends single-
column models with additional topic subnetworks, incorpo-
rating a context modeling table intent into the model. The
structure prediction module then combines the topic-aware
results for all m columns, providing the final semantic type
prediction for the columns in the table.

3.1 Single-column prediction model
As shown in Figure 2, Sato’s topic-aware module is built

on top of a single-column prediction model that uses a deep
neural network. We first provide a brief background on deep
learning and a description of the single-column model.

Deep learning Deep learning [27] is a form of representa-
tion learning that uses neural networks with multiple layers.
Through simple but non-linear transformations of the input
representation at each layer, deep learning models can learn
representations of the data at varying levels of abstractions
that are useful for the problem at hand (e.g., classification,

regression). Deep learning combined with the availability of
massive table corpora [8, 21] presents opportunities to learn
from tables in the wild [19]. It also presents opportunities to
improve existing approaches to semantic type detection as
well as other research problems related to data preparation
and information retrieval. Although prior research has used
shallow neural networks for related tasks (e.g., [28]), it is
only more recently that Hulsebos et al. [22] developed Sher-
lock, a large-scale deep learning model for semantic typing.

Deep learning for type prediction Sato builds on single-
column predictions by using column-wise features and em-
ploys an architecture that allows any single-column predic-
tion model to be used. In this work, we choose Sherlock
as our single-column prediction model due to its recently
demonstrated performance. The column-wise features used
in Sato include character embeddings (Char), word em-
beddings (Word), paragraph embeddings (Para), as well
as column statistics (e.g., mean, std) (Stat.)

A multi-layer subnetwork is applied to the column-wise
features to compress high-dimensional vectors into compact
dense vectors, with the exception of the Stat feature set,
which consists of only 27 features. The output of the three
subnetworks is concatenated to the statistical features, form-
ing the input to the primary network. Then, in the primary
network two fully-connected layers (ReLU activation) with
BatchNorm and Dropout layers are applied before the out-
put layer. The final output layer, which includes a softmax
function, generates confidence values (i.e., probabilities) for
the 78 semantic types.

3.2 Topic-aware prediction model
The first component of Sato is a topic-aware prediction

module. This module first creates a vector representation
for the global context of a given table by computing a topic
vector from the values of the entire table. The topic-aware
prediction module then feeds this topic vector as input to
the column-wise prediction model. The column-wise predic-
tion model extends the neural network model above with
an additional subnetwork in order to take topic vectors as
input. We next discuss how taking the global context of
a table into account in semantic type prediction can help
resolve ambiguities.
Table semantics Tables are collections of related data en-
tities organized in rows. To incorporate table semantics in
our model, we build on intuition by Venetis et al. [48] that a
user constructing a table has a particular intent or schema
in mind. We extend this intuition and argue that semantic
types of the columns in a table can be considered a meaning-
ful expression (or utterance) of the user intent. Each column
of the table partially fulfills the intent by describing one at-
tribute of the entities. As illustrated in Figure 3a, the intent
of a table is a latent component determining the semantic
types of the columns in the table, which in turn generates
the column values. We refer to the set of all column values
in a table as table values.

Thus, being able to accurately infer the table intent can
help to improve the prediction of column semantics. Table
captions or titles usually capture table intent. For example,
in Figure 1, Table A intends to provide biographical infor-
mation about influential personalities in history and Table
B talks about geographical information about cities in Eu-
rope. However, as with column semantics, a clear and well-
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Figure 3: Sato’s topic-aware modeling is based on the premise that every table is created with an intent in mind and that
the semantic types of the columns in a table are expressions of that intent with thematic coherence. In other words, (a) the
intent of a table determines the semantic types of the columns in the table, which in turn generate the column values, acting
as latent variables. (b) Sato estimates the intent of a given table with a topic vector obtained from a pre-trained LDA model
and combines it with the local evidence from per-column values using a deep neural network.

structured description of intent is not always available in
real-world tables. Therefore we need to estimate the table
intent without relying on any header or meta information.

Sato estimates a table’s intent by mapping its values onto
a low-dimensional space. Each of these dimensions corre-
sponds to a “topic,” describing one aspect of a possible ta-
ble intent. The final estimation is a distribution over the
latent topic dimensions generated using topic modeling ap-
proaches. Next, we provide a brief background on topic
models and explain how Sato extracts topic vectors from
tables and feeds them to topic-aware models.

Topic models Finding the topical composition of textual
data is useful for many tasks, such as document summariza-
tion or featurization. Topic models [4] aim to automatically
discover thematic topics in text corpora and discrete data
collections in an unsupervised manner. Latent Dirichlet al-
location (LDA) [6] is a simple yet powerful generative prob-
abilistic topic model, widely used for quantifying thematic
structures in text. LDA represents documents as mixtures
of latent topics and each latent topic as a distribution over
words. Although LDA was originally applied to text cor-
pora, many variants have been developed to discover the-
matic structures in non-textual data (e.g., [5, 13, 51].)

Table intent estimator We use an LDA model to esti-
mate a table’s intent as a topic-vector, treating values of
each table as a “document.” As illustrated in Figure 3b,
we implement the table intent estimator as a pre-trained
LDA model. It takes table values as input and outputs
a fixed-length vector named “table topic vector” over the
topic dimensions. For Sato, we pre-train an LDA model
with 400 topic dimensions on public tables that have had
their headers and captions removed.

The topics are generated during training according to the
data’s semantic structure, so they do not have predefined
meanings. However, by looking at the representative seman-
tic types associated with each topic, we found some exam-
ples with good interpretations. For example, topic # 192 is
closely associated with the semantic types “origin, national-
ity, country, continent, and sex” and thus possibly captures

aspects about personal information, while topic # 264 cor-
responds to “code, description, create, company, symbol”
and can be interpreted as a business-related topic. Detailed
topic analysis can be found in Section 5.5.

Learning and prediction Figure 3b shows how topic-
aware models take the values in a table topic vector as ad-
ditional features for both learning and prediction. We aug-
ment the single-column neural network model with an ad-
ditional subnetwork to take topic vectors as input and then
append its output before feeding into the primary network.
The topic-aware model will learn not only relationships be-
tween the input column and its type but also how the column
type correlates to the table-level contextual information.

3.3 Structured prediction model
We have described how Sato captures the global con-

text of a column by computing a topic vector for the entire
table and passing it to the single-column model as addi-
tional input. Incorporating only the global context into the
model may not be sufficient, however, as the topic-aware
model does not directly take the relationships among the
semantic types of neighboring columns (i.e., local context)
into account. Therefore, we incorporate local context using
a structured output prediction model which comprises the
second component of Sato.

Through preliminary analysis, we confirm that certain
pairs of semantic types co-occur in tables much more fre-
quently than others. For example, in a WebTables sample,
the most frequent pair city and state co-occurs 4 times
more often than the tenth most frequent pair name and type

(detailed co-occurrence statistics available in Section 4.1).
Such inter-column relationships show the value of “local”
contextual information from surrounding columns in addi-
tion to the “global” table topic. Sato models the relation-
ships between columns through pairwise dependencies in a
graphical model and performs table-wise prediction using
structured learning techniques. Although the notion of lo-
cal context is not limited to immediate neighbors, Sato only
models pairwise relations between adjacent columns because
of its simplicity, efficiency, and empirical accuracy. We leave
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Figure 4: (a) Sato uses a linear-chain CRF to model the dependencies between columns types given their values. (b) For
each column, Sato plugs in the column-wise prediction scores for each type as the unary potentials of the corresponding
node in the CRF model. Then Sato learns the pairwise potential through backpropagation updates using stochastic gradient
descent, maximizing the posterior probability P (t|c). Although we choose to use predictions from topic-aware models in the
current implementation, the Sato architecture is flexible to support unary potentials from arbitrary column-wise models.

the study of the broader local context, which can be mod-
eled using high-order graphical models (further discussed in
Section 6), as future work.
Structured output learning In addition to semantic type
detection, many other prediction problems such as named
entity extraction, language parsing, and image segmenta-
tion have spatial or semantic structures that are inherent to
them. Such structures mean that predictions of neighbor-
ing instances correlate to one another. Structured learning
algorithms [3], including probabilistic graphical models [24]
and recurrent neural networks [20, 42], model dependencies
among the values of structurally linked variables such as
neighboring pixels or words to perform joint predictions.

A conditional random field (CRF) [25] is a discrimina-
tive undirected probabilistic graphical model and a popular
technique for structured learning with successful applica-
tions in labeling, parsing and segmentation problems across
domains. Similar to Markov random fields (MRFs) [15,
24], the exact inference for general CRFs is intractable but
there are special structures such as linear-chains that al-
low exact inference. There are also several efficient ap-
proximate inference algorithms based on message passing,
linear-programming relaxation, and graph cut optimization
for CRFs with general graphs [25].

Modeling column dependencies Sato uses a linear-chain
CRF to explicitly encode the inter-column relationship while
still considering features for each column. We encode the
output of a column-wise prediction model (i.e., predicted
semantic types of the columns) and the combinations of se-
mantic types of columns in the same table as CRF parame-
ters. As shown in Figure 4a, in the CRF model, each vari-
able ti represents the type of a column with corresponding
column values ci as the observed evidence. Variables rep-
resenting the types of adjacent columns are linked with an
edge. Given a sequence of columns c in a table, the goal is
to find the best sequence of semantic types t, which provides
the largest conditional probability P (t|c).

The conditional probability can be written as a normal-
ized product of a set of real-valued functions. Following the
convention, we refer to these functions in log scale as “po-

tential functions.” Unary potential ψUNI(ti, ci) captures the
likelihood of predicting type ti based on the content of the
corresponding column ci. Pairwise potential ψPAIR(ti, tj)
represents the “coupling degree” between types ti and tj .

We use a linear-chain CRF, where the conditional dis-
tribution is defined by the unary prediction potentials and
pairwise potentials between adjacent columns:

P (t|c) =
1

Z(c)
exp

(
m∑
i=1

ψUNI(ti, ci) +

m∑
i=1

m∑
j=i+1

ψPAIR(ti, tj)

)
,

where

Z(c) =
∑
t

exp

(
m∑
i=1

ψUNI(ti, ci) +

m∑
i=1

m∑
j=i+1

ψPAIR(ti, tj)

)

is an input-dependent normalization function.

Unary potential functions We use unary potentials to
model the probability of a semantic type given the column
content. In other words, the unary potential of a semantic
type for a given column can be considered the probability
of that semantic type based on the values of the column.
The architecture of Sato supports using estimates of any
valid column-wise prediction model as unary potentials. In
this work, we obtain the unary potentials of the semantic
types for a given column from the output of our topic-aware
prediction model, which uses both table-level topic vector
and column features as input. Using the examples of Fig-
ure 1, we expect that the highlighted column with values
like ‘Florence,’ ‘Warsaw,’ would have high unary potential
scores for location-related semantic types such as location,
city, and birthplace. In other words, the unary potentials
calculate column-wise prediction scores, which are used to
select semantic type candidates for each column.

Pairwise potential functions Pairwise potentials capture
the relationship between the semantic types of two columns
in the same table. These relationships can be parameter-
ized with a |T | × |T | matrix P , where T is the set of all
possible types and Pij (= ψPAIR(ti, tj)) is a weight param-
eter for the “coupling degree” of semantic types ti and tj
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in adjacent columns. Such a coupling degree can be ap-
proximated by the co-occurrence frequency. We expect the
pairwise weight of two semantic types to be proportional to
their frequency of co-occurrence in adjacent columns. Pair-
wise potential weights in our CRF model are trainable pa-
rameters, updated by gradient descent. Through the train-
ing step, we expect that Sato updates the CRF parameters
so that frequently co-occurred pairs like (city, country)
and (occupation, birthplace) have higher pairwise poten-
tial scores. Thus, the trained model can resolve the disam-
biguate issue (shown in Figure 1) by using pairwise poten-
tials and achieves context-aware predictions.

Learning and prediction We use the following objective
function to train a Sato model. The objective function is
the log-likelihood of semantic types of columns in the same
table:

logP (t|c) =

m∑
i=1

ψUNI(ti, ci) +

m∑
i=1

m∑
j=i+1

ψPAIR(ti, tj)− logZ(c).

Here, the normalization term Z sums over all possible se-
mantic type combinations. To efficiently calculate Z, we
can use the forward-backward algorithm [37], which uses
dynamic programming to cache intermediate values while
moving from the first to the last columns. After the train-
ing phase, as shown in Figure 4b, Sato performs holistic
type prediction with learned pairwise potential and unary
potential provided by topic-aware prediction. To obtain pre-
diction results, we conduct maximum a posteriori (MAP)
inference of semantic types:

t̂ = argmax
t

logP (t|c) = argmax
t

(∑
ψUNI +

∑∑
ψPAIR

)
.

Z(c) does not affect argmax since it is a constant with re-
spect to t. Then we use the Viterbi algorithm [49] to calcu-
late and store partial combinations with the maximum score
at each step of the column sequence traversal, avoiding re-
dundant computation.

4. EVALUATION
We compare Sato and its two basic variants obtained by

ablation with the state-of-the-art Sherlock [22] implemented
as the Base method. We omit comparisons with matching-
based algorithms, decision-tree-based semantic typing since
they are outperformed by Sherlock as demonstrated in [22].

4.1 Datasets
We evaluate the effectiveness of the proposed models on

the WebTables corpus from VizNet [21] and restrict our-
selves to the relational web tables with valid headers that
appear in the 78 semantic types. These types resulted from
a selection process [22] from the T2Dv2 Gold Standard1,
which describes 237 DBpedia properties frequently occur-
ring in the WebTables corpus. To avoid filtering out
columns with slight variation in capitalization and represen-
tation, we convert all column headers to a “canonical form”
before matching. The canonicalization process starts with
trimming content in parentheses. We then convert strings
to lower case, capitalize words except for the first (if there

1http://webdatacommons.org/webtables/
goldstandardV2.html

are more than one word) and concatenate the results into a
single string. For example, strings ‘YEAR,’ ‘Year’ and ‘year
(first occurrence)’ will all have the canonical form ‘year,’ and
‘birth place (country)’ will be converted to ‘birthPlace.’

Since we formulate semantic typing as a multi-column
type detection problem, we extract 80K tables, instead of
columns, from a subset of the WebTables corpus as our
dataset D. The canonicalized column headers act as the
groundtruth labels for semantic types. To help evaluate the
importance of incorporating table semantics, we also create
a filtered version Dmult with 33K tables. We filter out sin-
gleton tables (those containing only one column) since they
lack context as defined in this paper. We then conduct 5-fold
cross-validation where we use 80% of the tables for training
and a held-out set (20%) for evaluation in each iteration.

Figure 5 shows the count of each semantic type in the
dataset D. The distribution is clearly unbalanced with a
long tail. Single-column models tend to perform poorly on
the less-common types that comprise the long-tail. By ef-
fectively incorporating context, Sato significantly improves
prediction accuracy for those types.

To better understand relationships between the semantic
types of columns in the same table, we conduct a preliminary
analysis on the co-occurrence patterns of types. Figure 6,
shown in log-scale for readability, reports the frequencies of
selected pairs of semantic types occurring in the same table.
Most frequently co-occurring pairs include (city, state),
(age, weight), (age, name), (code, description).

4.2 Feature extraction
We use the public Sherlock feature extractors2 to extract

the four groups of base features, Char, Word, Para and
Stat, generating a feature vector with 1587 dimensions for
each column in a table. Those features have been proven
effective for semantic type detection and provide good cov-
erage of the granularity spectrum, ranging from character-
level distribution features to global statistics. In addition,
the Word and Para features take advantage of powerful
pre-trained word and paragraph embeddings which enable a
better understanding of natural language contents.

To make a fair comparison, these base features were used
by both baseline methods and proposed methods in the ex-
periments. To generate table topics as introduced in Sec-
tion 3.2, we train an LDA model that captures the mapping
from table values to the latent topic dimensions. Since LDA
is an unsupervised model, we only need the vocabulary (i.e.,
set of all cell values) of the tables without any headers or se-
mantic annotation. We convert numerical values into strings
and then concatenate all values in the table to form a “docu-
ment” for each table. Using the gensim [41] library, we train
an LDA model with 400 topics on a held-out dataset of 10K
tables. With the pre-trained LDA, we extract topic vectors
for tables using values from the entire table as input. Every
table has a single topic vector, shared across columns.

4.3 Model implementation
We implement the multi-input neural network introduced

in [22] using PyTorch [33] as the Base single-column model.
Throughout the experiments discussed here, we train the
Base neural network model for 100 epochs using the Adam
optimizer with a learning rate of 1e− 4 and a weight decay
rate of 1e− 4.

2https://github.com/mitmedialab/sherlock-project
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Figure 5: Counts of the 78 semantic types in the dataset D form a long-tailed distribution. Sato improves the prediction
accuracy for the types with fewer samples (those in the long-tail) by effectively incorporating table context.
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Figure 6: Co-occurrence frequencies in log scale for a se-
lected set of types. Certain pairs like (city, state) or (age,
weight) appear in the same table more frequently than oth-
ers. There are non-zero diagonal values as tables can have
multiple columns of the same semantic type.

For topic-aware prediction in Sato, the table topic fea-
tures go through a separate subnetwork with an architecture
identical to the subnetworks of the Base feature groups. Be-
fore going into the primary network, the outputs of all four
subnetworks are concatenated with Stat to form a single
vector. We train Sato’s CRF layer with a batch size of 10
tables, using the Adam optimizer with a learning rate of
1e−2 for 15 epochs. We initialize the pairwise potential pa-
rameters of the CRF model with the column co-occurrence
matrix calculated from a held-out set of the WebTables cor-
pus. We set the CRF unary potentials for columns to be
their normalized topic-aware prediction score.

4.4 Evaluation metrics
We measure the prediction performance on each target

semantic type by calculating F1 = 2× precision×recall
precision+recall

. Since
the semantic type distribution is not uniform, we report two
types of average performances using the support-weighted
F1 and macro average F1. The support-weighted F1 score is
the average of per-type F1 values weighted by support (sam-
ple size in the test set for the respective type) and reflects

the overall performance. The macro average F1 score is the
unweighted average of the per-type F1 scores, treating all
types equally, and is therefore more sensitive to types with
small sample sizes compared to support-weighted F1.

5. RESULTS
Table 1 reports improvements of the Sato variants over

the Base method on both the dataset Dmult, which includes
only tables with more than one column, and the complete
dataset D. We implemented Base using features and neu-
ral network structure of the Sherlock [22] model. On multi-
column tables, Sato improves the macro average F1 score by
0.093 (14.4%) and the support-weighted F1 score by 0.046
(5.3%) compared to the single-column Base. When evalu-
ated on all tables we still see a 0.064 (9.3%) improvement
on macro average F1 score and 0.035 (4.0%) improvement
on support-weighted F1, although these scores are diluted
by the inclusion of tables without valid table context. The
results confirm that Sato can effectively improve the accu-
racy of semantic type prediction by incorporating contextual
information embedded in table semantics.

We also evaluate the variants of Sato with single com-
ponents: SatonoStruct only performed topic-aware prediction
using table values and SatonoTopic conducted structured pre-
diction using Base output as unary potential without con-
sidering table topic features. As shown in Table 1, both
SatonoStruct and SatonoTopic provide improvements over the
Base model but are outperformed by the combined effort
in Sato. The results indicate that the structured predic-
tion model and the topic-aware prediction model make use
of different pieces of table context information. We note
that there are always larger improvements on macro av-
erage F1 scores than support-weighted F1 scores, suggest-
ing that a significant amount of Sato’s improvements come
from boosting accuracy for the less represented types. To
better understand the influence of techniques used in Sato,
we next perform a per-type evaluation for both Sato com-
ponents on multi-column tables.

5.1 Topic-aware prediction
Figure 7 shows the per-type comparison of F1 scores be-

tween models with and without the topic-aware component.
More specifically, Figure 7a compares the full Sato against
Sato without table values (i.e., SatonoTopic,) and Figure 7b
compares SatonoStruct (only topic-aware model) against Base.
Including information in table values improved 59 out of 78
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Table 1: Performance comparison of the methods across the datasets Dmult (multi-column only) and D (the full dataset)
Numbers are the average values over a 5-fold cross validation. ± denotes 95% CI. () shows the relative improvements in
percentage over Base. We conducted statistical tests using paired t-test with Bonferroni correction for multiple comparisons.
Sato, SatonoStruct, SatonoTopic perform significantly better than Base (p < .005 in all metrics.) Sato performs significantly
better than SatonoStruct (p < .005 in all metrics) and SatonoTopic (p < .005 on Dmult and n.s. on D.)

Multi-column tables Dmult All tables D
Macro average F1 Support-weighted F1 Macro average F1 Support-weighted F1

Base 0.642 ±0.015 0.879 ±0.002 0.692 ±0.007 0.867 ±0.003

Sato 0.735 ±0.022 (14.4%↑) 0.925 ±0.003 (5.3%↑) 0.756 ±0.011 (9.3%↑) 0.902 ±0.002 (4.0%↑)
SatonoStruct 0.713 ±0.025 (11.0%↑) 0.909 ±0.002 (3.5%↑) 0.746 ±0.011 (7.8%↑) 0.891 ±0.003 (2.8%↑)
SatonoTopic 0.681 ±0.016 (6.6%↑) 0.907 ±0.002 (3.2%↑) 0.711 ±0.006 (2.9%↑) 0.884 ±0.002 (2.0%↑)
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Figure 7: F1 scores for each type obtained with (blue) and without (orange) topic-aware prediction. (a) compares Sato
and SatonoTopic (Sato without the topic-aware module), (b) compares SatonoStruct (Base with topic) and Base, showing
improvements on the majority of types. The effect is significant for many underrepresented types.

semantic types for SatonoTopic with 9 types getting equal and
10 types getting worse performances. Similarly, SatonoStruct

improves the performance for 64 types and decreases it for
11 types. The prediction performance stays unchanged for
3 types. We also see significant improvements in the previ-
ously “hard” semantic types with small support size. The
types with the highest accuracy increases, affiliate, direc-
tor, person, ranking, and sales, all come from the fifteen
least represented types as shown in Figure 5. This shows
incorporating table values effectively alleviates the problem
of lacking training data for the rare types.

5.2 Structured prediction
To evaluate the contribution of structured prediction, we

compare Sato with its variant without structured predic-
tion, SatonoStruct (Figure 8a). Similarly, we compare the
performance of SatonoTopic (structured prediction directly on
Base output) with that of Base (Figure 8b). Base is im-
proved on 50 types and SatonoStruct is improved on 59 types.
For a subset of rare types (e.g., depth, sales,) the prediction

accuracy is dramatically improved. While for others (e.g.,
person, director,) there is no noticeable improvement as
with topic-aware prediction. This shows structured predic-
tion is less effective in boosting the accuracy of rare types
compared to topic-aware prediction. However, at the same
time, both the number of types that get worse accuracy
(4 and 5 respectively) and the drop in F1 scores for those
types are smaller with structured prediction as compared
to topic-aware prediction. Enforcing table-level context can
be too aggressive sometimes, leading to worse performance
for certain types. Through modeling relationships between
columns, the structured prediction module in Sato “sal-
vages” some overly aggressive predictions. Qualitative anal-
ysis in Section 5.7 further confirms this effect. In conclusion,
structured multi-column prediction model, with or without
topic modeling, outperforms the column-wise models.

5.3 Efficiency
We show that the Sato model successfully improves pre-

diction accuracy by introducing the topic-aware features and
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(a) Sato vs. SatonoStruct
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Figure 8: F1 scores for each type obtained with (blue) and without (orange) structured prediction (a) compares Sato and
SatonoStruct (Sato without the structured prediction module), (b) compares SatonoTopic (Base with structured prediction)
and Base, showing improvements on the majority of types. Although the improvements on long-tail types are less significant
compared to the topic-aware model in Figure 7, fewer types get worse predictions (shown in the right panels). Structured
prediction can correct mispredictions by directly modeling column relationships.

the CRF layer. However, the additional components may
cause additional time cost. To evaluate the efficiency of
Sato, we repeated the training and prediction procedures
for 5 times and measured the training and prediction time
of Base and Sato on the multi-column dataset Dmult. The
training data contains 26K tables and the test data con-
tains 6.4K tables. For further investigation on the cost of
the topic-aware features and the CRF layer, we separately
measured the time for training the main model, and the
time for training the CRF layer. We use the same hyper-
parameters used in the experiment (described in 4.3) for
both of the models for a fair comparison. The experiment
was conducted on a single machine with 2.1GHz CPUs (64
cores) and 512GB RAM. Table 2 summarizes the average
training and prediction time for those models.

From the results, we confirm that adding the topic-aware
features and the CRF layer increases approximately 81 s
and 367 s for training time, respectively. We would like to
emphasize that we do not need to retrain a model unless
we obtain a significant amount of additional training data.
Thus, we consider that the difference is not critical. On av-
erage, Sato takes +1.4 s than Base to generate predictions
for all 6.4K tables in the test set ofDmult, which is 0.2 ms per
table. We believe the overhead will be mostly unnoticeable
in practice, and the average prediction time per table (0.8
ms) can support the interactive use of Sato. Furthermore,
in practice deployment, pre-trained column-wise models can
be reused to shorten the average end-to-end training time.

5.4 Feature importance
To better understand the influence of the different fea-

ture groups, we perform permutation importance [1] analy-

Table 2: Average training and prediction time over 5 trials
Dmult. ± denotes 95% CI. Training time for the column-
wise features (Features) and the CRF layer (Structured) is
reported separately.

Training time [s] Prediction time [s]
Features Structured

Base 596.9± 9.2 N/A 3.8± 0.04
Sato 678.5± 15.1 366.9± 66.8 5.2± 0.06

sis on Base and Sato variants. For each fitted model and
a specific feature group, we take the input tables and shuf-
fle by only swapping features in the specified feature group
with randomly selected tables. Such feature mismatches
will cause less accurate predictions. Shuffling crucial fea-
tures will break the strong relationships between input and
output, leading to a significant drop in accuracy. We took
the average of the normalized drop in F1 scores over five
random trials as the feature importance measurement. Fig-
ure 9 shows that for Base and SatonoTopic, the Word and
Char feature groups are the most important feature groups,
matching the conclusions in [22]. Considering the global
context, the additional Topic feature group has comparable
or greater importance than Word and Char, especailly for
the macro average F1 metric. This confirms the help of table
values information on less-represented types.

5.5 Topic interpretation
We conduct qualitative analyses on the LDA model to

investigate how the model captures semantics from each ta-
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Figure 9: Importance scores for the feature categories ob-
tained by measuring the drop in macro-avg (M-avg) and
weighted-avg (W-avg) aggregated F1 values from permuta-
tion experiments. Topic features are the most important
feature category with respect to the macro average F1 score
in the full Sato model, providing additional evidence for
the contribution of topic modeling in predicting underrep-
resented semantic types.

Table 3: Examples of the topics learned by the LDA model,
semantic types associated with each topic obtained by using
a saliency metric, and our interpretation for each topic.

Topic Top-5 semantic types Interpretation

192 origin, nationality, country,
continent, sex

person

99 affiliate, class, person,
notes, language

person

394 religion, family, address,
teamName, publisher

person, book

264 code, description, creator,
company, symbol

business

ble and provides contextual information to Sato. To obtain
the topic distribution of each semantic type, we calculate the
average topic distribution based on the topic distributions
θi of the i-th table that contains the semantic type. For
each topic, we chose top-k semantic types as representative
semantic types by the probability of the topic.

We find that some topics had “flat” distributions where
most semantic types have almost the same probabilities.
Since these topics are not very useful for classifying semantic
types, we compute a saliency score for each topic and sort
the topics by their saliency. Our saliency score averages the
probabilities of the top-k semantic types for each topic.

Table 3 shows the top-5 salient topics and the represen-
tative semantic types. Following the standard approach in
topic model analysis [4, 6], we manually devise an interpreta-
tion for each topic. For example, topic dimension #192 and
#99 are activated by personal information in table values,
whereas #264 is closely related to business tables. These ex-
amples demonstrate that semantic space learned using LDA
could capture intent information from tables.

(a) (b)

Figure 10: Two-dimensional visualizations of column em-
beddings by (a) SatonoStruct, and (b) Sherlock. Colors de-
note semantic types. Gray-colored regions are manually
added to emphasize the areas of “ambiguity”in the column
embeddings. SatonoStruct appears to separate similar seman-
tic types better.

5.6 Column embeddings (Col2Vec)
To verify how the table intent features help the Sato

model capture the table semantics, we analyze and com-
pare the embedding vectors from the final layer of the Sato
model and the baseline Sherlock model as column embed-
dings. We can consider these embeddings as column embed-
dings since the final layer combines input signals to compose
semantic representations. For comparison, we used the final
layer of the single-column prediction model of Sato, before
the CRF layer. Therefore, we assume that the Table Intent
features account for the difference in the embeddings.

Following prior examples (e.g., [52]), we analyze column
embeddings of the test columns used in the experiments.
We use t-SNE [47] to reduce the dimensionality of the em-
bedding vectors to two and then visualize them using a two-
dimensional scatterplot. To embed vectors of the two meth-
ods in a common space, we fit a single t-SNE model for all
data points, and then visualize major semantic types that
are related to organizations (affiliate, teamName, family,
and manufacturer) to investigate how the Sato model with
the Table Intent features can distinguish columns of those
ambiguous semantic types.

Figure 10 shows the visualization of embedding vectors of
Sato and Sherlock. With Sherlock, the column embeddings
of each semantic type partially form a cluster, but some
clusters are overlapped compared to the column embeddings
by Sato. In Figure 10 (a), we observe a clearer separation
between the organization-related semantic types with little
perturbation. The results qualitatively confirm that topic-
aware prediction helps Sato distinguish semantically similar
semantic types by capturing the table context of an input
table. Note that these column embeddings are from the
test set, and any label information from these columns was
not used to obtain the column embeddings. Thus, we can
also confirm that Sato appropriately generalizes and learns
column embeddings for these semantic types.

5.7 Qualitative analysis
To better understand how structured prediction further

helped Sato with the existence of topic-aware predictions,
we conducted qualitative analysis by identifying examples
where table-wise prediction “salvages” bad predictions in
the column-wise (i.e., Base and SatonoStruct) predictions.

Table 4a shows a selected set of example tables from the
test sets where the incorrect predictions from Base are cor-
rected by applying structured prediction using our trained
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Table 4: Examples of the mispredictions that are corrected by performing a structured prediction using the linear-chain
CRF.

(a) Corrected tables from Base predictions

Table ID True Columns Base (w/o structured prediction) SatonoTopic (w/ structured prediction)

6299 code, name, city symbol, team, city code, name, city
898 company, location name, city company, location
2816 product, language name, notes product, language
4575 symbol, company, isbn, sales symbol, name, isbn, duration symbol, company, isbn, sales
5712 type, description weight, name type, description
3865 year, teamName, age year, city, weight year, teamName, age

(b) Corrected tables from SatonoStruct predictions

Table ID True Columns SatonoStruct (w/o structured prediction) Sato (w/ structured prediction)

4289 age, city, country, rank age, city, team, rank age, city, country, rank
410 brand, weight artist, code brand, weight
5655 code, name, city club, name, name code, name, city
4369 day, location, notes name, location, location name, location, notes
30 language, name, origin language, name, description language, name, origin
4531 rank, name, city rank, location, location rank, location, city

CRF layer. For example, with table #4575, the columns
company and sales were incorrectly predicted as name and
duration by the single-column Base model. By model-
ing inter-column dependencies, SatonoTopic correctly predicts
the types company and sales, which tend to co-occur more
with surrounding columns symbol and isbn for tables about
books and magazines. Table 4b shows selected examples
where SatonoStruct made incorrect predictions using table
values and was corrected by the use of structured prediction
(i.e., Sato). Table #4369 and table #4531 are examples
where location-related vocabulary in tables made a large
impact. It produced overly aggressive predictions with mul-
tiple location columns, whereas Sato with the structured
inference step successfully corrected one of the columns.

Furthermore, considering surrounding types, structured
prediction effectively improves performance for numerical
columns like duration/sales from table #4575, age/weight
from table #3865, code/weight from table #410.

6. DISCUSSION
Using learned representations Sato’s single column pre-
diction module based on Sherlock incorporates four cate-
gories of features that characterize different aspects of col-
umn values, amassing more than 1.5K feature values per
column. However, the availability of large-scale table cor-
pora presents a unique opportunity to develop pre-trained
representation models and eschew manual feature extrac-
tion. To test the viability of using representation models,
we fine-tuned the BERT model [12], a state-of-the-art model
for language representation, for our semantic type detection
task. Models based on fine-tuning BERT have recently im-
proved prior art on several NLP benchmarks without man-
ual featurization [12, 30, 31]. We trained the BERT model
using the default BERT parameters, achieving a support-
weighted F1 score of 0.866, which is slightly better than
0.852 achieved by the Sherlock model. This result is promis-
ing because a “featurization-free” method with default pa-
rameters is able to achieve a prediction accuracy comparable
to that of Sherlock. However, our multi-column prediction

still outperforms the BERT model by a large margin, in-
dicating the importance of incorporating table context into
column type prediction. A promising avenue of future re-
search is to combine our multi-column model with BERT-
like pre-trained learned representation models.

Exploiting type hierarchy through ontology In this
paper, we consider semantic types without hierarchy. How-
ever, it is possible to form natural parent-child relationships
between many types. For instance, country and city are
types (subclasses) of location and club and company are
types of organization. Factoring hierarchical type relations
into prediction (e.g., [29, 45]) requires an ontology codifying
the type hierarchy and, crucially, additional annotation over
training dataset, which can be infeasible to manually carry
out for large training datasets such as the one used here.
Nevertheless, modeling and predicting hierarchical semantic
types can provide richer information for downstream tasks.
It can further improve the prediction accuracy, especially for
the types with fewer training samples.

High-order CRFs Several studies [11, 26, 36] developed
high-order CRF models that implement potential functions
that take n (n > 2) predictions into account. However,
the computational complexity of exact inference steps for
training and prediction becomes exponentially expensive:
O(LK), where L is the input sequence length (i.e., # of
columns) and K is the number of states (i.e., # of seman-
tic types.) The computational cost is significantly expen-
sive compared to the original linear-chain CRFs O(KL2).
As Sato with the linear-chain CRF model significantly im-
proved the performance for the semantic type detection task,
we decided not to use the degree of the order for efficiency.

Additionally, we believe that high-order dependency be-
tween predictions is not always necessary if we incorporate
contextual features into the model. [36] shows that contex-
tual features that take into account surrounding informa-
tion are more useful than a high-order CRF architecture for
named entity recognition tasks. Since table topic features
provide table-wise contextual information, we consider the
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original CRF model with pairwise potential functions as the
right choice for improving the model accuracy efficiently.

7. RELATED WORK
Regular expression and dictionary lookup Semantic
type detection enhances the functionality of commercial data
preparation and analysis systems such as Microsoft Power
BI [32], Trifacta [46], and Google Data Studio [17]. These
commercial tools typically rely on manually defined rule-
based approaches such as regular expression patterns dic-
tionary lookups to detect semantic types. For instance, Tri-
facta detects around 10 types and Power BI only supports
time-related semantic types. Open source libraries such as
messytables [14], and csvkit [18] similarly use heuristics to
detect a limited set of types.

Ontology-based Prior work, with roots in the semantic
web and schema matching literature, provide alternative ap-
proaches to semantic type detection. One body of work
leverages existing data on the web, such as WebTables [8],
and ontologies (or, knowledge bases) such as DBPedia [2],
Wikitology [43], and Freebase [7]. Venetis et al. [48] con-
struct a database of value-type mappings, then assign types
using a maximum likelihood estimator based on column val-
ues. Syed et al. [43] use column headers and values to build
a Wikitology query mapping columns to types.

Statistical similarity Several earlier approaches rely on
measures of data similarity to match columns with types.
Ramnandan et al. [40] first separate numerical and textual
column types, then compare column values to those with
labels from a dataset using the Kolmogorov-Smirnov (K-S)
test and Term Frequency-Inverse Document Frequency (TF-
IDF,) respectively. Pham et al. [34] use additional features
and tests, including the Mann-Whitney test for numerical
data and Jaccard similarity for textual data, to train logis-
tic regression and random forest models.

Synthesized Puranik [35] proposes combining the predic-
tions of “experts,” including regular expressions, dictionar-
ies, and machine learning models. More recently, Yan and
He [50] introduced a system that, given a search keyword
and a set of positive examples, synthesizes type detection
logic from open source GitHub repositories. It provides a
novel approach to leveraging domain-specific heuristics for
parsing, validating, and transforming semantic types.

Learned Another line of prior work employs machine learn-
ing, including probabilistic graphical models. Goel et al. [16]
split each cell value in a table into tokens and attempted to
predict the field and token labels using CRF models with
different graph structures capturing dependencies among to-
kens and fields. For instance, a cell value ‘Mountain View,
CA’ is split into a sequence of tokens ‘Mountain’, ‘View’,‘,’,
‘CA’. Then a multi-layer CRF model is used to assign labels
cityName, cityName, symbol, and state for those tokens
along with the cell label place. This approach requires cu-
rating cell- and token-level annotations for training, which
is impractical for large-scale table corpora. Furthermore,
it has limited robustness over missing, dirty, and hetero-
geneous data, as well as semantic data types with highly
variable formatting. Sato avoids the need for fine-grained

token-level annotations and only uses automatically anno-
tated column labels.

Limaye et al. [29] use a Markov random field (MRF) model
to annotate values with entities, columns with types, and
column pairs with relationships. This approach assumes the
existence of a catalog specifying entities, types, and relations
between them and relies on good matches between entity
lemma and cell text to make accurate predictions of both
cell and column types. However, in practice, an accurate
catalog can be expensive or impossible to obtain for large
corpora or new domains and many tables have missing or
noisy (incomprehensible, malformed, etc.) headers. Takeoka
et al. [45] extend Limaye et al. [29]’s work with multi-label
classifiers to support additional types, including numerical
data types, and improve its predictive performance. How-
ever, this approach also relies on training data (183 tables)
collected through human annotation and its application to
massive table corpora can get extremely expensive.

Similar to earlier approaches [16, 29, 45] discussed above,
Sato also uses a probabilistic graphical model for structured
output prediction. However, in contrast to this earlier work,
Sato employs a CRF model to combine the topic-aware pre-
dictions of a large-scale deep learning model, leveraging a
large number of real-world tables for training. These tables
are automatically annotated without resorting to human la-
beling, which makes Sato easier to extend and scale than
prior work using probabilistic graphical models.

Although prior research used shallow neural networks for
related tasks (e.g., [28]), Sherlock [22] is the first deep learn-
ing model directly applied to semantic type detection for
table columns. Trained on a large number of columns, Sher-
lock uses a multi-input neural network to make type pre-
diction based on features of column values. Sato builds on
Sherlock and addresses its two related drawbacks; the low
prediction accuracy for underrepresented types and the lack
of consideration for table context in prediction.

8. CONCLUSION
Automated semantic typing is becoming more important

than ever due to a rapid increase in the demand for better
data preparation tools. The semantics of a table column (or
any other data source for that matter) are embodied by its
context as well as its raw data values. Here, we introduce
Sato to automatically detect the semantic types of table
columns, leveraging the signals from the table context of
columns as well as the data values of columns. Sato com-
bines the power of large-scale deep learning together with
structured prediction and topic modeling to achieve a pre-
diction performance that significantly exceeds the state-of-
the-art. Through ablation and permutation experiments, we
evaluate Sato extensively and show how individual model-
ing choices as well as feature types contribute to the per-
formance. To facilitate future applications and extended
research, we are publicly releasing our trained model and
source code for training along with an interactive web appli-
cation demonstrating Sato’s use at https://github.com/

megagonlabs/sato.
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