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ABSTRACT
Pointwise order dependencies (PODs) are dependencies that
specify ordering semantics on attributes of tuples. POD dis-
covery refers to the process of identifying the set Σ of valid
and minimal PODs on a given data set D. In practice D
is typically large and keeps changing, and it is prohibitively
expensive to compute Σ from scratch every time. In this
paper, we make a first effort to study the incremental POD

discovery problem, aiming at computing changes 4Σ to Σ
such that Σ⊕4Σ is the set of valid and minimal PODs on
D with a set 4D of tuple insertion updates. (1) We first
propose a novel indexing technique for inputs Σ and D. We
give algorithms to build and choose indexes for Σ and D,
and to update indexes in response to 4D. We show that
POD violations w.r.t. Σ incurred by 4D can be efficiently
identified by leveraging the proposed indexes, with a cost
dependent on log(|D|). (2) We then present an effective
algorithm for computing 4Σ, based on Σ and identified vio-
lations caused by 4D. The PODs in Σ that become invalid
on D+4D are efficiently detected with the proposed index-
es, and further new valid PODs on D+4D are identified by
refining those invalid PODs in Σ on D +4D. (3) Finally,
using both real-life and synthetic datasets, we experimental-
ly show that our approach outperforms the batch approach
that computes from scratch, up to orders of magnitude.
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1. INTRODUCTION
Data dependencies are valuable in, e.g., schema design [4],

query optimization [6, 31, 36] and data quality managemen-
t [10,20], among others. A host of dependencies are proposed
in literature; see e.g., functional dependencies (FDs), condi-
tional functional dependencies [11], denial constraints (D-

Cs) [8], sequential dependencies [17] and differential depen-
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dencies [32]. Recently, pointwise order dependencies (PODs)
are introduced in [15, 16, 37], as a dependency language to
specify ordering semantics on attributes of tuples.

Example 1: Consider the sample tax data (relation in-
stance D1) in Table 1. Each tuple denotes a person with the
following attributes: Tuple ID (TID), first name (FName),
last name (LName), tax date (Date), social security num-
ber (SSN), tax serial number (NUM), area code (AC), phone
number (PH), state (ST), zip code (ZIP), salary (SAL), tax
rate (RATE) and tax exemption amount (TXA).

We present some constraints that hold on D1.
σ1: Persons with the same zip code live in the same state.
σ2: The SSN of a person determines his/her name.
σ3: A person with a lower salary and a higher tax exemption
amount has a lower tax rate.
σ4: The tax serial number increases with the tax date for a
single person.

We see that σ1 and σ2 are two FDs that only require the
equality operator (=). In contrast, more comparison opera-
tors are needed for σ3 and σ4, to express ordering semantics
on tuple values. Specifically, all these constraints can be
expressed in the notation of PODs (formalized in Section 3).
σ1: {ZIP= } ↪→ {ST= }
σ2: {SSN= } ↪→ {FName=, LName= }
σ3: {TXA>, SAL< } ↪→ {RATE< }
σ4: {SSN=, Date< } ↪→ {NUM< } 2

PODs subsume FDs as a special case, and can additionally
specify ordering semantics. This is desirable since ordered
attributes are very common in data values. Hence, PODs can
be employed to define data quality rules [10]. PODs can also
be leveraged to optimize queries with inequality joins [22].

To take advantage of PODs, the set Σ of PODs that hold
(are valid) on a relation D is expected to be known. It
is typically too expensive to design dependencies manual-
ly [1, 2], which highlights the quest for automatic discovery
techniques, to find the set Σ of PODs that hold on D.

Worse, data in practice typically keeps changing, which
means that a set4D of updates may be applied toD. In this
paper, we make a first effort for the case of tuple insertions.
While deletions may be prohibited, such as data warehouses
and block chains, insertions are typically supported. We
must update dependencies for tuple insertions because tuple
insertions (but not deletions) may cause valid dependencies
to be invalid and using invalid dependencies leads to errors.

For discovering the set of PODs on D +4D, a naive way
is to recompute all PODs from scratch on D +4D, which
is obviously computationally expensive. Intuitively, when
4D is small compared to D, a better approach is to com-
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Table 1: Tax Data: D1

TID FName LName Date SSN NUM AC PH ST ZIP SAL RATE TXA

t0 Ali Sadam 20140410 719975883 1448 719 6059466 CO 80612 32000 1.24 3000
t1 Eser Duparc 20140224 303975883 1401 303 5872027 CO 80612 50000 1.42 1500
t2 Hennie Hannen 20140413 701178073 1486 701 1638673 ND 58671 30000 1.21 3400
t3 Rene Beke 20130403 801350874 1386 801 6192334 UT 84308 55000 2.04 1300
t4 Ali Sadam 20140329 719975883 1427 719 6059466 CO 80612 7500 1.21 0
t5 Hennie Hannen 20130404 701178073 1386 701 1638673 ND 58671 6500 0.24 900
t6 PerOlof Motwani 20150324 970122634 1547 970 8484643 CO 80209 95000 2.85 1100

Table 2: Incremental Tax Data: 4D1

TID FName LName Date SSN NUM AC PH ST ZIP SAL RATE TXA

t7 Yuichiro Uckun 20130322 435849162 1368 435 5872027 UT 84308 40000 1.42 3300
t8 Hennie Hannen 20140218 701178073 1478 701 1638673 ND 58671 33000 2.04 1400
t9 Rene Beke 20150213 801350874 1533 801 6192334 UT 84308 32000 1.23 3200

pute changes 4Σ to Σ, such that Σ ⊕4Σ is a set of POD-

s that hold on D + 4D. We use the notation “⊕” since
some PODs in Σ no longer hold and are removed from Σ,
while some new valid PODs may be discovered and added
into Σ. This approach is known as incremental dependency
discovery [3, 30, 39], in contrast to batch (non-incremental)
approaches that discover dependencies on the whole data
set. Incremental POD discovery is very intricate for tuple
insertions, as illustrated in the following example.

Example 2: Consider the incremental4D1 (Table 2). Sup-
pose Σ = {σ1, σ2, σ3, σ4} in Example 1, is the set of PODs

discovered on D1. On D1 + 4D1, we can see that σ1, σ2

and σ4 still hold, but σ3 is invalid now. Specifically, σ3 is
invalid due to violations caused by tuples t1, t7 and t3, t8.

Therefore, from Σ we should remove σ3 that does not
hold on D1 +4D1. More importantly, we should discover
a set of new PODs holding on D1 +4D1 as additions to Σ.
Intuitively, we can evolve new valid PODs based on PODs

(in Σ) that are invalid on D1 +4D1.
Based on σ3, we may find two new PODs valid on D1 +
4D1. σ′3={ST=, TXA>, SAL< } ↪→ {RATE< } and σ′′3 =
{TXA>, SAL< } ↪→ {RATE≤ }. σ′3 introduces an additional
attribute with a comparison operator to the left-hand side
(LHS) of σ3; the LHS conditions are strengthened. In con-
trast, σ′′3 relaxes σ3 in its right-hand side (RHS) condition by
changing ’<’ to ’≤’. Both σ′3 and σ′′3 hold on D1; obviously
any POD that holds on D1 +4D1 holds on D1. But neither
σ′3 nor σ′′3 is in Σ. The reason is that discovery algorithms
typically find only minimal constraints (formalized in Sec-
tion 3). σ′3 (resp. σ′′3 ) is not minimal on D1 since σ3 is valid
on D1 and logically implies σ′3 (resp. σ′′3 ), in the sense that
any relation that satisfies σ3 must satisfy σ′3 (resp. σ′′3 ). S-
ince σ3 does not hold on D1 +4D1, σ′3 and σ′′3 are minimal
and valid PODs that should be added into Σ. 2

Contributions & organizations. In this work, we make
a first effort to study incremental POD discovery, for Σ on
D and a set 4D of tuple insertions to D.

(1) Violation detection is a crucial step of incremental POD

discovery. We present a novel indexing technique for two at-
tributes with inequality operators. Leveraging the indexes,
we show that violations of Σ incurred by 4D can be identi-
fied with a cost dependent on log(|D|), where |D| is the size
of D. (Section 4).

(2) We develop an algorithm for building an optimal index
for two attributes with inequality operators. We study tech-
niques for choosing indexes for the set Σ of PODs, to balance
the index space and efficiency. We also present an algorithm
for updating indexes in response to 4D, when POD viola-
tions are identified simultaneously (Section 5).

(3) We develop techniques for discovering 4Σ based on Σ
and violations incurred by 4D. After identifying in Σ in-
valid PODs on D+4D, we present algorithms to evolve new
valid and minimal PODs based on invalid PODs by refining
LHS and (or) RHS attributes and operators (Section 6).

(4) Using a host of real-life and synthetic datasets, we con-
duct extensive experiments to verify the effectiveness and
efficiency of our approaches (Section 7).

2. RELATED WORK
Dependency discoveries are known as one of the most im-

portant aspects of data profiling [1, 2], and are extensively
studied for a host of dependencies; see e.g., [12–14,17–19,24,
28,29,38]. This section investigates works close to ours: the
hierarchy of order dependency classes and denial constraints
(DCs), discovery of order dependencies and DCs, incremental
dependency discoveries, and techniques for inequality joins.

The hierarchy of order dependencies and DCs. There
is a different notion of order dependency in literature, re-
ferred to as lexicographical order dependency (LOD) [35,37].
As opposed to PODs that are defined on sets of attributes,
LODs are defined on lists of attributes. PODs strictly gener-
alize LODs [37], in the sense that each LOD can be mapped
into a set of PODs, and a relation satisfies the LOD iff it sat-
isfies all PODs in the set. The generalization is strict, since
LODs do not generalize PODs. Set-based canonical order de-
pendencies are presented in [33,34], as alternatives to LODs.
PODs again strictly generalize canonical order dependencies.

Denial constraints (DCs) [7, 8] are given in a universally
quantified first order logic formalism. DCs generalize PODs,
and each POD can be encoded as a DC.

Discovery of order dependency. To our best knowledge,
we are not aware of any existing works on POD discovery.
Batch discovery methods are studied for LODs in [9,21,25],
and for set-based canonical ODs in [33,34]. They cannot be
applied for discovering PODs, since PODs are more general.
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As will be studied in Section 3, the batch discovery of PODs

has a complexity exponential in the number of attributes,
similar to the set-based canonical OD discovery [33,34], and
is better than the LOD discovery [9, 21, 25], which is of a
factorial complexity in the number of attributes.

Batch DC discoveries are investigated in [5, 7, 26]. We
implement batch POD discovery algorithms by adapting DC

discovery methods, to compare against our incremental POD

discovery technique in experimental evaluations (Section 7).
Different from batch discoveries, this work investigates the

incremental discovery problem, aiming at computing 4Σ in
response to 4D, based on known Σ discovered on D.

Incremental Dependency Discovery. Incremental dis-
coveries have received an increasing attention, due to their
practical demands. Incremental discovery techniques are de-
veloped in [3] for unique column combinations (UCCs), a.k.a.
candidate keys, and in [30] for FDs. Recently, incremental
LOD discovery is also studied in [39].

Given a set Σ of discovered constraints on D and a set
4D of updates, incremental discoveries mainly address two
problems. The first one is to efficiently identify violations
of Σ incurred by 4D, and the second one is to refine Σ for
Σ⊕4Σ that is valid on the updated data set. The solutions
of the two problems, however, differ significantly from one
constraint type to another. Incremental POD discovery is
necessarily more complex; PODs subsume FDs (UCCs) and
generalize LODs. As will be studied in Section 4, the incre-
mental POD violation detection problem already deserves
an in-depth treatment and motivates us to develop a nov-
el indexing technique. Also, a completely new refinement
strategy for PODs is required for computing 4Σ, since we
can not only add more attributes to the LHS, but also refine
operators for both LHS and RHS attributes.

Inequality joins. Inequality joins are to join relations with
inequality conditions, and violations of PODs on a relation
D can be identified by a self-join on D with inequality con-
ditions. [22] is the state-of-the-art technique for inequali-
ty joins, which is further extended in [23] for incremental
inequality joins in response to data updates. As opposed
to [23] that has a cost dependent on |D|, we present a nov-
el indexing technique that enables finding violating tuple
pairs incurred by tuple insertions in a cost dependent on
log(|D|). Experimental evaluations demonstrate that our
technique significantly outperforms [23] on tuple insertions.

3. PRELIMINARIES
In this section, we first review basic notations of PODs.

We then present definitions of minimal PODs and show the
complexity of batch POD discovery. We finally formalize the
incremental POD discovery problem.

Basic notations. R(A,B,. . . ) denotes a relation schema
with attributes A, B, . . . . We use D to denote a specific
instance (relation). t, s denote tuples, and tA denotes the
value of attribute A in a tuple t. Each tuple t is associated
with a distinct identifier (id), denoted by tid.

Marked Attributes [15, 16]. A marked attribute is of
the form Aop, where operator op ∈ {<,≤, >,≥,=}. For two
tuples t and s, we write Aop(t, s), if tA op sA holds.

Example 3: In Table 1, we have SAL>(t1, t0), since t1 has
a larger value on SAL than t0. We also have AC=(t2, t5). 2

Pointwise Order Dependencies (PODs) [15,16,37]. A
POD σ is of the form X ↪→Y, where X and Y are two sets of

Table 3: Operator Inverse and Implication
op = < > ≤ ≥
op <,> ≥ ≤ > <

im(op) =,≥,≤ <,≤ >,≥ ≤ ≥

marked attributes. σ holds on a relation D, iff for any two
tuples t, s in D, Bop(t, s) for all Bop ∈ Y if Aop(t, s) for all
Aop ∈ X . We say σ is valid on D if σ holds on D.

Formal theoretical foundations of PODs, e.g., a sound and
complete set of inference rules and logical implication, are
studied in [15]. Below we present some observations and
additional definitions, inspired by the inference rules.

In the sequel, we consider PODs in which each attribute
(neglecting operator) occurs at most once in the LHS and
RHS. It can be verified that PODs with multiple occurrences
of a same attribute can be safely skipped, e.g., {A< } ↪→
{A≤ } and {A<, A> } ↪→ {B≤ } trivially hold; {A<, A≤ }
↪→ {B≤ } is equivalent to {A< } ↪→ {B≤ }.
Example 4: σ4 = {SSN=, Date< } ↪→ {NUM< } holds on
D1 (Table 1): for any two tuples s and t in D1, if SSN=(s, t)
and Date<(s, t), then NUM<(s, t). 2

Remark. Observe the following. (1) Functional dependen-
cies (FDs) are special cases of PODs when only operator “=”
is used. (2) A POD X ↪→Y can be expressed as a set of POD-

s X ↪→Bopi
i for each Bopi

i ∈ Y. Obviously, X ↪→Y is valid
iff every X ↪→Bopi

i is valid. We hence consider PODs with a
single RHS marked attribute in the sequel. (3) Each POD σ
has a symmetry POD σsym by reversing “>” and “<”, e.g.,
{A=

1 , A>
2 , A≤3 } ↪→ {B

> } and {A=
1 , A<

2 , A≥3 } ↪→ {B
< }.

It is easy to see that σ is valid iff σsym is valid. To avoid
redundancy, we consider PODs that take op ∈ {<,≤,=} on
its RHS, e.g., {A=

1 , A<
2 , A≥3 } ↪→ {B

< }.
The number of PODs valid on an instance D can be very

large. Similar to other dependency discoveries [7, 24], it is
more instructive to find the set of minimal PODs rather than
all PODs. Before formalizing minimal PODs, we introduce
some additional notations.

The inverse and implication of operator. We denote
by op (resp. im(op)), the inverse (resp. implication) of an
operator op, as summarized in Table 3. It can be seen that,
(1) either Aop(t, s) or Aop(t, s), but never both; and (2) if

Aop(t, s) then Aim(op)(t, s).

Containment of marked attribute sets. For two sets X
and X ′ of marked attributes, we say X contains X ′, written

as X ′ ⊆ X , if ∀Aop∈X , op′ ∈ im(op) if Aop′∈X ′.
Example 5: It can be seen that {TXA>, SAL< } ⊆ {ST=,
TXA>, SAL< }, and {RATE≤ } ⊆ {RATE< }. 2

Intuitively, X ′ ⊆ X implies that X is “stricter” than X ′:
X ↪→X ′ is valid on any relation D.

Formally, a POD σ is not minimal if σ is logically implied
by another valid POD σ′, which means that any relation D
that satisfies σ′ must satisfy σ.

Minimal PODs. A POD σ = X ↪→ Bop is minimal if there
does not exist another valid POD σ′ = X ′ ↪→ Bop′ , where
X ′ ⊆ X and op ∈ im(op′).

Example 6: If {TXA>, SAL< } ↪→ {RATE< } is valid, then
it can be verified by definition that neither {ST=, TXA>,
SAL< } ↪→ {RATE< } nor {TXA>,SAL< } ↪→ {RATE≤ } is
minimal. We can see that any relation that satisfies {TXA>,
SAL< } ↪→ {RATE< } must satisfy both {ST=, TXA>, SAL<

} ↪→ {RATE< } and {TXA>,SAL< } ↪→ {RATE≤ }. 2
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Batch POD discovery. Given a relation D of schema R,
batch POD discovery is to find the complete set Σ of minimal
and valid PODs on D.

The worst-case complexity of a dependency discovery is
usually measured as the total number of candidate depen-
dencies (the search space of the dependency discovery) with
a given schema R. See e.g., LODs [9,25], set-based canonical
ODs [33, 34] and DCs [7]. Observe that for a POD, (1) on
the RHS, an attribute A ∈ R is present with one operator
among the three possible ones ({<,≤,=} due to symmetry);
and (2) on the LHS, any attribute in R \A is either (a) not
present, or (b) present with one operator among the five
possible ones ({<,≤, >,≥,=}). Therefore, batch POD dis-

covery has a complexity of O(3 · |R| ·6(|R|−1)) in the number
|R| of attributes.

Set-based canonical ODs [33,34] generalize LODs, and the
canonical OD discovery has a complexity exponential in |R|,
in contrast to the factorial complexity O(|R|!) of LOD dis-
covery [9, 21, 25]. This is because different LODs may be
mapped to the same canonical ODs. PODs further general-
ize canonical ODs, still with an exponential complexity. We
find the increased expressive power of PODs is necessary,
since only PODs can express the conjunction of order speci-
fications. For example, {Mid>, Final> } ↪→ {Grade>} states
that a student has a better grade if he/she has a better score
in both the midterm and the final exam [15]. This order-
ing specification common in practice cannot be expressed in
either LODs or canonical ODs.

Incremental POD discovery for tuple insertions. Giv-
en the complete set Σ of minimal valid PODs on D of schema
R, and a set 4D of tuple insertions to D, incremental POD

discovery is to find, changes 4Σ to Σ that makes Σ ⊕4Σ
the complete set of minimal and valid PODs on D +4D.

Specifically, 4Σ = 4Σ+ ∪ 4Σ−, where 4Σ+ and 4Σ−

are disjoint. (1) 4Σ+ ∩ Σ = ∅: 4Σ+ contains new minimal
valid PODs on D +4D as additions to Σ. (2) 4Σ− ⊆ Σ:
4Σ− contains PODs in Σ that are invalid on D +4D and
to be removed from Σ. That is, Σ⊕4Σ is computed as (Σ
∪ 4Σ+) \ 4Σ−.

The incremental discovery problem has a worst-case com-
plexity as its batch counterpart: each batch discovery on D′

is equivalent to the incremental discovery if D = φ, Σ = φ
and 4D = D′. In practice, 4D is typically (much) smaller
than D. An incremental algorithm can greatly improve the
efficiency if its computation cost is dependent on |4D| and
log(|D|), instead of |D|. We present techniques that indeed
achieve this goal in the following sections.

4. INDEXES FOR INEQUALITY OPERA-
TORS

In this section, we present a novel index structure, which
is an important building block for efficiently identifying POD

violations in response to 4D.
It is important for any incremental dependency discovery

algorithm to efficiently identify violations incurred by 4D.
Based on the known D and Σ, all existing incremental dis-
coveries [3,30,39] leverage indexes to speed up violation de-
tections. However, the introduction of inequality operators
(<,≤, >,≥) in PODs, significantly complicates the problem
and hinders common indexing techniques.

Example 7: Consider the violation detection for σ3 =
{TXA>, SAL< } ↪→ {RATE< } on relation D1 (Table 1),

Figure 1: Candidates of Violating Tuples w.r.t. t8

when tuple t8 is inserted. As shown in Figure 1, (1) we
first compute four sets: {t|TXA>(t8, t) } = {t3, t4, t5, t6}
and {t|SAL<(t8, t) } = {t1, t3, t6}, while {t| TXA>(t, t8) }
= {t0, t1, t2}, and {t|SAL<(t, t8) } = {t0, t2, t4, t5}. (2) We
then compute two sets: {t|TXA>(t8, t) } ∩ {t|SAL<(t8, t) }
= {t3, t6}, and {t|TXA>(t, t8) } ∩ {t|SAL<(t, t8) } ={t0, t2}.
Intuitively, these two sets contain candidates of violating tu-
ples w.r.t. t8. On tuples in the two sets, (3) we finally check
remaining conditions in σ3 to see whether σ3 is violated. For
example, t3, t8 lead to a violation if RATE≥(t8, t3), since t3
is in the set {t|TXA>(t8, t) } ∩ {t|SAL<(t8, t) }.

All tuples are visited for the computing in step (1). The
reason is that for a tuple s in D1, either TXA>(s, t8) or
TXA>(t8, s); similarly for SAL<. Intuitively, inequality op-
erators typically have a low selectivity [22, 23]. 2

Incremental POD discovery calls for novel indexing tech-
niques. In contrast, incremental FD (UCC) discoveries [3,30]
only consider operator “=”.

Intuitively, indexes can be built by combining together
several marked attributes with inequality operators to rem-
edy the low selectivity of a single one. There is a trade-
off concerning the number of marked attributes: more at-
tributes would lead to more selective indexes, that are how-
ever more specific, i.e., only apply to PODs with all these
attributes (Section 5.2), and that lead to indexes with large
ranks (to be explained shortly). In the sequel, we develop a
set of novel techniques for indexes on two marked attributes
with inequality operators, and they are experimentally ver-
ified to perform very well.

Index Structure. Given a relation D and two marked
attributes Aop1 , Bop2 (op1, op2 ∈ {<,≤, >,≥}), we present
an index structure for tuples in D w.r.t. Aop1 , Bop2 , denoted
as Index(Aop1 , Bop2).

We conduct a pre-processing step. We cluster tuples in
D based on their values on A and B, and keep an arbitrary
tuple, say t, for each cluster. We remove all other tuples
from D and put them into an additional hash map with tid
as the key, denoted as Equt

AB .
Index(Aop1 , Bop2) = {Sorted1, . . . , Sortedk }, where each

Sortedi (i ∈ [1, k]) is a sorted data structure on tuples (ids)
in D. We call k the rank of the index, and use Sortedi[n] to
denote the n-th element in Sortedi, starting from 0.

(1) For each tuple t in D, there exists a single Sortedi such
that t ∈ Sortedi;

(2) For tuples t′, t in each Sortedi, A
op1(t′, t) and Bop2(t′, t)

if t′ is after t.

Example 8: We can build Index(TXA>,SAL<) = {[t6, t3, t1,
t0, t2], [t4, t5]}, as shown in Figure 2. Tuples are organized in
two sorted structures Sorted1 and Sorted2. In each Sortedi,
TXA>(t′, t) and SAL<(t′, t) if t′ is after t. 2
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Figure 2: Index(TXA>, SAL<)

Intuitively, we aim to divide D into several parts (Sortedi),
and tuples in the same Sortedi are sorted on both A and B.
The idea is enlightened by the conditional dependencies [11],
which only hold on parts of the relation rather than the
whole relation. Implementation details of the indexes will
be studied in Section 5.3.

Before illustrating the benefit of indexes, we provide some
additional notations.

Candidates of violating tuples. For a tuple s in 4D, we
denote by T s

Aop1 ,Bop2 the set of tuples inD, where T s
Aop1 ,Bop2

= {t|Aop1(s, t), Bop2(s, t)}, and by T
s
Aop1 ,Bop2 the set of tu-

ples in D, where T
s
Aop1 ,Bop2 = {t|Aop1(t, s), Bop2(t, s)}.

For example, T t8
TXA>SAL<

= {t3, t6}, T
t8
TXA>SAL< = {t0, t2}

for tuple t8∈4D1. They are partial results computed in
Example 7, i.e., candidates of violating tuples w.r.t. t8.

We present Algorithm Fetch to efficiently compute both
T s
Aop1 ,Bop2 and T

s
Aop1 ,Bop2 , leveraging Index(Aop1 , Bop2).

Algorithm. Fetch takes a tuple s and Index(Aop1 , Bop2) as
inputs, and works on each Sortedi of Index(Aop1 , Bop2).

(1) It first finds position p (line 3). Specifically, (a) p =
−1, if Aop1(Sortedi[0], s); or (b) p = Sortedi.size−1, if Aop1

(Sortedi[Sortedi.size − 1], s); or (c) p is found such that
Aop1(Sortedi[p], s) and Aop1(Sortedi[p+1],s). It then finds
position q similarly by replacing Aop1 with Bop2 (line 4);

(2) From position max(p, q) + 1 to the right in Sortedi, it
collects all tuples in the set T

s
Aop1 ,Bop2 (lines 6-8);

(3) From position min(p, q) to the left in Sortedi, it collects
all tuples in the set T s

Aop1 ,Bop2 (lines 9-11).
As a post-processing step, if a tuple t ∈ T s

Aop1 ,Bop2 (re-

sp. T
s
Aop1 ,Bop2 ), then we also add all tuples in Equt

AB into

T s
Aop1 ,Bop2 (resp. T

s
Aop1 ,Bop2 ). Recall that tuples in Equt

AB

have same values on both A and B as t.

Example 9: For Index(TXA>, SAL<) = {[t6, t3, t1, t0, t2],
[t4, t5]} and tuple t8 ∈ 4D1 (shown in Figure 3), we illus-

trate how to compute T t8
TXA>SAL<

and T
t8
TXA>SAL< .

(1) On Sorted1 = [t6, t3, t1, t0, t2], we find TXA≤(t3, t8) and
TXA>(t1, t8), and hence p = 1. Similarly, SAL≥(t1, t8) and
SAL<(t0, t8), and we find q = 2.

Figure 3: Algorithm Fetch on Index(TXA>,SAL<)

Algorithm 1: Fetch

input : Tuple s, Index(Aop1 , Bop2 )

output: T s
Aop1 ,Bop2 , T

s
Aop1 ,Bop2

1 T s
Aop1 ,Bop2 ← ∅; T

s
Aop1 ,Bop2 ← ∅;

2 for each Sortedi ∈ Index(Aop1 , Bop2 ) do
3 p← find(s,Aop1 , Sortedi);
4 q ← find(s,Bop2 , Sortedi);
5 right ← max(p, q) + 1; left ← min(p, q);
6 while right < Sortedi.size do

7 add Sortedi[right] into T
s
Aop1 ,Bop2 ;

8 right ← right + 1;

9 while left ≥ 0 do
10 add Sortedi[left] into T s

Aop1 ,Bop2 ;

11 left ← left − 1;

We have right = max(p, q) + 1 = 3, and put t0 into

T
t8
TXA>SAL< . We then move to the right in Sorted1 and put

t2 into T
t8
TXA>SAL< . We have left = min(p, q) = 1, and add

t3 into T t8
TXA>SAL<

. We then move to the left in Sorted1 and

put t6 into T t8
TXA>SAL<

.

(2) On Sorted2=[t4,t5], p = 1 since TXA≤(t5, t8), and q = −1
since SAL<(t4, t8). We set right = Sorted2.size and left =

−1, and find no new tuples for T t8
TXA>SAL<

or T
t8
TXA>SAL< .

To sum up, T t8
TXA>SAL<

={t3, t6}, T
t8
TXA>SAL<={t0, t2}. 2

Correctness & complexity. The correctness of Fetch can
be easily inferred from the index specification.

Given Index(Aop1 , Bop2) = {Sorted1, . . . , Sortedk }, it
takes

∑
i∈[1,k]O(log(ni)) ≤ k · O(log(|D|)) to identify posi-

tions p, q on all Sortedi, where ni is the number of tuples in
Sortedi and |D| =

∑
i∈[1,k] ni, is the number of tuples in D.

This is because each Sortedi is sorted on both A and B. It is
linear in the size of T s

Aop1 ,Bop2 (resp. T
s
Aop1 ,Bop2 ) to collect

tuples for T s
Aop1 ,Bop2 (resp. T

s
Aop1 ,Bop2 ) on all Sortedi. This

cost is linear in the result size, and is obviously necessary.

Remark. The complexity depends on log(|D|) instead of
|D|. It can be seen that the rank k of the index impacts the
efficiency, and an index with a small rank is preferable. In
Section 5, we study how to choose marked attributes and
build indexes for small ranks. In Section 7, we experimen-
tally study ranks of indexes on various datasets.

5. ALGORITHMS FOR INDEXES
In this section, we present a set of algorithms for in-

dex processing. Given inputs D, 4D and Σ, we develop
algorithms to (1) build an optimal index for two marked
attributes with inequality operators (Section 5.1), to (2)
choose indexes for all PODs in Σ (Section 5.2), and to (3)
update indexes in response to 4D (Section 5.3).

5.1 Building Indexes
For D and Aop1 , Bop2 , the possible indexes may not be

unique. As an example, for Date< and NUM<, besides index
I ′ = {[t6, t3], [t2, t0, t5], [t4, t1]} (Figure 4), we have another
index I = {[t6, t2, t0, t4, t1, t5], [t3]} (Figure 5). As illustrated
in Section 4, they both satisfy the index specification, but
we prefer I to I ′ since I has a smaller rank than I ′.

We say Index(Aop1 , Bop2) is optimal if its rank is the min-
imum among all indexes for Aop1 , Bop2 .

Algorithm. We present Algorithm OptIndex, which builds
an optimal index with the minimum rank, taking as inputs
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Figure 4: Index I ′ for Date< and NUM<

Figure 5: Index I for Date< and NUM< with OptIndex

two marked attributes Aop1 , Bop2 and the relation instance
D (op1, op2 ∈ {<,≤, >,≥}).
(1) Tuples in D are sorted on A according to op1, and then
on B according to op2 for breaking ties (line 1). Specifically,
tuples are sorted in a descending order if op1 (op2) is in
{<,≤}, otherwise in an ascending order.

(2) OptIndex initializes the index with Sorted1 containing the
first tuple (line 2), and then enumerates remaining tuples
(lines 3-12). For each tuple s, if there exist multiple Sortedi

that satisfy the index specification w.r.t. s, i.e., Bop2(s, t)
if t is the last element of Sortedi, then OptIndex chooses
the one to minimize the difference of attribute values on B
incurred by s (lines 5-10), and adds s to the tail of it (line
11). Observe that Aop1(s, t) is guaranteed since D is sorted
on A according to op1. If no such Sortedi exists, then a new
Sortedj containing s is added into the index (line 12).

Example 10: Index is built on D1 for Date<,NUM< with
OptIndex, shown in Figure 5. (1) Tuples are sorted in de-
scending order of Date, i.e., [t6, t2, t0, t4, t1, t5, t3], and the
index is initialized as {[t6]}. (2) OptIndex then enumerates
all other tuples in D1. t2 is appended to Sorted1 containing
t6, since NUM<(t2, t6); similarly for t0, t4, t1, t5. (3) Since
t3 and t5 have a same value on NUM, a new Sorted2 is built
for t3. (4) Finally, we have I = {[t6, t2, t0, t4, t1, t5], [t3]}. 2

We then show the optimality property of OptIndex.

Theorem 1. For two marked attributes Aop1 and Bop2

(op1, op2 ∈ {<,≤, >,≥}), OptIndex creates an index with
the minimum rank among all indexes for Aop1 , Bop2 .

Proof sketch: We denote by Iopt the output of OptIndex.
Given any index I ′ for Aop1 and Bop2 , we show that I ′ can
be transformed into Iopt in a finite number of steps, and
after each step, (a) the index specification is still satisfied,
and (b) the index rank never increases. Specifically,

(1) As a pre-processing, we determine an order µ for tuples
in D, following the same way as line 1 of OptIndex.

(2) We treat tuples s in I ′ one by one following the order µ,
by considering s in Iopt. Tuple s remains unchanged in I ′,
if (a) s is the first element of some Sortedi in Iopt, or (b) s
is right behind a tuple t both in I ′ and in Iopt.

Algorithm 2: OptIndex

input : relation D and marked attributes Aop1 , Bop2

output: an optimal index for Aop1 and Bop2 on D
1 Sort tuples in D on A according to op1, and then on B

according to op2 for breaking ties;
2 Index ← { [ D[0] ] };
3 for each tuple s ∈ D \D[0] do
4 pos← NULL; min← −1;
5 for each Sortedi ∈ Index do
6 t← the last element of Sortedi;
7 if Bop2 (s, t) then
8 if min = −1 or min > |(sB − tB)| then
9 min← |(sB − tB)|;

10 pos← Sortedi;
11 if pos! = NULL then append s to the end of pos;
12 else add [s] into Index;

Now suppose s is right behind t in Iopt, but not in I ′. We
should move s such that it is also right behind t in I ′ (all
tuples behind s in the same Sortedj of I ′ are also moved).
In I ′, we denote by o the tuple right in front of s, and by p
the tuple right behind t.

case Figure 6a: If neither o nor p exists, then we move s

to be right behind t in I ′. This reduces the rank of I ′ by 1.
case Figure 6b: If p exists but o does not, then p becomes

the first element of the new Sortedj in I ′ after moving s.
This does not change the rank of I ′.

case Figure 6c: If o exists but p does not, then o becomes

the last element of Sortedj in I ′ after we move s. This does
not affect the rank of I ′.

case Figure 6d: Now both o and p exist. We know that
Aop1(p, s) since s is right behind t in Iopt, and that Aop1(s, o)
in I ′. Hence, we have Aop1(p, o). Obviously, o is processed
before s. Recall that t incurs the minimum value change
on attribute B against s, among all tuples that are pro-
cessed before s. From this we know Bop2(t, o). We also
know Bop2(p, t) in I ′, and hence have Bop2(p, o). Since we
know Aop1(p, o) and Bop2(p, o), we can put p right behind
o, and simultaneously put s right behind t. Again, this does
not affect the rank of I ′.

(3) It can be verified that we get index Iopt after (2). Recall
that the index rank never increases, in either of (a), (b),
(c), or (d) stated above. Since I ′ is an arbitrary index for
Aop1 and Bop2 , we conclude that Iopt has the minimum rank
among all indexes for Aop1 and Bop2 . 2

Complexity. OptIndex has a complexity ofO(|D|·log(|D|)).
Line 1 and lines 3-12 both have this complexity. We check
the tail elements of all Sortedi to find the desired Sortedi for

(a) neither o nor p exists (b) p exists but o doesn’t

(c) o exists but p doesn’t (d) both o and p exist

Figure 6: Illustration for Proof of Theorem 1
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the current tuple. This is done in O(log(k)) by building an
auxiliary sorted structure on the last elements of all Sortedi,
where k << |D| in practice, is the rank of the index.

5.2 Choosing Indexes
In this subsection, we first show that indexes can be em-

ployed for efficiently identifying violating tuples incurred by
4D, and that some indexes can be used as alternatives to
others. We then develop algorithms to choose indexes for Σ.

Given Σ valid on D, we need to identify violations of Σ
incurred by 4D. It is to find all tuple pairs (s, t) such that
s, t violate some PODs in Σ; obviously at least one of s, t
is in 4D. We consider the case both s and t are in 4D in
Section 5.3, and now suppose s ∈ 4D and t ∈ D.

Fetching violating tuple pairs with indexes. If s, t

violate σ = {Aop1
1 , . . . , Aopm

m } ↪→ Bop′ , then we know (a)

Aopi
i (s, t) for all i∈[1,m] and Bop′(s, t), or (b) Aopi

i (t, s) for

all i∈[1,m] and Bop′(t, s). We do the following.

(1) With indexes on attributes of σ, we can identify a (small)
set of candidates of t ∈ D for s ∈ 4D. Specifically,

(a) if some opi is “=”, then we can adopt an index that
sorts D on attribute Ai, denoted as Index(A=

i ). Index(A=
i )

helps efficiently find all tuples t such that A=
i (t, s).

(b) If some opi, opj∈{<,≤, >,≥}, then t ∈ T s

A
opi
i ,A

opj
j

∪ T
s

A
opi
i ,A

opj
j

. Leveraging indexes for Aopi
i , A

opj
j , we can

employ Algorithm Fetch to find such t (Section 4). Note

that Index(Aopi
i , Bop′) can be used as well (op′ ∈ {<,≤

, >,≥}, as summarized in Table 3); we need two indexes
Index(Aopi

i , B>) and Index(Aopi
i , B<), if op′ is “=”.

(2) We then check remaining conditions of σ for the genuine
set of t such that s, t violate σ.

Alternative indexes. We then show that some indexes
can be used as alternatives to others.

(1) Index(A≥, Bop2) can support A> and Bop2 as well, which
requires only a slight modification in Algorithm Fetch. More
specifically, we just neglect tuples t if A=(t, s), when collect-
ing tuples for T s

A>,Bop2 (resp. T
s
A>,Bop2 ) on the index.

(2) By slight modifications, Algorithm Fetch can employ
Index(A<, B<) (resp. Index(A<, B>)) to compute T s

A<B>

and T
s
A<B> (resp. T s

A<B< and T
s
A<B<). This does not af-

fect the computational complexity of Fetch. Without loss of
generality, we illustrate this with the following example.

Example 11: We compute T t8
Date<NUM> and T

t8
Date<NUM> by

employing Index(Date<,NUM<) = {[t6, t2, t0, t4, t1, t5], [t3]},
as shown in Figure 7. We find p=4 and q=1 in Sorted1, such
that Date<(Sorted1[p + 1], t8), Date≥(Sorted1[p], t8), NUM<

(Sorted1[q + 1], t8), and NUM≥(Sorted1[q], t8).
Different from the original algorithm, (1) we let left =

min(p, q)+1=2, right=max(p, q)=4; and (2) check tuples
from position left to right in Sorted1 for T t8

Date<NUM> and

T
t8
Date<NUM> . All nodes from left to right belong to one of

these two sets. We add t0 into T t8
Date<NUM> : Date<(t8, t0)

and NUM>(t8, t0); t4 and t1 are also put into T t8
Date<NUM> .

After that T t8
Date<NUM> = {t0, t1, t4}, T

t8
Date<NUM> = ∅.

We find no new results on Sorted2 =[t3]. Finally, we have

T t8
Date<NUM>={t0, t1, t4} and T

t8
Date<NUM>=∅. 2

Cover PODs in Σ by indexes. It is too costly to build an
index for each POD if Σ is large. We propose to build a set of

Figure 7: Leveraging an Index Reversely

indexes such that for each σ ∈ Σ at least one index is usable;
we say σ is covered in this case. According to the discus-
sions, (1) we can use (a) Index(A=

i ), or (b) Index(Aopi
i , A

opj
j ),

or (c) Index(Aopi
i , Bop′) to cover σ = {Aop1

1 , . . . , Aopm
m } ↪→

Bop′ ; and (2) we can use Index(A≥, A′>) or Index(A>, A′<),
in place of Index(A>, A′>).

We then introduce score functions to show the preference
for different indexes.

Score for equality index. The operator “=” on attribute
A may exhibit a good selectivity if the number of distinct
values on A is large. We measure Index(A=) with the fol-
lowing scoring function, and prefer a small score.

score(Index(A=)) = 1− the number of distinct values on A
|D|

Score for inequality index. We adopt the following scor-
ing function for measuring Index(Aop1 , Bop2).

score(Aop1 , Bop2) = 1−|r(A,B)|
coverage(Aop1 ,Bop2 )

Herein, coverage(Aop1 , Bop2) is the number of PODs cov-
ered by Index(Aop1 , Bop2), and |r(A,B)| is the absolute val-
ue of correlation coefficient for attributes A and B. In D,
r(A,B) is computed based on all tuples t ∈ D as follows:

r(A,B) =
∑

(tA∗tB)−
∑

tA
∑

tB√∑
tA

2−(
∑

tA)2
√∑

tB
2−(

∑
tB)2

Note that Index(A>, B>) (resp. Index(A>, B<)) has a
rank of 1, if r(A,B) = 1 (resp. −1). We prefer indexes
with small scores, i.e., indexes that are on attributes with
high correlation coefficient and cover more PODs. We also
find that if A,B show a positive correlation, i.e., r(A,B)>0,
then Index(A>, B>) and Index(A≥, B>) tend to have a small
rank, while Index(A>, B<) and Index(A≥, B<) are likely to
have a small rank if A,B show a negative correlation. We
experimentally justify our score functions in Section 7.

Example 12: On relation D1 in Table 1, instead of build-
ing Index(Date<,NUM≥) that covers σ4={SSN=, Date< } ↪→
{NUM< }, we build Index(Date<,NUM<) that also covers σ4

and has a small rank, since r(Date, NUM)=0.88 on D1. This

explains why we compute T t8
Date<NUM> and T

t8
Date<NUM> with

Index(Date<,NUM<) in Example 11. 2

Algorithm. We present Algorithm ChooseIndex to find the
set Ind(Σ) of indexes for the given POD set Σ.

(1) It first employs indexes Index(A=) whose score values are
below a predefined threshold l, to serve Σ (lines 1-4)1.

1We set l = 0.6 by default. If there are several A=
i ∈ X , then

we can build an equality index on the combination of these
attributes for a better selectivity. The details are omitted,
since equality indexes are extensively studied in literature.
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Algorithm 3: ChooseIndex

input : a set Σ of PODs
output: a set Ind(Σ) of indexes for covering PODs in Σ

1 foreach σ = X ↪→ Bop′ ∈ Σ do
2 if there exists A= ∈ X and score(Index(A=)) < l then
3 add Index(A=) into Ind(Σ);
4 remove from Σ all PODs covered by Index(A=);

5 Candidates ← {};
6 foreach σ = X ↪→ Bop′ ∈ Σ do

7 for Ai
opi ,Aj

opj ∈X ∪{Bop′} (opi, opj∈ {<,≤, >,≥})
do

8 add (Ai
opi , Aj

opj ) into Candidates;

9 while Candidates is not empty do
10 if Σ is empty then break ;
11 pick (Ai

opi , Aj
opj ) from Candidates with the

minimum score(Ai
opi , Aj

opj );

12 foreach σ = X ↪→ Bop′ ∈ Σ such that Ai
opi , Aj

opj

cover σ do remove σ from Σ;
13 opj ← reverse opj if necessary according to r(Ai, Aj)

and a parameter α;

14 add Index(Aopi
i , A

opj
j ) into Ind(Σ);

15 for each σ = X ↪→ Bop′ ∈ Σ do
16 choose A=

i ∈ X with the smallest score(Index(A=
i ))

among all A= ∈ X , and add Index(A=
i ) into Ind(Σ);

(2) After collecting all possible marked attribute pairs in a
set Candidates (lines 5-8), it continues to pick (Ai

opi , Aj
opj )

with the minimum score values from Candidates, for cov-
ering PODs and building indexes, until all pairs are used up
or Σ is empty (lines 9-14). In addition, we may adjust opj
for Index(Aopi

i , A
opj
j ) with a small rank. Specifically, this is

done according to r(Ai, Aj) and a parameter α > 0 (line
13). For example, we reverse “>” as “<” on Aj and build
Index(A<

i , A
<
j ), if we have A<

i and A>
j but r(Ai, Aj) > α.

We set α = 0.3 in our implementation.

(3) If there are still uncovered PODs, then it can be seen
that they must contain A= but score(Index(A=)) ≥ l. We
heuristically build index on A=

i with the smallest scores for
the PODs (lines 15-16).

Complexity. ChooseIndex takes O(|R|2 · |Σ|) in the worst
case, where |Σ| is the number of PODs in Σ. Note that (1)
the upper bounds for computing score values of Index(A=)
and Index(Aop1

i , Aop2
j ) are O(|R| · |D|log(|D|)) and O(|R|2 ·

|D|) respectively. We use uniform random sampling to es-
timate score values in our implementation; and (2) only
coverage(Aop1 , Bop2) needs to be recomputed in line 11 as
Σ changes, with a cost independent of |D|.
Remark. Since Σ on D is known, building indexes with
ChooseIndex and OptIndex is conducted as a pre-processing
stage for the incremental POD discovery.

Application of indexes. Indexes in Ind(Σ) are employed
to identify violating tuples for tuple s∈4D. Specifically, (1)
by an index I in Ind(Σ), we first identify a (small) set T
of candidate violating tuples for s; and (2) for each POD σ
covered by I in ChooseIndex (line 4 or 12), we then check
remaining conditions of σ to find those genuine violating
tuples t from T such that s, t violate σ. When I is used
to cover several PODs in ChooseIndex, note that different
treatments are required for these PODs in (2).

5.3 Updating Indexes & Implementation
We have shown that violations incurred by tuples t∈D

and s∈4D can be efficiently identified with indexes. A re-

Figure 8: Tuple t9 and Tuples in D1

maining issue concerns how to check violations w.r.t. two
tuples in 4D. To detect the violations with indexes as well,
we propose to update the indexes in response to 4D.

Applying 4D to indexes. Before visiting an index I, we
first sort tuples in4D in the same way as line 1 of OptIndex.
Tuples s ∈ 4D are then applied to I one by one as follows:
we (1) run Algorithm Fetch on I for s, and (2) update I
with s. In this way, violations incurred by s, s′∈4D can be
detected with the updated indexes. We then show that for
s, updating indexes can be done along with running Fetch.
The additional cost of updating indexes is hence marginal.

Example 13: Consider Sorted1 of Index(Date<,NUM<) in
Example 10. We run Fetch on it for tuple t9. To help under-
standing, Figure 8 shows t9 and all tuples in D1 of Table 1.
Just like Example 11, we first identify position p = 0, such
that Date<(Sorted1[p+1], t9) and Date≥(Sorted1[p], t9). We
also have position q = 0 such that NUM<(Sorted1[q +
1], t9)and NUM≥(Sorted1[q], t9). We find t9 can be inserted
into Sorted1 since p = q on Sorted1. 2

Remark. Note the following. (1) When updating an index
with a tuple s∈4D, s can be inserted into a Sortedi of the
index if we find position p = q on Sortedi. If there are multi-
ple such Sortedi, then we heuristically pick the one with the
maximum size. If none exists, then we create a new Sortedj

with s; this increases the index rank by 1. (2) Updating an
index may violate the optimality of the index rank. That is,
the updated index with 4D may have a larger rank than
the index on D + 4D built with OptIndex. However, the
difference between the ranks is small, as experimentally ver-
ified in Section 7. (3) Each index is visited and updated
once for each tuple in 4D, and the update is the only main-
tenance overhead of indexes. This further justifies our idea
of sharing indexes among PODs, for a small number of in-
dexes. Moreover, experimental evaluations (Section 7) show
that our approach is hence insensitive to the size of Σ.

Implementation. We implement each Sortedi of the in-
dexes in a lightweight data structure, known as SkipList [27].
Recall that a SkipList is a multi-layered sorted list, where the
bottom layer contains all the nodes, and nodes at layer i+1
serve as indexes for nodes at layer i, helping “skip” some
nodes at layer i in the search. As proved in [27], it takes
O(log(n)) to search and update a SkipList, where n is the
number of nodes in the bottom layer.

6. INCREMENTAL DISCOVERY
In this section, we present our incremental POD discovery

algorithm in response to 4D of tuple insertions.

Algorithm. We develop Algorithm IncPOD for incremen-
tally discovering PODs, with inputs Σ on D, 4D, attribute
set R, and the set Ind(Σ) of indexes for Σ on D. It finds the
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complete set Σ′ of minimal valid PODs on D+4D. This is
done in an incremental way by computing 4Σ, such that Σ′

= Σ ⊕ 4Σ. Recall that 4Σ = 4Σ+ ∪ 4Σ−, where 4Σ+

contains new minimal valid PODs as additions to Σ, while
4Σ− contains PODs that are to be removed from Σ.

(1) It first finds the set T of violating tuple pairs, lever-
aging Ind(Σ) (line 1). This step consists of index visits
with Fetch (Section 4) that help identify violating tuple pairs
(Section 5.2) and index updates with 4D (Section 5.3).

(2) Σ′ is initialized as Σ (line 2). For a violating tuple pair
(t, s), IncPOD enumerates all σ ∈ Σ′ (lines 3-8). If (t, s)
violates σ, then Algorithm ExtendPOD is called to evolve a
set Ψ of new PODs based on σ for resolving the violation
incurred by (t, s) (line 7). Σ′ is then updated by removing
σ and adding Ψ (line 8). That is, σ is put into 4Σ−, while
Ψ contains candidates for 4Σ+. After processing (t, s),
IncPOD moves to the next tuple pair with the updated Σ′.
As will be seen shortly, new PODs added into Σ′ in dealing
with (t, s) may evolve again after handling subsequent tuple
pairs, and once the violation incurred by (t, s) is resolved,
it is guaranteed that further modifications of Σ′ will never
introduce new violations w.r.t. (t, s). Note that in line 6
it suffices to only check σ that is newly introduced to Σ′

(line 8). This is because all tuple pairs violating σ ∈ Σ are
already known (line 1). Indeed, we only check σ with (t, s) if
σ evolves from σ′ ∈ Σ and (t, s) violates σ′. As will be seen
shortly, ExtendPOD guarantees that (t, s) cannot violate σ
if it does not violate σ′.

(3) Function Minimize is to remove non-minimal PODs from
Σ′ \ Σ (line 9), i.e., the set of new valid PODs. PODs in
Σ are still minimal if they are valid on D +4D. To check

the minimality of σ = X ↪→ Bop′ by definition (Section 3),

it suffices to only consider PODs X ′ ↪→ Bop′′ in Σ′, where
|X ′| ≤ |X | and op′ ∈ im(op′′). Σ′ is then the complete set of
minimal and valid PODs on D +4D, and 4Σ+ and 4Σ−

are the differences between Σ and Σ′ (line 10).

Algorithm. ExtendPOD is employed to generate new valid
PODs based on invalid PODs in 4Σ−. ExtendPOD enumer-
ates all possible ways to resolve the violation, for new PODs

in Ψ. Specifically, ExtendPOD may (1) strengthen the LHS

conditions when handling {≤,≥} (lines 2-5), or (2) relax the
RHS conditions when handling {=, <} (lines 6-8), or (3) add
more marked attributes on the LHS (lines 9-11). It suffices
to only consider =, < for the RHS attribute, due to symme-
try (Section 3). By inference rules of PODs [15], it can be
seen that σ logically implies any σ′ ∈ Ψ: any relation that
satisfies σ must satisfy σ′. Hence, it never introduces new
violations when replacing σ by Ψ in Σ′ (line 8 in IncPOD).

Example 14: For {TXA>, SAL< } ↪→ {RATE< }, we find
a violating tuple pair (t8, t3): TXA>(t8, t3), SAL<(t8, t3)
and RATE=(t8, t3). ExtendPOD may add more marked at-
tributes (lines 9-11), e.g., {ST=, TXA>, SAL< } ↪→ {RATE<

} or {PH=, TXA>, SAL< } ↪→ {RATE< }, or modify its RHS

operator (lines 6-8), e.g., {TXA>, SAL< } ↪→ {RATE≤ }.
Consider {PH=, TXA>, SAL< } ↪→ {RATE< } and anoth-

er violating pair (t7, t1), where PH=(t7, t1), TXA>(t7, t1),
SAL<(t7, t1), RATE≥(t7, t1). We can see that (t7, t1) also
violates {PH=, TXA>, SAL< } ↪→ {RATE< } and is hence in
the set of violating tuple pairs identified on D. To resolve
this violation, ExtendPOD may again add more marked at-
tributes, e.g., {ST=, PH=, TXA>, SAL< } ↪→ {RATE< }.
However, since {ST=, TXA>, SAL< } ↪→ {RATE< } is valid,

Algorithm 4: IncPOD

Input: the complete set Σ of minimal valid PODs on D, a
set 4D of tuple insertions, attribute set R, and
the set Ind(Σ) of indexes for covering PODs in Σ

Output: the complete set Σ′ of minimal valid PODs on
D +4D. Σ′ = Σ⊕4Σ, 4Σ = 4Σ+ ∪ 4Σ−

1 find the set T of violating tuple pairs w.r.t. Σ on D+4D,
by leveraging Ind(Σ);

2 Σ′ ← Σ;
3 for each tuple pair(t, s) ∈ T do
4 Σtemp ← Σ′;
5 for each σ ∈ Σtemp do
6 if (t, s) violate σ then
7 Ψ ← ExtendPOD(σ, (t, s), R);
8 Σ′ ← Σ′\σ ∪ Ψ;

9 Σ′ ← Minimize (Σ′, Σ′\Σ);

10 4Σ+ ← Σ′ \ Σ; 4Σ− ← Σ \ Σ′;

Algorithm 5: ExtendPOD

Input: a violating tuple pair(t, s) w.r.t. σ = X ↪→ Bop′ ,
attribute set R

Output: the set Ψ of PODs
1 Ψ← {};
2 for each xop ∈ X do
3 if op ∈ {≤,≥} then
4 X ′ ← replace x≤ (resp. x≥) by x< or x= (resp.

x> or x=) in X , if the violation is resolved;

5 Ψ← Ψ ∪ {X ′ ↪→ Bop′};
6 if op′ ∈ {=, <} then
7 op′′ ← replace op′ = (or <) by ≤, if the violation

incurred by t, s is resolved;

8 Ψ← Ψ ∪ {X ↪→ Bop′′};
9 for attribute A ∈ R\(X ∪ {B}) do

10 for each Aop such that Aop(t, s) do

11 Ψ← Ψ ∪ {X ∪ {Aop} ↪→ Bop′}

{ST=, PH=, TXA>, SAL< } ↪→ {RATE< } is not minimal
and will be removed by Minimize (line 9 of IncPOD). 2

Theorem 2. IncPOD finds the complete set Σ′ of mini-
mal valid PODs on D +4D.

Proof. (1) Validity. If a tuple pair (t, s) incurs a viola-
tion against σ, then ExtendPOD is called to generate a set
Ψ of new PODs by refining σ. It never introduces new viola-
tions beyond T , the set of violating tuple pairs detected on
D +4D for Σ. Recall that ExtendPOD is guided by infer-
ence rules of PODs [15], and guarantees that if any tuple pair
(t′, s′) violates a POD in Ψ, then (t′, s′) also violates σ and
is hence in T . Therefore, when no violation is detected on
T , all PODs in Σ′ are valid on D+4D. (2) Minimality. The
minimality of PODs is guaranteed due to Minimize in line 9
of IncPOD. (3) Completeness. Suppose σ is valid on D+4D
but not in Σ′. We show σ is not minimal on D +4D. (a)
If σ is minimal on D, then σ is in Σ. This contradicts the
assumption that σ is not in Σ′ since σ is obviously not in
Σ−. (b) If σ is not minimal on D then there exists σ′ that
is valid on D and logically implies σ. Obviously σ is not
minimal if σ′ is still valid on D +4D. Now suppose σ′ is
invalid on D+4D. Based on σ′, ExtendPOD enumerates all
possible ways for generating PODs valid on D+4D. If σ is
not in Σ′, then there must be some POD in Σ′ that logically
implies σ, and hence makes σ not-minimal on D +4D. 2

Complexity. IncPOD is far more efficient than the batch
counterpart in practice, since new PODs are discovered by
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refining PODs in Σ that become invalid on D+4D. Specifi-
cally, (1) the set T of violating tuple pairs is efficiently com-
puted leveraging Ind(Σ), with a cost dependent on |4D|
and log(|D|). (2) It is linear in the size of T for computing
4Σ, since each tuple pair in T is treated only once.

Remark. If σ ∈ Σ becomes invalid on D +4D, then σ is
replaced by a set Ψ of more “specified” PODs in Σ ⊕ 4Σ.
PODs in Ψ are more “specified”: if a tuple pair (t,s) violates
any POD in Ψ, then it must violate σ. Hence, the index that
serves σ also serves all PODs in Ψ, for identifying possible
violations. This feature is desirable: indexes are built in an
off-line process with a one-time cost and not required to be
rebuilt for continuous sets of tuple insertions.

7. EXPERIMENTAL STUDY
We present the experimental settings, and conduct exper-

iments to (1) verify the effectiveness and efficiency of incre-
mental POD discovery, to (2) demonstrate the effectiveness
and efficiency of our indexing techniques, and to (3) analyze
properties of indexes and algorithms in detail. All datasets
and code are available at https://github.com/Lab-yi/Alg.

7.1 Experimental Settings
Datasets. We use a host of real-life and synthetic datasets
that are employed in experimental studies on constraint dis-
coveries [5, 25, 30, 33, 34] (see Section 2). (1) Real-life data.
SPS contains stock records (http://pages.swcp.com/stocks/).
FLI is about US flights information (www.transtats.bts.gov).
LETTER is a dataset of character image features (https://
archive.ics.uci.edu/ml/datasets). NCV contains data of vot-
ers from North Carolina (ncsbe.gov). STR is a dataset about
3D shapes of proteins, nucleic acids and complex assemblies
(http://www.rcsb.org). CLAIM contains the airport baggage
claims data (https://www.dhs.gov/tsa-claims-data).

(2) Synthetic data. FDR15 and FDR30 are two synthetic
datasets available online (http://metanome.de).

We summarize details of all datasets in Table 4, denote
the number of attributes (resp. tuples) by |R| (resp. |D|).
Implementation. We implement all the algorithms in Java.
(1) ChooseIndex and OptIndex (Section 5), for choosing and
building indexes, as a pre-processing stage for IncPOD.
(2) IncPOD (Section 6), the incremental POD discovery al-
gorithm that combines our techniques together.
(3) Hydra∗ and Finder∗, algorithms for batch POD discov-
ery. We implement Hydra∗ (resp. Finder∗) by adapting [5]
(resp. [26]), state-of-the-art DC discovery techniques. This
is possible since each POD can be encoded as a DC. For
example, a POD {A>,B> }↪→ {C> } can be denoted as a
DC: ∀t, s, q(tA > sA ∧ tB > sB ∧ tC 6 sC). Specifically, we
modify the obtained source code (www.metanome.de) such
that only predicates of the form tA op sA are considered,
where op ∈ {<,≤,=, >,≥}. In addition, we allow at most
one predicate of the form tB 6= sB in each DC, for encoding
PODs of the form {Aop1

1 , . . . , Aopm
m } ↪→ B=.

(4) IEJoin [23], the state-of-the-art algorithm for inequality
joins with data updates. Violations of PODs on a relation D
can be identified by a self-join on D with inequality condi-
tions. For example, violating tuple pairs w.r.t. {A>,B> }↪→
{C> } can be computed as the result of a SQL query:

SELECT r.id, s.id
FROM D r, D s
WHERE r.A > s.A AND r.B > s.B AND r.C ≤ s.C

Table 4: Datasets and Execution Statistics
Data |R| |D| |4D| Inc Hydra∗ Finder∗ |Ind(Σ)| |Σ| |4Σ|
SPS 7 90K 27K 0.9s 8.57s 104.5s 5 20 10
FLI 17 300K 60K 67s 461s 1927s 25 1,481 132
STR 5 450K 125K 9s 109s 2376s 11 21 0

LETTER 12 15K 4.5K 175s 1538s 4912s 23 8,172 719
NCV 18 300K 100K 76s 7601s 3188s 13 1,134 36

CLAIM 11 97K 50K 1.54s 17.1s 49.8s 4 12 29
FDR15 15 200K 50K 14s 65s 1521s 13 185 40
FDR30 30 200K 50K 48s 265s 1791s 31 1,152 701

Running environment. All experiments are run on a machine
powered by an Intel Core(TM)2 Duo 3.00GHz CPU T7300
with 64GB of memory, using scientific Linux.

Parameter settings. We consider 3 parameters: (1) |D|: the
number of tuples; (2) |4D|: the number of inserted tuples;
and (3) |R|: the number of attributes. When required, we
vary |D|, |4D| and |R| by taking random sampling (or pro-
jections) of the data. We define the ratio of incremental

data as |4D|
|D| . The average of 5 runs is reported here.

Measurement. We first compute Σ on D with the batch
methods (Hydra∗ and Finder∗), and then build indexes for
Σ. Leveraging the indexes, we incrementally find the com-
plete set of minimal valid PODs on D +4D with IncPOD.
The correctness of IncPOD is verified by checking its result
against that of the batch method on D + 4D. Note that
the complete set of minimal valid PODs on a dataset is de-
terministic. The time of IncPOD consists of the times for
index visits and updates, for fetching violating tuples, and
for computing 4Σ. The time of the batch method is for
computing all PODs on D +4D from scratch.

7.2 Experimental Findings
Exp-1: IncPOD against Batch methods. We report run-
ning times (in seconds) of incremental and batch methods in
Table 4. We see IncPOD performs far better on all datasets,
up to two orders of magnitude. We also show the number of
PODs in Σ and 4Σ, denoted by |Σ| and |4Σ|, respectively.
We find even when 4Σ = 4Σ+ ∪ 4Σ− is large, e.g., on
LETTER and FDR30, IncPOD still performs much better.

We conduct more experiments by varying parameters.

(1) We set |D| = 300K, |4D|
|D| = 20% and |R| = 17 by

default on FLI, and vary one parameter in each experiment.
Varying |D|. Figure 9a shows results by varying |D| from

100K to 300K (|4D| from 20K to 60K). Finder∗ is more
sensitive to |D| than Hydra∗, consistent with the results in
[26]. IncPOD performs much better. It takes only 67 seconds
for IncPOD but 461 seconds for Hydra∗, when |D|= 300K.

Varying |4D|. Figure 9b shows results by varying |4D|
from 45K to 120K (the ratio of |4D| to |D| increases from
15% to 40%). IncPOD consistently outperforms batch meth-
ods, and scales very well with |4D|: the time increases from
65 seconds to 223 seconds as |4D| increases.

Varying |R|. By varying |R| from 5 to 17, we report results

in Figure 9c. |R| significantly affects the efficiency, since |Σ|
grows exponentially with |R|. For reference, we show |Σ|
(in the bracket) together with |R| on the x-axis. Hydra∗

is more sensitive to |R| than Finder∗, consistent with the
results in [26]. IncPOD scales much better: as |R| increases
from 5 to 17, the time of Hydra∗ increases by more than 40
times, while the time of IncPOD only increases by 5 times.
We find the time of IncPOD is affected by the number of
indexes that cover all PODs in Σ (Ind(Σ) of ChooseIndex
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Figure 9: IncPOD against Batch Methods, and Fetch against IEJoin

in Section 5.2). We show the results in Table 4, denoted
as |Ind(Σ)|. It can be seen that |Ind(Σ)| is typically much
smaller than |Σ|; this explains why IncPOD is less sensitive
to |R|. We will further analyze |Ind(Σ)| in Exp-3.

(2) We set |D| = 300K, |4D| = 100K and |R| = 18 by de-
fault on NCV. We vary |D| from 100K to 300K in Figure 9d,
|4D|
|D| from 15% to 40% in Figure 9e, and |R| from 5 to 18 in

Figure 9f. Note that we use log scale in these experiments.
We find numbers of distinct values on most attributes of
NCV are large. It hence takes both batch methods far more
time to handle inequality operators on NCV than FLI. In
contrast, our incremental approach is less sensitive to this
factor, and delivers great improvements in the efficiency.

(3) We conduct experiments on CLAIM with |4D| = 50K.
Tuple insertions are processed in the order of their times-
tamps, so as to follow the real change history. We handle
4D as a series of sets of tuple insertions (4D = 4D1∪· · ·∪
4Dk), where4Di (i ∈ [1, k]) is of the same size. Recall that
indexes are not required to be rebuilt in the whole process.

In Figure 9g, we vary |4Di| from 0.5K to 50K, and report
the times for the whole change history. For example, a single
set of tuple insertions is applied to D if |4Di| = 50K; if
|4Di| = 0.5K, then 100 sets of tuple insertions are applied
to D one by one.

We see IncPOD always significantly outperforms batch
methods. The times for batch methods are computed on
D + 4D and hence not affected by |4Di|. The time for
IncPOD decreases by nearly 25% as |4Di| increases from
0.5K to 50K, as expected. Although the total time for incre-
mental violation detection is almost not affected by varying

|4Di|, we find the total time for computing 4Σ decreases
due to fewer rounds of requests, as |4Di| increases.

We fix |4Di| = 10K in Figure 9h, and show the times for
applying 4D1 to D, 4D2 to D +4D1, etc. The times for
batch methods monotonically increase as data sizes grow,
but in IncPOD times for 4Di may vary since different 4Di

causes different violations and changes in the POD set.

Exp-2: Fetch against IEJoin. We experimentally verify
the benefit of our indexing technique against IEJoin [23].
We still report the average over 5 runs; each time we ran-
domly choose an attribute pair A,B and enumerate all tuple
s ∈ 4D. We compare Fetch against IEJoin in the time for
identifying T s

Aop1Bop2 and T
s
Aop1Bop2 (Section 4).

(1) We set |D| = 300K, |4D|
|D| = 20% by default on FLI.

Figure 9i shows results by varying |D| from 200K to 400K.
Fetch scales better than IEJoin: the time for Fetch (resp.
IEJoin) increases from 3.3 (resp. 4) seconds to 6.4 (resp. 27)
seconds. We find the time increase of Fetch is mainly due

to more time required for collecting results. We vary |4D|
|D|

from 15% to 40% in Figure 9j. Fetch scales well with |4D|:
the time increases from 3.4 seconds to 8 seconds, which is
almost linear in |4D|.

(2) We further compare Fetch against IEJoin using NCV

with |D| = 600K and |4D|
|D| = 20% by default. We vary |D|

from 200K to 600K in Figure 9k, and |4D|
|D| from 15% to 40%

in Figure 9l. The result size on NCV is much smaller than
that on FLI, and hence both Fetch and IEJoin take less time in
collecting results. This favors Fetch: the time for collecting
results is a necessary cost of both algorithms, while Fetch
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Table 5: Indexes for Datasets
Data |R| |D| |Ind(Σ)| Data Memory Index Memory Time
SPS 7 90K 5 28MB 42MB 1.44s
FLI 17 300K 25 198MB 501MB 68s
STR 5 450K 11 124MB 650MB 21s

LETTER 12 15K 23 2MB 8MB 2.68s
NCV 18 300K 13 355MB 635MB 18s

CLAIM 11 97K 4 6MB 26MB 1.4s
FDR15 15 200K 13 167MB 263MB 9.6s
FDR30 30 200K 31 345MB 580MB 22s

takes far less time than IEJoin in other steps. We see Fetch
scales better than IEJoin with |D|. As |D| increases from
200K to 600K, the time for Fetch increase from 0.16 seconds
to 0.4 seconds, while IEJoin increase from 6 seconds to 50
seconds. Fetch also significantly outperforms IEJoin when
|4D|
|D| = 40%, by almost two orders of magnitude.

Exp-3: Analyses of indexes. We conduct experiments
to study the properties of our indexes in detail.

(1) The memory footprint and creation time of indexes are
shown in Table 5. For reference, we also show the memory
usage and the number |Ind(Σ)| of indexes for each dataset.
The costs of indexes are also affected by data types and
numbers of distinct values of the indexing attributes. Recall
that building indexes is a pre-processing step with a one-
time cost, and its time is not included in that of IncPOD.

(2) Indexes are employed to find candidate violating tuples
for 4D, on which remaining conditions of related PODs are
checked (Section 5.2). In Figure 10a we compute the ratio of
the size of candidates to |D| for datasets in Table 4. We see
the ratios are always below 20%, which implies that indexes
help skip more than 80% of the tuples. The results show
that the selectivity of indexes is high and indexes are hence
very effective on the tested datasets.

(3) The efficiency of IncPOD is affected by |Ind(Σ)| and
index ranks (Section 4). We denote by AvgRank the average
rank of indexes in Ind(Σ), excluding equality indexes. We
set |R| = 17, vary |D| from 100K to 300K on FLI, and report
results in Figure 10b. We see that |Ind(Σ)| only increases
from 22 to 25, and that AvgRank also varies in the range of
[13, 17]. In Figure 10c, we show results on NCV with |R| =
18 and |D| from 100K to 300K. |Ind(Σ)| is in the range of
[11, 13] and AvgRank is in [4.4, 6]. We contend that both
|Ind(Σ)| and AvgRank are insensitive to |D|.

(4) Updating an index may increase its rank (Section 5.3).
We denote by AvgURank the average index rank on D+4D
after updates. For comparison, we also apply OptIndex to
D+4D for indexes with guaranteed minimum ranks, and
denote the average rank by AvgRank′. Figure 10d shows re-
sults for the datasets in Table 4. AvgURank always increas-
es slightly, at most 115% of AvgRank on D. The difference
between AvgURank and AvgRank′ is small; AvgURank is
at most larger than AvgRank′ by 12%. The results show
that index ranks are not sensitive to updates with 4D.

We then vary the ratio of incremental data. We set |R|=17,

|D|=300K, vary |4D|
|D| from 15% to 40% on FLI, and report

results in Figure 10e. AvgURank increases slightly from
15.5 to 17.1, and is consistently within [105%, 107%] of
AvgRank′. We see that the impact on index ranks incurred

by updates is small even when |4D|
|D| is 40%.

Exp-4: Score function. We experimentally study the
score functions employed in ChooseIndex (Section 5.2).

(1) On real-life FLI, LETTER and NCV, we randomly choose
100 attribute pairs and build indexes on them. We com-
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Figure 10: Effectiveness of Indexes, Index Numbers
and Ranks, and Score Function

pute the absolute value of correlation coefficient for each
pair Ai, Aj , i.e., |r(Ai, Aj)|. Based on |r(Ai, Aj)|, we clus-
ter indexes into five ranges [0, 0.2], . . . , [0.8, 1], and compute
the average rank of indexes in each range. Figure 10f clearly
shows that indexes on attribute pairs with a large |r(Ai, Aj)|
have small ranks. The results justify our score function.

8. CONCLUSIONS
This is a first effort towards incremental POD discovery.

We have presented an indexing technique for effectively iden-
tifying violations incurred by 4D, algorithms for choosing
indexing attributes and for building and updating the in-
dexes. We have also proposed and experimentally verified
our methods to compute 4Σ.

We are currently studying methods to handle updates
with both tuple insertions and deletions. We are also to ex-
tend our indexing techniques for DCs. Different from PODs,
DCs allow comparisons across attributes and the inequali-
ty operator “6=”. Although it is relatively easy to support
comparisons across attributes of a same tuple, and the in-
equality operator by taking it as the union of “>” and “<”,
more efforts are required to cope with comparisons across
attributes of different tuples, e.g., tA < sB , and still guar-
antee a cost independent of |D|.
Acknowledgments. This work is supported in part by Na-
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61572135 and NSFC 61925203. We thank anonymous re-
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