
Sharing Opportunities for OLTP Workloads
in Different Isolation Levels

Robin Rehrmann
∗

TU Dresden
Dresden, Germany

robin.rehrmann@mailbox.tu-

dresden.de

Carsten Binnig
TU Darmstadt

Darmstadt, Germany
carsten.binnig@cs.tu-darmstadt.de

Alexander Böhm
SAP SE

Walldorf, Germany
alexander.boehm@sap.com

Kihong Kim
SAP Labs

Seoul, Korea
ki.kim@sap.com

Wolfgang Lehner
TU Dresden

Dresden, Germany
wolfgang.lehner@tu-dresden.de

ABSTRACT
OLTP applications are usually executed by a high number of
clients in parallel and are typically faced with high through-
put demand as well as a constraint latency requirement for
individual statements. Interestingly, OLTP workloads are
often read-heavy and comprise similar query patterns, which
provides a potential to share work of statements belonging
to different transactions. Consequently, OLAP techniques
for sharing work have started to be applied also to OLTP
workloads, lately.

In this paper, we present an approach for merging read
statements within interactively submitted multi-statement
transactions consisting of reads and writes. We first de-
fine a formal framework for merging transactions running
under a given isolation level and provide insights into a pro-
totypical implementation of merging within a commercial
database system. In our experimental evaluation, we show
that, depending on the isolation level, the load in the system
and the read-share of the workload, an improvement of the
transaction throughput by up to a factor of 2.5× is possible
without compromising the transactional semantics.

PVLDB Reference Format:
R. Rehrmann et al.. Sharing Opportunities for OLTP Workloads
in Different Isolation Levels. PVLDB, 13(10): 1696-1708, 2020.
DOI: https://doi.org/10.14778/3401960.3401967

1. INTRODUCTION

Motivation. OLTP applications often need to serve 1’000s
of clients concurrently demanding high throughput of state-
ments or transactions. A well known technique to avoid

∗This work was done while at SAP SE, Germany

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 10
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3401960.3401967

overload situations of the DBMSs, is to reduce the over-
all load by using techniques such as shared execution. For
shared execution of read-only OLAP-style workloads, many
techniques have been proposed in the past ranging from
multi-query optimization [33] over shared operators [20, 27]
to materialized views [31]. In OLAP workloads, the sharing
potential arises from the fact that long-running and complex
queries with multiple joins need to be executed and the data
read usually remains static during the execution.

Different from OLAP workloads, however, OLTP work-
loads are mainly characterized by short-running statements,
rendering the sharing potential not obvious. Nevertheless,
its distinctive characteristics make it extremely interesting
to investigate merging for OLTP scenarios. First of all,
OLTP workloads in general consist of a few distinct state-
ments, only differing in their concrete parameter values. For
example, 89% of 7.383 open-source projects listed within the
CMU Database Application Catalog (CMDBAC [38]) have
only 10 or even less distinct statement strings [29]. Similar
observations also hold for synthetic OLTP benchmarks such
as the TPC-C [36] or TATP [35] benchmark, which consist
only of 11 (or 5) distinct statement types.

Beyond benchmarks, Alibaba [14] or IBM [25] report work-
loads of the same characteristics. Furthermore, two third of
a common SAP ERP workload consist of ten distinct pre-
pared statements [24]. An analysis of OLTP workloads on
Oracle [32] shows that read statements usually make up
70% − 90% within OLTP workloads, whereas 80% are re-
ported for Microsoft SQL Server [8] and SAP [15, 30].

These characteristics open up the opportunity of merging
statements within OLTP applications. Recently, efforts were
thus made to apply such sharing techniques also to OLTP
workloads. For example, SharedDB [12] as well as BatchDB
[21] compile incoming read statements into a large plan, [6]
batches full transactions to decrease aborts. All these ap-
proaches, however, assume that transactions are fully known
to the database.

Contribution. In a previous paper [29], we have already
shown that merging single-statement read-only transactions
that are submitted interactively already results in significant
throughput increase especially under high system load. In
this paper, we significantly extend this idea and tackle the

1696

challenge to merge multi-statement read/write transactions
where operations are submitted by clients interactively un-
der different isolation levels. The main idea in this paper is
to isolate read operations from read/write transactions and
merge them into so-called Merged Reads if this satisfies the
desired isolation level.

One could now ask, “why not also merge writes as well?”.
Firstly, merging just reads allows us to use the existing
mechanisms of a DBMS to handle not only write-write con-
flicts but also the functionality for rollback and recovery
without complicated extensions of the affected core database
components. Secondly, as mentioned before, many OLTP
applications of our customers are read-heavy at the begin-
ning to retrieve information from the database before writes
are executed, which supports our sharing strategy.

For example, in a webshop scenario, customers may first
look at the details of a product, place an order for that
product and then show the order status. In such a pattern,
the read retrieving the product info could be executed in
a shared manner, while the write placing the order and the
read showing the order status would be executed in isolation.
Such a “look-to-book” ratio is usually 1000 : 1 [23]. In
consequence, it makes sense to concentrate on merging reads
rather than writes.

Finally, as mentioned before, the target of our approach
is to improve performance under peak workloads. For those
scenarios, customers often implement their workload as stor-
ed procedures to optimize performance by reducing sending
requests over the network from clients for multi-statement
transactions. Hence, in addition to support merging for
multi-statement read/write transactions where operations
are submitted by clients interactively, we added support for
merging when multi-statement read/write transactions are
executed as stored procedures.

In summary, we provide the following contributions:

• First, we provide a formal framework to analyze the
correctness of shared execution strategies under differ-
ent isolation levels implemented in multi-version con-
currency control (MVCC), which is a common concur-
rency control method in many database engines today.
• Second, we outline the implementation of our proposed

sharing strategy within a research prototype based on
SAP HANA [9], a relational DBMS which provides
an MVCC storage scheme and two different isolation
levels (Read Committed and Snapshot Isolation).
• Third, we share our insights of the results derived from

our experiments for the TATP as well as a SAP Hybris
benchmark. We show that depending on the isolation
level and the overall system load, our approach may
improve throughput by up to a factor of 2.5.

Outline. The remainder of this paper is structured as fol-
lows: Section 2 provides an overview of the core problems
and conceptual ideas of the proposed sharing strategy. This
will be followed by an in-depth discussion of the theory of
merging general OLTP workloads (Section 3). Thereafter,
we discuss restrictions of different isolation levels on the
merging strategies (Section 4). Section 5 introduces the core
components of our implementation as well as some design
decisions. Section 6 presents the results of our evaluation.
Section 7 discusses related work and Section 8 concludes the
paper.

2. OVERVIEW
In this section, we first provide an example where a näıve

merging approach fails to provide Snapshot Isolation. Af-
terwards, we give a high-level introduction to our idea of
statement merging and show how it would resolve the prob-
lems of näıve merging on the same example.

2.1 Why Naı̈ve Merging Fails!
Snapshot Isolation protects reads from other users’ writes.

For example, consider Alice and Bob with separated bank
accounts who agreed on always having more than 300AC to-
gether on both bank accounts. Currently, both bank ac-
counts are filled with 400AC, each. In our example, schemat-
ically given in Figure 1, Alice and Bob at the same time
decide to withdraw 100AC and 200AC, respectively, from their
own bank account, without telling each other.

Alice read write read c

Bob read write read c

Acc A ∑ ∑
Acc B

∑ ∑800

800

−200

−100
600 700

Figure 1: Example without merging.

As illustrated in Figure 1, both first check the sum of
their bank account, which is 800AC, withdraw the amount
of money and check again, verifying their withdrawal did
not violate their agreement. Since their read is protected
from the other writes, Alice sees a sum of 700AC and Bob
of 600AC. As both receive the expected result, they commit.
The final sum of their bank accounts is now 500AC, which is
correct with regard to (1) the chosen isolation level Snapshot
Isolation as well as (2) their agreement to always have more
than a sum of 300AC on their accounts.

Alice read write read c

Bob read write read c

Acc A ∑ ∑
Acc B

∑ ∑−200

−100
800 ???

Figure 2: Example Merged (näıve approach).

Figure 2 shows how näıve merging applies to the example.
We note that the calculation of the first sum may certainly
be merged, since both read the same data and receive the
same result. In this case it is also obvious, why it is intuitive
to merge, since it is unnecessary to calculate the same result
twice. After both updated their bank account within the
database, they calculate the sum again. If we merge those
read operations as well, i.e., calculating the sum once, and
distributing the result, we have three options: (1) returning
500AC, meaning that both see each other’s write, thus vio-
lating the isolation properties of the database (2) returning
600AC or 700AC, thus making either Alice or Bob believe, her
or his write failed (and maybe trigger another withdrawal)

1697

or (3) returning 800AC, so that none of the two can read
their own write. Certainly, none of the above outcomes of
merging are in line with the users’ expectations.

In the next section, we present our approach to provide
both (1) preserving the notion of the isolation level and (2)
provide read-your-own-writes guarantees.

2.2 Our Approach
As several read statements enter the system, we merge

them into a new read statement, which we refer to as a
Merged Read . For merging transactions in this paper, we
assume that the underlying DBMS supports MVCC, which
allows us on a per-transaction level to read a certain snap-
shot. This is true for most commercial databases today such
as Oracle but also SAP HANA where we built our prototype
on.

For merging, we execute a Merged Read in the context of
another transaction, which is transparent to the user and has
a snapshot that is compatible with the individual reads. The
main problem we address is handling the isolation properties
between all operations of a transaction (also those executed
as a Merged Read) by the underlying DBMS. For achieving
this, we only need to provide the correct snapshot for all
reads merged into a Merged Read and the other operation
the client’s transaction submits to the DBMS that are not
merged.

To guarantee the isolation properties among all state-
ments merged within the same Merged Read , we only merge
those read statements that have the same view on the data
(i.e., those which see the same snapshot). To additionally
provide read-your-own-writes, we track the write set of a
transaction and bypass merging for reads accessing those
not yet visible writes within the transaction’s context, i.e.,
we do not merge them into a Merged Read .

We show the effect of our approach in the example in
Figure 3. Referring to our example from the beginning,
Alice and Bob open a transaction and submit their read
statement, calculating the sum over their bank accounts to
the system. Since both have the same view on the data
(i.e., there are no uncommitted changes in the system), we
merge their statement into a Merged Read , which calculates
the sum over both bank accounts. We execute that Merged
Read in the context of an internal transaction, receive the
result and return it to both transactions. Next, we track the
writes to different accounts in the write-set of their trans-
actions. As both now again submit their sum-calculation
to the system, we note that these operations access data
that has been altered by their own transactions. To provide
read-your-own-writes, we execute these reads as originally
submitted, without merging. Hence, Alice and Bob can see
their own withdrawal without seeing the other withdrawals
and are able to commit.

In an equivalent lock-based implementation, the Merged
Read needs to read-lock both accounts and transfer these
locks to Alice and Bob, once they submit their write re-
quests. Next, these locks are promoted to withdraw money
from the respective bank account. As our example applies to
Snapshot Isolation, which is not supported in lock-based, the
subsequent read-accesses by both parties will deadlock and
fail. Nevertheless, our approach can also be implemented
lock-based if transferring locks from one transaction to an-
other is supported by the underlying DBMS. As lock-based
is not supported by HANA, where we built our prototype,

we focus on the MVCC implementation in the rest of our
paper.

Alice read write read c

Bob read write read c

Acc A ∑ ∑
Acc B

∑ ∑−200

−100
600 700800

Figure 3: Example Merged (our approach).

In this paper, the main focus is on a setting where clients
(i.e., Alice and Bob) submit operations interactively one-by-
one since this setting is used in many real-world applications
as we see in our customer workloads. However, in general
our approach works, regardless whether Alice and Bob sub-
mit their requests in an interactive manner (i.e., operations
are submitted one by one) or as stored procedure (i.e., the
whole sequence of operations is submitted at once). In our
evaluation, we will evaluate the benefits of merging under
both settings.

3. FORMALIZING OUR APPROACH
To show our understanding of merging and how we de-

cide which statements to merge, we formally introduce our
definition of a Merged Read as well as our merge-decision
algorithm in this section. For a better understanding of our
definition and algorithm, we first provide a brief recapitula-
tion of transactional execution under MVCC.

3.1 Transaction Theory
Transaction management has a long history in the data-

base area. In this work, we build mainly on the transaction
definition, provided by Bernstein et al. already published in
1983 [2].

In databases, clients submit two types of operations on
data items: read and write operations. We denote a read
on data item x submitted by transaction Ti as ri(x) and a
write to data item y as wi(y). For simplicity but without
loosing generality, we assume that a read operation always
refers to an existing item. A write operation may (1) insert
a non-existing data item into the database, (2) update an
already existing data item, or (3) delete a data item from
the database.

A transaction is an ordered sequence of those operations
that are all executed using ACID guarantees and terminated
by either a commit or an abort. We denote a commit of Ti

as ci and its abort as ai. For the order of the sequence,
we use the happens-before notation by [2], denoted as <: If
Ti submits a (read or write) operation oi before it submits
another (read or write) operation pi, then oi < pi. A data
item, which is written by Ti, is in a state that [2] refer to
as “uncertified”. A ci command certifies all uncertified data
items created by Ti. An ai resets all uncertified data items
to their previous state.

Finally, a history H determines the order in which the
DBMS executes the operations of multiple concurrent trans-
actions. More precisely, according to [2], a history is defined
as partially ordered set H = (

∑
, <) with the following prop-

erties.

1698

App1 App2 AppN

S
p
li

t

π

σ'

π

σ'

π

σ'

…

E
x
ec

u
te

M
er

g
e

π

σ

Intermediate

Result

…

…

Figure 4: Execution of a Merged Read .

1.
∑

= ∪n
i=0

∑
i, i.e., all operations of H’s transactions

are executed and no further operations are added.
2. <⊇ ∪n

i=0 <i, i.e., the ordering of each transaction’s
operations remains stable in the global history.

3. Operation pairs that are executed on the same data
item, with at least one operation being a write, are
not executed in parallel, i.e., they are < related.

MVCC Background. Most of modern relational database
engines implement MVCC. In MVCC, every data item is
enhanced with a from-to-timestamp that defines the visibil-
ity of its version. Timestamps are typically implemented by
incrementing a global atomic counter (global-TID) [18]. A
submitted operation determines the version it accesses by
its own transaction ID (TID). The TID is typically assigned
to a transaction, when it enters the system by incrementing
global-TID and uses that as its own TID.

An operation with an attached TID is allowed to read a
version of a data item, if the from-timestamp of the data
item is smaller than the TID of the operation and the to-
timestamp is larger. The latter may be the case, if (1) a
newer version was written but not yet certified to the oper-
ation or (2) this is the newest version and the to-timestamp
is ∞.

On commit, a transaction again increments the global-
TID and uses this counter as commit ID (CID) to create a
new version for all data items it updated / inserted: Thus, a
write-operation overwrites the to-timestamp (currently ∞)
of the most recent version of the data item with its CID
and creates a new version of the data item with the from-
timestamp set to the CID and the to-timestamp set to ∞,
i.e., the transaction installs a new snapshot. During com-
mit, additionally read- and write-conflicts must be checked,
depending on the chosen isolation level.

To reason about multi-versioned histories, [2] introduce
an h-function, which maps every read or write operation of
a transaction Ti to the version being read or installed as
follows:

1. Every submitted operation of a transaction Ti is trans-
formed into a multi-versioned operation; i.e.,
h(ri(x)) = vr and h(wi(x)) = vw whereas vr and vw
can be seen as the from-timestamp of the version read
or being installed.

2. If a write is executed before a read in Ti, i.e. wi(x) <
ri(x), then the read returns the version of the write,
i.e., h(ri(x)) = h(wi(x)).

3. Otherwise, h(ri(x)) = h(wj(x)), i.e. Ti returns the
version of a transaction Tj that committed before Ti

started1.

3.2 Merging under MVCC
In this section, we provide our formal framework to an-

alyze the correctness of shared execution strategies under
different isolation levels: We first notate our definition of a
Merged Read in the context of MVCC databases. Next, we
present our algorithm that decides whether two read state-
ments can be merged.

A Merged Read is a composition of several read state-
ments. It is executed in the context of an internal trans-
action and runs with respect to a fixed and valid snapshot.
That snapshot must contain the data-version requested by
the individual read statements.

Definition 3.1. Merged Read
A Merged Read rM (x, y, . . . , z) is a composition of read op-
erations ri(x), rj(y), . . . , rn(z) of transactions Ti, Tj, . . . ,
Tn, such that h(rM (x)) = h(ri(x)), h(rM (y)) = h(rj(y)),
. . . , h(rM (z)) = h(rn(z)), running under a single arbitrary
but fixed, existing and explicitly known TID.

Figure 4 conceptually shows the merging procedure: The
DBMS compiles the application’s read statement into a plan
with operators for table-access, filters (σ), projections (π),
etc. We merge the filters and projection lists of statements
against the same table access and write the intermediate re-
sult into an internal temporary table. The original plans
may then fetch directly from that much smaller temporary
table and send the results back to the client. Therefore,
we do not only share the table access, such as ranged index
lookup or a table scan, but also occupy only a single thread
with the execution of n plans at once, leaving other threads
for the execution of further incoming requests. Thus, the
system may answer more requests, which is especially rele-
vant in overload scenarios, where free threads become rare.

Algorithm 1 Check if read ri of Ti to x and read rj of Tj

to y can be merged. x = y maybe possible.

1: function IsMergeable(ri(x), rj(y))
2: if h(ri(x)) = h(rj(x)) then
3: return true
4: else if h(ri(y)) = h(rj(y)) then
5: return true
6: end if
7: return false
8: end function

Merging reads requires the same view on the data for dif-
ferent statements. In Algorithm 1, we show how we decide
if two read statements are mergeable. The function receives
two read statements, submitted by two transactions. The
read statements may or may not access the same data item.

According to Definition 3.1, a Merged Read is executed
under a single TID. Hence, we need to check if there exists
a single TID that returns the correct version of x and y to Ti

1In Serializable, other isolation levels may broaden the point
of time when Tj committed

1699

and Tj , respectively. Line 2 checks if an access to x with the
TID of Tj returns the same version that Ti expects. If this
is the case, we merge ri(x) and rj(y) into rM (x, y) which
will then be executed within an internal transaction having
the snapshot of Tj . Otherwise, we check if an access to y
with the TID of Ti returns the same version that Tj expects
(line 4) and if so, we can execute the resulting Merged Read
with the snapshot of Ti. If neither is the case, ri(x) and
rj(y) are not mergeable. In consequence, we return false

in line 7.

Algorithm 2 Check if read ri of Ti to x can be merged into
rM .

1: function IsMergeable(rM (. . .), ri(x))
2: return (h(rM (x)) = h(ri(x)))
3: end function

Once we composed two reads into a Merged Read , we
use Algorithm 2 to check for all other reads in the system
whether they can be compiled into this Merged Read , as
well. All we have to do, is to check if the Merged Read with
its given TID would return the same version of a data item
as the original read. If this is the case, we compose that read
into the Merged Read . For the remaining reads, we continue
with Algorithm 1 followed by Algorithm 2, once we found
a match, until no further match is found or all read state-
ments were merged. Finally, the resulting Merged Reads are
executed.

In the next section, we show when the expression of line 2
and line 4 in Algorithm 1 is evaluated to true for differ-
ent isolation levels and how this affects the mergeability of
workloads running under these isolation levels.

4. DIFFERENT ISOLATION LEVELS
As we stated previously, two read statements ri(x) and

rj(y) can be merged, if h(ri(x)) = h(rj(x)) or h(ri(y)) =
h(rj(y)). Because the outcome of these expressions for the
same i, j, x and y depends on the isolation level, this sec-
tion discusses the conditions under which these expressions
evaluate to true.

Running Example. In order to discuss merging in the pres-
ence of different isolation levels, we use the running exam-
ple in Figure 5 to intuitively explain the consequences of
isolation levels on the merging potential. In the example
there are five transactions, where each transaction operates
in an interactive mode, i.e., each transaction submits only
one read or write operation at a time and waits for the re-
sult, before submitting the next. Without loss of generality,
we assume all transactions run in the same MVCC isola-
tion level. We mark the start of the transaction with a dot.
T1, T2 and T3 start first and submit a write to x and y and a
read to z, respectively. Next, T2 and T1 commit their writes,
installing a new snapshot. Afterwards, T4 and T5 start. T3

and T4 submit a read to x at the same time, while T5 over-
writes that value. The subsequent statement is submitted
by T3 and overwrites y, followed by a read to y of all three
remaining transactions. Finally, T3 and T5 commit, while
T4 submits a last write to z and commits as well.

As all transactions run in interactive mode, i.e., are block-
ing on every operation until they receive a result from the

T1 w(x) c

T2 w(y) c

T3 r(z) r(x) w(y) r(y) c

T4 r(x) r(y) w(z) c

T5 w(x) r(y) c

Figure 5: Example of five interactively submitted transac-
tions.

database, the DBMS is not able to reorder or antedate state-
ments. For example, the DBMS cannot execute r3(x) before
r3(z), since r3(x) is only submitted by T3 once the result of
r3(z) returns. Furthermore, the DBMS cannot simply exe-
cute r4(x) before T2 commits, as T4 starts after T2 commits.
In consequence, not knowing the overall history and hav-
ing limited control over when an operation is going to be
executed (we may always postpone the execution of a state-
ment, though) further reduces our ability to merge.

In the following, we describe how different isolation levels
affect merging in this example.

4.1 Read Uncommitted
In Read Uncommitted , every transaction is allowed to read

the newest version of every data item, even if it is not yet
committed. Simply speaking, because

h(ri(x)) = h(rj(x)), ∀Ti, Tj ∈ H, (1)

Algorithm 1 always evaluates to true, thus we can merge
all read statements in Read Uncommitted .

T1 w(x) c

T2 w(y) c

T3 r(z) r(x) w(y) r(y) c

T4 r(x) r(y) w(z) c

T5 w(x) r(y) c

We circle the statements that we could merge from our ex-
ample, above. Obviously, we can merge all read statements
that arrive at a time. However, we cannot merge r3(z) with
any other read statement, because there is no other read
statement in the system at that time.

Conclusion. We conclude that Read Uncommitted does not
restrict our mergeabilites at all, since we can merge all reads.

4.2 Read Committed
As our approach relies on the MVCC method, we assume

the Oracle implementation of Read Committed [16], instead
of the ANSI-Read Committed [1], which relies on locking.
In Read Committed , all transactions have the same view
on committed data items. Hence, we can merge all reads
that do not refer to data currently residing locally within a
transaction’s write-set. More formally:

∀ Ti, Tj ∈ H, i 6= j

h(ri(x)) = h(rj(x))

⇐⇒
h(ri(x)) 6= h(wi(x)) ∧ h(rj(x)) 6= h(wj(x))

(2)

We circle the read statements of our example that can
be merged when running under Read Committed , below. In

1700

comparison to Read Uncommitted , we merge one read less
in this example, namely r3(y), which refers to a previous
w3(y).

T1 w(x) c

T2 w(y) c

T3 r(z) r(x) w(y) r(y) c

T4 r(x) r(y) w(z) c

T5 w(x) r(y) c

Conclusion. In consequence, when incoming transactions
are requesting Read Committed isolation, we can only merge
reads that access committed data. For Read Committed , we
cannot observe further restrictions.

4.3 Snapshot Isolation
Snapshot Isolation forbids the anomalies Inconsistent Read

in addition to Lost Update by providing each transaction a
fixed snapshot, valid at transaction start [1]. That snapshot
does not change, except for the transaction’s own writes.

This implies the opportunity of merging two read oper-
ations if there exists a snapshot that holds both accessed
data items in the requested version. More formally, w.l.o.g.:

∀ Ti, Tj , Tk, Tl ∈ H, i 6= j 6= k 6= l

h(ri(x)) 6= h(rj(x))

⇐⇒
h(ri(x)) = h(wk(x)) < ck < h(rj(x)) = h(wl(x)) < cl

(3)

We circle the sharing potential in our example under Snap-
shot Isolation below:

T1 w(x) c

T2 w(y) c

T3 r(z) r(x) w(y) r(y) c

T4 r(x) r(y) w(z) c

T5 w(x) r(y) c

As r3(x) and r4(x) now refer to different versions of x
(namely h(r3(x)) = h(w0(x)) and h(r4(x)) = h(w1(x)), re-
spectively), we cannot merge these two read operations, con-
trary to Read Committed . However, as r4(y) and r5(y) refer
to the same version of y, created by T2, we can still merge
those. In consequence, as Snapshot Isolation increases the
number of snapshots alive in the system at the same time
in comparison to Read Committed , the merging abilities of
reads operating on these snapshots further decreases.

Note, if the transactions were submitted as stored pro-
cedures and r3(z) and r3(x) were independent, we could
reorder the execution of r3(z) and r3(x), thus merge r3(z)
and r4(x) into rM (x, z), which we could execute with TID
4 (because h(r4(z)) = h(r3(z)) = h(w0(z))).

Generalized Snapshot Isolation. As the number of dif-
ferent snapshots limits our merging abilities for Snapshot
Isolation, we may reduce the number of snapshots by using
Generalized Snapshot Isolation (GSI). With GSI, the data-
base provides a view to the client that is consistent but may
be slightly outdated as discussed in [7].

Assuming our example running under GSI, we give a pos-
sible outcome of the merging potential below. Alternatively,
the one given for Snapshot Isolation also applies to GSI.

T1 w(x) c

T2 w(y) c

T3 r(z) r(x) w(y) r(y) c

T4 r(x) r(y) w(z) c

T5 w(x) r(y) c

As T4 starts its transaction and submits r4(x), we find
a possible merging potential with r3(x), submitted at the
same time. However, as discussed earlier, both reads access
two different snapshots. Since we run under GSI, we may
choose our snapshot at transaction start, though. To share
both read operations, we reset the snapshot of T4 to the one
of T3 logically predating the start of T4. In consequence, we
can now merge r3(x) and r4(x) into rM (x), which is executed
with the snapshot of T3.

Later on, as r3(y), r4(y) and r5(y) are submitted, we can-
not merge any of the operations, because w1(x) < c2 < c1 <
w5(x) < r5(y), hence T5 depends on the write of T1 and at
commit time of T1 the snapshot of T2 is already installed.
Logically moving the transaction start of T5 prior to the
commit of T2 to fulfill h(r4(y)) = h(r5(y)) would therefore
result in an abort of T5. However, if we delayed the exe-
cution of c2 so that c1 < c2, we could logically move the
start of T5 between T1’s and T2’s commits so that neither
T4 nor T5 see the result of w2(y) and in return get the same
merging potential as with Read Committed .

Conclusion. We conclude that Snapshot Isolation limits
our merging abilities further, as the number of snapshots,
reads operate on, increases. An optimization regarding the
merge options is to fall back to a slightly weaker isolation
level, namely Generalized Snapshot Isolation, which lets the
DBMS choose on which fixed snapshot an incoming trans-
action operates on. This has the potential to decrease the
number of snapshots alive in the system and thus to increase
our merging potential.

4.4 Serializable
ACID properties guarantee that a transaction runs iso-

lated, i.e., as if it was alone in the system. This forbids
any kind of anomaly, such as lost writes or write skews.
Serializable is the only isolation level free of anomalies, pro-
viding true isolation. To prevent such anomalies, the DBMS
needs to track all dependencies between transactions, such
as write-write, read-write, write-read, and read-read and build
a dependency graph, where a cyclic dependency between
transactions marks a non-serialized execution.

Isolation levels considered so far, only require the write
set of a transaction to check for a valid history, if the read
was executed against the correct snapshot. Thus, we only
used the h function to decide, whether a transaction’s read
operation can be merged (cf. Algorithm 1). However, if
we merge two submitted reads into a new read operation,
we basically hide the original reads from the read sets of
their transactions. Thus, the DBMS is not able to decide
whether the resulting history was serialized or not, introduc-
ing anomalies listed by Fekete et al. in [10]. As our running
example from Figure 5 is a serialized history, we make our

1701

point with a different, smaller example, given below.

T1 r(x) w(y) c

T2 r(y) w(x) c

The dependency graph of these two transactions is as fol-
lows:

T1 T2

rw

rw

The execution of T1 and T2 is not serialized, as we note
from the circle within the dependency graph. According
to Algorithm 1 however, we can merge the two read state-
ments into a new read operation and execute this within
the context of an internal transaction TM operating on the
snapshot of any of the two transactions. Thus, we create a
new transaction within the following dependency graph.

T1 T2

TM

rw rw

As T1 and T2 now commit, the DBMS is not able to detect
the original circular dependency among these transactions,
since it is hidden within the Merged Read . Consequently,
we need to alter Algorithm 1 for isolation level Serializable:

Algorithm 3 Check if read ri of Ti to x and read rj of
Tj to y can be merged. x = y is possible. Transfer read-
dependency to DBMS is isolation level is Serializable.

1: function IsMergeable Serializable(ri(x), rj(y))
2: if h(ri(x)) 6= h(rj(x)) & h(ri(y)) 6= h(rj(y)) then
3: return false
4: end if
5: DBMS ← add x to read-set of Ti

6: DBMS ← add y to read-set of Tj

7: return true
8: end function

Algorithm 3 transfers the reads of Ti and Tj to the data-
base (lines 5 and 6). Thus, the database can internally build
a correct dependency-graph and detect occurring anomalies.
As T1 or T2 finish in the example above, the database can
abort the transaction due to the detected write-skew.

Conclusion. To fully support isolation level Serializable,
we merge read statements the same way as under Snapshot
Isolation, but have to propagate reads of statements merged
to the collision detector of the DBMS.

4.5 Discussion
In summary, with increasing isolation level the mergeabil-

ity of an arbitrary workload decreases.While we can merge
all read operations in Read Uncommitted , Read Committed

limits the read operations it can merge to already commit-
ted data accesses. As Snapshot Isolation introduces more
snapshots alive in the system, the mergeability is even more
decreased; we may adjust this using Generalized Snapshot
Isolation. In Serializable, we merge as in Snapshot Isolation,
but in addition we propagate the reads that were merged to
the DBMS, not further limiting mergeability.

5. IMPLEMENTATION
This section outlines the implementation of our merging

approach for isolation levels Read Committed and Snapshot
Isolation. We start with an overview of our system with
focus on its integration into and interaction with the under-
lying DBMS’ core components and continue with our design
decisions regarding the implementation of the two isolation
levels.

5.1 System Design
We built our “Merger Component” as a research proto-

type based on SAP HANA. Our aim was to leverage the
database’s functionality where possible to decrease imple-
mentation overhead in both, Merger and database.

Figure 6 presents our system layout. As a new statement
enters the system, we first check, whether the statement can
be merged. This decision is supported by the transaction-
local write set, we track. If we cannot merge the incoming
statement, we forward it to the database execution engine.
For write statements, we update the transaction’s write set.
Otherwise, we push the statement into an internal queue,
which we refer to as Merge Queue. The Merge Queue con-
tains several buckets, one bucket for each mergeable state-
ment (details in Section 5.2). Inside the Merger, we keep
a pool of threads, so-called Merger Threads, that check the
buckets of the Merge Queue in regular intervals. If it finds
statements inside of a bucket, it pops and merges these
statements into a new Merged Read and forwards it to the
database’s execution engine. The execution engine compiles
the Merged Read into a plan similar to Figure 4 and exe-
cutes that plan retrieving an intermediate result. Within
a post-process, the Merger Thread splits the intermediate
result produced by the Merged Read to return the appropri-
ate result to each client. We find that the implementation
overhead of this architecture is rather low, as all the ACID
properties, data management and execution of all queries
are still handled by the database’s execution engine. All we
need to do is implementing the functionality of our Merger
Threads, the Merge Queue, the write set-management as
well as the merge decision.

Interactive vs. Stored-Procedures:. As mentioned be-
fore, the design presented in this paper enables that clients
submit their operations of multi-statement transactions one-
by-one and the merger threads analyze which of the submit-
ted operations can be merged. In addition to the interac-
tive mode, multi-statement transactions can also be imple-
mented as stored procedures to avoid the high overhead of
the network protocol between the clients and the DBMS.
For supporting an execution of transactions as stored, we
use the same architecture as shown in Figure 6. The only
difference is that clients call a stored procedure inside the
DBMS; i.e., all operations of a transaction can be submitted
to the merger without expensive network roundtrips.

1702

Merge?

Execution Engine

Write?

push

Y

N

N

Write set

Update

write set
Y

Merger Threads

Merge Queue

DBMS

Merger

Figure 6: Our system layout.

5.2 Implementing Isolation Levels
As already explained in Section 3.2, Merged Reads are ex-

ecuted in the context of an internal transaction. We refer to
such an internal transaction as Merged Transaction (MTx).
On a high-level description, we have an MTx for every snap-
shot available in the system. The following sections describe
this in more detail.

Read Committed. As discussed in Section 4.2, in Read
Committed all read operations that refer to already commit-
ted data can be merged. In other words, in Read Committed
only one snapshot exists. Hence, we provide only a single
MTx, when running under Read Committed .

Equation 2 shows that comparing a read statement’s key
to the write keys of its submitting transaction is sufficient
for this isolation level, therefore, we adopted Algorithm 1
for merge-decision in case of Read Committed :

Algorithm 4 Read Committed implementation: check if
read ri of Ti to x and read rj of Tj to y can be merged.
x = y maybe possible.

1: function IsMergeable RC(ri(x), rj(y))
2: if h(ri(x)) = h(wi(x)) then
3: return false
4: else if h(rj(y)) = h(wj(y)) then
5: return false
6: end if
7: return true
8: end function

In line 2 and 4 we implement a lightweight check, if one of
the submitting transactions tries to read their own writes.

We therefore track the write set by retrieving from each
write (1) the accessed table id and (2) the given parameter
and put these into a hash table, which we maintain for each
transaction. For each incoming read request, we lookup the
accessed table id and the parameter in the hash table of the
specific transaction, which is more efficient than comparing
to all writes that happened in the system. As we state in
Section 1, transactions write far less than they read. So, in
practice, that hash table often is empty.

All Merged Reads produced by the Merger Threads can
thus be executed within the context of the same MTx, which
is also executed in Read Committed . Hence, that MTx may
start with TID 0 and never needs to commit, as it always
provides the correct view for all reads not reading their own
writes.

Because of the required properties outlined in Equation
1 in Section 4.1, we might use the same approach to also
support Read Uncommitted . We would just have to omit
the write set lookup, since all read statements can be merged
under Read Uncommitted . However, as we implement our
prototype inside SAP HANA, which does not support this
isolation level, we do not discuss this implementation detail
any further.

Snapshot Isolation. From Equation 3 in Section 4.3 we
know that we can merge two read statements ri(x) and rj(y)
running under Snapshot Isolation, iff either x or y lies in the
intersection of Ti’s and Tj ’s snapshot. As this means that
the Merger has to have full access to the full snapshot of all
transactions, leading to the Merger being a database itself,
we restrict merging of read operations in Snapshot Isolation
further.

We only merge two read statements ri(x) and rj(y) if Ti

and Tj have the same snapshot on all data. Thus, Algorithm
5 shows our merge decision for Snapshot Isolation. To be
able to check the commit time of a transaction, we extend
the definition of h, introduced in Section 3.1, for commits:
h(cf) = vc, where vc can be seen as the commit timestamp
of Tf . We define, if Tj started after Tf committed, then
h(cf) < j.

Algorithm 5 Snapshot Isolation implementation: check if
read ri of Ti to x and read rj of Tj to y can be merged.
x = y maybe possible.

1: function IsMergeable SI(ri(x), rj(y))
2: C ← GetAllCommits(DBMS)
3: for all c ∈ C do
4: if min(i, j) < h(c) < max(i, j) then
5: return false
6: end if
7: end for
8: return IsMergeable RC(ri(x), rj(y))
9: end function

In line 4, we check if any commit has been submitted
between the start of transactions Ti and Tj . If so, we do
not merge. Otherwise, Ti and Tj operate on an identical
snapshot and can thus be merged according to the rules of
Read Committed (line 8).

Because comparison with all commits in the system is ex-
pensive, we propose a more efficient implementation than
Algorithm 5. We extend our MTxs with three states: open,
depart, and committed. A client’s transaction is always at-
tached to exactly a single MTx, when it requests Snapshot
Isolation. If there is no MTx in the system, a new MTx
is created with state open and the transaction is attached
to it, meaning the transaction keeps the TID of the MTx,
internally. Further incoming transactions will also attach to
that MTx, which runs in isolation level Snapshot Isolation
as well. Read statements of transactions that are attached
to the same MTx are pushed into the same bucket within
our Merge Queue. Thus, all read statements within the same
bucket remain mergeable by the Merge Threads with low ef-
fort. However, as any client transaction decides to commit,
a new snapshot is installed in the system. In consequence,
all MTxs in state open switch to another state, depart. From
now on, starting transactions cannot attach to these MTxs

1703

anymore and will need to open a new one. In depart, MTxs
still allow merging of statements submitted by transactions
already attached to this MTx, but no attachement of new
transactions. Finally, when all transactions of an MTx have
committed or aborted, the MTx switches its state again –
from depart to committed – and finally terminates.

We are aware that our approach limits the merge poten-
tial with OLTP workloads, as illustrated exemplarily in the
following scenario:

T1 w(x) c

T2 r(u) r(y) r(z) c

T3 r(y) r(z) c

In this example, T1 submits a write to x, while T2 reads
u. Next, T1 commits and thereby installs a new snapshot
that the subsequently starting T3 operates on. T2 and T3

simultaneously submit a read to y and z, respectively, before
they commit. Obviously h(r2(y)) = h(r3(y)) and h(r2(z)) =
h(r3(z)). Thus, according to Algorithm 1, we can merge
these read statements. However, as 2 < h(c1) < 3, (i.e.,
T2 and T3 are separated by the snapshot installed by T1),
Algorithm 5 would not allow to merge any of the reads in
this example.

To overcome this drawback, we propose an optimization
of Algorithm 5: Instead of running queries to multiple tables
within the same MTx, we keep an open MTx for each table
in the database. Thus, if x is related to a different table
than u, y and z in the example above, we can still merge
the submitted read statements. On commit, a transaction
has to depart all MTxs related to tables in its write-set.

6. EXPERIMENTAL EVALUATION
This section evaluates our merging approach that we im-

plement as prototype inside of the SAP HANA core database
engine. We execute our benchmarks on a server with SUSE
Linux Enterprise Server 12 SP1 (kernel: 4.1.36-44-default).
Our machine has 512 GB of main memory in addition to four
Intel(R) Xeon(R) CPU E7-4870 sockets with 10 cores. All
run at a speed of 2.4 GHz and have a cache size of 30 720 kB.
We have hyperthreading disabled.

In the following, we report the results of different ex-
periments: (1) We evaluate the effect of various param-
eters on the overall performance (throughput, latency) of
our approach and show a cost breakdown of merging. For
this experiment, we use the YCSB benchmark that is com-
posed of single-table read/write statements as well as indi-
vidual TATP transactions that are composed of more com-
plex statements including read statements that join mul-
tiple tables. (2) As a second experiment, we use the full
TATP as a standard OLTP benchmark to see the benefit of
merging for different isolation levels under interactive exe-
cution. (3) Afterwards, we then run TATP as stored proce-
dures to show the additional benefits of merging when us-
ing stored procedures instead of interactive execution. (4)
Finally, we present our results when using SAP Hybris to
evaluate the improvement of our approach for a real-world
customer workload.

6.1 Experiment 1: Parameter Evaluation
In this experiment, we first evaluate various parameters of

the merging approach, namely the impact of the de-queuing

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

.10 .25 .50 .75 .90 .95 .99 1.0

T
hr

ou
gh

pu
t I

nc
re

as
e

Read Ratio

baseline
i=1

i=10
i=50

i=100
i=250
i=500

(a) Read Committed

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

.10 .25 .50 .75 .90 .95 .99 1.0

T
hr

ou
gh

pu
t I

nc
re

as
e

Read Ratio

baseline
i=1

i=10
i=50

i=100
i=250
i=500

(b) Snapshot Isolation

 0

 0.2

 0.4

 0.6

 0.8

 1

baseline merged

txOverhead
resHandle
readExec
writeExec
mergeOverhead

(c) Breakdown of 0.75 (RC)

 0

 0.2

 0.4

 0.6

 0.8

 1

baseline merged

txOverhead
resHandle
readExec
writeExec
mergeOverhead

(d) Breakdown of 0.75 (SI)

Figure 7: Micro-benchmark for YCSB

interval, breakdown of the execution cost, latency, and the
effect of the statement and transaction type on the merged
result. For the first experiments, we use the YCSB bench-
mark since it allows us in addition to those parameters to
vary the read/write ratio. Moreover, for the last experiment
we use the TATP transactions as these consist of more com-
plex statement types that involve joins across multiple ta-
bles. For running these benchmarks and simulating a high
overload scenario, we use 700 clients and limit the DBMS to
3 worker threads only.

6.1.1 YCSB: Read/Write Ratio and Dequeue Interval
To show the impact of the workload’s read/write ratio

on our merging approach, we implement a multi-statement
YCSB where each transaction is read- or write-only and con-
sists of ten such statements. Clients execute the workload
in an interactive setting (i.e., they submit statements one-
by-one).

For running the workload, we use different read/write ra-
tios and plot our results in Figure 7a for Read Committed
and Figure 7b for Snapshot Isolation. More precisely, we
have chosen the read ratios of 0.1 (i.e. 10% of all transac-
tions are read-only), 0.25, 0.5, 0.75, 0.9, 0.95, 0.99, as well as
1.0 reflecting a read-only workload. We also varied the de-
queuing intervals and used 1 µs, 10 µs, 50 µs, 100 µs, 250 µs,
and 500 µs. We plot all results relative to the no-merging
baseline indicated at 1.

As Figure 7a reveals, our approach can achieve a through-
put increase of factor 20 for a read-only workload and an in-
terval of 250 µs under Read Committed and 18× for an inter-
val of 100 µs under Snapshot Isolation (cf. Figure 7b). How-
ever, with more writes within the workload, the throughput
declines drastically to a throughput improvement of factor
12 respectively 6 for a workload with 99% reads and factor
8 respectively 2 for a workload with 95% reads. The case
of 75% reveals a throughput improvement of about 50% un-
der Read Committed and no improvement under Snapshot
Isolation.

6.1.1.1 YCSB: Breakdown of Execution Cost.
To have a better overview where time is spent during exe-

cution of the workload of Figures 7a and 7b, we break down
the execution for the workload with a read-proportion of
0.75 since this is the typical read ratio of OLTP as discussed
before. Figure 7c and 7d compare the baseline to the merged

1704

 0
 50

 100
 150
 200
 250
 300

baseline i=1 i=10 i=50 i=100 i=250 i=500

L
at

en
cy

 (
m

s)
Read Ratio 0.10

 0
 50

 100
 150
 200
 250
 300

baseline i=1 i=10 i=50 i=100 i=250 i=500

L
at

en
cy

 (
m

s)

Read Ratio 0.25

 0
 50

 100
 150
 200
 250
 300

baseline i=1 i=10 i=50 i=100 i=250 i=500

L
at

en
cy

 (
m

s)

Read Ratio 0.50

 0
 50

 100
 150
 200
 250
 300

baseline i=1 i=10 i=50 i=100 i=250 i=500

L
at

en
cy

 (
m

s)

Read Ratio 0.75

 0

 50

 100

 150

 200

 250

baseline i=1 i=10 i=50 i=100 i=250 i=500

L
at

en
cy

 (
m

s)

Read Ratio 0.90

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

baseline i=1 i=10 i=50 i=100 i=250 i=500

L
at

en
cy

 (
m

s)

Read Ratio 0.95

 0
 50

 100
 150
 200
 250
 300

baseline i=1 i=10 i=50 i=100 i=250 i=500

L
at

en
cy

 (
m

s)

Read Ratio 0.99

 0
 20
 40
 60
 80

 100
 120
 140
 160

baseline i=1 i=10 i=50 i=100 i=250 i=500

L
at

en
cy

 (
m

s)

Read Ratio 1.00

Figure 8: System latencies for different read/write ratios

execution with an interval of 100 µs for both, Read Commit-
ted and Snapshot Isolation. Naturally, the proportion of
executing reads, compared to writes, shrinks, when merging
is applied, as a Merged Read takes less execution time than
executing all its reads one by one. In consequence, execut-
ing writes makes up about 40% of the baseline execution,
but 50% when merging is applied for Read Committed . In
Snapshot Isolation, the transaction overhead requires more
execution time, than in Read Committed . Still, as Figure
7b reveals, the percentage of writes increases from 28.5% to
36.6%, when merging is applied. This ratio of non-mergeable
queries, i.e., writes, will further increase, as more reads are
merged. In consequence, to further optimize performance,
writes also need to be merged, which is an improvement for
future work. Most importantly, we can see that the over-
head of our additional merging logic is relatively low and
attributes to approx. 10% of the overall execution cost in
Read Committed and 15% under Snapshot Isolation.

6.1.1.2 YCSB: Latency.
To evaluate the increase of latency through merging, we

run the benchmark of Figure 7a and measure latency of
read/write statements individually with and without merg-
ing under Read Committed . As we see in Figure 8, latency
does not increase much for low read ratios of 0.10-0.75 while
the tail latency increases, as expected. However, for the 0.90
up to 1.0 read rations, the median latency even decreases
for larger dequeue intervals. Interestingly, these are also the
cases where we see major throughput gains. The reason is
that under high read ratios the latencies of transactions be-
come more predictable by executing all read operations in
fixed dequeue intervals.

 0

 2

 4

 6

 8

 10

 12

 14

Sub Dest Acc UpSubUpLoc InsCF DelCF RO

T
hr

ou
gh

pu
t I

nc
re

as
e baseline

i=1
i=10
i=50

i=100
i=250
i=500

(a) Different TATP transactions

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t I

nc
re

as
e

Clients

baseline
merged

(b) Read Committed

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t I

nc
re

as
e

Clients

baseline
merged

(c) Snapshot Isolation

 1

 1.5

 2

 2.5

 3

 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t I

nc
re

as
e

Clients

baseline
merge Sub

merge Dest
merge Acc
merge RO

(d) Stored Procedures (RC)

Figure 9: Throughput increase of TATP

6.1.2 TATP: Different Transactions and Interval
In order to analyze the impact of different transaction

types for merging we refer to the TATP benchmark [35]
and run each TATP transaction individually. For space
reasons, we abbreviate them in the following manner: Get

Subscriber (Sub), Get New Destination (Dest), Get Acces

Data (Acc), Update Subscriber (UpSub), Update Location

(UpLoc), Insert Call Forwarding (InsCF), as well as the
Delete Call Forwarding (DelCF) transaction. In addi-
tion, we also run TATP’s read-only transactions (RO), con-
sisting of Sub, Dest, and Acc. We use the same system-
settings and intervals, as in our previous experiment and
execute all statements in Read Committed . Figure 9a plots
our results.
Our first observation is that merging improves the through-
put of Sub by a factor of 10 and Dest by a factor of 12.
While merging increases the throughput of Acc by a factor
of 6, we see almost no improvement for transactions that
contain DML statements. More interestingly, the through-
put of running a read only mix is increased by a factor of
3 with an interval of 250 µs. This supports our hypothesis
that merging is extremely beneficial for read heavy work-
loads with a limited set of hot-spot queries, which in fact is
a very typical pattern in practical settings.

6.2 Experiment 2: Interactive Execution
In the second experiment, we investigate the gains of merg-

ing when using TATP as an interactive workload and an-
alyze the effects of stored procedures in the next experi-
ment. For this experiment, we now limit our system’s re-
sources to 10 worker threads pinned to 10 cores. In the
merging case, the 10 threads are shared for executing mer-
ged statements and non-merged statements. Otherwise, all
10 threads are executing non-merged transactions. In both
cases, clients connect to the database from an external C++
driver program via SQLDBC and therefore measure the end-
to-end throughput.

6.2.1 TATP: Read Committed
For Read Committed , Figure 9b reports a performance

increase of 25% to 33% for 100 clients and more, once the
system is fully utilized. In comparison to the 20% reported
in [29] for Read Uncommitted , we find that our results are
slightly better, which is probably due to an improved im-
plementation. In more detail, we see two sides of the coin:

1705

on the one side, we observe a decrease of the sharing po-
tential, compared to YCSB or isolated execution of TATP’s
transactions, with the existence of more complex queries
such as the join query in the Dest transaction. On the other
side however, we see how merging improves the performance
of merge-able TATP queries under high load resulting in a
positive net effect of merging for complex interactive OLTP
workloads under Read Committed .

The next section analyses to what extent this also holds,
when TATP is executed under Snapshot Isolation.

6.2.2 TATP: Snapshot Isolation
As discussed in Section 4, Snapshot Isolation offers less

sharing potential than Read Committed . Figure 9c depicts
the benefit of merging for TATP executed interactively un-
der Snapshot Isolation. Our first observation is that merging
also provides a benefit for OLTP workloads executed under
Snapshot Isolation. The throughput increase is in average
25%.

In comparison to the results presented in Figure 9b for
Read Committed , we note two things:

1. Workloads executed under Snapshot Isolation start to
benefit from merging in more extreme overload situa-
tions. While TATP under Read Committed showed a
performance improvement already for 100 clients, such
an improvement is only visible from 300 clients on-
wards when executed under Snapshot Isolation.

2. The overall benefit shrinks, compared to Read Com-
mitted . As can be seen in Figure 9b merging leads to
a throughput increase of 33%. For Snapshot Isolation,
we improve throughput by 25%.

As Section 4 already stated that Snapshot Isolation de-
creases the merging potential of an interactive OLTP work-
load in comparison to Read Committed , we conclude that
the above mentioned observations can be inferred from the
stronger isolation level guarantees that Snapshot Isolation
provides over Read Committed .

6.3 Experiment 3: Stored Procedures
Real-world OLTP workloads are often implemented as

stored procedures to avoid sending every request over the
network. As stored procedures are transactions under su-
pervision of the DBMS, we consider them a subset of inter-
active transactions in this context. In order to outline the
practicality of the merging approach also for such common
settings, we implemented the TATP transactions used in the
experiment before as stored procedures and executed TATP
with an increasing number of clients, where each client in
sequence submits calls to a TATP transaction. We run our
experiment in Read Committed which allow us to compare
the result to the results of the previous experiment.

Figure 9d presents our results relative to the baseline
(always 1), when we execute TATP. First, merging is ap-
plied for all read-only operations (merge RO) which leads
to an increase in throughput by a factor of 2.5×, as delaying
the execution of read-statements leads to an earlier execu-
tion of non-mergeable statements. In addition, we observe
that merging only Dest improves performance by 20%, while
merging Sub or Acc improves performance by 40%. These
numbers are easily explained, as Sub and Acc make 35% of
the workload, each, while Dest makes only 10%.

 0
 20
 40
 60
 80

 100
 120

.05 .10 .25 .50 .75 .90 1.0
 14
 16
 18
 20
 22
 24
 26
 28
 30

T
hr

ou
gh

pu
t (

K
q/

s)

C
P

U
 C

on
su

m
pt

io
n

(#
 C

or
es

)

Mergeable Statement Ratio
q/s baseline
q/s merged

CPU baseline
CPU merged

(a) Analysis of single query type

 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260

 100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t (

C
li

ck
s/

s)

Clients

baseline
merged

(b) Merging applied to work-
load

Figure 10: Application to SAP Hybris workload

6.4 Experiment 4: SAP Hybris
In our final experiment, we focus on SAP Hybris, a real-

world enterprise OLTP workload traced from running a web-
store on an app server with a SOLR server as web-page
cache and a SAP HANA database on the same machine.
The workload is designed as interactive workload running
in Read Committed . The application server submits queries
generated for web-page elements, such as product images.
This setting implies few hot-spot queries, e.g., a single-select
query for looking up product images, which we refer to as
media query.

6.4.1 SAP Hybris: Merging Potentials
In a first step, we study the merging potentials of the hot-

spot read-only queries (i.e., the media queries) before we run
the full workload in the next experiment. For this experi-
ment we run the media queries via ODBC against our pro-
totype based on SAP HANA using 32 cores and merge 5%,
10%, 25%, 50%, 75%, 90%, or all of these incoming queries.
This allows us to systematically observe the throughput in-
crease and CPU consumption when merging is applied.

Figure 10a presents the throughput of thousand queries
per second and the CPU consumption in active cores for
both, baseline and merged approach. As expected, merg-
ing more of the incoming queries improves the throughput
within this benchmark up to the point, where we increase
the throughout by about a factor 2×, when 90%+ of all in-
coming queries are merged. Furthermore, we note that CPU
consumption does not increase during merging; instead CPU
consumption is decreased by almost a factor 2×, when all
queries are merged. Compared to the baseline, half of the
CPUs execute twice as many statements per second!

6.4.2 SAP Hybris: Full Setting
In the next step, we now run a SAP Hybris workload in a

full Hybris landscape with an application server (12 cores),
a SOLR server (4 cores), and our research prototype based
on SAP HANA with 4 cores.
Figure 10b presents the throughput in clicks performed by
all clients per second. We observe that by merging we in-
crease performance by a constant factor of 20% for situa-
tions of more than 400 clients. We think that this gain is
is significant, considering that SAP HANA is already highly
optimized for this workload.

6.5 Discussion
Our experiments show that our approach improves the

throughput of interactive multi-statement transactions such
as TATP by 33% for Read Committed and 25% for Snap-
shot Isolation. However, using stored procedure increases
throughput by 2.5× for Read Committed . Furthermore, the
application of our approach on a business workload revealed
a similar performance improvement as for TATP.

1706

As we depict in Figure 6, such throughput increase may
already be achieved with a non-intrusive extension of com-
mon in-memory databases, such as SAP HANA – the basis
of our prototype implementation. To push the performance
improvements even further, the database engine needs to
integrate the merging support natively into its execution
engine. E.g., with our approach, several statements may be
executed in the context of the same MTx at the same point
in time. In a common execution engine designed for exe-
cuting one statement per transaction at a time, this may
lead to undesired side-effects, which can only be avoided
through locking, implicitly serializing statement execution.
A database designed for a merged approach therefore needs
to allow the flawless execution of statements within the same
transaction at the same time.

Limitations. The benefit of merging is limited by three fac-
tors, as our experiments show: (1) The isolation level, (2)
read/write ratio in the workload, and (3) number of tables
read from. All of these factors limit the merging potential of
a workload: isolation levels do so by increasing the number
of snapshots to read from; writes do so by blocking execution
threads and decreasing the amount of reads in the workload
– and the more tables we have in our system, the fewer our
abilities to merge incoming reads become. Furthermore, as
discussed before, our inability of merging writes may de-
crease the potential of merging for some workloads.

7. RELATED WORK
Sharing techniques have been applied to different granu-

larities of execution plans. Different shared scan techniques
were described in [17, 39, 37, 28], techniques for merging
other operators have been proposed in [20, 13, 26]. As these
works focus mainly on scans and complex operators such as
joins, they are hardly adaptable to OLTP workloads, which
mainly consist of simple reads. Group Commit [5] merges
the page-flush of commit operations, but does not further
investigate into merging other OLTP operations.

An important work about merging subplans with similar
expressions, commonly referred to as Multi Query Optimiza-
tion (MQO) was submitted by [33]. Similar works are Cjoin
[27, 3] that merge operations of star-queries, which often oc-
cur in OLAP scenarios, and Super-Operators [19] that aim
for merging complex subplans into a single operator. While
the latter focus on typical OLAP operations, MQOs could
be adapted to OLTP workloads, as well, but finding com-
mon subexrepssions among OLTP queries might take more
time than executing these queries.

In contrast to MQO, Materialized Views (MV) [31] can
be used to store results of subplans for future submitted
queries, as well. Keeping such MV updated in an OLTP
scenario, is however very expensive and subject of ongoing
research.

Finally, merging full statement plans, as proposed in this
work, has been discussed in [22, 4, 11]. These works did
neither consider the interval of waiting before batching nor
any kind of transaction isolation. Another proposal how
to design a database that supports merging throughout the
full database stack has been discussed in [34]. SharedDB
[12] as well as its successor BatchDB [21] propose a sys-
tem that is able to merge statements of OLTP workloads
and also support writes. However, a study or discussion on
the mergeability under different isolation levels is missing

in both works. Recently, Ding et al. [6] have described an
optimistic system that allows batching of operations orig-
inating from fully submitted transactions. These batches
are not implemented as merged accesses, but executed se-
quentially and are limited to fully submitted transactions
(i.e., stored procedures) that do not require read-your-own-
writes. OLTPShare [29] were the first to apply merging
techniques within a state-of-the-art DBMS. However, they
do not consider isolation levels within their workloads and
in consequence can provide merging for Read Uncommitted ,
only. As most OLTP workloads demand higher isolation
levels, OLTPShare therefore fails applicability in common
customer scenarios.

In brief, most merging techniques focus on merging read-
only scenarios with expensive calculations, commonly found
in OLAP workloads, or fail to consider visibility of data
items and the impact of isolation levels on the mergeability
within the workload – a gap filled with our work.

8. CONCLUSIONS AND FUTURE WORK
Currently, merging of statements is only considered for

read only scenarios, such as OLAP statements or OLTP
workloads, where updates are processed in batches or the
workload is considered to run in Read Uncommitted . As
none of the previous approaches could deliver a solution how
to deal with transactional isolation when merging, their ap-
plication in real world systems has been difficult.

In this work, we describe how to implement merging of
read statements in MVCC systems to provide both: trans-
actional isolation as well as read-your-own-writes. Our idea
is to find a snapshot that contains the requested versions
of the data items accessed by the read statements to be
merged and run the Merged Read with that snapshot. If
such a snapshot cannot be found, we do not merge these
statements and in consequence execute them in the context
of the submitting transaction. Merging write statements on
the other hand needs to provide error-handling, when a mer-
ged write fails, as well as complicated rollback and recovery
extensions, in case a transaction aborts. Furthermore, dif-
ferent write statements need to be classified according to the
isolation level under which they can be merged. Therefore,
merging write statements was out of the scope of this paper
and left for future work.

We implemented our approach as a prototype within SAP
HANA and evaluated with two multi-statement transaction
benchmarks: (1) the TATP benchmark executed interac-
tively under different isolation levels and as stored procedure
(2) a real-world SAP Hybris workload. Our results show
that interactive OLTP workloads can benefit up to 33% from
merging in overload scenarios, while keeping the isolation
properties requested by the application (Read Committed
and Snapshot Isolation). Throughput of stored procedures
may even be improved by a factor of 2.5×. In conclusion,
merging can now finally be used by real world industry sys-
tems.

9. REFERENCES
[1] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and

P. O’Neil. A critique of ansi sql isolation levels. In Proceedings
of the 1995 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’95, pages 1–10, New York,
NY, USA, 1995. ACM.

1707

[2] P. A. Bernstein and N. Goodman. Multiversion concurrency
control–theory and algorithms. ACM Trans. Database Syst.,
8(4):465–483, 1983.

[3] G. Candea, N. Polyzotis, and R. Vingralek. Predictable
performance and high query concurrency for data analytics.
PVLDB, 20(2):227–248, 2011.

[4] L. Chen, Y. Lin, J. Wang, H. Huang, D. Chen, and Y. Wu.
Query grouping-based multi-query optimization framework for
interactive sql query engines on hadoop. Concurrency and
Computation: Practice and Experience, 30:e4676, 08 2018.

[5] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R.
Stonebraker, and D. A. Wood. Implementation techniques for
main memory database systems. In Proc. ACM SIGMOD Int.
Conf. Manag. Dat., SIGMOD ’84, pages 1–8, New York, NY,
USA, 1984. ACM.

[6] B. Ding, L. Kot, and J. Gehrke. Improving optimistic
concurrency control through transaction batching and
operation reordering. PVLDB, 12(2):169–182, 2018.

[7] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database
replication using generalized snapshot isolation. In 24th IEEE
Symposium on Reliable Distributed Systems (SRDS’05),
pages 73–84, Oct 2005.

[8] M. R. Emily Wilson and T. Kejser. Analyzing I/O
Characteristics and Sizing Storage Systems for SQL Server
Database Applications. Technical report, Microsoft, 2010.

[9] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe,
and J. Dees. The sap hana database - an architecture overview.
Bulletin of the Technical Committee on Data Engineering /
IEEE Computer Society, 35(1):28–33, 2012.

[10] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha.
Making snapshot isolation serializable. ACM Trans. Database
Syst., 30(2):492–528, June 2005.

[11] Q. Ge, P. Peng, Z. Xu, L. Zou, and Z. Qin. FMQO: A federated
RDF system supporting multi-query optimization. In Web and
Big Data - Third International Joint Conference,
APWeb-WAIM 2019, Chengdu, China, August 1-3, 2019,
Proceedings, Part II, pages 397–401, 2019.

[12] G. Giannikis, G. Alonso, and D. Kossmann. Shareddb: Killing
one thousand queries with one stone. PVLDB, 5(6):526–537,
2012.

[13] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe: A
simultaneously pipelined relational query engine. In
Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’05, pages
383–394, New York, NY, USA, 2005. ACM.

[14] G. Huang, X. Cheng, J. Wang, Y. Wang, D. He, T. Zhang,
F. Li, S. Wang, W. Cao, and Q. Li. X-engine: An optimized
storage engine for large-scale e-commerce transaction
processing. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19, pages
651–665, New York, NY, USA, 2019. ACM.

[15] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb,
J. Chhugani, H. Plattner, P. Dubey, and A. Zeier. Fast updates
on read-optimized databases using multi-core cpus. PVLDB,
5(1):61–72, 2011.

[16] T. K. Lance Ashdown and J. McCormack. OracleR© Database
Database Concepts. Technical report, Oracle, August 2018.

[17] C. Lang, B. Bhattacharjee, T. Malkemus, S. Padmanabhan,
and K. Wong. Increasing buffer-locality for multiple relational
table scans through grouping and throttling. In PVLDB, pages
1136–1145, 05 2007.

[18] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel,
and M. Zwilling. High-performance concurrency control
mechanisms for main-memory databases. PVLDB,
5(4):298–309, 2011.

[19] J. Leeka and K. Rajan. Incorporating super-operators in
big-data query optimizers. PVLDB, 13(3):348–361, 2019.

[20] D. Makreshanski, G. Giannikis, G. Alonso, and D. Kossmann.
Mqjoin: Efficient shared execution of main-memory joins.
PVLDB, 9(6):480–491, 2016.

[21] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso.

Batchdb: Efficient isolated execution of hybrid oltp+olap
workloads for interactive applications. In Proceedings of the
2017 ACM International Conference on Management of
Data, SIGMOD ’17, pages 37–50, New York, NY, USA, 2017.
ACM.

[22] R. Marroquin, I. Müller, D. Makreshanski, and G. Alonso. Pay
one, get hundreds for free: Reducing cloud costs through
shared query execution. In SoCC, 2018.

[23] K. May. Airline system look-to-book ratios soar, expected to go
10x higher. https://www.phocuswire.com/
Airline-system-look-to-book-ratios-soar-expected-to-go-10x-higher,
December 2015. [Online; accessed 15-March-2019].

[24] N. May, A. Böhm, and W. Lehner. SAP HANA – The
Evolution of an In-Memory DBMS from Pure OLAP Processing
Towards Mixed Workloads. In B. Mitschang, D. Nicklas,
F. Leymann, H. Schöning, M. Herschel, J. Teubner, T. Härder,
O. Kopp, and M. Wieland, editors, Datenbanksysteme für
Business, Technologie und Web (BTW 2017), pages 545–546.
Gesellschaft für Informatik, Bonn, 2017.

[25] H. H. Ohad Rodeh and D. Chambliss. Visualizing Block IO
Workloads. Technical report, IBM Research Division, October
2013.

[26] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. PVLDB, 3(1-2):928–939,
2010.

[27] I. Psaroudakis, M. Athanassoulis, M. Olma, and A. Ailamaki.
Reactive and proactive sharing across concurrent analytical
queries. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’14, pages 889–892, New York, NY, USA, 2014. ACM.

[28] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M. Lohman.
Main-memory scan sharing for multi-core cpus, 2008.

[29] R. Rehrmann, C. Binnig, A. Böhm, K. Kim, W. Lehner, and
A. Rizk. OLTPshare: The Case for Sharing in OLTP
Workloads. PVLDB, 11(12):1769–1780, 2018.

[30] R. Rehrmann, M. Keppner, W. Lehner, C. Binnig, and
A. Schwarz. Workload merging potential in sap hybris. In
Proceedings of the Workshop on Testing Database Systems,
DBTest ’20, New York, NY, USA, 2020. Association for
Computing Machinery.

[31] N. Roussopoulos. View indexing in relational databases. ACM
Trans. Database Syst., 7(2):258–290, June 1982.

[32] M. Samet. Consolidating OracleR© OLTP Workloads with
XtremIO. Technical Report Part Number H13828-1 (Rev. 02),
EMC Corporation, December 2014.

[33] T. K. Sellis. Multiple-query optimization. ACM Trans.
Database Syst., 13(1):23–52, Mar. 1988.

[34] Z. Shang, X. Liang, D. Tang, C. Ding, A. J. Elmore,
S. Krishnan, and M. J. Franklin. Crocodiledb: Efficient
database execution through intelligent deferment. In CIDR
2020, 10th Conference on Innovative Data Systems Research,
Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. www.cidrdb.org, 2020.

[35] M. M. Simo Neuvonen, Antoni Wolski and V. Raatikka.
Telecommunication application transaction processing (TATP)
benchmark description. Technical report, IBM Software Group
Information Management, March 2009.

[36] TPC-H. TPC BENCHMARKTMC Standard Specification
Revision 5.11. Technical report, Transaction Processing
Performance Council (TPC), February 2010.

[37] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and
D. Kossmann. Predictable performance for unpredictable
workloads. PVLDB, 2(1):706–717, 2009.

[38] D. V. A. Zeyuan Shang and A. Pavlo. Carnegie Mellon
Database Application Catalog (CMDBAC).
http://cmdbac.cs.cmu.edu, 2018. [Online; accessed
01-March-2018].

[39] M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperative
scans: Dynamic bandwidth sharing in a dbms. In In Proc. of
the 33 rd Intl. Conf. on Very Large Databases (VLDB, pages
723–734, 2007.

1708

	Introduction
	Overview
	Why Naïve Merging Fails!
	Our Approach

	Formalizing Our Approach
	Transaction Theory
	Merging under MVCC

	Different Isolation Levels
	Read Uncommitted
	Read Committed
	Snapshot Isolation
	Serializable
	Discussion

	Implementation
	System Design
	Implementing Isolation Levels

	Experimental Evaluation
	Experiment 1: Parameter Evaluation
	YCSB: Read/Write Ratio and Dequeue Interval
	TATP: Different Transactions and Interval

	Experiment 2: Interactive Execution
	TATP: Read Committed
	TATP: Snapshot Isolation

	Experiment 3: Stored Procedures
	Experiment 4: SAP Hybris
	SAP Hybris: Merging Potentials
	SAP Hybris: Full Setting

	Discussion

	Related Work
	Conclusions and Future Work
	References

