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ABSTRACT
Truss decomposition is to divide a graph into a hierarchy of
subgraphs, or trusses. A subgraph is a k-truss (k ≥ 2) if each
edge is in at least k − 2 triangles in the subgraph. Existing
algorithms work by first counting the number of triangles
each edge is in and then iteratively incrementing k to peel
off the edges that will not appear in (k + 1)-truss. Due to
the data and computation intensity, truss decomposition on
billion-edge graphs takes hours to complete on a commodity
computer.

We propose to accelerate in-memory truss decomposition
by (1) compacting intermediate results to optimize memory
access, (2) dynamically adjusting the computation based on
data characteristics, and (3) parallelizing the algorithm on
both the multicore CPU and the GPU. In particular, we
optimize the triangle enumeration with data skew handling,
and determine at runtime whether to pursue peeling or di-
rect triangle counting to obtain a certain k-truss. We fur-
ther develop a CPU-GPU co-processing strategy in which
the CPU first computes intermediate results and sends the
compacted results to the GPU for further computation. Our
experiments on real-world datasets show that our implemen-
tations outperform the state of the art by up to an order of
magnitude. Our source code is publicly available at https:

//github.com/RapidsAtHKUST/AccTrussDecomposition.
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1. INTRODUCTION
A truss [14] in an undirected graph G is a subgraph whose

cohesiveness exceeds a certain threshold. The cohesiveness
is measured by the support of each edge in the subgraph,
which is the number of triangles in the subgraph each of
which contains the edge. A k-truss (k ≥ 2) is the largest
subgraph of G such that the support of each edge in the
subgraph is not less than k − 2. Fig. 1 shows an example
graph with the support value of each edge in its class: an
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Figure 1: An example graph G

edge is in the k-class if it is in the k-truss, but not in the
(k + 1)-truss. Truss decomposition is to find the k-class for
each edge [38].

Truss decomposition has various applications in graph
mining and social networks, such as community search and
personalized recommendation [4, 19, 29, 31]. However, truss
decomposition is time-consuming on large graphs due to the
high intensity of computation. For example, state-of-the-art
in-memory truss-decomposition algorithms [28,38] took tens
of hours to complete on a billion-edge twitter graph in our
experiment setting. Therefore, we study how to accelerate
in-memory truss decomposition on big graphs.

Existing truss decomposition algorithms first initialize the
support values of all edges, and follow by several iterative
edge peeling phases [28, 38]. The initialization phase com-
putes the common neighbor count |NG(u) ∩NG(v)| of each
edge e(u, v) as e’s support in G, where NG(u) is the neigh-
bor set of u in G. After that, each peeling phase increments
k (k ≥ 2) and iteratively peels off the edges of which the
support values are equal to or less than k − 2. In phase k,
the edges that are peeled off are put into the k-class, and the
support values of all remaining edges in the triangles con-
taining those peeled-off edges are updated. The algorithm
ends when all edges in G are peeled off.

The time complexity of truss decomposition is linear to
that of triangle enumeration in G [38]. For each peeled-off
edge e(u, v), triangle enumeration finds all triangles 4uvw

from the remaining edges. For each triangle 4uvw, support
update is performed on edges e(u,w) and e(v, w). As such,
the triangle enumeration operation is expensive due to in-
tensive triangle existence checking, and the support update
incurs intensive random memory accesses. As a result, truss
decomposition is time-consuming, and researchers have pro-
posed to parallelize the algorithms to speed up.

The state-of-the-art parallel algorithms, i.e., PKT [21] and
MSP [34] parallelize the support initialization by creating a
directed graph, enumerating each triangle in the directed
graph once, and atomically updating the support values for
all edges in the triangle. Subsequently, they parallelize the
iterations of edge peeling within each phase and synchro-
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nize at the end of each iteration. However, these algo-
rithms ignore the data characteristics in graphs and may
perform unnecessary triangle existence checking and sup-
port update operations. Thus, we propose to design better
triangle enumeration and support update procedures based
on data characteristics. Specifically, we optimize the pro-
cessing in the presence of data skew. In particular, we define
vertex degree skew as d(u)� d(v) in edge e(u, v).

To avoid atomic operations in the support initialization,
we directly count the number of triangles each edge e(u, v)
is in, following a bitmap-based all-edge triangle counting
algorithm [11]. Specifically, suppose vertex degrees d(v) <
d(u) in edge e(u, v), we construct a bitmap for the set of u’s
neighbors N(u). For each w ∈ N(v), we probe the bitmap of
N(u) to check the existence of triangle 4uvw. To reduce the
number of probes, we pack a neighbor set N(v) into a set
of non-zero 64-bit machine words, and utilize these words
to perform word-wise look-ups on the bitmap of N(u). In
comparison with previous work [11], this packing technique
reduces the number of probes significantly when there are
many consecutive vertex IDs in N(v).

To accelerate the core component of the iterative edge
peeling, i.e., the support update procedure, we dynamically
determine whether to (1) recompute all the support values
via the direct triangle counting on the remaining edges, or
to (2) decrement the support values for affected edges only.
When lots of edges are peeled off, we favor the counting
based algorithm to avoid intensive atomic operations and
random memory accesses; otherwise, we take the support
decrementing based procedure to reduce the workload.

To further improve the triangle enumeration procedure,
we reduce the number of triangle existence checking opera-
tions by (1) designing a pivot-skip merge algorithm to han-
dle data skew, (2) compacting the neighborhood information
of each vertex periodically to reduce memory accesses and
(3) eliminating the unnecessary enumeration.

At the beginning of a peeling phase, to efficiently filter the
edges to peel off, we index the edges of which the support
values are in a range [i, i + rs), where i starts from 0 and
increments at a step of rs. Specifically, we reconstruct the
index structure for a new range every rs phases, maintain
the index structure during the support update, and scan
only the indexed edges for the filtering. With the index, we
avoid scanning the entire set of remaining edges.

Finally, we parallelize our algorithms on both the multi-
core CPU and the GPU, and design offloading strategies to
limit the data transfer between the CPU and the GPU.

We evaluate the effects of individual techniques on real-
world billion-edge graphs and compare our optimized solu-
tions with existing work. Experimental results show that (1)
it always works best to first compute on the CPUs, compact
the intermediate results, and then offload the computation
to the GPU; (2) our optimized implementation is up to 68.7x
faster than the state of the art [21,30,34], and completes the
computation on a 680 million-edge twitter graph within 88
seconds on a computer with two 10-core Intel Xeon CPUs
and an Nvidia V100 GPU.

In summary, we make the following contributions.

• We design a word-packing technique to improve an
existing bitmap-based triangle counting algorithm [11]
on all the edges for the support initialization.
• We design three optimized procedures for the itera-

tive edge peeling: (i) dynamic triangle counting and

Table 1: Summary of Notations
Notation Description

G An undirected graph
V , E, and 4 Vertex, edge, and triangle sets of G

N(u) Neighbor set of a vertex u in G
Φk The k-class of G

rptr, adj Compressed Sparse Row (CSR) format of G
el An edge list array of G
eid An edge mapping array, associated with adj

sup(e), sup(e,G) Support value of an edge e in G
P (e) Processing status of an edge e in G
B(u) Bitmap representation of N(u)

WI(u),WC(u) Indexes and contents of non-zero words in B(u)
pr(u) Pack ratio (|N(u)|/|WI(u)|) of a vertex u in G

QC , QN Queues for edge filtering
QI Index structure for QC

wpt Threshold for neighbor set word-packing
ct Threshold for graph compaction
ept Estimated peeling throughput
rs Size of an index range [beg, beg + rs)

PP and IEP Pre-processing and iterative edge peeling
SI and WP Support initialization and word-packing
SU and TE Support update and triangle enumeration

EF Edge filtering
TC and TP Triangle counting and triangle peeling

DSTCP Dynamic selection of TC and TP procedures
PSM and VM Pivot-skip-merge and vectorized block-wise merge
d(u)� d(v) Data skew (vertex degree skew)
d(u)/d(v) Degree skew ratio (d(u) ≥ d(v))
GC and ES Graph compaction and enumeration skipping

BMPF and IDX Bitmap filtering and indexing

peeling selection based support update, (ii) triangle
enumeration with data skew handling and graph com-
paction, and (iii) index-based edge filtering.
• We parallelize and optimize our algorithms on both

the multicore CPU and the GPU.
• We evaluate the effects of individual techniques on

both the multicore CPU and the GPU and show that
our implementations on both platforms outperform the
state of the art by up to an order of magnitude.

2. BACKGROUND AND RELATED WORK
In this section, we describe the problem statement of truss

decomposition, categorize related work, and show our pro-
filing results on a representative parallel algorithm.

2.1 Preliminaries
We consider an undirected graph G and denote the ver-

tex, edge, and triangle sets of G by VG, EG, and 4G, re-
spectively. Given a vertex u ∈ VG, NG(u) is the set of
neighbors of u, and dG(u) denotes the degree of u, i.e.,
dG(u) = |NG(u)|. We denote the triangle of three vertices
u, v, w ∈ V by 4uvw.

Definition 1. (Support) The support of an edge e(u, v) ∈
EG, denoted by sup(e,G), is defined as |{4uvw|w ∈ VG}|,
which can be computed by |NG(u) ∩NG(v)|.

Definition 2. (k-Truss) The k-truss of G (k ≥ 2), de-
noted by Tk, is defined as the largest subgraph of G such that
∀e∈ETk

sup(e, Tk) ≥ (k−2). The trussness (truss number) of

an edge e ∈ E, denoted by φ(e), is defined as the maximum
k of the k-truss that the edge e is in.

Definition 3. (k-Class) The k-class of G denoted by Φk

is defined as {e|e ∈ E ∧ φ(e) = k}. All k-classes of G form
a hierarchy. A k-truss of G can be computed by a union of
all the i-classes (i ≥ k) [38].

Problem Statement. Truss decomposition of graph G
is to find all k-classes Φk (k ≥ 2) of G.

We summarize the frequently used notations in Table 1.
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Algorithm 1: Truss Decomposition

Input: an undirected graph G0 = (VG0
, EG0

)
Output: all the i-classes Φi of G0 (i ≥ 2)

1 G← G0, k ← 1
2 foreach e(u, v) ∈ E do sup(e(u, v))← |4uvw|
3 while |E| > 0 do
4 k ← k + 1, Φk ← ∅, Q← {e | e ∈ E ∧ sup(e) = k − 2}
5 while |Q| > 0 do
6 Φk ← Φk ∪Q
7 foreach e(u, v) ∈ Q do
8 foreach e′ ∈ 4uvw do
9 sup(e′)← max(k − 2, sup(e′)− 1)

10 E ← E \ {e}
11 Q← {e | e ∈ E ∧ sup(e) = k − 2}
12 return {Φi | 2 ≤ i ≤ k}

2.2 Related Work
Existing Algorithms. State-of-the-art algorithms [21,

28, 34, 38] perform support initialization, followed by itera-
tive edge peeling phases (Alg. 1). The support initialization
(Line 2) is to compute the triangle counts for all the edges,
and the peeling phases (Lines 3-11) proceed level by level
and find a k-class (k ≥ 2) at each level. In each level,
edges with the support value k are filtered (Lines 4 and
11), which triggers the peeling of triangles containing these
edges, which in turn causes the support update of the edges
in these triangles. Each triangle is peeled off exactly once for
correctness, which is ensured by removing the edge e(u, v)
(Line 10) after completing the enumeration of 4uvw and
support update of e(v, w) and e(u,w) (Lines 8 and 9).
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Figure 2: An example graph and its storage

Data Structures. The in-memory storage for the truss
decomposition (Alg. 1) consists of adjacency lists, edges,
support values, and the mappings from the triangles to the
edges. We show the data structures in Fig. 2. Specifically,
the adjacency lists are represented in a Compressed Sparse
Row (CSR) format [15,21,24], which consists of row pointers
and adjacency arrays denoted by rptr and adj, respectively.
For triangle enumeration (TE), each adjacency list is sorted
and used for subsequent merge operations [21, 34]. Edges
(denoted by el) are represented as a list of source and des-
tination vertex pairs, and each edge is associated with a
support value denoted by sup(e). To quickly map a TE re-
sult (three offsets in the adj array) into edge indexes, an eid
array is introduced and associated with adj [21].

Support Initialization (SI). The SI step counts the
number of triangles that each edge is in (Line 2 of Alg. 1).
There are two approaches to parallelizing SI. The first ap-
proach [27,37,39] creates a Degree Oriented Directed Graph
(DODG) by turning each undirected edge into a directed
one. The direction of each edge is from a smaller degree ver-
tex to a larger degree vertex. Using DODG, each triangle is

enumerated exactly once, and the support values of edges in
the triangle are updated atomically. In contrast, the second
approach [11] directly computes the triangle count of each
edge on the original graph and updates the support value of
each edge exactly once.

Merge-based, hash-based, and bitmap-based set intersec-
tion algorithms for triangle counting (TC) [17,18,36,40] can
be applied to SI. Merge-based algorithms scan the two sorted
arrays of N(u) and N(v) and compare the elements to find
matches, for example, vectorized block-wise-merge (VM) on
the CPUs [11,40] and binary-search-based merge (BSM) [17,
18] on the GPUs. In contrast, hash-based algorithms con-
struct a hash table for each N(u). Then for each w ∈ N(v),
they probe the hash table to find common neighbors of u
and v. In this category, Tom et al. [36] optimized the hash
table construction by splitting N(u) into dense and sparse
parts and representing the dense part in an array to reduce
the probe cost. Similar to hashing, Che et al. [11] used a
bitmap (BMP) to represent N(u) and dynamically construct
and clear the bitmap during the all-edge common neighbor
counting. Recently, on the GPUs, hardware-conscious mem-
ory accesses and load balance strategies have been studied to
further improve the performance of BSM [17, 18] and hash-
based set intersection algorithms [26] for TC.

When there is data skew (d(u)� d(v), given edge e(u, v)),
hash-based, BMP, and BSM algorithms work better than
the VM [11] algorithm because of the O(d(v)), O(d(v)),
O(log(d(u)) · d(v)), and O(d(u) + d(v)) time complexity, re-
spectively. In practice, N(u) may have dense parts with
many consecutive vertex IDs. However, prior work neglects
this data characteristic and does not compact the informa-
tion in N(u) to reduce number of operations in N(u).

Iterative Edge Peeling (IEP) on multicore CPUs.
PKT [20,21] and MSP [34] parallelize each edge peeling iter-
ation and synchronize among iterations. They differ in the
design of adjacency representation, support update (SU),
and edge filtering (EF) procedures. PKT [20, 21] adopts
the CSR format and introduces a boolean array to indicate
the edge removals, whereas MSP [34] maintains array-based
doubly-linked lists and dynamically updates them upon edge
removals. For SU, PKT uses atomic operations, whereas
MSP expands all the edges in the peeled-off triangles and
groups these edges by the source vertex for lock-free compu-
tation. For EF (Line 4 of Alg. 1), PKT scans all the edges,
whereas MSP indexes the edges by grouping the edges with
identical support values into a bucket. MSP maintains the
bucket index during SU in O(|4|) time and space.

Existing triangle peeling based SU algorithms (TPSU)
[21, 34] take triangle enumeration results (N(u) ∩ N(v)) as
the input and run O(|4|) SU operations on the unprocessed
edges of enumerated triangles (Line 9 of Alg. 1). In these
algorithms, some iterations may involve a large number of
triangles due to a lot of connections among the set of filtered
edges Q. For example, an isolated clique with thousands
of vertices contains billions of triangles. However, in such
cases, SU for the edges in the clique is useless since those
edges will be removed right after the edge peeling iteration.
Also, the triangle peeling involves intensive random memory
accesses on the edges of enumerated triangles.

IEP on GPUs and Clusters. On GPUs, Vikram et
al. [15, 24] proposed to first identify the edges with affected
support values via triangle enumeration, and then recom-
pute the support values of the affected edges. They imple-
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mented on architectures with both CPUs and GPUs. Specif-
ically, they adopted the unified memory interface of GPUs
and CPUs, divided up the tasks in a single edge peeling iter-
ation, and distributed the tasks to CPUs and GPUs. Due to
the random memory access pattern of affected edges, their
method incurred intensive memory page swaps among pro-
cessors. As a result, increasing the number of processors
even slowed down the execution [15, 24]. To address the
drawback of intensive data transfer, Mohammad et al. [5]
proposed to evaluate k-truss finding tasks of different k val-
ues in parallel across GPUs. However, this approach in-
evitably incurred more edge peeling operations, since edge
removal status was not shared across GPUs. Also, load im-
balance occurred between different k-truss finding [5] tasks.

Other Algorithms. Recently, Sariyuce et al. [30] pro-
posed to extend an h-index-based algorithm for core decom-
position [8, 23, 25] to truss and nucleus decomposition [30].
However, their implementation was up to 10x slower than
the peeling-based MSP [34] due to the higher time complex-
ity. Wu et al. [39] proposed to optimize the memory usage of
truss decomposition algorithms [30, 38] by compressing the
adjacency lists of a graph in a WebGraph [7] framework and
using the CSR format to represent a sorted edge list.

Recently, truss maintenance on dynamic graphs has been
studied. Specifically, Zhang et al. [41] and Huang et al. [19]
have studied how to track the trusses given edge insertions
and deletions. However, in edge insertion cases, these algo-
rithms do not have a polynomial time complexity bound in
terms of the input and output change size [41]. As such, for
a situation with intensive edge insertions, truss decomposi-
tion may be a better solution than truss maintenance.

2.3 Analysis
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Figure 3: Time breakdown of PKT

To study the performance bottleneck of truss decompo-
sition, we profile the parallel algorithm PKT [21] on two
billion-scale graphs, namely the European web (WE) and a
twitter graph (TW) from WebGraph [6,7]. We use the same
dataset, hardware, and PKT implementation as in Sect. 5.
We show the time breakdown results in Fig. 3. First, the
support initialization (SI) takes hundreds of seconds on the
two graphs, which is 4x-10x slower than the state-of-the-art
all-edge common neighbor counting algorithms [11]. The in-
efficiency lies in the O(|4|) atomic update operations. Sec-
ond, the triangle peeling, which consists of triangle enumer-
ation, support update, and queue maintenance procedures,
consumes 8.7x more time than SI on TW. Third, the edge
filtering of PKT takes tens of seconds to scan all edges and
generate the queue (Line 4 of Alg. 1). The filtering takes
less time than the other two components.

3. DESIGN
In this section, we describe the design of our optimized

truss decomposition, which consists of (1) a pre-processing
(PP) stage to initialize an edge list el and an edge mapping
eid array (Alg. 2), (2) a support initialization (SI) stage to

count the number of triangles that each edge is in (Alg. 3),
and (3) an iterative edge peeling (IEP) stage (Alg. 4).

Our PP stage is different from previous work PKT-PP [21]
and consists of three loops, each of which is efficiently paral-
lelized. We eliminate the loop-carried dependencies in PKT-
PP and utilize a prefix-sum parallel primitive.

In the SI stage, we follow the bitmap-based direct trian-
gle counting algorithm [11], and further introduce a word-
packing technique to reduce the bitmap-probe workload.

In the IEP stage, we record the number of accumulated re-
movals by nrm and periodically compact the adjacency lists
to reduce the memory accesses in the triangle enumeration
(TE). We further dynamically select triangle counting and
peeling-based support update procedures to utilize the data
and computation characteristics of support update. More-
over, we design a pivot-skip merge algorithm to handle the
data skew in TE and safely skip unnecessary enumeration.

To accelerate the edge filtering in the peeling process, we
use two queues QC and QN to store the edges to process in
the current and next iterations, respectively. Moreover, we
introduce a queue QI to index the edges by their support
values. The three queues enable us to track edges with iden-
tical support values efficiently. We use a boolean array to
indicate the queue occupation status in a given range, i.e.,
[0, |E|). Checking the existence of an element in a queue
runs in a constant time complexity. We will show the de-
tails of queue maintenance in Sections 3.3 and 3.5.

3.1 Pre-Processing (PP)
The edge list and mapping (el and eid) initialization in

PKT [21] carries loop dependencies and results in sequential
execution. It took minutes to finish the sequential execution
on the twitter graph on an Intel Xeon CPU server. In con-
trast, our three-loop PP algorithm PP (G) (Alg. 2) without
any dependency can exploit parallelism. The input is an
undirected graph stored in the CSR format with the row
pointer and sorted adjacency arrays rptr and adj. Let us
denote the set {v|v ∈ N(u) ∧ u < v} by N+(u). We show
the data structures of Alg. 2 in Fig. 4, including the CSR,
vertex-related auxiliary structures, and the output edge list
and mapping. We describe the three loops as follows.

end1
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rptr

adj

1 4 6 8

0 1 2 3vid

upptr

elptr

0 2 5 8

his 1 2 1 0

0 1 3 4 4

el
0 1 1 2

1 2 3 3

endeid 0 0 1 2 1 3 2 3

end

0 1 2 3vid
u < v

u > v

Figure 4: An example showing data structures in PP (G)

Firstly, we create auxiliary arrays upptr and his to record
the start position of N+(u) in the adj adjacency array and
|N+(u)| for each vertex u, respectively. Each upptr(u) is
found by a search on the sorted adjacency list of N(u).
Secondly, we compute an exclusive prefix sum on the his
to get the write locations in the edge list el (denoted by
elptr) for the edges with u as its source vertex. Thirdly,
we go through each element in the adj array in a two-level
loop, and record the position of v ∈ N(u) as ouv. When
we process a vertex v ∈ N+(u), we (1) create the mapping
eid(ouv) by adding elptr(u) to ouv’s relative offset from the
start position upptr(u), and (2) assign e(u, v) to the edge
list (Lines 13-15). Otherwise, we invoke a binary search on
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Algorithm 2: Pre-Processing (PP (G))

Input: an undirected graph G = (VG, EG)
Output: an edge list el and an edge mapping eid

1 el← an array of size |E|, eid← an array of size 2|E|
2 his, upptr ← arrays of size |V |
3 elptr ← an array of size |V |+ 1, elptr(0)← 0
4 foreach u ∈ V do
5 upptr(u)← SearchGreater(adj, rptr(u), rptr(u+ 1), u)
6 his(u)← rptr(u+ 1)− upptr(u)

7 foreach u ∈ [0, |V |) do elptr(u+ 1)← elptr(u) + his(u)
8 foreach u ∈ V do
9 foreach v ∈ N(u) do

10 if u > v then
11 ovu ← SearchEqual(adj, rptr(v), rptr(v+1), u)
12 eid(ouv)← elptr(v) + (ovu − upptr(v))

13 else
14 ei← elptr(u) + (ouv −upptr(u)), eid(ouv)← ei
15 el(ei)← e(u, v)

16 return the edge list el and the mapping eid

N(v) to locate ovu and create the mapping eid(ouv) by using
the edge with v as the source vertex (Lines 10-12). The first
and last loops (Lines 4-6 and 8-15) perform the independent
vertex-related computation, and the second loop (Line 7)
can be parallelized by a two-pass prefix sum algorithm [33].
Thus, all three loops can be efficiently parallelized.

Time Complexity of PP (G). Let dmax denote the max-
imum degree of G. Time complexity of PP (G) is O(|V | ·
log(dmax)) for upptr and his initialization, O(|V |) for prefix
sum computation on elptr, and O(|E| · log(dmax)) for the
edge mapping and edge list creation in the third for-loop,
where O(log(dmax)) is the complexity of a binary search on
a sorted neighbor set (Lines 5 and 11 of Alg. 2).

3.2 Support Initialization (SI)
In this stage, we extend a bitmap-based all-edge trian-

gle counting algorithm [11] (BMP-TC), to pack the bitmap
of N(u) into indexed non-zero 64-bit machine words and
make use of the indexed words to perform word-wise multi-
ple bitmap look-ups with a single operation.

Word Packing (WP). The neighbor set of a vertex u
can be represented in a bitmap B(u) of cardinality |V |, by
setting each v’th bit (∀v ∈ N(u)) in the B(u) and leaving
the other bits as zeros. In practice, many words of B(u)
contain all-zeros, especially for a u with a small |N(u)| value.
Therefore, we index the non-zero words of the bitmap B(u),
via storing a set of indexes for the non-zero words in B(u),
and keeping the associated set of the non-zero word content.
We denote the word index and content of a vertex u by
WI(u) and WC(u), respectively. The WI(u)(i)’th word of
B(u) has the non-zero word content WC(u)(i). For example,
given a system with 3-bit words, a packed structure of vertex
1, WI(1) = {0, 1} and WC(1) = {0b101, 0b100}, means that
vertex 1 has the neighboring vertices 0, 2 and 3.

As illustrated in Alg. 3, before BMP-TC, we pack the
words of B(u) for each vertex u and prepare the packed
words WI(u) and WC(u) (Lines 1-4). Initially, we reset all
the word indexes and contents for each vertex, and then
test whether its neighborhood is dense enough for the word
packing. Specifically, we compute a pack ratio pr(u) of a
vertex u as |N(u)| divided by |WI(u)|. Intuitively, the pack
ratio represents the average percentage of non-zero bits in
the packed words. To reduce the memory consumption, we
allow users to input a neighbor set word-packing threshold
wpt and only pack the neighbor set of a vertex u with a high
pack ratio (pr(u) > wpt) into indexed non-zero words.

Triangle Counting (TC). For completeness, we give the

Algorithm 3: Support Initialization (SI(G,wpt))

Input: an undirected graph G = (VG, EG) and a neighbor
set word-packing threshold wpt

Output: a support array sup
1 WI , WC ← arrays of size |V | for indexes and words
2 foreach u ∈ V do WI(u)← empty, WC(u)← empty
3 foreach u ∈ V and |N(u)|/|WI(u)| > wpt do
4 WI(u),WC(u)← PackWords(N(u))
5 foreach u ∈ V do
6 B ← a bitmap of cardinality |V |
7 foreach v ∈ N(u) do SetBit(B, v)
8 foreach v ∈ N(u) and
9 ((d(u) > d(v)) or (d(u) = d(v) and u < v)) do

10 if WI(v) is empty then
11 sup(e(u, v))← CountMatch(B,N(v))
12 else
13 sup(e(u, v))← CountMatch(B,WI(v),WC(v))

14 foreach v ∈ N(u) do ClearBit(B, v)

15 return the support array sup and the elapsed time
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Figure 5: An example showing our word-packing technique

existing direct triangle counting algorithm [11] in Lines 5-14
of Alg. 3. Our word-packing-based triangle counting opti-
mization is plugged into the algorithm at Line 13.

In BMP-TC, we loop over each vertex u ∈ V and compute
|N(u)∩N(v)| for each vertex v ∈ N(u). In order to compute
each sup(e) exactly once, we add a degree-based ordering
constraint (Line 9). For each vertex u, we (1) dynamically
construct a bitmap B by setting v’s bits for each v ∈ N(u),
(2) reuse the bitmap for the intersections |N(u)∩N(v)| (∀v ∈
N(u)), and (3) reset the bits as all-zeros after finishing the
computation on the vertex u.

Time Complexity of BMP-TC. The bitmap construc-
tion and clearing cost of N(u) is in amortized constant time,
since the bitmap is constructed once and reused for each
|N(u) ∩ N(v)| (v ∈ N(u)) totaling |N(u)| times. Thus,
the computational cost is mainly from iterating each w ∈
N(v), looking up N(u)’s bitmap, and counting the matches
(Line 11). A match is a vertex w that is in both N(v)
and N(u). Given the degree-based ordering (Line 9), for
each |N(u)∩N(v)| computation, we perform min(d(u), d(v))
bitmap probe operations. Given the constant time complex-
ity of bitmap operation cost, we have an O(min(d(u), d(v)))
time complexity for computing |N(u) ∩N(v)|.

In our WP-based BMP-TC (Line 13), we use the packed
words to perform a single operation for multiple look-ups.
Fig. 5 shows an example to illustrate this technique. To com-
pute sup(e(1, 3)), we go through the indexed packed words
of vertex 3, and directly look up the 0th word in the bitmap
B(1). We then perform a word-wise logical-and operation
between 0b101 (0th word of B(1)) and 0b011 (WC(3)(0)) to
get 0b001, and pop the count of 1-bits in the word to get
the match count 1. After that, we assign the count 1 to
sup(e(1, 3)). Without the packed words, we have to per-
form two look-ups and bit-masking operations to check the
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existence of an element in the bitmap B(1). This example
shows that the WP technique reduces the workload.

3.3 Support Update (SU)
In the iterative edge peeling (IEP) stage, we operate on a

mutable graph G and find each k-class Φk (Alg. 4). We use
P (e), which is initially false, to mark the removal status of
an edge e ∈ G. Given l as the current level (l = k − 2), for
each remaining edge e, SU is to compute max(l, sup(e,G−
QC)), assign it to the sup(e), and maintain the edges to
process in the queues QN and QI . We put an updated edge
e into QN for then next iteration, once sup(e) decrements
to the current level l but is not in QN yet.

As discussed in Sect. 2.2, existing TPSU algorithms have
two weaknesses: (1) unnecessary support update operations
for the edges to be removed and (2) intensive random mem-
ory accesses on the edges of enumerated triangles. To ad-
dress these weaknesses of TPSU, we propose to dynamically
select triangle counting and peeling procedures (DSTCP)
based on their estimated time (Lines 13-15 of Alg. 4).

The triangle peeling (TP) procedure, in Lines 20-24 of
Alg. 4, loops over each e(u, v) ∈ QC to perform triangle
enumeration N(u) ∩ N(v) and update support and queues
for each triangle 4uvw. After the loop, all the edges in QC

are marked as processed. Different from Alg. 1, the delayed
edge removals incur a challenge to the design of a correct
peeling procedure, in which each triangle 4uvw is peeled off
exactly once, since both e(u, v) ∈ QC and e(u,w) ∈ QC can
enumerate the same triangle 4uvw and trigger the support
update of e(v, w). For an edge e(v, w), we decrement its
support value only once for a given triangle 4uvw.

The support update for each enumerated triangle is in
Lines 25-34. Suppose a triangle exists after checking the flag
P (Line 28). There are three conditions in peeling a single
triangle. We denote the three edges in the triangle by e1,
e2, and e3, and consider three cases in peeling this triangle.
(1) If all these edges are in QC , no support update is needed,
since all three edges are to be removed and already in the
k-class Φk (Line 27). Thus, we save the checking of both
P and sup. (2) If we have e1 ∈ QC only and e2, e3 /∈ QC ,
then the support update will be applied to both e2 and e3
(Line 30). (3) If we have two edges ex, ey ∈ QC and ez /∈ QC ,
we choose the edge with the smaller edge ID in ex and ey
to apply the update for ez (Lines 31-34). In summary, the
algorithm avoids the P (e) and sup(e) checking for an edge
e ∈ QC if all edges in the triangle are in QC , and ensures
each triangle is peeled off exactly once.

The triangle counting (TC) procedure (Lines 35-39) peels
the edges, compacts the adjacency lists and then invokes a
similar procedure to the support initialization SI(G,wpt)
except (1) the support value is set to max(sup(e), l) and
(2) the queues QN and QI are updated. When a large num-
ber of triangles are peeled off in an iteration, the TC proce-
dure is likely to have less workload than the TP procedure,
because the edges of those triangles may mostly belong to
QC , and the graph compaction in the TC procedure avoids
unnecessary update for these edges. Also, the WP technique
(discussed in Sect. 3.2) further reduces the workload of TC.

We estimate the time of the TC procedure via multiply-
ing the support initialization time TSI by the remaining
portion of edges (|EG| − |QC |)/EG0 , and the time of the
TP procedure via dividing the estimated triangle peeling
workload |4QC | = l · |QC | by the estimated triangle peel-

Algorithm 4: Optimized Truss Decomposition

Input: an undirected graph G0 = (VG0
, EG0

), a neighbor
set word-packing threshold wpt, a graph
compaction threshold ct, an estimated peeling
throughput ept, and an index range size rs

Output: all the i-classes Φi of G0 (i ≥ 2)
1 G← G0, el, eid← PP (G), sup, TSI ← SI(G,wpt)
2 k ← 1, nrm ← 0, foreach e ∈ E do P (e)← false
3 while |E| > 0 do
4 k ← k + 1, Φk ← ∅, l← k − 2
5 if (l mod rs) = 0 then
6 QI ← {e|e ∈ E ∧ sup(e) ∈ [l, l + rs)}
7 QC ← {e|e ∈ QI ∧ sup(e) = l}, QN ← ∅
8 while |QC | > 0 do
9 Φk ← Φk ∪QC

10 if |QC | = |E| then break
11 if nrm > ct then CompactAdj(G,P ), nrm ← 0
12 if k = 2 then PeelEdges(P,QC , nrm)

13 else if TSI ·
|EG|−|QC |

EG0
<

l·|QC |
ept then

14 CountTri(G,P,QC , QN , nrm, wpt)

15 else PeelTri(G,P,QC , QN , nrm)
16 Swap(QC , QN ), QN ← ∅
17 return {Φi | 2 ≤ i ≤ k}
18 Procedure PeelEdges(P,QC , nrm)
19 foreach e ∈ QC do P (e)← true, nrm ← nrm + 1
20 Procedure PeelTri(G,P,QC , nrm)
21 foreach e(u, v) ∈ QC do
22 foreach w ∈ N(u) ∩N(v) do
23 PeelSingleTri(4uvw, P,QC , QN , QI)

24 PeelEdges(P,QC , nrm)

25 Procedure PeelSingleTri(4uvw, P,QC , QN , QI)
26 e1 ← e(u, v), e2 ← e(u,w), e3 ← e(v, w)
27 if (e2 /∈ QC or e3 /∈ QC) then
28 if not P (e2) and not P (e3) then
29 if e2 /∈ QC and e3 /∈ QC then
30 Op(e2, sup,QN , QI), Op(e3, sup,QN , QI)
31 else if e3 ∈ QC and e1 < e3 then
32 Op(e2, sup,QN , QI)

33 else if e2 ∈ QC and e1 < e2 then
34 Op(e3, sup,QN , QI)

35 Procedure CountTri(G,P,QC , nrm, wpt)
36 PeelEdges(P,QC , nrm), CompactAdj(G,P ), nrm ← 0
37 SI(G,wpt)
38 foreach e ∈ G do
39 sup(e)← max(sup(e), l), UpdateQ(QN , QI , sup)

ing throughput ept: TTC = TSI · (|EG| − |QC |)/EG0 , and
TTP = l · |QC |/ept. If TTC > TTP , we choose the TP proce-
dure; otherwise, we choose the TC procedure.

3.4 Triangle Enumeration (TE)
In our TP-based support update (Lines 20-24 of Alg. 4),

we conduct TE on each edge e(u, v) ∈ E in the current queue
QC to find the edges whose support values are changing. We
propose three techniques to reduce the number of triangle
existence checking operations in TE: (1) using a pivot-skip
merge algorithm to handle the data skew, (2) compacting
the graph periodically to reduce false-positives and save the
P checking cost, and (3) skip the unnecessary enumeration.

Pivot Skip Merge (PSM). TE in truss decomposition
is different from a traditional one. Traditionally, for an edge
e(u, v), we enumerate each triangle 4uvw that e(u, v) is in
by recording a triplet (u, v, w). In truss decomposition, to
facilitate SU, we further find the offsets of w in the adja-
cency lists N(u) and N(v), and map the offsets to the edge
list domain using the edge mapping array. In our neighbor
set intersection, we store the offsets related to e(u,w) and
e(v, w) instead of the vertex ID w. PSM of two sorted arrays
N(u) and N(v) is shown with an example in Fig. 6, where
u and v have a large and small degree, respectively.

In PSM, we initialize the pivot values w and w′ in N(v)
and N(u) to be the first element of the corresponding adja-
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match

i = 1: advance i = 2: reach the end, we are done

rptru

rptrv

end

end

u

v
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0 100 999

1 9982 100 ……

i = 0 i = 1

i = 0

pivot value

offset skip

offset

iteration #i

match

Store the (rptru, rptrv) pair

rptru ++

rptrv ++

Figure 6: An example showing our pivot-skip merge

cency list. Our merge iterates in three steps. Firstly, we use
the pivot value w in N(v) and skip in N(u) to locate the first
element w′ ≥ w, which is the next pivot value in N(u). The
skip is implemented via a galloping search, which skips the
offset rptru at increasing sizes 0, 20, 21, ..., 2i, 2i+1 until we
reach the end of an element tmp > w, and then locates the
exact position with a binary search in the skip area [2i, 2i+1).
Secondly, we use the pivot value w′ in N(u) and skip in N(v)
to locate the first element w ≥ w′. Thirdly, we test whether
there is a match of the pivot values of the two lists. If a
match occurs, we store the offset pair (rptru, rptrv) into a
result array and increment the offsets rptru and rptrv.

Time Complexity of PSM. Suppose two vertices u and
v and d(v) < d(u), the skip cost in N(v) is bounded by
|N(v)|, i.e., O(d(v)). Let s[i] denote the skip size in N(u).
In each skip step, the galloping skips and the binary search
both take the O(log(s[i])) time complexity, and there are at
most 2 · dv iterations to advance the offset of v’s neighbor
set to the end. We sum up the cost of each skip step in
N(v), add the total skip cost in N(u), and get the time
complexity O(Σi∈[0,d(v)) log(s[i]) + d(v)). In practice, the
average logarithms of skip size (Σi∈[0,d(v) log(s[i]))/d(v) is
small. Thus, the computational cost is O(min(d(u), d(v))).

Graph Compaction (GC). After many edges are peeled
off, the checking of triangle existence and processing status
P on these removed edges is unnecessary, because they do
not trigger any support update. To eliminate this check-
ing, we compact the adjacency list and the edge mapping
arrays when the accumulated number of edge removals nrm

is greater than a user-specified threshold ct. This threshold
is set in consideration of the compaction overhead and the
benefit of the memory access reduction in TE.

end

end
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Figure 7: An example showing our graph compaction

We show the idea of GC in Fig. 7. To track each N(u)
after the compaction, we introduce an array reptr to record
the end-of-row pointer for each adjacency list. The pointers
rptr(u) and reptr(u) represent the start and end positions
of N(u) in the adjacency array adj. Initially, reptr(u) is
assigned rptr(u + 1). The reptr(u) is updated after a GC
invocation (Line 11 of Alg. 4) whereas rptr(u) remains un-
changed. In GC, for a vertex u, we loop over each v ∈ N(u)
and utilize the edge mapping and the processing flag arrays
to determine whether a vertex v should be removed from
N(u). If v should not be removed, we assign the corre-
sponding neighbor (adj) and edge mapping (eid) values to
the next write location nwl, and then increment nwl; oth-

erwise, we take no operation. Finally, we update reptr(u)
to nwl, which serves as the new end position of N(u).

Time Complexity of GC. Suppose G0 is the input
graph, and G is the compacted graph. The time complexity
of GC is O(|EG0 |), since we perform GC at most ct (con-
stant) times, and touch O(|EG|) elements each time.

Enumeration Skipping (ES). We can safely skip the
triangle enumeration in the first and last iterations. In the
first iteration (Line 12, k = 2, l = 0), no triangle contains
an edge in QC , since all edges have a support value of zero.
Thus, we mark all the edges e ∈ QC as processed and pro-
ceed to the next level without any update of the empty QN .
In the last iteration, the number of remaining edges |E| is
equal to the current queue size |QC | (Line 10). It indicates
no edge remains after the iteration, so no further support
update is required. We can terminate early right after con-
structing the last k-class Φk.

3.5 Edge Filtering (EF)
As discussed in Sect. 3.3, during the support update (SU),

we maintain QN in both the TC and TP procedures to track
the edges with support value l. At the end of an iteration,
we put the content of QN into QC , and then clear QN to
prepare for the next iteration in level l (Line 16). However,
for the first iteration in level l, we must scan all edges (EG0)
to filter the edges with the support value l.

We profile the execution and find that for a specific level,
the selectivity (|QC |/|EG0 |) may be low. Thus, we propose
to track the edges with support values sup(e) ∈ [beg, beg +
rs). Initially, beg is 0, and rs is a parameter. The variable
beg is incremented by rs, and a reconstruction of the index
is required once every rs levels (Lines 5, 6 of Alg. 4). With
the index QI , for the edge filtering (Line 7 of Alg. 4), we
scan each edge e ∈ QI to compute QC , and scan e ∈ EG0

once every rs levels to reconstruct both QI and QC . SU
triggers the update of QI . Specifically, when e’s support
value sup(e) ∈ [beg, beg + rs), but e /∈ QI , we add e to QI .

Time/Memory Complexity of EF. The memory cost
of QC , QN , and QI is bounded by O(|E|), since we add
each edge to the queues only once. The computational cost
of checking e ∈ QN and e ∈ QI is O(|4|), since each enumer-
ated triangle triggers queue update operations. The compu-
tational cost of queue update is O(|E|) since each edge is put
into the queues only once. When a large number of triangles
are peeled-off, our TC procedure (Line 14 of Alg. 4) reduces
O(|4|) checking cost (e ∈ QN and e ∈ QI) to O(|E|), since
we do the checking only once for each edge e ∈ QC . When
|4| is much larger than |E|, most triangles are often peeled
off in only a small number of iterations. Thus, for those
cases, the time complexity of our index maintenance can be
regarded as O(|E|) instead of O(|4|).

Difference from Existing Techniques. MSP [20] in-
dexes the edges by grouping the edges with identical support
values into a bucket (MSP-IDX), whereas we only maintain
a single bucket of edges, support values of which are in a
range. Julienne [16, 32] provides a similar bucketing struc-
ture to MSP-IDX. The computational cost of MSP-IDX is
O(|4|), since each triangle affects the bucket update of two
edges. The memory cost of MSP-IDX is O(|4|), since all
triangles are expanded and grouped by edges for lock-free
bucket maintenance [20]. Our approach has a memory com-
plexity O(|E|), lower than O(|4|) of MSP-IDX. In practice,
the computational cost of checking e ∈ QI and e ∈ QN
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in our approach is less than that of updating the bucket
structure in MSP-IDX. Moreover, our TC procedure further
reduces the checking cost for intensive triangle peeling cases.

3.6 Algorithm Analysis
Memory Complexity. An input graph rptr and adj ar-

rays in the CSR format is in O(|E|+ |V |) space. Auxiliary
arrays upptr, his, elptr, and reptr for pre-processing and
graph compaction are in O(|V |) space. Packed words WI

and WC and a dynamically constructed bitmap B for sup-
port initialization are in O(|E|+ |V |) space. Edge list, edge
mapping, support values, and processing flag arrays el, eid,
sup, and P are in O(|E|) space. Queues QC , QN , and QI

for edge filtering are in O(|E|) space. Therefore, the total
memory complexity of our algorithm is O(|E|+ |V |).

Time Complexity. As discussed in Sect. 3.1, the PP
stage is in O((|V |+|E|)·log(dmax)) time. SI’s computational
cost is dominated by BMP-TC. As described in Sect. 3.2,
each |N(u) ∩ N(v)| computation is in O(min(d(u), d(v)))
time complexity. Given this complexity, BMP-TC is in
O(|E|1.5) time, as proved in prior triangle listing work [35].

Computational cost of IEP consists of triangle enumera-
tion (TE), O(|4|) support value update (SU), and O(|4|)
edge filtering (EF) time. We utilize PSM for TE, which has
a time complexity O(min(d(u), d(v))) (proved in Sect. 3.4).
Given thisO(min(d(u), d(v))) complexity, TE is inO(|E|1.5)
time [38]. This is because the overall time complexity bound
of TE is in

∑
e∈E min(d(u), d(v)) = O(α · |E|) , where α is

the arboricity of the graph [13]. In the worst case, this

bound is O(|E|1.5) since α ≤
√
|E| [13]. We further reduce

the TE workload via GC and ES techniques in O(|E|) and
constant time, respectively. As discussed in Sect. 3.5, with
our TC-based SU procedure, when most triangles are peeled
off in several iterations, the time complexity of EF is O(|E|)
instead of O(|4|). Therefore, the total time complexity of
our algorithm is O(|E|1.5). Even though the time complex-
ity bound is the same as prior work [38], our optimizations
significantly reduce the practical workload.

Extension. TC in SI can be extended to other TC meth-
ods, as long as the TC result |N(u) ∩N(v)| is written back
to sup(e(u, v)). TE N(u) ∩N(v) can also be replaced with
other set intersection methods used in TC, provided that
the offsets of matched elements in the adjacency array are
recorded, which are used for subsequent update operations
of QN and QI . The support re-initialization SI(G,wpt)
(Line 37 of Alg. 3) in the TC-based SU procedure (Lines 35-
39 of Alg. 3) can also be extended with similar methods to
those in SI. However, support value increment and queue
update should be performed after or during TC (Line 39 of
Alg. 3) for the correct support value update and indexing.

4. IMPLEMENTATION
In this section, we describe the parallelization of our algo-

rithms, techniques to offload some computation to the GPU,
and more optimization techniques on the CPUs.

4.1 Parallelization on the CPUs
We exploit the parallelism in the outermost foreach-loop

of nested loops in Alg. 2-4 and use OpenMP [3] to imple-
ment them. We have described the parallel pre-processing
in Sect. 3.1. In the support initialization, the word-packing
and triangle counting loops carry no dependency; we allo-
cate a local bitmap for frequent reuse in a single thread. In

the graph compaction, we parallelize the independent com-
putation on vertices whose neighbor sets are updated. The
update status of a vertex is recorded with a boolean array
and is updated in the edge peeling related to the vertex.

To handle concurrent support update and dynamic queue
maintenance, we adopt gcc built-in atomic primitives [2].
Specifically, we adopt an atomic compare-and-swap (CAS)
primitive, which compares the value in a memory address
with the target value and swap the value in the memory
with a new value only when the compared and target values
are equal. We also use atomic fetch-and-add and fetch-and-
subtract primitives, each of which consists of read, modify,
and write steps as an atomic operation.

Update of sup and QN . Given the atomic primitives,
to ensure the correct support value update and unique en-
queueing in QN for an edge e (Lines 30 and 39 of Alg. 4), we
further introduce a concept token and a roll-back operation
of sup(e). The thread who reads the value l+1 in an atomic
fetch-and-subtract operation of sup(e) is regarded as having
the token, and only this thread with the token enqueues e to
QN . However, other threads may decrement sup(e) to pro-
duce a sup(e) < l. To roll back the over-subtractions and
increment sup(e) to l, we execute atomic-add instructions
for those threads. To enqueue edge e into QN , we atomi-
cally increment a global variable sz storing the size of QN ,
and write e into the sz position of QN . Recall that we have
a boolean array of size |E| to record the occupation status of
QN . We directly set e’s flag in the array without contention,
as only the thread with the token can update e’s status.

Update of QI . When sup(e) is in the range [beg, beg +
rs), we update the index structure QI . However, given
rs > 1, multiple threads may update QI for the same edge
e concurrently. Therefore, we adopt the CAS operation on
the memory address of the occupation flag for e ∈ QI , with
the target value false and the new value true. The thread
that successfully sets the flag as true is regarded as having
the token and can further perform an enqueue operation on
QI . The enqueue operation of QI is similar to QN . We
implement the same operation of QI in both the support
update and edge filtering (Line 6 of Alg. 4) procedures.

4.2 Offloading Techniques
The Nvidia GPU has tens of Streaming Multiprocessors

(SMs), on which hundreds of thread blocks can be exe-
cuted simultaneously. Because the SI and IEP stages are
computation-intensive, we offload them to GPU by launch-
ing CUDA (Compute Unified Device Architecture) kernel
programs. A kernel runs in a grid of thread blocks, which
are scheduled on the SMs. Recently, a unified memory tech-
nique (UM) is supported, which provides a unified virtual
memory address space for both CPUs and GPUs. Memory
pages are transferred on-demand on page faults in UM.

Implementation Overview. We utilize UM to allocate
the data structures addressable by both CPUs and GPUs,
and design kernels to parallelize the loops in the SI and IEP
stages. In addition, we use the parallel primitive library
CUB [1], including histogram, prefix sum, and selection ker-
nel function templates, in GC and EF implementation.

In the SI stage, we map each word-packing task to a GPU
thread, set the block size to 4 warps (128 threads) to achieve
full occupancy (16 concurrent blocks on an SM). The num-
ber of thread blocks in the grid is d|V |/128e thread blocks.

In the TC loop of SI, we allocate SM local storage to store
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the bitmaps and use a flag array to mark the occupation
of each bitmap. We map TC tasks sup(e(u, v)) computa-
tion between a vertex u and each v ∈ N(u) to a thread
block, and each |N(u)∩N(v)| computation to a warp in the
thread block. The bitmap is acquired and released by a sin-
gle thread in the block via CAS operations to get the token
for the corresponding bitmap. After the bitmap acquisition,
the bitmap is constructed by all the threads in the block
using atomic-or operations. We synchronize the threads in
the same block for the bitmap acquisition, construction, and
release. There are in total |V | thread blocks for TC.

In TP-based SU, we adopt binary search instead of gal-
loping search to eliminate loop-carried dependencies since
we exploit fine-grained parallelism within each SM. We map
each processing task of an edge e(u, v) ∈ QC into a thread
block. Threads in the same block loop over v ∈ N(u)
(d(v) < d(u)) and perform binary search on each v.

In the edge filtering, we parallelize the initialization of
the QI slot occupation flag array, and then invoke a selec-
tion CUB kernel to filter the edges in a support value range
[beg, beg + rs). We perform QC filtering from QI similarly.

CPU-GPU Co-Processing. When data structures ex-
ceed the GPU memory capacity size, the intensive random
memory accesses in the IEP stage cause many page swaps
and result in the under-utilization of SMs. Thus, we pro-
pose two CPU-GPU co-processing strategies to tackle the
problem. First, we can offload the edge peeling iterations
to the GPU at the beginning, periodically compact adja-
cency lists (CSR), edge mapping, edges list, support values,
and queues, and record the mapping to the original edge
offsets (EG0). Alternatively, we can perform the edge peel-
ing phases of the first few levels on the CPU, compact all
the data structures once on the CPU, and offload the re-
maining peeling iterations to the GPU at the beginning of a
k-class finding phase when the compacted storage is within
the GPU memory capacity. Subsequently, we compact only
the CSR and edge mapping arrays on the GPU.

4.3 Optimizations
First, we dynamically select the pivot-skip merge (PSM)

and a vectorized block-wise merge (VM) [11] based on a data
skew ratio d(u)/d(v) (suppose d(u) > d(v)). The VM proce-
dure incurs more comparison operations but processes more
data in each CPU cycle [11]. We exploit AVX-512 instruc-
tions in VM via intrinsic functions on the Intel Xeon CPU.
Second, we introduce local write buffers for the queue main-
tenance to reduce the number of atomic-add instructions at
the cost of copying the content from the local buffers to the
global queues. An alternative concurrency control mecha-
nism is hardware transactions; unfortunately the contention
is high on these global queues and therefore makes hardware
transactions unsuitable. Last, we store the processing flag
array P (described in Sect. 3.3) in a bitmap that supports
the atomic set and unset operations to enable the bitmap-
based filtering (BMPF) word by word, which reduces the
workload of edge filtering when most edges are processed.

5. EVALUATION
In this section, we evaluate the effectiveness of individual

techniques on the CPUs, the offloading techniques on both
CPUs and GPUs, and scalability of our algorithms on large
datasets. We compare our optimized algorithms with others
and summarize experimental findings.

Table 2: Statistics of real-world and synthetic graphs
Dataset |V | |E| |4| max-d(u) max-φ(e)

orkut (OR) 3.1 · 106 1.2 · 108 6.3 · 108 3.3 · 104 78

web-uk (WU) 1.9 · 107 1.5 · 108 2.2 · 109 1.7 · 105 944

web-eu (WE) 1.1 · 107 1.9 · 108 3.4 · 1011 1.8 · 105 9, 667

webbase (WB) 1.2 · 108 5.3 · 108 6.9 · 109 8.0 · 105 1, 226

web-it (WI) 4.1 · 107 5.8 · 108 2.4 · 1010 1.2 · 106 3, 210

twitter (TW) 4.2 · 107 6.8 · 108 2.4 · 1010 1.4 · 106 1, 517

s22-16 4.2 · 106 6.4 · 107 2.1 · 109 1.6 · 105 543

s23-16 8.4 · 106 1.3 · 108 4.7 · 109 2.6 · 105 718

s24-16 1.6 · 107 2.6 · 108 1.0 · 1010 4.1 · 105 936

s25-16 3.4 · 107 5.2 · 108 2.3 · 1010 6.4 · 105 1, 203

s26-16 6.7 · 107 1.1 · 109 4.9 · 1010 1.0 · 106 1, 522

s27-16 1.3 · 108 2.1 · 109 1.1 · 1011 1.6 · 106 1, 913

s28-16 2.7 · 108 4.2 · 109 2.3 · 1011 2.5 · 106 2, 359

s29-16 5.4 · 108 8.5 · 109 5.0 · 1011 3.8 · 106 2, 879

5.1 Experimental Setup
On the CPUs, we evaluate our individual techniques in

the three stages of the truss decomposition: pre-processing
(PP), support initialization (SI), and iterative edge peeling
(IEP). Our baseline is the parallel PKT implementation [21].

We first evaluate our parallelization (P) of the PKT-PP
stage, and then evaluate the following techniques to improve
the PKT-SI stage: (i) the direct triangle counting (DTC)
and (ii) our word-packing (WP) based DTC. We next eval-
uate our techniques for the most time-consuming IEP stage.
Specifically, we start from the PKT-IEP and enable our tech-
niques one-by-one in the following order: (i) the pivot-skip
merge (PSM), vectorized merge (VM), graph compaction
(GC) and enumeration skipping (ES) in the triangle enu-
meration, (ii) the dynamic selection of triangle counting and
peeling procedures (DSTCP) in the support update, and
(iii) the bitmap filtering of P (BMPF) and the indexing of
QI (IDX) in the edge filtering. After that, we further eval-
uate the scalability to the number of threads nt and break
the time of our optimized truss decomposition into five com-
ponents: the PP and SI stages, and three components of the
IEP stage (i) graph compaction (GC), (ii) support update
(SU), and (iii) edge filtering (EF). Moreover, we discuss the
effect of four parameters: (i) wpt for WP, (ii) ct for GC,
(iii) ept for DSTCP and (iv) rs for EF.

On the heterogeneous processors, we first evaluate the ef-
fect of offloading the SI stage to the GPU (OFF-SI). We
then analyze the difference between our two strategies in the
IEP stage: (i) offloading the entire IEP stage to the GPU
(OFF-EIEP) and (ii) computing the first few k-classes,
compacting the storage once on the CPU and then offloading
the remaining computation to the GPU (OFF-RIEP).

Finally, we evaluate the scalability of algorithms on large
datasets and compare our optimized implementations on
the CPUs (OPT-CPU) and heterogeneous processors (OPT-
HPU) with (1) PKT [21], (2) MSP [34], (3) H-IDX [30], and
(4) our enhanced H-IDX (H-IDX+) with the data skew han-
dling and edge mapping techniques on six graphs.

Environments. We conduct experiments on a Linux
server with an Nvidia V100 GPU. The server has two 10-
core 2.4GHz Intel Xeon Gold 5115 CPUs. The L1, L2, L3
cache, and DRAM sizes of the server are 64KB, 1024KB,
13.75MB, and 256GB, respectively. The Nvidia GPU has
80 SMs and 64 cores per SM. We obtain the implementa-
tions of PKT [21], MSP [34], H-IDX [30] from the authors
and implement our algorithms and H-IDX+ on the CPUs in
C++. We compile all the algorithms with g++ 7.3.1. We
implement our GPU algorithms in CUDA 9.2 and compile
them with nvcc 9.2.88 with -O3 option. The source code for
the experiments is publicly available [12].
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Datasets and Parameters. We select six representative
real-world graphs from SNAP [22] and WebGraph [6,7]. We
remove self-loops and multi-edges of directed graphs from
WebGraph to obtain undirected graphs for truss decompo-
sition. We generate synthetic RMAT graphs via open-source
tools [9,10]. In RMAT graph generation, we set the average
degree to 32 and a scale factor s ∈ [22, 30) to vary |E| from
64 million to 8 billion. Statistics of real-world and synthetic
RMAT graph are listed in Table 2. By default, we set the
input parameters as follows for best performance: number
of CPU threads nt = 40, word-packing threshold wpt = 2,
graph compaction threshold ct = 100, edge-peeling through-
put ept = 2 · 109, and range size rs = 16.

Metrics. We run each experiment three times and report
the average in-memory processing time. The time variance
from the average is less than 5%. In the time breakdown of
the IEP stage, we report the accumulated time of all the iter-
ations for GC, SU, and EF. In the evaluation of our offload-
ing strategies, we use an nvprof tool to profile the amount
of data transfer and the transfer time between processors.

5.2 Evaluation of Individual Techniques
Effect of the Techniques for the PP and SI Stages.

We first compare our parallel pre-processing PP+P with the
baseline PKT-PP. Our PP+P has O(|V |+ |E|) search over-
head in the computation of the histogram and reverse edge
finding. However, the benefit of parallel execution offsets
the overhead. Results (the three bars on the left in Fig. 8)
show that we reduce the PP time by up to 6.5x.

We then evaluate the effect of direct triangle counting
(DTC) and word-packing (WP) in the support initialization
(SI) stage. Results (the three bars on the right in Fig. 8)
show that DTC achieves speedups of 10.9x, 9.9x, and 4.1
over the baseline PKT-SI on WE, WI, and TW, respectively.
DTC speeds up less on TW than on the web graphs because
triangle enumeration takes more time for mismatches than
that for matches on TW. Our word-packing further improves
SI-DTC by performing multiple word-wise look-ups in a sin-
gle operation, which achieves a speedup of 18.9x on WE. The
large speedup is because WE has dense local structures for
WP. The effect of WP is less significant on WI and TW than
on WE because of its relatively low pack-ratio, i.e., the ratio
of |N(u)| over |WI(u)| (discussed in Sect. 3.2).

Effect of the Techniques for the IEP Stage. We
evaluate the techniques for the triangle enumeration, sup-
port update, and edge filtering components in Fig. 9.

We first evaluate the techniques for the triangle enumer-
ation (TE). Pivot-skip merge (PSM) speeds up by 11.7x on

Table 3: Effect of PSM
Number of Invocation Number of Comparison

Dataset VM PSM VM-only VM+PSM

WE 1.73 · 108 1.83 · 107 2.49 · 1012 2.16 · 1012

WI 4.14 · 108 1.69 · 108 2.55 · 1013 4.80 · 1011

TW 4.64 · 108 2.21 · 108 4.05 · 1013 2.5 · 1012

Table 4: Effect of GC (seconds)
GC Disabled GC Enabled

Dataset TGC TSU TGC TSU TIEP ↓
WE 0.0 643.2 1.4 625.5 16.3
WI 0.0 111.3 5.7 104.8 0.7
TW 0.0 347.4 11.6 185.2 150.7

TW and WI but slows down the execution on WE. This
different performance impact is because PSM handles data
skew (d(u) � d(v), given vertices u and v) at the cost of
a more irregular memory access pattern; both WI and TW
have data skew, whereas WE does not. The PSM optimiza-
tion is beneficial when a degree ratio d(u)/d(v) is large be-
cause of the large reduction on comparison operations. In
contrast, vectorized merge (VM) is good for the intersections
without data skew, and exploits vectorized instructions, e.g.,
AVX-512. As a result, VM reduces up to 100 seconds for
the WE and TW datasets when there are sufficient invoca-
tions. We set the degree ratio threshold to 50 and select
PSM for cases with data skew (d(u)/d(v) > 50) and VM
otherwise. We show the number of invocations of these two
functions (VM/PSM) and the number of comparisons with
and without PSM in Table 3. The results show that PSM
drastically reduces the number of comparisons on WI and
TW (> 16x) but not as much reduction on WE. Also, there
are more PSM invocations on WI and TW than on WE.

Graph compaction (GC) reduces the memory accesses of
the triangle enumeration at the cost of compaction. We
show the time of graph compaction (GC), support update
(SU), and iterative edge peeling (IEP) in Table 4. The re-
sults in Fig. 9 (+GC bar) show that GC achieves a speedup
of 1.6x on TW but has less impact on WE and WI. The dif-
ference is because, on WE and WI, most edges with a lot of
connections are peeled off at later levels, in which case GC
takes effect at later several levels on the two web graphs.
Moreover, enumeration skipping (ES) eliminates the trian-
gle enumeration of the first and last iterations. In particular,
in Fig. 9 (+ES bar), ES shows a large improvement on WE
because there is a big clique of 9, 667 edges peeled off at the
last iteration, which contains many triangles.

We next evaluate the effect of the dynamic selection of
triangle counting and peeling procedures (DSTCP). DSTCP
achieves a speedup of about 3x on WE and a moderate im-
provement on WI and TW. The difference is because, on
WE, three iterations in total in the two levels (l = 3700
and l = 9584) take in total hundreds of seconds if we only
use the triangle peeling (TP) procedure. With the triangle
counting (TC) procedure, less than five seconds are spent
on these iterations. This large performance gap comes from
three factors. (1) There are trillions of atomic update opera-
tions for the three iterations in the TP-only design. (2) The
graph compaction in TC eliminates accesses to trillions of
triangles, since most of the enumerated triangles are formed
by edges e ∈ QC . (3) The TC procedure has a workload
proportional to our WP-based SI. We profile the number of
last level cache (LLC) loads and misses via a perf tool and
show the results in Table 5. DSTCP improves performance
by reducing the number of LLC loads instead of the cache
miss ratio. The LLC load reduction is from (1) the reduc-
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Table 5: Effect of DSTCP
Number of LLC Loads Number of LLC misses

Dataset TP-only +DSTCP TP-only +DSTCP

WE 1.06 · 1012 1.87 · 1011 9.27 · 1010 2.01 · 1010

WI 1.02 · 1011 8.23 · 1010 2.02 · 1010 1.81 · 1010

TW 2.20 · 1011 2.33 · 1011 9.65 · 1010 9.81 · 1010

Table 6: Effect of BMPF and IDX on the CPUs (seconds)
Both Disabled BMPF Enabled BMPF+IDX Enabled

Dataset TEF TSU TEF TSU T ↓ TEF TSU T ↓
WE 73.1 67.1 98.5 69.2 -27.6 8.9 65.7 65.5
WI 70.7 71.6 11.5 70.4 60.4 5.5 67.8 68.9
TW 42.2 181.9 10.4 172.8 40.9 6.6 185.8 31.7

tion of support value update and queue maintenance oper-
ations and (2) workload reduction from our word-packing
technique in TC. The performance improvement of DSTCP
is significant when a massive number of triangles are peeled
off in only a few iterations, such as on the WE dataset.

Next, we evaluate the bitmap filtering (BMPF) and in-
dexing (IDX) optimization for the edge filtering (EF). We
show the edge filtering time (TEF ), the support update time
(TSU ), and the overall time reduction (T ↓) of BMPF and
IDX in Table 6. On WE, BMPF slows down the execution;
in contrast, on WI and TW, it reduces the EF time by 6.1x
and 4.0x, respectively. This is because, on WE, most edges
are removed after level 9584, which is close to the maximum
truss number of WE; in comparison, on WI and TW, BMPF
takes effect much earlier. Finally, IDX improves EF by re-
ducing the number of scanned edges at the cost of maintain-
ing the index QI . It performs well on the web graphs but
is not the best choice on TW. The reason is that, on TW,
the index maintenance cost offsets the time reduction of EF;
whereas on the web graphs, the index maintenance cost is
reduced to O(|E|) in practice by the DSTCP technique.

Scalability to Number of Threads. We vary the num-
ber of threads nt ∈ {1, 2, 4, 8, 16, 32, 64} and report the time
of the five components of truss decomposition in Fig. 10 on
WE and TW. The support update (SU) is the dominant
component on both datasets, and its parallelization with 64
threads achieves speedups of 18.2x and 16.1x over the se-
quential execution on WE and TW, respectively. The par-
allelization of support initialization (SI) achieves speedups
of over 20x on both datasets and takes the second and third-
longest time on WE and TW, respectively. The edge filter-
ing (EF) scales better on WE than on TW. This is because a
task on TW contains less workload than on WE since more
edges are processed at early levels, which makes the dynamic
scheduling cost more significant than that on WE. The pre-
processing (PP) scales moderately on both datasets, having
speedups of up to 13.2x and 14.6x on WE and TW, respec-
tively. The graph compaction (GC) has the lowest speedup
due to random memory accesses and load imbalance. Nev-
ertheless, GC takes much less time than SI and SU.

Effect of Parameter Setting. We fix a representative
dataset and vary each parameter. In Fig. 11a, we find that
even at a very large wpt = 48, we can still keep a good
performance when packing a smaller but denser group of
neighbor sets. This phenomenon suggests that the benefit
of word-packing comes from dense neighbor sets, and we
can choose a suitable value of wpt, e.g., 4 to limit mem-
ory consumption. Fig. 11b shows that (i) as the maximum
number of GC invocations ct increases, the overhead of com-
paction increases and the SU time decreases; (ii) the perfor-
mance does not improve much after ct > 128. Thus, it is
good enough to choose ct ∈ [100, 200) in practice to balance
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Figure 11: Effect of parameters

the overhead and benefit. In Fig. 11c, we observe that the
underestimation of triangle-peeling (TP) throughput, e.g.,
ept < 5 · 108, increases the number of triangle counting
(TC) invocations, most of which should be replaced with
TP. In contrast, the overestimation of TP throughput, e.g.,
ept > 1.6·1010 does not affect the choice of TC over TP. This
is because there is a large gap in TTC · (|EG| − |QC |)/|EG0 |
and l · |QC |/ept for the most time-consuming iteration in
the level l = 9584 on WE. In Fig. 11d, we observe that the
range index size rs = 32 works best in our experiment on
WE, and the increment of rs incurs more index maintenance
overhead than the overhead with a small rs value. However,
it is worthwhile to adopt the indexing and choose a relatively
large rs, e.g., 16 and 32, because it significantly reduces the
overall time of iterative edge-peeling. Much larger rs values
may slow down the performance because the index contains
more elements to scan and becomes less effective.

5.3 Evaluation of Offloading Techniques
Effect of the SI Stage Offloading. We compare OPT-

TC on the CPUs and OFF-TC executed on the GPU. Re-
sults (the two bars on the left of Fig. 12) show that the
triangle counting performs much better on the GPU and
achieves a speedup of up to 8.4x over OPT-TC. This large
speedup is because we exploit the warp-level parallelism to
fully utilize the computation resources and the high band-
width of GPU memory.

Effect of the IEP Stage Offloading. We compare the
time of OFF-EIEP and OFF-RIEP (discussed in Sect. 5.1)
against the CPU-only OPT-IEP (the middle three bars in
Fig. 12) and give the time breakdown of OFF-RIEP on the
CPU and GPU (the two bars on the right). Results show
that OFF-EIEP is less competitive than OFF-RIEP on all
the datasets and is even slower than OPT-IEP on WI. To
analyze the reason, we profile OFF-EIEP and OFF-RIEP
and show the memory size and transfer time of page swaps
in Table 7. We find that the amount of page swap and
data transfer in OFF-EIEP is orders of magnitude more
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Table 7: Effect of offloading strategies for IEP (seconds)
OFF-EIEP OFF-RIEP Benefit of OFF-RIEP

Dataset Mps Tps Mps Tps Tps ↓ TIEP ↓
WE 15.0GB 3.6 1.5GB 0.8 2.8 2.6
WI >2TB 457.7 12.4GB 1.4 456.3 423.0
TW 759.5GB 142.0 13.7GB 2.7 139.3 103.9

than that in OFF-RIEP, even though OFF-EIEP already
aggressively compacts all the data structures periodically.
Comparing OFF-RIEP with OPT-IEP, we find that the re-
maining computation on the GPU is 2.4x-3.8x faster than
that on the CPU, which indicates it is effective to offload
the edge-peeling computation to the GPU when the inter-
mediate results are within the GPU memory capacity.

5.4 Evaluation of Scaling to Large Graphs
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Figure 13: Effect of varying |E|

We use OPT-TC, OFF-TC, OPT-IEP, and OFF-RIEP to
evaluate the effect of varying |E| from 64 million to 8 bil-
lion (Fig. 13). In the SI stage, both OPT-TC and OFF-TC
scales linearly to |E|, and OFF-TC is 1.7x-3.6x faster than
OPT-TC. However, when |E| is greater than 231 (2 billion),
OFF-TC suffers from intensive page swaps and runs out of
time budget (5 hours). In the IEP stage, CPU-only OPT-
IEP scales well to |E|, whereas the overall improvement of
OFF-RIEP over OPT-IEP decreases. We further show the
time breakdown of OFF-RIEP, i.e., OFF-RIEP-CPU and
OFF-RIEP-GPU. For large datasets, e.g., |E| > 230, we
need to first perform iterative computation on the CPU, to
make the memory consumption of the remaining compacted
graph within the GPU memory capacity. As a result, for
those cases, the CPU part takes more time than the GPU
part. In the case |E| = 233, OFF-RIEP runs out of mem-
ory due to the memory consumption of the mapping from
the compacted graph to the original graph and intermedi-
ate k-class results Φk. Nevertheless, in the remaining IEP
computation, OFF-RIEP is 2.3x-4.3x faster than OPT-IEP.

5.5 Comparison of Optimized Algorithms
We show the overall performance comparison of h-index

based algorithms: H-IDX, H-IDX+, and peeling-based algo-
rithms: MSP, PKT, our OPT-CPU (CPU-Only), and OPT-
HPU (with GPU) in Fig. 14. Our experimental time budget
is 5 hours, and execution beyond the limit is overtime. H-
IDX is always the worst on all the datasets, and H-IDX+
improves over H-IDX by up to 16.0x because of our data
skew handling and edge mapping techniques. However, H-
IDX+ is still less competitive than MSP and PKT, especially
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algorithms

on WE and TW, because its time complexity of O(|4|) mul-
tiplied by a max-h-index factor can be large.

MSP and PKT have comparable performance. MSP per-
forms better in the presence of data skew (on WI and TW),
since its array-based linked list enables quick skips, whereas
PKT wins on the other datasets. However, MSP runs out
of memory on WE due to O(|4|) memory complexity for
the expansion and grouping of enumerated triangles. Our
OPT-CPU and OPT-HPU implementations are 2.4x-25.7x
and 7.3x-68.7x faster than the state of the art, respectively.
In particular, OPT-HPU completes the computation on WE
and TW within 21 and 88 seconds, respectively.

5.6 Summary
We start our evaluation on the CPU and use the state-of-

the-art PKT as our baseline. Our parallelization of the PP
stage and word-packing for the SI stage achieve speedups
of 6.5x and 18.9x, respectively. The effect of individual
techniques in the IEP stage varies with types of graphs.
The DSTCP+IDX+ES, PSM+BMPF, and PSM+GC+VM
(techniques ordered by the performance impacts) achieve
improvement of 9.1x, 27.1x, 9.6x on the WE, WI and TW
graphs, respectively. Our implementation scales well to the
number of threads in all five components PP, SI, GC, SU,
and EF. Our recommended setting of parameter values is as
follows: wpt = 4, ct = 128, ept at a relatively large value,
e.g., 1.6 · 1010, rs = 16. Offloading the SI stage to the GPU
improves the performance by 8.4x. The IEP stage always
works the best to first compute on the CPU, then compact
the intermediate results, and offload the remaining compu-
tation to the GPU. It runs up to 3.8x faster on the GPU
than on the CPU. Finally, we find that the peeling-based
algorithms are faster than the h-index based algorithms be-
cause their triangle enumeration and update cost is less. Our
OPT-HPU is up to 68.7x faster than the state of the art and
completes the computation on TW within 88 seconds.

6. CONCLUSION
To accelerate truss decomposition, we start from state-

of-the-art peeling-based algorithms and design better pre-
processing, support initialization, support update, triangle
enumeration, and edge filtering procedures. In our design,
we consider data skew in the real-world graphs and data ac-
cess patterns in the algorithms. We parallelize and optimize
our algorithms on both the multicore CPU and the GPU.
Finally, we evaluate the effects of individual techniques and
show that our implementations on both platforms outper-
form the state of the art by up to an order of magnitude.
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