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ABSTRACT
Influential nodes with rich connections in online social net-
works (OSNs) are of great values to initiate marketing cam-
paigns. However, the potential influence spread that can be
generated by these influential nodes is hidden behind the
structures of OSNs, which are often held by OSN providers
and unavailable to advertisers for privacy concerns. A social
advertising model known as influencer marketing is to have
OSN providers offer and price candidate nodes for advertis-
ers to purchase for seeding marketing campaigns. In this
setting, a reasonable price profile for the candidate nodes
should effectively reflect the expected influence gain they
can bring in a marketing campaign.

In this paper, we study the problem of pricing the in-
fluential nodes based on their expected influence spread to
help advertisers select the initiators of marketing campaigns
without the knowledge of OSN structures. We design a func-
tion characterizing the divergence between the price and
the expected influence of the initiator sets. We formulate
the problem to minimize the divergence and derive an op-
timal price profile. An advanced algorithm is developed to
estimate the price profile with accuracy guarantees. Exper-
iments with real OSN datasets show that our pricing algo-
rithm can significantly outperform other baselines.
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1. INTRODUCTION
Online Social Networks (OSNs) attract billions of users

to share information and bring new approaches to promote
product sales or activity engagement. Real-world exam-
ples of web-based social networks include Facebook, Twitter,
Orkut, etc. According to Facebook’s official statistics [17],
it has 2.13 billion monthly active users as of December 31,

∗Corresponding author: Jing Tang.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 10
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3401960.3401961

2017. Given the tremendous number of active users, infor-
mation can be propagated widely and rapidly through OSNs
with the word of mouth effects. The interpersonal connec-
tions between individuals can strongly impact their decisions
and behaviors. Applications like social advertising naturally
emerge to make use of OSNs for information diffusion [12].
Nowadays, the advertisement market in OSNs is growing at
an amazing speed. For example, eMarketer [13] estimates
that advertisers are expected to spend $35.98 billion on so-
cial media to promote their products. Fortune [30] claims
that the expenditure of advertisement on social media will
exceed traditional newspapers by 2020, which will be over
$50 billion.

In online social advertising, some influencers accept free
products as rewards for running a marketing campaign. The
well-known influence maximization problem emerges from
giving a limited number of free samples to a subset of in-
dividuals to trigger a cascade of influence [23]. Meanwhile,
some influencers charge a certain amount of money from ad-
vertisers. According to a survey conducted by an influencer
platform named Klear, brands make an average payment of
$114 per video post on Instagram to nano-influencers who
have between 500 and 5,000 followers, and $775 to power
users with followings between 30,000 and 50,000 for an In-
stagram video [15]. The rising cost for doing online adver-
tising attracts investment in influencers (called influencer
marketing), which often involves buying a list of influencer
contracts and paying them to promote a product [14]. In
2016, an online celebrity named Papi Jiang with 10 million
fans on Weibo, a Twitter-like micro blogging site, was val-
ued at around 42 million dollars (300 million RMB) and re-
ceived 2 million dollars investment for her potential market
value without selling anything yet. According to a survey
conducted by Influencer Marketing Hub, the majority of ad-
vertisers see influencer marketing as a direction and plan to
increase their influencer marketing budget [22].

In practice, the social graph is normally possessed by
OSN providers and kept secret for privacy reasons. Hence,
it is difficult for advertisers to infer the values of influ-
encers—only 39% of US marketers feel confident in identify-
ing right influencers according to a Cision and PRWeek sur-
vey [16]. It remains an open question how to set reasonable
prices on the influencers for their market values. Different
from the advertisers, the OSN providers hold the structure of
the networks and can identify reliable influencers and lever-
age data to set the marketing price properly. In other words,
the OSN providers can offer the prices of the influencers to
the advertisers. In fact, the OSN providers have started
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setting up platforms to facilitate the influencer search and
selection process, as well as making the system more trans-
parent and easier for both advertisers and influencers [22].
Recently, YouTube offers access to the set of influencers on
the platform FameBit [18]. On average, hiring an influencer
costs $20 a video per 1,000 subscribers.

Intuitively, the price of seeding any set of users should
effectively reflect the expected influence spread that these
users can generate in the campaigns. In this way, the ad-
vertisers can hold a clear view over the influence potential
of the seeds selected and make more sensible business de-
cisions. There are several intuitive ways to price users or
nodes in OSNs. A simple strategy is to set the price of each
node based on its degree in the OSN. This strategy is rather
primitive since the degree of a node is not necessarily propor-
tional to its actual influence spread. Another intuitive strat-
egy is to set the price of each node according to its expected
influence spread when selected as the only seed. However,
when multiple nodes are selected to seed a campaign, the
influence spreads generated by different nodes may overlap
substantially. Thus, the influence spreads of singleton seeds
may not effectively reflect their influence contributions when
they jointly initiate a campaign. A straightforward solution
to precisely describe the influence contributions of the nodes
in various seed sets is to derive a separate price of each node
for including in each possible seed set. This method is un-
fortunately computationally expensive to implement due to
the huge numbers of nodes and possible seed sets in real
social networks.

In this paper, we propose a new pricing strategy that can
effectively reflect the value of the nodes in any seed set.
We define a function to measure the difference of the price
of a randomly chosen seed set from its expected marketing
value and formulate an optimization problem of pricing the
nodes to minimize the difference. The optimization prob-
lem is challenging to solve in several aspects. First, in order
to narrow down the divergence between the price and the
expected influence, we need to calculate the expected influ-
ence spread of a seed set, which is #P-hard even for simple
diffusion models [5, 7]. Second, as the number of possible
seed sets grows exponentially with the number of candidate
nodes offered by the OSN provider, it is computationally
intractable to compute the expected influence spread for all
possible seed sets. Furthermore, the nodes may have differ-
ent contributions to the influence spreads of different seed
sets, which makes it even more difficult to set a reasonable
price for each node.

To tackle the pricing problem, we make the following ma-
jor contributions in this paper:

• We propose a novel problem domain of pricing the nodes
based on their expected influence spread to help adver-
tisers select the initiators of marketing campaigns.

• We design a function to characterize the divergence be-
tween the price and the expected influence of seed sets
and formulate and solve an optimization problem to
minimize the divergence.

• We devise an efficient algorithm based on random re-
verse reachable sets [3] to compute the prices for the
nodes. An advanced estimation algorithm is also devel-
oped to ensure that the estimated prices have accuracy
guarantees.

• Extensive experiments based on real OSN datasets con-
firm that our pricing algorithm can yield high quality
solutions and significantly outperform other baselines.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 introduces the prelim-
inaries. Section 4 presents the pricing problem and the so-
lution. Section 5 elaborates the algorithm to estimate the
node prices. Section 6 describes the experimental evalua-
tion. Finally, Section 7 concludes the paper.

2. RELATED WORK
Domingos and Richardson [31] were the first to study vi-

ral marketing as an algorithmic problem. They proposed
approximation algorithms to determine the influential users
and demonstrated that different sets of seed users in a mar-
keting campaign can produce substantially different influ-
ence spreads. Kempe et al. [23] showed that the optimiza-
tion problem of selecting the most influential seed set of
a given size is NP-hard. They showed that the influence
function is a submodular function under the Independent
Cascade and Linear Threshold diffusion models [23]. They
proposed a (1 − 1/e)-approximation greedy algorithm uti-
lizing Monte-Carlo simulations. Follow-up work has mostly
focused on improving the efficiency of the algorithm imple-
mentation for large-scale OSNs based on the submodular-
ity property or heuristics [3, 5–7, 10, 26, 29, 33, 35, 36, 39, 40].
There was also work studying profit maximization in OSNs
to optimize the profit return of viral marketing. Lu et
al. [27] extended the classical Linear Threshold model to
incorporate product prices and user valuations, and factor
them into the user’s decision process of adopting a product.
They greedily chose the seeds with the greatest profit po-
tential. Tang et al. [34,37] combined the benefit of influence
spread with the cost of seed selection for profit maximiza-
tion. Furthermore, some recent work utilized adaptive algo-
rithms to improve the performance for variants of influence
based optimization problems, including adaptive influence
maximization [19, 20], adaptive seed minimization [32], and
adaptive profit maximization [21], etc. All the above seed
selection methods were designed based on the premise that
complete social network structures are available to adver-
tisers. However, such information is normally kept secret
by OSN providers for business and privacy reasons [4, 24].
Recently, Tang et al. [38] studied the profit maximization
problem from the OSN provider’s perspective by taking the
cost of information diffusion over the social network into ac-
count. In addition, Aslay et al. proposed and tackled other
practical problems of regret minimization [2] and revenue
maximization [1] in online social advertising. Nevertheless,
they did not provide any value-based seed pricing solution
for advertisers. Different from all the above studies, in this
paper, we aim to tighten the relationship between the price
setting and the seed’s influence spread.

3. PRELIMINARIES

3.1 Influence Spread
An OSN can be modeled as a directed graph G = (V,E)

with a set V of nodes and a set E of edges. Users are
represented by the nodes and connections between users are
represented by edges. For each edge (u, v) ∈ E, we say that
v is an out-neighbor of u and u is an in-neighbor of v.
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Many models have been proposed to capture the diffusion
process in the OSN. Our problem definition and solution are
general and can be used for various diffusion models. For the
purpose of illustrating basic concepts, we briefly introduce a
widely used diffusion model known as Independent Cascade
[23]. In this model, each edge (u, v) is associated with a
propagation probability pu,v denoting the probability that
v will be influenced by u. Initially, a set of seed nodes S
are activated while all the other nodes are inactive. When
a node u first becomes active, it is given a single chance
to activate each inactive out-neighbor v with a probability
pu,v. The diffusion process stops when no more activation
can be made.

Let σ(S) denote the expected number of nodes activated
by the diffusion process starting with a set of seed nodes S.
σ(S) is known as the influence spread of the seed set S.

3.2 Influence Spread Estimation
The computational complexity of the exact influence

spread σ(S) for a seed set S is proved to be #P-hard for sev-
eral diffusion models including Independent Cascade [5, 7].
As a result, various sampling methods have been proposed
for unbiased estimation of the influence spread. The RIS
method proposed by Borgs et al. [3] substantially improved
the efficiency to estimate the influence spread compared to
the naive Monte-Carlo simulation method. Thus, we adopt
RIS for influence spread estimation.

Definition 1 ([3]). A random reverse reachable (RR)
set R for a graph G is generated by the following steps:

1. Select a random node v ∈ V .

2. Sample a random graph g from G according to the dif-
fusion model.

3. Take the set of nodes in g that can reach v as R.

For example, under the Independent Cascade model, a
random RR set R on G can be constructed as follows:

1. Select a node v ∈ V uniformly at random.

2. Starting from v, perform a stochastic breadth first
search (BFS) following the incoming edges of each
node. Specifically, for each node u encountered in the
BFS, we examine the in-neighbors of u. For each in-
neighbor w, we allow the BFS to traverse to w from
u with probability pw,u (if w has not been traversed
before).

3. Insert all the nodes traversed during the stochastic
BFS into the RR set R.

Random RR sets have the following property [3].

Lemma 1 ([3]). Given a seed set S ⊆ V , for a random
RR set R, we have

σ(S) = n · Pr[S ∩R 6= ∅], (1)

where n = |V | is the total number of nodes in the graph G.

According to Lemma 1, the influence spread of a seed set
S is proportional to the probability that S intersects with
a random RR set R. Thus, to estimate influence spread,
we can generate a large number of RR sets R. Given any
seed set S, we can compute the number of RR sets in R
that intersect with S (denoted by Λ(R, S)) and estimate
the influence spread of S by n

|R| · Λ(R, S).

4. DIVERGENCE FUNCTION & OPTI-
MAL PRICE PROFILE

In this section, we define a divergence function to measure
the effectiveness of a pricing profile and derive an optimal
pricing profile in terms of the function value.

4.1 Divergence Function
The seed users generate revenue from the seed purchase

of the advertiser for initiating the campaigns. The influence
spread, on the other hand, is the reward gained by the ad-
vertiser in the campaigns. Thus, it is important to make
sure that the influence spread is worth the cost of seed pur-
chase. In this way, the prices set for seed purchase can not
only minimize the regret in deriving the revenue for seeds
but also give the advertiser a more predictable return for
its purchase. Therefore, our objective of pricing is to match
the price of any seed set with the expected marketing value
of the seed set as closely as possible.

Consider a candidate node set C consisting of nc nodes
{s1, s2, . . . , snc} offered by the OSN provider for the adver-
tisers to choose seeds. Let pi be the price of the node si
in C. We refer to 〈p1, p2, . . . , pnc〉 as the price profile. For
any seed set S ⊆ C, the total price of the nodes in S is∑
si∈S pi, and the influence spread of S is σ(S). Let c be a

constant representing the expected revenue to derive from
influencing a node. Then, c · σ(S) is the expected mar-
ket value for the seed set S. Thus, the divergence between
the price and the influence spread can be characterized by
(c · σ(S)−

∑
si∈S pi)

2. Since the advertisers can choose any
subset of the nodes in C to initiate campaigns based on their
preferences, we assume that all the subsets of C are equally
likely to be chosen as the seed set. Therefore, the expected
divergence between the price and the influence spread of a
randomly chosen seed set is given by

1

2nc

∑
S⊆C

(
c · σ(S)−

∑
si∈S

pi
)2

. (2)

We aim to find a price profile to minimize the divergence
function such that the total price of all nodes in the candi-
date set C is equal to a given value b, i.e.,

min
1

2nc

∑
S⊆C

(
c · σ(S)−

∑
si∈S

pi
)2

,

s.t.

nc∑
i=1

pi = b, and ∀i : pi ≥ 0.

This problem is equivalent to

min
1

2nc

∑
S⊆C

(
σ(S)−

∑
si∈S

pi
c

)2

subject to

nc∑
i=1

pi
c

=
b

c
.

Here, pi
c

and b
c

can be understood as the individual node
price and the total node price when c = 1. To simplify the
presentation and derivation, in the rest of this paper, we
shall focus on addressing the following optimization problem
assuming c = 1:

min f(p1, p2, . . . , pnc) :=
1

2nc

∑
S⊆C

(
σ(S)−

∑
si∈S

pi
)2

,

s.t.

nc∑
i=1

pi = b, and ∀i : pi ≥ 0.
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It is easy to verify that the optimal price profile for a general
c value can be obtained by simply scaling the solution to the
above problem.

4.2 Optimal Price Profile
To solve the pricing problem, we first reformulate the di-

vergence function.

Lemma 2. Let

g(pi) :=
p2
i + pib

4
− pi

2nc−1

∑
S⊆C\{si}

σ(S ∪ {si}). (3)

Then, we have

f(p1, p2, . . . , pnc) =
1

2nc

∑
S⊆C

σ(S)2 +

nc∑
i=1

g(pi). (4)

Proof. We prove it by induction. When nc = 1, we have

g(p1) =
p2

1 + p1b

4
− p1σ({s1}) =

p2
i

2
− p1σ({s1}).

Meanwhile, by definition, we have

f(p1) =
(σ({s1})− p1)2

2
=
σ({s1})2

2
+
p2
i

2
− p1σ({s1}).

Thus, f(p1) = σ({s1})2
2

+ g(p1), which indicates that (4)
holds when nc = 1.

Suppose that (4) holds when nc = N for an integer N ≥ 1.
In what follows, we will show that (4) holds when nc = N+1.

For any i ∈ [2, nc], let b̄ = b−p1, σ̄(S) = σ(S∪{s1})−p1,

ḡ(pi) :=
p2
i + pib̄

4
− pi

2N−1

∑
S⊆C\{s1,si}

σ̄(S ∪ {si}),

and ĝ(pi) :=
p2
i + pib̄

4
− pi

2N−1

∑
S⊆C\{s1,si}

σ(S ∪ {si}).

In addition, let

f̄ :=
1

2N

∑
S⊆C\{s1}

((
σ̄(S)−

∑
si∈S

pi
)2

+
(
σ(S)−

∑
si∈S

pi
)2
)
.

For any node set S, the node s1 satisfies either s1 ∈ S or
s1 /∈ S. Thus, we have f̄ = 2f(p1, p2, . . . , pnc).

We observe that
∑nc
i=2 pi = b̄ and |C \{s1}| = nc−1 = N .

According to the hypothesis, we have

f̄ =
1

2N

∑
S⊆C\{s1}

(
σ̄(S)2 + σ(S)2)+

nc∑
i=2

(
ḡ(pi) + ĝ(pi)

)
.

For the first part, we have

1

2N

∑
S⊆C\{s1}

(
σ̄(S)2 + σ(S)2)

=
1

2N

∑
S⊆C\{s1}

((
σ(S ∪ {s1})− p1

)2
+ σ(S)2

)
=

1

2N

∑
S⊆C

σ(S)2 + p2
1 −

p1

2N−1

∑
S⊆C\{s1}

σ(S ∪ {s1})

=
1

2N

∑
S⊆C

σ(S)2 + 2g(p1) +
p2

1 − p1b

2
.

For the second part, we have

ḡ(pi) + ĝ(pi)

=
p2
i + pib̄

2
− pi

2N−1

∑
S⊆C\{s1,si}

(
σ̄(S ∪ {si}) + σ(S ∪ {si})

)
=
p2
i + pib̄

2
− pi

2N−1

∑
S⊆C\{si}

σ(S ∪ {si}) + p1pi

=
p2
i + pib

2
− pi

2N−1

∑
S⊆C\{si}

σ(S ∪ {si}) +
p1pi

2

= 2g(pi) +
p1pi

2
.

Therefore, we have

f̄ =
1

2N

∑
S⊆C

σ(S)2 + 2g(p1) +
p2

1 − p1b

2

+

nc∑
i=2

(
2g(pi) +

p1pi
2

)
=

1

2N

∑
S⊆C

σ(S)2 + 2

nc∑
i=1

g(pi).

This completes the proof.

The following theorem gives the optimal price profile.

Theorem 1. Let

ci :=
b

2
−
∑
S⊆C\{si} σ(S ∪ {si})

2nc−2
, ∀1 ≤ i ≤ nc, (5)

λ be the root of

nc∑
i=1

max{0, λ− ci} = b, (6)

and p∗i = max{0, λ− ci}, ∀1 ≤ i ≤ nc. (7)

Then, the price profile 〈p∗1, p∗2, . . . , p∗nc
〉 minimizes the diver-

gence function.

Proof. According to Karush-Kuhn-Tucker conditions,
the optimal solution 〈p∗1, p∗2, . . . , p∗nc

〉 satisfies that

∀i : p
∗
i

2
+
b

4
−
∑
S⊆C\{si} σ(S ∪ {si})

2nc−1
− λ

2
− λi

=
p∗i
2

+
ci
2
− λ

2
− λi = 0, (8)

∀i : λip∗i = 0, (9)
nc∑
i=1

p∗i = b, (10)

∀i : p∗i ≥ 0, (11)

∀i : λi ≥ 0. (12)

In the above, (8) represents stationarity, (9) shows comple-
mentary slackness, (10) and (11) ensure primal feasibility,
and (12) ensures dual feasibility.

If λ ≤ ci, by (8), we have
p∗i
2
≤ λi. By (9), (11), and (12),

we have p∗i = 0. Similarly, if λ > ci, we have λi = 0, which
indicates that p∗i = λ− ci. Therefore,

p∗i = max{0, λ− ci}. (13)

Then, by (10), λ is the solution for
∑nc
i=1 max{0, λ−ci} = b,

which completes the proof.
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Theorem 1 states the optimal solution, where λ can be
obtained via water-filling. Specifically, without loss of gen-
erality, we assume that c0 = +∞ > c1 ≥ c2 ≥ · · · ≥ cnc .
Then, we can find a unique j ∈ [0, nc − 1] such that∑nc
i=j+1(cj − ci) > b and

∑nc
i=j+2(cj+1 − ci) ≤ b. Then,

λ is the root of
∑nc
i=j+1(λ− ci) = b.

Corollary 1. Let

p∗i =
b

nc
+

∑
S⊆C σ(S)

(
1{si∈S} −

|S|
nc

)
2nc−2

, ∀1 ≤ i ≤ nc, (14)

where 1{si∈S} is a binary value such that 1{si∈S} = 1 if si ∈
S and 1{si∈S} = 0 otherwise. Let σ(C) denote the influence
spread of the candidate set C. If b ≥ σ(C), the price profile
〈p∗1, p∗2, . . . , p∗nc

〉 minimizes the divergence function.

Proof. Let λ be the value such that
nc∑
i=1

(λ− ci) = b.

Then,

λ =
b

nc
+

1

nc

nc∑
i=1

ci =
b

nc
+
b

2
−
∑
S⊆C

(
σ(S) · |S|

)
nc · 2nc−2

,

and

λ− ci =
b

nc
+

∑
S⊆C σ(S)

(
1{si∈S} −

|S|
nc

)
2nc−2

.

Next, we utilize the RIS method [3] to show that λ−ci ≥ 0 to
ensure that p∗i is non-negative (1 ≤ i ≤ nc) when b ≥ σ(C).

Denote Ai = λ − ci − b
nc

=
∑
S⊆C σ(S)

(
1{si∈S}−

|S|
nc

)
2nc−2 and

Bi = Ai + b
nc

= λ − ci. Let Ãi be the estimation of Ai

and B̃i be the estimation of Bi using RR sets. According to
Lemma 1, when θ RR sets R are generated for estimation,
an RR set R contributes to Ãi by an additive factor of

∆(Ãi, R)

=
n

θ
·

∑
S⊆C

(
1{S∩R 6=∅} ·

(
1{si∈S} −

|S|
nc

))
2nc−2

=
n

θ
·

∑
S⊆C\{si}

1{(S∪{si})∩R 6=∅} −
∑
S⊆C

(
1{S∩R 6=∅} · |S|nc

)
2nc−2

.

If si ∈ R, we have 1{(S∪{si})∩R 6=∅} = 1 for every S ∈ C\{si},
where the number of such S is 2nc−1. If si /∈ R, for any
S ∈ C \ {si}, we have 1{(S∪{si})∩R 6=∅} = 1 if and only if

S ∩R 6= ∅, where the number of such S is 2nc−1−2nc−1−nr ,
and nr = |R ∩ C|. Thus,∑
S⊆C\{si}

1{(S∪{si})∩R 6=∅} =

{
2nc−1, if si ∈ R,
2nc−1 − 2nc−1−nr , otherwise.

Meanwhile,∑
S⊆C

(
1{S∩R 6=∅} ·

|S|
nc

)
=

1

nc
·
( ∑
S⊆C

|S| −
∑

S⊆(C\R)

|S|
)

=
1

nc
·
(
nc · 2nc−1 − (nc − nr) · 2nc−nr−1

)
= 2nc−1 − (1− nr

nc
) · 2nc−nr−1.

Therefore,

∆(Ãi, R) =

{
n
θ
· (1− nr

nc
) · 21−nr , if si ∈ R,

−n
θ
· nr
nc
· 21−nr , otherwise.

(15)

When b ≥ σ(C), according to Lemma 1, an RR set R con-

tributes to B̃i by an additive factor of

∆(B̃i, R) ≥ n

θ
·
1{C∩R 6=∅}

nc
+ ∆(Ãi, R).

Note that when nr ≥ 1,

∆(Ãi, R) ≥ −n
θ
· nr

2nr−1
· 1

nc
≥ −n

θ
· 1

nc
,

and when nr = 0, ∆(Ãi, R) = 0. As C∩R 6= ∅ when nr ≥ 1,
we then have

∆(B̃i, R) ≥ n

θ
· 1

nc
− n

θ
· 1

nc
= 0.

Since Bi =
∑
R∈R∆(B̃i, R) when θ → ∞, we can obtain

that Bi = λ− ci ≥ 0 for each 1 ≤ i ≤ nc.
As a result, according to (13), we have the conclusion that
〈p∗1, p∗2, . . . , p∗nc

〉 in (14) is an optimal price profile.

Discussion on Privacy Issues. Privacy protection is crit-
ical for both OSN providers and influencers. On one hand,
our pricing mechanism intrinsically protects the privacy of
OSN providers since they do not need to unveil the network
structures. On the other hand, as most information posts
are publicly available and designed to attract followers on
platforms such as Instagram and TikTok, many influencers
are willing to monetize their public influence powers. To
minimize the ethical issues, OSN providers can first ensure
influencers’ willingness of engagement in marketing cam-
paigns and then post their prices for marketing campaigns.
Furthermore, to protect the privacy of the candidate seeds,
the prices can be posted anonymously such that the personal
information can be protected.

5. ESTIMATION OF NODE PRICES
In this section, we study the estimation of the node prices

p∗1, p
∗
2, . . . , p

∗
nc

in the optimal price profile. Based on the
proof of Corollary 1, under the condition that b ≥ σ(C), p∗i
can be represented as

p∗i = λ− ci = Ai +
b

nc
,

where Ai can be estimated using the RIS method. When
θ RR sets are generated, an RR set R contributes to the
estimation Ãi by an additive factor of ∆(Ãi, R) given in
(15). We generalize the stopping rule algorithm [11] to get
an (ε, δ)-approximation of Ai. Similar to the work of [28],
we also use the martingale-based concentration bounds [9] to
tighten the threshold setting in the stopping rule algorithm.
The key differences of our algorithm from [11] and [28] are
as follows:

• The random variables ∆(Ãi, R) may be negative. We
shift the random variables to fall in the range of [0, 1]
so that the stopping rule algorithm can be applied.

• We invent a tighter threshold setting than [11] and [28]
to improve the efficiency of the stopping rule algo-
rithm. We also construct an algorithm to estimate
all the Ai (i = 1, 2, . . . , nc) simultaneously.
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5.1 Shifting ∆(Ãi, R)
By definition, it is possible for ∆(Ãi, R) to be less than

0. The stopping rule algorithm [11] is designed to estimate
the mean of a non-negative random variable distributed in
[0, 1]. To apply the stopping rule algorithm, we first increase

∆(Ãi, R) to make it non-negative. According to the proof of

Corollary 1, ∆(Ãi, R) can be made non-negative by adding

a factor of n
θ
· 1{C∩R 6=∅}

nc
. Let

∆(Ã′i, R) = ∆(Ãi, R) +
n

θ
·
1{C∩R 6=∅}

nc
.

If we aggregate ∆(Ã′i, R) over θ random RR sets, the actual

value estimated is A′i = Ai + σ(C)
nc

= p∗i + σ(C)−b
nc

. Thus, we

shall first estimate A′i using the stopping rule algorithm and
then compute p∗i .

Let R1, R2, . . . , Rθ be a sequence of random RR sets. Let
Xi,j be a random variable defined as

Xi,j =


0 if Rj ∩ C = ∅,
1
nc

+ 21−nr · (1− nr
nc

) if si ∈ Rj ∩ C,
1
nc
− 21−nr · nr

nc
otherwise,

(16)

where nc = |C| and nr = |Rj ∩ C|. It is easy to verify that
0 ≤ Xi,j ≤ 1.

By definition, ∆(Ã′i, Rj) = n
θ
· Xi,j . Thus, we have

A′i = n
θ
· E[
∑θ
j=1 Xi,j ]. To use n

θ
·
∑θ
j=1 Xi,j as an esti-

mator of A′i, we need θ to be large enough in order to en-
sure that

∑θ
j=1 Xi,j does not deviate significantly from its

expectation.

5.2 Stopping Rule Algorithm
To obtain an (ε, δ)-approximation of the mean of a ran-

dom variable, the stopping rule algorithm first computes a
threshold Υ and then continuously generates samples ac-
cording to the distribution until their sum exceeds Υ. Fi-
nally, the stopping rule algorithm returns the average of
these samples as the estimate. The basic stopping rule algo-
rithm can estimate the mean of only one random variable.
In our pricing problem, we need to estimate all the values
A′i (i = 1, 2, . . . , nc) in order to derive the optimal price
profile. Estimating each A′i by a separate invocation of the
stopping rule algorithm can result in generating an unneces-
sarily large number of samples (RR sets). In the following,
we construct a stopping rule algorithm to estimate all the
values A′i (i = 1, 2, . . . , nc) simultaneously.

Algorithm 1 shows the details. The algorithm first calcu-
lates the threshold Υ based on the required approximation
parameters ε and δ (line 1). After that, samples are gener-
ated and aggregated until the minimum sum among all the
nodes si’s exceeds Υ (lines 4–10). The number of samples
θi is recorded for each node si when its sum Si exceeds Υ
(line 8). Finally, the average µ̃i of the samples is returned
as the estimate for each node si (line 11).

5.3 Theoretical Analysis
A tighter threshold setting. The original stopping rule

algorithm in [11] sets the threshold Υ as

ΥD = 1+4(1+ε)(e−2) ln
(2

δ

) 1

ε2
> 1+2.87(1+ε) ln

(2

δ

) 1

ε2
.

Algorithm 1: Stopping Rule Algorithm

Input: RR sets R1, R2, · · · and 0 < ε, δ < 1;
Output: an (ε, δ)-approximation µ̃i of each µi (i ≤ nc);

1 Υ← (1 + ε)(1 + (2 + 2
3
ε) ln( 2

δ
) 1
ε2

), θ ← 0;

2 foreach node si ∈ C do
3 Initialize Si ← 0;

4 while minSi < Υ do
5 foreach node si ∈ C do
6 if Si < Υ then
7 Si ← Si +Xi,θ, where Xi,θ is based on (16);

8 if Si ≥ Υ then
9 θi ← θ;

10 θ ← θ + 1;

11 return {µ̃i = Υ
θi

: 1 ≤ i ≤ nc};

In Algorithm 1, we set the threshold Υ as

Υ = (1+ε)(1+(2+
2

3
ε) ln

(2

δ

) 1

ε2
) < (1+ε)(1+2.67 ln

(2

δ

) 1

ε2
),

since 0 < ε ≤ 1. Hence, the Υ setting in our algorithm is
tighter than that in [11] when 0.2(1 + ε) ln( 2

δ
) 1
ε2
> ε, which

holds when ε ≤ 0.5 < 3
√

0.2 · ln 2.
Similar to our algorithm, the stopping rule algorithm in

[28] also uses the martingale-based concentration bounds [9]
to set the threshold Υ. Since 0 ≤ Xi,j ≤ 1 in our problem,
applying the algorithm in [28], the threshold Υ is set as

ΥN = (1 + ε)
(
2 +

2

3
ε′
)

ln
(2

δ

) 1

ε′2
,

where ε′ = ε(1 − ε

(2+ 2
3
ε) ln( 2

δ
)
) < ε. In Algorithm 1, we

replace ε′ with ε in the setting of Υ and add an additive
factor of 1 + ε. Next, we show that the Υ value in our
algorithm is smaller than that in [28]. To prove

(1 + ε)
(
2 +

2

3
ε′
)

ln
(2

δ

) 1

ε′2
> (1 + ε)

(
1 +

(
2 +

2

3
ε
)

ln
(2

δ

) 1

ε2

)
,

it is equivalent to show that(
1 +

1

3
ε′
) 1

ε′2
−
(
1 +

1

3
ε
) 1

ε2
>

1

2 ln( 2
δ
)
. (17)

Let α := (2 + 2
3
ε) ln( 2

δ
) and β := ε′

ε
= 1− ε

α
. We have(

1 +
1

3
ε′
) 1

ε′2
−
(
1 +

1

3
ε
) 1

ε2

=
(
1 +

1

3
βε
) 1

β2ε2
−
(
1 +

1

3
ε
) 1

ε2

=
(1 + β

βε
+

1

3

)
· 1− β
βε

>
2− ε

α

ε(1− ε
α

)
·

ε
α

ε(1− ε
α

)

=
2α− ε
ε(α− ε)2

>
2

ε(α− ε) .

Since 4 ln( 2
δ
) > 8

3
ln( 2

δ
) ≥ α ≥ α− ε ≥ ε(α− ε), we have

2

ε(α− ε) >
1

2 ln( 2
δ
)
.
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Thus, (17) holds and the Υ setting in our algorithm is
tighter. So, our algorithm would generate less samples than
that in [28].

In the following, we prove that our Υ setting can guaran-
tee an (ε, δ)-approximation of estimation. The proof is sim-
ilar in spirit to the original stopping rule algorithm [11], but
we make use of the martingale-based concentration bounds
[9] in the derivation.

Definition 2 ([9]). A sequence of random variables
Y1, Y2, . . . is a martingale if and only if E[|Yj |] < ∞ and
E[Yj | Y1, Y2, . . . , Yj−1] = Yj−1 for any j.

Since each RR set Rj is generated randomly and indepen-
dently of all the prior RR sets, we have

E[Xi,j | Xi,1, Xi,2, . . . , Xi,j−1] = E[Xi,j ] =
A′i
n
. (18)

Let µi =
A′i
n

and Mi,j = Σjk=1(Xi,k − µi). Then, we have
E[|Mi,j |] ≤ j <∞, and

E[Mi,j |Mi,1,Mi,2, . . . ,Mi,j−1] = Mi,j−1.

Therefore, Mi,1,Mi,2, . . . ,Mi,θ is a martingale.

Lemma 3 ([9]). Let Y1, Y2, . . . , Yj be a martingale,
such that Y1 ≤ a, Yk − Yk−1 ≤ a for any 2 ≤ k ≤ j, and
Var[Y1] +

∑j
k=2 Var[Yk | Y1, Y2, . . . , Yk−1] ≤ b. Then, for

any η > 0,

Pr[Yj − E[Yj ] ≥ η] ≤ exp
(
− η2

2
3
aη + 2b

)
. (19)

Since 0 ≤ Xi,j ≤ 1 for any 1 ≤ j ≤ θ, we have Mi,1 =
Xi,1 − µi ≤ 1 and Mi,j −Mi,j−1 = Xi,j − µi ≤ 1 for any
2 ≤ j ≤ θ. Let Var[·] denote the variance of a random
variable. It follows that Var[Xi,j ] = E[X2

i,j ] − E[Xi,j ]
2 =

E[X2
i,j ]− µ2

i ≤ E[Xi,j ]− µ2
i ≤ µi(1− µi). Hence,

Var[Mi,1] +
∑θ

j=2
Var[Mi,j |Mi,1,Mi,2, . . . ,Mi,j−1]

=
∑θ

j=1
Var[Xi,j − µi] ≤ θµi · (1− µi) ≤ θµi.

By Lemma 3, we have Pr[Mi,θ ≥ ε · θµi] ≤ exp
(
− ε2θµi

2+ 2
3
ε

)
.

Similarly, −Mi,1,−Mi,2, . . . ,−Mi,θ is a martingale such
that −Mi,1 ≤ µi, −Mi,j + Mi,j−1 ≤ µi, and Var[−Mi,1] +∑θ
j=2 Var[−Mi,j | −Mi,1,−Mi,2, . . . ,−Mi,j−1] ≤ θµi · (1 −

µi). Then, we have

Pr[−Mi,θ ≥ ε · θµi] = Pr
[ θ∑
j=1

Xi,j − θµi ≤ −ε · θµi
]

≤ exp
(
− ε2θ2µ2

i
2
3
εθµ2

i + 2θµi(1− µi)

)
≤ exp

(
− ε2θµi

2

)
.

To summarize, we have the following corollary.1

1Tang et al. [39] directly gave the lower tail result with-
out providing the detailed proof. Our analysis is based on
Lemma 3 requiring Y1 ≤ a and Yk − Yk−1 ≤ a, whereas
Tang et al. [39] utilized a similar lemma requiring |Y1| ≤ a
and |Yk−Yk−1| ≤ a, which might be insufficient for deriving
the lower tail result.

Corollary 2. For any ε > 0,

Pr
[∑θ

j=1
Xi,j − θµi ≥ ε · θµi

]
≤ exp

(
− ε2θµi

2 + 2
3
ε

)
, (20)

Pr
[∑θ

j=1
Xi,j − θµi ≤ −ε · θµi

]
≤ exp

(
− ε2θµi

2

)
. (21)

Based on Corollary 2, we show that Algorithm 1 returns
an (ε, δ)-approximate µ̃i of each µi (1 ≤ i ≤ nc).

Theorem 2. Algorithm 1 returns an (ε, δ)-approximate
µ̃i of each µi (1 ≤ i ≤ nc), i.e.,

Pr[(1− ε)µi ≤ µ̃i ≤ (1 + ε)µi] ≥ 1− δ. (22)

Proof. Given any i where 1 ≤ i ≤ nc, we will prove the
following two probabilistic inequalities:

Pr[µ̃i < (1− ε)µi] ≤
δ

2
, (23)

Pr[µ̃i > (1 + ε)µi] ≤
δ

2
. (24)

First, we prove (23). Since 0 ≤ Xi,j ≤ 1, by the definition
of Algorithm 1, when it terminates, we have

Υ ≤ Si =
∑θi

j=1
Xi,j ≤ Υ + 1.

Let L1 = d Υ
(1−ε)µi

e. Then,

L1 =
⌈ Υ

(1− ε)µi

⌉
≥ Υ

(1− ε)µi
, (25)

and hence,

Υ

L1
≤ (1− ε)µi.

Since θi is an integer, we have

Pr[µ̃i < (1− ε)µi] = Pr[Υ < (1− ε)µiθi]

= Pr
[ Υ

(1− ε) · µi
< θi

]
= Pr[L1 ≤ θi]

≤ Pr
[∑L1

j=1
Xi,j ≤

∑θi

j=1
Xi,j ]

≤ Pr
[∑L1

j=1
Xi,j ≤ Υ + 1

]
= Pr

[∑L1
j=1 Xi,j

L1
≤ Υ + 1

L1

]
≤ Pr

[∑L1
j=1 Xi,j

L1
≤ (1− ε)µi +

1

L1

]
.

Moreover, by the definition of L1, we have

1

L1
≤ (1− ε)µi

Υ
=

(1− ε)µi
(1 + ε)(1 + (2 + 2

3
ε) ln( 2

δ
) 1
ε2

)
<

ε2µi
1 + ε

.

Therefore,

Pr[µ̃i < (1− ε)µi] ≤ Pr
[∑L1

j=1 Xi,j

L1
< (1− ε)µi +

ε2 · µi
1 + ε

]
≤ Pr

[∑L1
j=1 Xi,j

L1
< (1− ε

1 + ε
) · µi

]
= Pr

[ L1∑
j=1

Xi,j − L1µi < −
ε

1 + ε
· L1µi

]
.
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Meanwhile,

L1 ≥
Υ

(1− ε)µi
>

2(1 + ε) ln( 2
δ
)

(1− ε)ε2µi
>

2(1 + ε)2 ln( 2
δ
)

ε2µi
.

Note that
∑L1
j=1Xi,j

L1
is an estimate of µi using the first L1

random samples. Applying (21), we obtain

Pr[µ̃i ≤ (1− ε)µi] ≤ exp
(
− ε2L1µi

2(1 + ε)2

)
< exp

(
−
ε2 2(1+ε)2 ln( 2

δ
)

ε2µi
µi

2(1 + ε)2

)
=
δ

2
.

This completes the proof of (23).
Next, we prove (24), which is similar. Let L2 = b Υ

(1+ε)µi
c.

Then, we have

Pr[µ̃i > (1 + ε)µi] = Pr[Υ > (1 + ε)µiθi]

= Pr
[ Υ

(1 + ε)µi
> θi

]
= Pr[L2 ≥ θi]

≤ Pr
[ L2∑
j=1

Xi,j ≥
θi∑
j=1

Xi,j
]

≤ Pr
[ L2∑
j=1

Xi,j ≥ Υ
]

= Pr
[∑L2

j=1 Xi,j

L2
≥ Υ

L2

]
.

By the definition of L2, we have

L2 ≤
Υ

(1 + ε)µi
,

which indicates that

Υ

L2
≥ (1 + ε)µi.

In addition, L2 >
Υ

(1+ε)µi
− 1 = 1

µi
+ (2 + 2

3
ε) ln( 2

δ
) 1
ε2
− 1 >

(2 + 2
3
ε) ln 2

δ
· 1
ε2
· 1
µi

. By (20), we obtain

Pr[µ̃i > (1 + ε)µi] ≤ Pr
[∑L2

j=1 Xi,j

L2
≥ (1 + ε)µi

]
= Pr

[ L2∑
j=1

Xi,j − L2µi ≥ ε · L2µi
]

≤ exp
(
− ε2L2µi

2 + 2
3
ε

)
< exp

(
−
ε2(2 + 2

3
ε) ln 2

δ
1
ε2

1
µi
µi

2 + 2
3
ε

)
=
δ

2
.

By the union bound, (23) and (24) give rise to (22).

With the values µ̃i returned by Algorithm 1, Ã′i is computed
as Ã′i = n · µ̃i. By Theorem 2, each value Ã′i (i = 1, 2, . . . ,
nc) can be estimated within a factor of 1+ε with probability
at least 1− δ.

5.4 Choice of b
As discussed in Section 5.1, besides A′i, we also need to

estimate b−σ(C)
nc

in order to compute p∗i as p∗i = A′i+
b−σ(C)
nc

.

According to Corollary 1, in order to guarantee p∗i ≥ 0, the
total price b of all the candidate nodes must be set no less
than σ(C), i.e., b ≥ σ(C). In general, we can also use the
stopping rule algorithm and the RIS method to estimate
b− σ(C). In the following, we illustrate it by assuming b is
set such that the expected price of a randomly chosen seed
set is the same as its expected influence spread. Suppose
that all the subsets of C are equally likely to be chosen as
the seed set. Then, the expected price of a randomly chosen
seed set is

∑nc
i=1 p

∗
i · 1

2
. On the other hand, the expected

influence spread of the set is
∑
S⊆C σ(S)

2nc . Therefore, b is set
as

b =

nc∑
i=1

p∗i =

∑
S⊆C σ(S)

2nc−1
. (26)

It is easy to verify that b ≥ σ(C) since

b =
2
∑
S⊆C σ(S)

2nc

=

∑
S⊆C(σ(S) + σ(C\S))

2nc

≥
∑
S⊆C σ(C)

2nc
= σ(C).

Let ψ̃ be the estimation of b−σ(C). According to Lemma
1, when a sequence of θ RR sets are generated, each RR set
R contributes to ψ̃ by an additive factor of

∆(ψ̃, R) =
n

θ
·
∑
S⊆C 1{S∩R 6=∅}

2nc−1
− n

θ
· 1{C∩R 6=∅}

=
n

θ
·

2nc(1− 1
2nr )

2nc−1
− n

θ
· 1{C∩R 6=∅}

=
n

θ
·
(
2(1− 1

2nr
)− 1{C∩R 6=∅}

)
,

where nr = |R ∩ C|.
Since 0 ≤ 2(1 − 1

2nr ) − 1{C∩R 6=∅} ≤ 1, an (ε, δ)-
approximation of b − σ(C) can be obtained using the stop-
ping rule algorithm similar to the estimation of A′i. By the
union bound, we can set the failure probability δ′ = δ

nc+1

in the stopping rule algorithm so that all the values Ã′i and
ψ̃ are estimated within a factor of 1 + ε with probability at
least 1− δ, which gives rise to an (ε, δ)-approximation of all
the prices p∗i .

6. EXPERIMENTS
This section experimentally evaluates the quality and scal-

ability of our proposed algorithms. We implement our algo-
rithms using C++. All experiments are run on a machine
with Intel Xeon 2.4GHz CPU and 384GB memory.

6.1 Experimental Setup
Datasets. We evaluate our algorithms by several real
datasets including Facebook, Google+, LiveJournal, Orkut
and Twitter. The first four datasets are available at http:

//snap.stanford.edu/data and the Twitter dataset is
obtained from http://an.kaist.ac.kr/traces/WWW2010.

html [25]. Table 1 gives the details of these datasets.
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Table 1: Datasets.

Dataset #nodes #edges Type Avg. degree

Facebook 4.0K 88.2K Undirected 43.7

Google+ 107.6K 13.7M Directed 254.1

LiveJournal 4.8M 69.0M Directed 28.5

Orkut 3.1M 117.2M Undirected 76.3

Twitter 41.7M 1.5G Directed 70.5

Parameter Settings. We adopt the Independent Cascade
diffusion model and set the propagation probability pu,v of
each edge (u, v) to the reciprocal of v’s in-degree which is a
commonly used setting by other studies [37–40]. We set the
number of candidate nodes nc = 200, 500 or 1000, the failure
probability δ = 1

n
(n is the number of nodes in the OSN)

and the error threshold ε = 0.1 by default. We assume
that the candidate node set C includes the top-nc nodes
with the highest out-degrees. These nodes are offered by
the OSN provider to advertisers for seed selection. We set

the total price of all the candidate nodes at b =
∑
S⊆C σ(S)

2nc−1

as discussed in Section 5.4.

Algorithms. We compare the price profile calculated by
our pricing algorithm (Algorithm 1), referred to as OptPrice,
with the following baselines:

• Uniform: The prices of all the candidate nodes are set
the same.

• Degree: The price of each candidate node is set pro-
portional to its out-degree.

• SingletonInf: The price of each candidate node is set
proportional to the influence spread it can produce
when selected as the only seed. We estimate the in-
fluence spread using the RIS method and the stopping
rule algorithm.

• IMRank [8]: A ranking of candidate nodes is gener-
ated in decreasing order of their marginal gains in in-
fluence spread. We generate the ranking by applying
the greedy hill-climbing algorithm for influence maxi-
mization [23]. The price of each candidate node is set
proportional to its marginal gain.

Time Complexity. In the stopping rule algorithm (Al-
gorithm 1), by the analysis in Theorem 2, the number of
samples θi generated for estimating µi satisfies

Pr
[ Υ

(1− ε) · µi
< θi

]
= Pr[µ̃i < (1− ε)µi] <

δ

2
.

To estimate all the node prices in the candidate set, our
stopping rule algorithm finishes with O( Υ

minsi∈C µi
) samples

generated with probability at least 1 − δ
2
. In addition, the

expected number of RR sets generated is Υ
minsi∈C µi

. Let

EPT be the expected time complexity to generate an RR
set. According to [40], let v∗ be a random node chosen
from V with probability proportional to its in-degree and
we have EPT = E[σ({v∗})] · m

n
where the expectation is

over the randomness of v∗, n = |V | is the number of nodes
and m = |E| is the number of edges in the network. The

expected time complexity of our pricing algorithm is then
O( Υ

minsi∈C µi
· EPT). Let αi be the estimation variable for

the singleton influence spread for a seed si ∈ C, i.e., αi =
σ(si)
n

. Similarly, the expected time complexity of the Single-

tonInf pricing is O( Υ
minsi∈C αi

· EPT). When using the RR

sets generated by our stopping rule algorithm, the IMRank
algorithm has the same time complexity as our pricing al-
gorithm. Since the baselines of Degree and Uniform pricing
do not incur computational cost for sampling, their time
complexities are O(|C|).

For fair comparison, the total price b of all the candidate
nodes is set the same for all the pricing algorithms.

6.2 Experimental Results

6.2.1 Efficiency of Our Algorithm
Table 2 shows the running time of our pricing algorithm

and the number of RR sets generated for various datasets.
As can be seen, our OptPrice algorithm can compute the
price profile within hours even for large-scale datasets. This
demonstrates the scalability of our OptPrice algorithm.

6.2.2 Evaluation of Divergence Function
A straightforward evaluation is to compare the values

of the divergence function (2) produced by the pricing
profiles of different algorithms. According to Lemma 2,
the divergence function can be divided into two parts:

1
2nc

∑
S⊆C σ(S)2 and

∑nc
i=1 g(pi).

For each g(pi), the value of 1
2nc−1

∑
S⊆C\{si} σ(S ∪ {si})

can be estimated using the RIS method and the stopping
rule algorithm. Then,

∑nc
i=1 g(pi) can be computed based

on (3). The challenge lies in evaluating 1
2nc

∑
S⊆C σ(S)2.

This part is non-linear with respect to the influence spread.
There are an exponential number of seed sets to measure in
order to obtain the sum. To make the evaluation tractable,
we use the sample average to estimate the value of the sum.
Note that this sum is an additive term in the divergence
function that is independent from the price profile, which
indicates that its estimation accuracy will not affect the rel-
ative performance of different algorithms. We show below
the theoretical guarantees of the estimation accuracy when
a given number of T seed sets are measured.

In the multiplicative-additive error form of martingale-
based concentration bounds, the failure probability is inde-
pendent of the mean of the tested random variable. The
following lemma describes this phenomenon.

Lemma 4. Let Z1−E[Z1], . . . , ZT−E[ZT ] be a martingale
difference sequence such that Zj ∈ [0, 1] for each j. Let Z̄ =
1
T

∑T
j=1 Zj. If E[Zj ] is identical for every j, i.e., E[Zj ] =

E[Z̄], then,

Pr[Z̄ ≤ (1− ε)E[Z̄]− β] ≤ e−2εβT , (27)

Pr[Z̄ ≥ (1 + ε)E[Z̄] + β] ≤ e−2εβT/(1+ε/3)2 . (28)

Proof. By (21) in Corollary 2, we have

Pr
[
Z̄ ≤ (1− ε)E[Z̄]− β

]
≤ exp

(
− (εE[Z̄] + β)2T

2E[Z̄]

)
≤ exp

(
− (2

√
εE[Z̄]β)2T

2E[Z̄]

)
= exp

(
− 2εβT

)
.
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Table 2: Running time and number of RR sets generated.

#candidates Metric Facebook Google+ LiveJournal Orkut Twitter

nc = 200
Time (s) 19.21 64.49 701.54 2164.62 8655.96

#RR sets 4.35E+06 1.34E+07 5.70E+07 1.76E+07 6.20E+06

nc = 500
Time (s) 29.28 136.43 2422.94 5009.15 26965.50

#RR sets 5.64E+06 2.61E+07 1.73E+08 3.96E+07 1.75E+07

nc = 1000
Time (s) 44.16 276.62 5838.89 10376.70 53464.40

#RR sets 6.47E+06 4.59E+07 2.87E+08 7.41E+07 3.39E+07

Table 3: Comparison between ω and β · σ(C)2.

#candidates Metric Facebook Google+ LiveJournal Orkut Twitter

nc = 200
ω 6.82E+05 7.34E+07 1.51E+10 2.83E+10 8.10E+13

β · σ(C)2 3.29E+03 3.93E+05 7.94E+07 1.14E+08 3.24E+11

nc = 500
ω 1.43E+06 1.50E+08 2.92E+10 4.24E+10 1.13E+14

β · σ(C)2 5.86E+03 7.32E+05 1.42E+08 1.63E+08 4.27E+11

nc = 1000
ω 2.99E+06 2.30E+08 4.62E+10 5.47E+10 1.29E+14

β · σ(C)2 1.09E+04 1.06E+06 2.14E+08 2.05E+08 4.75E+11

Table 4: Value of divergence function.

#candidates Algorithm Facebook Google+ LiveJournal Orkut Twitter

nc = 200

Uniform 1.90E+04 2.50E+05 5.50E+07 4.46E+07 1.12E+11

Degree 1.41E+04 1.32E+05 4.12E+07 4.30E+07 4.64E+10

SingletonInf 8.19E+03 3.66E+04 3.20E+07 3.84E+07 1.06E+11

IMRank 8.73E+03 1.78E+05 4.38E+07 2.57E+08 1.04E+12

OptPrice 1.24E+03 1.13E+04 1.14E+07 2.49E+07 3.20E+10

nc = 500

Uniform 1.21E+04 2.38E+05 5.34E+07 3.03E+07 1.34E+11

Degree 9.44E+03 1.32E+05 3.82E+07 2.58E+07 1.09E+11

SingletonInf 6.11E+03 6.73E+04 3.03E+07 2.17E+07 1.30E+11

IMRank 1.91E+04 3.34E+05 6.17E+07 2.99E+08 1.42E+12

OptPrice 4.78E+02 2.15E+04 6.73E+06 7.41E+06 5.75E+10

nc = 1000

Uniform 6.74E+03 2.19E+05 7.06E+07 3.80E+07 8.87E+10

Degree 5.39E+03 1.20E+05 5.58E+07 3.27E+07 8.52E+10

SingletonInf 3.46E+03 7.67E+04 4.90E+07 2.92E+07 7.50E+10

IMRank 3.31E+04 4.55E+05 1.02E+08 3.53E+08 1.43E+12

OptPrice 4.96E+02 1.78E+04 2.52E+07 1.49E+07 1.10E+10

Similarly, by (20) in Corollary 2, we have

Pr[Z̄ ≥ (1 + ε)E[Z̄] + β] ≤ exp
(
− h(λ)

)
,

where h(λ) = (λ2T )
2(λ−β)/ε+2λ/3

and λ = εE[Z̄] + β. Let

dh(λ)

dλ
=

(
2λ((λ− β)/ε+ λ/3)− (1/ε+ 1/3)λ2

)
T

2
(
(λ− β)/ε+ λ/3

)2 , 0.

Thus, h(λ) achieves its minimum at λ = 2β
ε(1/ε+1/3)

such that

h(λ) = 2εβT
(1+ε/3)2

. This completes the proof.

Let S1, S2, . . . , ST be a sequence of randomly gener-
ated subsets of the candidate node set C. Let ω =
1
T

∑T
j=1 σ(Sj)

2. Then, for each 1 ≤ j ≤ T , we have

E[σ(Sj)
2] = E[ω] = 1

2nc

∑
S⊆C σ(S)2. To make σ(Sj)

2 fall

in the range of [0, 1], we normalize the value of σ(Sj)
2 by

σ(C)2 so that 0 ≤ σ(Sj)
2

σ(C)2
≤ 1 since σ(Sj) ≤ σ(C).

Suppose that we set T = (1+ε/3)2 ln(2/δ)
2εβ

. Then, according

to Lemma 4, the estimation 1
T

∑T
j=1 σ(Sj)

2 is in the range

of [(1 − ε)E[ω] − β · σ(C)2, (1 + ε)E[ω] + β · σ(C)2] with
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Figure 1: Variance of 10,000 seed sets for different budgets (nc = 200).
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Figure 2: Average influence spread of 10,000 seed sets for different budgets (nc = 200).
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Figure 3: Variance of 10,000 seed sets for different budgets (nc = 500).
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Figure 4: Average influence spread of 10,000 seed sets for different budgets (nc = 500).

probability at least 1 − δ. In the experiments, we set ε =
0.01, β = 0.002, and δ = 0.01. Then, T = 133,342. So,
we randomly generate 133,342 subsets of C to estimate the
value of 1

2nc

∑
S⊆C σ(S)2. As can be seen from Table 3,

under this setting, the additive estimation error of β ·σ(C)2

is negligible compared to the estimated value ω.
Table 4 shows the divergence function values produced by

different pricing algorithms. It can be seen that our OptPrice
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Figure 5: Variance of 10,000 seed sets for different budgets (nc = 1000).
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Figure 6: Average influence spread of 10,000 seed sets for different budgets (nc = 1000).

algorithm results in significantly lower values than all the
baselines. This implies that the price profile set produced
by our OptPrice algorithm can better reflect the influence
spread of any seed set.

6.2.3 Additional Experiments
Recall that the objective of our pricing profile is to min-

imize the divergence between the influence spreads and the
seed prices for all possible seed sets. When such a divergence
is minimized, the influence spread of any seed set would
closely match its price. This implies that two seed sets with
the same price would also be close in their influence spreads.
This property is valuable to the advertisers because the ad-
vertisers, holding a budget to purchase seeds according to
their prices, are expecting to achieve a more predictable in-
fluence spread from the selected seeds. To verify this prop-
erty, we design the experiments to construct a collection of
seed sets subject to a budget limit and compare their influ-
ence spreads. The budget limit is expressed as a percentage
of b (the total price of all the candidate nodes). Given a bud-
get, we randomly choose seeds among the candidate nodes
to fill up the budget. We construct 10,000 random seed sets
and estimate the influence spreads achieved by these seed
sets using the RIS method with 100,000 RR sets. We test
different budget limits from 10% to 90%.

Figures 1, 3 and 5 show the variance of the influence
spreads of the 10,000 seed sets under different pricing al-
gorithms when there are nc = 200, 500 and 1000 candidate
nodes respectively. It can be seen that different pricing al-
gorithms result in quite different variances. In general, our
OptPrice algorithm has significantly lower variance of influ-
ence spread than the baselines. This shows that our Opt-
Price algorithm can capture the influence potentials of the

candidate nodes more accurately and give the advertisers
a more stable and predictable return (influence spread) for
their purchasing (seeding) activities. Figures 2, 4 and 6 show
the average influence spread of the 10,000 seed sets. As can
be seen, the average influence spread increases with the given
budget of seed selection for all the datasets. The seed sets
chosen under our proposed pricing algorithm achieve compa-
rable average influence spreads to those under the baselines.
This shows that our pricing profile is able to maintain the
same expected influence spread as other baselines under a
given budget.

7. CONCLUSION
In this work, we build a bridge between OSN providers

and advertisers by proposing a pricing mechanism to facil-
itate the initiator selection of marketing campaigns with-
out the knowledge of OSN structures. In particular, we
study the problem of minimizing the pricing divergence from
the influence spread and derive an optimal price profile. A
scalable estimation algorithm is devised to yield an (ε, δ)-
approximation of the optimal prices. Through extensive ex-
periments, we demonstrate the performance advantages of
our approach over other baselines.
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