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ABSTRACT
Increasingly massive volumes of vehicle trajectory data hold the
potential to enable higher-resolution traffic services than hitherto
possible. We use trajectory data to create a high-resolution, uncer-
tain road-network graph, where edges are associated with travel-
time distributions. In this setting, we study probabilistic budget
routing that aims to find the path with the highest probability of ar-
riving at a destination within a given time budget. A key challenge
is to compute accurately and efficiently the travel-time distribution
of a path from the travel-time distributions of the edges in the path.
Existing solutions that rely on convolution assume independence
among the distributions to be convolved, but as distributions are of-
ten dependent, the result distributions exhibit poor accuracy. We
propose a hybrid approach that combines convolution with estima-
tion based on machine learning to account for dependencies among
distributions in order to improve accuracy. Since the hybrid ap-
proach cannot rely on the independence assumption that enables
effective pruning during routing, naive use of the hybrid approach
is costly. To address the resulting efficiency challenge, we propose
an anytime routing algorithm that is able to return a “good enough”
path at any time and that eventually computes a high-quality path.
Empirical studies involving a substantial real-world trajectory set
offer insight into the design properties of the proposed solution,
indicating that it is practical in real-world settings.
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1. INTRODUCTION
Users who travel in road networks will generally benefit from

high-resolution routing, where travel-time uncertainty is captured
accurately [1, 2]. For example, when a vehicle needs to arrive at a
destination by a deadline, having accurate travel-time distributions
of candidate paths enables choosing the most reliable path. In the
example in Table 1, if the deadline is within 60 minutes, path P1

is better than path P2, since P1 offers a 0.8 probability of arriv-
ing within 60 minutes, which exceeds P2’s probability of 0.7. If
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using average travel times, the vehicle will choose P2 that has av-
erage travel time 57, while P1’s average travel time is 60. Thus,
the vehicle has a higher risk of arriving too late.

Table 1: Travel-time Distributions of Two Paths P1 and P2

Travel time (minutes) 50 60 70
P1 0.2 0.6 0.2
P2 0.6 0.1 0.3

Trajectories are increasingly becoming available that capture the
movements of vehicles [3]. This provides a solid foundation for
high-resolution travel-time uncertainty modeling [4]. We model a
road network as a graph, where vertices represent road intersections
and edges represent road segments. Then, we split trajectories into
pieces that fit the underlying edges and assign uncertain weights in
the form of travel-time distributions to the edges using assigned tra-
jectory pieces [5]. The travel-time distributions of edges are often
assumed to be independent of each other [6], and the travel-time
distribution of a path is computed by applying convolution to the
travel-time distributions of the edges in the path.

However, the travel times on edges are often dependent due to
traffic lights and turns, etc. Therefore, the independence assump-
tion often causes inaccurate results. Consider an example path
P = 〈e1, e2〉 and assume that a set of trajectories traverse the path.
Half of these traverse e1 in 20 seconds and e2 in 30 seconds, yield-
ing a total travel time of 50 seconds. The remaining half traverse
e1 in 30 seconds and e2 in 40 seconds, yielding a total travel time
of 70 seconds. This suggests travel time dependence where a driver
either traverses both edges quickly or slowly, and it is unlikely that
a driver traverses one edge quickly but the other slowly.

In the example, we would split the trajectories into pieces that fit
edges e1 and e2 such that we obtain distributions D1 and D2 for
the two edges, as shown in Table 2. The convolution of D1 and D2,
shown in Table 3, does not reflect the same reality as do the original
trajectories (see Table 4). Rather, we now have a large probability
of traversing the two edges in 60 seconds, which no trajectories
support.

To better capture travel-time dependence, we propose a hybrid
learning approach. First, we train a regression model, specifically

Table 2: Distributions D1 and D2 for Edges e1 and e2

D1

Travel Time Probability
20 0.5
30 0.5

D2

Travel Time Probability
30 0.5
40 0.5
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Table 3: Convolution Result

Travel Time Probability
50 0.25
60 0.50
70 0.25

Table 4: Ground Truth DP

Travel Time Probability
50 0.50
70 0.50

a neural network, that is able to take into account two edges’ distri-
butions and road condition features that describe the relationships
between the two edges, e.g., whether a traffic light is in-between
them and the angle between them, to estimate the travel-time dis-
tribution of the path that consists of the two edges. In our example,
when training the regression model, the inputs are D1, D2, and
road condition features. The ground truth label for the input is dis-
tribution DP , shown in Table 4.

Second, because convolution is likely a good choice, especially
when the dependence between two edges is weak, we train a binary
classifier to decide whether or not to use convolution or the trained
regression model. This results in a novel hybrid learning approach
that yields better accuracy compared to using only convolution or
only regression.

In addition, the hybrid learning approach satisfies a so-called “in-
cremental property,” which is highly desired in routing algorithms.
Specifically, routing algorithms often employ a “path+another edge”
pattern to extend an existing path P by an edge e to obtain a new
path P ′. The hybrid learning is able to use the distribution of P ,
which is already computed, and the distribution of edge e, to incre-
mentally compute the distribution of the new path P ′, rather than
computing the distribution of P ′ from scratch, which may take a
much longer time. To the best of our knowledge, the hybrid learn-
ing approach is the first machine learning based approach that sat-
isfies this important property.

In a stochastic setting, the notion of “shortest” path needs to be
redefined because paths have distributions, not deterministic val-
ues. We consider a classic stochastic routing problem, probabilistic
budget routing, where, given a source, a destination, and a time
budget, the goal is to identify the path with the largest probability
of arriving the destination within the time budget. Existing routing
algorithms rely on assumptions that do not hold in the hybrid learn-
ing approach, thus calling for new routing algorithms. Specifically,
existing routing algorithms rely on stochastic dominance to com-
pare distributions of paths. Let P1 and P2 have distributions D1

and D2, respectively. If distribution D1 stochastically dominates
distribution D2, then D1 is considered to be “smaller” than D2,
and then we can prune P2 as in the deterministic case. The reason
is that when extending P1 and P2 by an edge e, the distribution
D1⊕De of path P ′1 = 〈P1, e〉 dominates the distribution D2⊕De

of path P ′2 = 〈P2, e〉, where ⊕ denotes convolution. However,
when using a regression model RM(·, ·), we cannot guarantee that
RM(D1, De) dominates RM(D2, De) when D1 dominates D2.
This resulting inability to prune based on stochastic dominance
when using regression makes efficient routing more challenging.
This calls for new routing algorithms.

To this end, we propose an anytime routing algorithm that em-
ploys the hybrid learning approach to estimate path distributions
along with additional speed-up techniques to ensure efficiency. Spe-
cifically, the algorithm is able to deliver a “good enough” path at
any time; and the longer the algorithm runs, the better the result
path becomes (i.e., the path offers a higher probability of arriv-
ing within the budget). This provides flexibility on how long a user
may want to wait. The algorithm includes several speeding up tech-
niques, including a method to estimate best possible distributions

for paths, enabling an A*-like heuristic, and the use of so-called
pivot paths to enable additional pruning.

We make three specific contributions in this paper. (i) We pro-
pose a hybrid learning approach to accurately estimate the travel-
time distributions of paths while satisfying the incremental prop-
erty; (ii) we propose an anytime routing algorithm that employs the
hybrid learning approach to support probabilistic budget routing;
and (iii) we conduct a comprehensive empirical study to justify our
design choices and to offer insight into the proposed methods. A
preliminary four-page report on the study appeared elsewhere [7].

The remainder of the paper is organized as follows: Section 2
presents preliminaries. Section 3 presents the hybrid learning ap-
proach for path travel cost distribution estimation. Section 4 intro-
duces an anytime routing algorithm that utilizes the hybrid learning.
Section 5 presents the empirical study. Finally, Section 6 covers re-
lated work, and Section 7 concludes and suggests future work.

2. PRELIMINARIES
Uncertain Road Networks: An uncertain road network is defined
as a graph G = (V,E, C), where V is a set of vertices vi, E ⊆ V ×
V is a set of edges ei = (vj , vk), and C: E → D is a cost function
that maps edges to their cost distributions, e.g., travel-time or fuel
consumption distributions. We denote the source and destination
vertices of an edge e as e.s and e.d, respectively.

We use histograms to represent distributions. A histogram is a
collection of (bucket, probability) pairs with each bucket repres-
enting a cost range. The probabilities in a histogram sum to 1.0,
and the probability of all cost values in a bucket is uniform. To
obtain a histogram for an edge, we select a cost lower bound lb
and a cost upper bound ub such that cost range [lb, ub) covers all
costs from the GPS traversals on the edge. Next, we form a histo-
gram with n buckets, where each bucket has width d(ub− lb)/ne.
Then, we distribute the edge costs to the buckets and compute the
probability of each bucket. We define two histograms to be homo-
geneous if they have identical cost bounds and bucket widths. For
instance, Figure 1(a) illustrates two homogeneous histograms with
cost bounds [0, 10) and bucket width 2.
Paths and Path Costs: A path P = 〈e1, e2, . . . , en〉 is a sequence
of edges where ei ∈ E. We only consider simple paths, in which
all vertices are distinct. We denote P.d as the final vertex covered
by path P . A subpath PS of path P is a contiguous subsequence of
the edges in P . A pre-path P−i of path P is a sub-path of P with
the last i edges removed. Path expansion occurs when a path P is
extended by an edge e to obtain P ′ = 〈P, e〉. Consider an example
path P = 〈e1, e2, e3〉. Then, Ps = 〈e2, e3〉 is a sub-path of P ,
P−1 = 〈e1, e2〉, P−2 = 〈e1〉, and 〈P, e4〉 = 〈e1, e2, e3, e4〉.

The cost of a path P = 〈e1, e2, . . . , en〉, denoted P.cost, is a
distribution that is derived from the distributions of the edges in P .
When assuming that the distributions are independent, convolution
is applied to “sum” the distributions such that P.cost = C(e1) ⊕
C(e2) ⊕ . . . ⊕ C(en), where ⊕ is the convolution operator. Spe-
cifically, the convolution of two independent discrete distributions
X and Y can be expressed as Z(z) =

∑
x∈X fX(x) · fY (z− x),

where fX and fY are the probability mass functions of X and Y .
The proposed hybrid learning approach considers potential correl-
ations among the distributions of the edges in path P to compute
P.cost. The details are covered in Section 3.
Probabilistic Budget Routing (PBR): Given a source s, a destin-
ation d, and a time budget t, PBR returns a path P from a path
set P that consists of all paths from s to d, such that P has the
largest probability of arriving at d within t. Formally, we have
PBR(s, d, t) = argmaxP∈P Prob(P.cost ≤ t).
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3. HYBRID LEARNING MODEL

3.1 Limitations of Convolution
First, applying convolution to sum two distributions is only ac-

curate if the distributions are independent, which is often not the
case in road networks [8]. Second, due to the central limit the-
orem [9], repeatedly convolving independent distributions eventu-
ally yields distributions akin to Gaussian distributions, which often
reflect reality poorly in the case of travel-time distributions [6, 8].
Third, the variance of the sum of two independent random variables
is the sum of the variances of the two variables. With repeated con-
volution, we obtain distributions with increasingly large variances,
reducing the possibility of any spikes, and instead moving towards
distributions that are flatter and more uniform. To exemplify, Fig-
ure 1(a) shows the result of convolution and the ground truth using
more than 300 GPS traversal records on a path with two edges in
Aalborg, Denmark. The convolution result is stretched to be flatter
compared to the ground truth that has a spike in bucket [4, 6).

(a) Convolution & Ground Truth (b) Regression

Figure 1: Example based on real-world data [7].

3.2 Learning Path Cost Distributions
We propose to use machine learning to better capture cost dis-

tribution dependencies and thus more accurately estimate the cost
distributions of paths. We distinguish between cost distribution es-
timation for short paths and long paths.

3.2.1 Short Paths
We first consider short paths, i.e., paths with two edges. We

treat path distribution estimation as a regression problem: ĤP =
F (H1, H2, C), where H1 and H2 are histograms of edges e1 and
e2, and C represents features that characterize the two edges, e.g.,
whether they meet at a traffic light or a roundabout. Regression
function F estimates the histogram ĤP of path P = 〈e1, e2〉. We
proceed to elaborate on how to prepare training data and on the
design of regression function F .

We employ GPS trajectories for training. We first identify a set
of short paths that are traversed frequently by trajectories. For in-
stance, we could select the top-k most traversed short paths or the
short paths with more traversals than a threshold.

We then split the selected short paths into disjoint training and
testing sets. For each short path P = 〈e1, e2〉 in the training set,
we use all trajectories that traversed ei to derive histogram Hi for
edge ei. To derive histogram HP , we only use the smaller set of
trajectories that cover the full path P = 〈e1, e2〉. For instance,
suppose that 100 trajectories traversed P = 〈e1, e2〉, 80 trajectories
traversed e1 but not e2, and 20 trajectories traversed e2 but not
e1. Then, we build H1 (H2) from the 180 (120) trajectories that
traversed e1 (e2), and we build HP from the 100 trajectories that
traversed P , i.e., both e1 and e2.

Next, we identify features C that characterize the two edges.
These include the lengths, road types (e.g., highways vs. residen-
tial roads), and speed limits of the two edges; the angle between the
edges; and whether there is a traffic light between the edges. The
intuition is that the degree of dependence between two edges may
be affected by these properties that thus should be considered by
the regression model. Some features are discrete and thus one-hot
encoded, whereas others are floating values.

We use a classic multilayer perceptron neural network (NN ) as
the regression model as we expect its ability to capture non-linear
relationships among inputs to be essential for capturing distribution
correlations. We require that H1, H2, and HP are homogeneous,
each having n (bucket, probability) pairs with cost range [lb, ub),
and C has c features. Thus, the input layer has 2·n+c neurons. The
first 2 ·n neurons correspond to the probabilities of the n buckets in
each of histograms H1 and H2, and the last c neurons correspond
to the features in C. The hidden layer can have an arbitrary number
of neurons. The output layer has n neurons that correspond to the
estimated probabilities of the n buckets, i.e., ĤP . The layers are
fully connected—each neuron in the input layer is connected to
each neuron in the hidden layer with a sigmoid activation function,
and each neuron in the hidden layer is connected to each neuron in
the output layer with a softmax activation function.

During training, HP is used as the ground truth, and the squared
error between the histograms ĤP and HP is used as the loss func-
tion. We measure the accuracy of the resulting NN using the test
path set. For each testing path P ′ = 〈e′1, e′2〉, we derive histograms
H ′1, H ′2, and HP ′ . We give H ′1, H ′2, and a feature set that character-
izes edges e′1 and e′2 to the trained NN , which returns an estimated
histogram ĤP ′ as the cost distribution of path P ′. We measure
the KL-divergence between the estimated distribution ĤP ′ and the
ground-truth distribution HP ′ . The smaller the KL-divergence is,
the more accurate the estimated distribution is.

Figures 1(a–b) show that using regression instead of convolution
can yield distributions that are more similar to the ground truth—
both the regression-based estimated distribution and the ground
truth have a clear spike at bucket [4, 6). Next, we employ KL-
divergence to quantify the accuracy between an estimated distribu-
tion (using either convolution or regression) vs. the ground truth
distribution. A KL-divergence of 0 means that the two distribu-
tions are identical, and increasingly dissimilar distributions pro-
duce increasingly large KL-divergence scores. In Figure1, the KL-
divergence between the ground truth and the distribution derived
from regression is 0.06, whereas the KL-divergence between the
ground truth and the distribution obtained using convolution is 0.23.
This demonstrates that machine learning techniques have the po-
tential to capture distribution dependencies and thus compute more
accurate sums of two dependent distributions.
Building multiple NNs: Since the input and output histograms of
the NN must be homogeneous, we train different NNs for different
cost ranges. For example, we train different models to estimate the
sum of two short edges in an residential neighborhood vs. the sum
of two long edges on a main road. If we were to use a single model,
we need to consider histograms that represent the travel times of
long edges up to, say, 1,000 seconds. However, the short edges
may only have travel times up to 100 seconds, which yields many
empty buckets and makes regression more challenging.

In particular, we consider four filtering parameters to build dif-
ferent NNs: distance lower and upper bounds and cost lower and
upper bounds. We train an NN model based on paths filtered ac-
cording to the above parameters such that all training paths have a
total distance within the distance bounds and the sum of the edges’
cost bounds are within the models cost bounds. Because the selec-
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ted training paths are then similar, their costs can be represented by
homogeneous histograms. Having tighter distance and cost bounds
results in training paths with higher similarity. However, tighter
bounds also yield fewer qualified training paths, and we may even-
tually not have sufficient similar training paths for training NN s.
Thus, we select reasonably tight bounds while making sure that we
have sufficient amounts of qualified training paths.

For different NN s, we use a fixed number n of buckets for all
histograms and vary the bucket width for each model to represent
different cost ranges. Using instead a fixed bucket width and vary-
ing number of buckets to represent different cost ranges would re-
quire an increasingly large number of buckets, which increases the
complexity of the NN s and decreases the accuracy of the regres-
sion. Table 5 shows different NN s with different cost and distance
bounds, and a fixed number n = 10 of buckets.

Table 5: Example of Filtering Configurations for Three Models

Bucket width Cost bound Distance bound
M1 4 (0, 40] (0, 100]
M2 20 (0, 200] (0, 500]
M3 30 (0, 300] (0, 500]

Model Selection Given two edges, we select the most appropriate
model from a set of available NN s to estimate the cost distribution
of the path that consists of the two edges. First, we disregard the
NN s whose distance bounds are inappropriate. For example, if an
input edge has length 200 m, we disregard M1 in Table 5 as its
distance bound does not cover 200 m. Next, we disregard NN s
with inappropriate cost bounds. For example, if the histograms of
both input edges range from 0 to 100 seconds, we disregard all
NN s whose cost bounds do not cover 200 seconds, e.g., M1 in
Table 5, since the path may take up to 2 · 100 = 200 seconds.
Finally, among all the remaining NN s, we select the NN with the
lowest bucket width. In our example, we select M2 since that has a
lower bucket width than M3.
Model performance Next, we compare NN -based regression with
convolution. Recall that the NN s requires all histograms to have a
fixed number of buckets, no matter how large the cost ranges they
represent. Here, histograms have n = 10 buckets. Using traject-
ories collected from Denmark, we build five different NN s that
cover five different cost bounds but within the same distance bound
(0, 100] meters. Then, we use each NN to estimate distributions of
500 short paths.

(a) Accuracy (b) Probability ratio

Figure 2: Regression vs. convolution, n = 10 buckets.

Figure 2(a) shows the KL-divergence between the estimated his-
togram (using either regression or convolution) and the ground-
truth histogram. Lower KL-divergence values indicate higher ac-
curacy. The accuracy of convolution deteriorates heavily when es-

timating distributions that represent larger travel-time ranges (i.e.,
larger upper bounds), whereas the accuracy of regression improves.

Figure 2(b) shows the probability of regression vs. convolution
being more similar to the ground truth. Although the average KL-
divergence grows as the cost upper bound increases for convolu-
tion, we still find that convolution outperforms regression on a case-
by-case basis 40% of the time when the cost upper bound is 50.
This suggests that relying purely on either regression or convolu-
tion increases result inaccuracy. This calls for a hybrid model that
considers both regression and convolution.

3.2.2 Long Paths
When performing routing, we need to compute cost distributions

for paths that are longer than two edges. To do so, we iteratively ap-
ply the NN s. For example, consider a long path P = 〈e1, e2, e3〉.
We first use an NN to compute the cost of path P−1 = 〈e1, e2〉
using the costs of edges e1 and e2. Then we treat path P−1 as a vir-
tual edge. This enables us to use an NN to compute the cost of path
P using the costs of the virtual edge P−1 and edge e3. When this
procedure is applied repeatedly, the virtual edge becomes longer
and longer, and the cost ranges of the virtual edge and the last edge
become increasingly imbalanced. Since our NN models are not
designed for such imbalanced cases, we need to consider the be-
havior of our NN models when used in this fashion. Figure 3(a)
shows the probability of repeated regression vs. repeated convolu-
tion being superior for varying path lengths based on 500 samples
for each setting using histograms with 10 buckets. Repeatedly ap-
plying NN -based regression degrades the accuracy, and regression
should not be done more than a few times, at which point convo-
lution becomes preferable. Figure 3(a) shows that regression has
a 59% probability of being best for paths consisting of four edges,
whereas for paths of five edges, the probability is 34%. This also
calls for a hybrid model capable of using both regression and con-
volution by controlling when regression should be applied.

(a) Probability ratio (b) Hybrid Model

Figure 3: Estimating the distributions of long paths [7].

3.3 Hybrid Model
To more accurately compute a path’s distribution, we create a

hybrid model that combines NN -based regression and convolution.

3.3.1 Boolean Classifier
We introduce a Boolean classifier to determine whether regres-

sion or convolution is to be used in a given context. After training
the NN models, we evaluate the accuracy of each NN model on a
testing set that consists of short paths. For each test path we also
evaluate the accuracy of convolution. Then we know whether re-
gression or convolution is more accurate, and we build a binary
classifier using logistic regression based on this information. The
classifier is thus associated with a NN model. The classifier ac-
cepts a number of features as input and returns two scores that sum
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to 1.0 and represent the likelihoods of regression vs. convolution
being best. We use the same features for both the classifier and
the regression model since the underlying problem is the same—to
capture the dependence between two edges. Figure 3(b) shows the
accuracy of the hybrid approach based on 500 samples. The clas-
sifier selects the correct method 73% of the time, yielding an even
tighter spread on the KL-divergence of the result. When the clas-
sifier is wrong, the average difference in KL-divergence between
the incorrectly chosen method and the best method is 0.07. Thus,
when the wrong method is selected, the two methods perform very
similarly. Using the classifier, we label adjacent edge pairs as being
dependent if regression is to be used, and we label them independ-
ent if convolution is to be used.

The classifier only determines whether or not two adjacent edges
are dependent. This is sufficient given the assumption that pair-
wise cost dependence between edges is stronger the closer together
the edges are: for a path P = 〈e1, e2, e3〉, where we determine
there is no dependence between e2 and e3, we also assume that
there is no dependence between e1 and e3. Inversely, if we de-
termine a cost dependence between e1 and e2 and between e2 and
e3, we also assume a cost dependence between e1 and e3, i.e., cost
dependence is transitive. We limit the cost dependence reach to
a constant k, as we cannot accurately capture the dependence for
edges further than k hops away using regression, as shown in Fig-
ure 3(a).

Next, we distinguish two different settings for computing the
cost distribution of a path using the hybrid model. In the first, a
full path is given. In the second, we consider a commonly used
path exploration operation in routing, where we do not know the
full path, but extend a path by an edge to grow the path.

3.3.2 Computing the Distribution of a Full Path
We consider the case where a full path P = 〈e1, e2, . . . , en〉 is

given. Algorithm 1 builds the cost of such a path using the hybrid
model. It first determines whether convolution or regression should
be used for combining each pair of adjacent edges. Based on the
information, we go through each edge and combine the distribu-
tions using either convolution or regression. By checking len = k
in line 6, we never repeatedly use regression more than k−1 times.
We evaluate the effect of k in multiple experiments in Section 5.

3.3.3 Incremental Property
In routing, we often need to expand a path by an edge to grow the

path. To avoid recomputing the entire cost distribution each time
we add an edge to a path, we present an incremental path extension
method that caches and reuses different distribution elements of a
path. Thus, the hybrid learning approach satisfies an incremental
property that is highly preferred in routing. Algorithm 2 details
this process. While Algorithm 1 computes the cost distribution of a
path given the distributions of all the edges in the path, Algorithm 2
computes the cost distribution of a path P ′ = 〈P, e〉 using the
distributions of P and e.

In Algorithm 2, we store three different distributions, which we
call cost elements: element DFC , representing the cost distribution
of a full path; element D1, representing the cost distribution of the
pre-path up to the last independent vertex in the path; and element
D2, representing the cost distribution of the subpath from the last
independent vertex in the path to the end vertex.

Whenever a new edge e is to be added to the path, we first de-
termine whether or not the source vertex of e is independent by
using a classifier. If it is, we simply convolve the distribution of e
with the cost of the path. If not, we combine D2 with the cost of e
using regression and then convolve D1 and D2.

Algorithm 1: Path Cost
Input:

Path P = 〈e1, e2, . . . , en〉; Integer k;
Output:

Cost distribution of path P ;
1: For each two consecutive edges in P , use classifier to set

either v.conv or v.reg to true for their shared vertex v;
2: D ← Distribution of e1;
3: SP ← Set of distributions to be convolved;
4: i← 2; len← 1;
5: while i ≤ |P | do
6: if len = k or ei.s.conv then
7: Insert D into SP ;
8: len← 1;
9: D ← ei.cost;

10: else if ei.s.reg then
11: D ← NN(D, ei.cost);
12: len← len+ 1;
13: i← i+ 1;
14: Insert D into SP ;
15: result← convolve all distributions in SP into one;
16: return result;

Algorithm 2: Incrementally Build Path Cost
Input:

Path P = 〈e1, e2, . . . , en〉; Edge ei; Integer k;
Output:

Path P ′ = 〈e1, e2, . . . , en, ei〉 with linked cost elements;
1: op← Use a classifier to decide if convolution or regression

should be used for calculating the cost of 〈en, ei〉;
2: P ′ ← 〈P, ei〉;
3: if op = convolution then
4: P ′.D1 ← P.DFC ⊕ ei.cost;
5: P ′.D2 ← empty;
6: P ′.DFC ← P ′.D1;
7: else
8: P ′.D1 ← P.D1;
9: if P.D2 is empty then

10: P ′.D2 ← ei.cost;
11: else
12: P ′.D2 ← NN (P.D2, ei.cost);
13: if P.D1 is empty then
14: P ′.DFC ← P ′.D2

15: else
16: P ′.DFC ← P ′.D1 ⊕ P ′.D2;
17: if P ′.D2 represents the cost of a path of length k then
18: P ′.D1 ← P ′.DFC ;
19: P ′.D2 ← empty;
20: return P ′.D1, P ′.D1, and P ′.DFC ;

To exemplify, consider a path with 7 edges as seen in Figure 4,
where the independent vertices are marked with “i”, e.g., the vertex
between e3 and e4.

Figure 4: Example graph for path expansion with k = 3.
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Starting from e1, we iteratively extend the path with an addi-
tional edge. Table 6 shows the different cost elements for each path
throughout the expansion. Distribution D2 always represents the
regression result, whereas D1 represents the established distribu-
tion that we only use convolution on. Path P1 consists of a single
edge, and as we have no independent vertex, we store the cost of
edge e1 in D2. We do not store anything in D1 before convolution
is used for the first time, and the full cost DFC of the path is there-
fore represented by the distribution given by D2. Path P2 has a full
cost that is also derived purely from D2 since there is no independ-
ent vertex in P2. Cost element D2 now corresponds to the sum of
the costs of e1 and e2 using regression. We use k = 3, meaning that
we want to use NN at most two times to estimate the sum of edge
distributions before enforcing convolution. Path P3 consists de-
pendent vertices, and the result of the regression is therefore stored
in D1. Expanding P3 with e4 yields path P4 that has a full cost
represented by the result of convolving the contents of D1 and D2.
Observe that in order to obtain the full cost, we need to perform
additional computations, which suggests that storing the total cost
as a separate entity is valuable to avoid repetition of the computa-
tion. Path P5 includes e5 that leads to an independent vertex. As a
consequence, we obtain the cost of P5 by performing regression on
the distributions e5.cost and P4.D2, and then convolving the res-
ult with the distribution P4.D1. Paths P6 and P7 follow the same
procedure, representing the total path cost by convolving D1 and
D2.

Table 6: Cost Elements for Paths; cn Denotes the Cost of Edge en

Path D1 D2 DFC

P1 = 〈e1〉 empty c1 D2

P2 = 〈P1, e2〉 empty NN (c1, c2) D2

P3 = 〈P2, e3〉 NN (P2.D2, c3) empty D1

P4 = 〈P3, e4〉 P3.D1 c4 D1 ⊕D2

P5 = 〈P4, e5〉 P4.D1 ⊕NN (P4.D2, c5)) empty D1

P6 = 〈P5, e6〉 P5.D1 c6.c D1 ⊕D2

P7 = 〈P6, e7〉 P6.D1 NN (c6, c7) D1 ⊕D2

Figure 5 shows the accuracy of the hybrid model on long paths.
Here, path cardinality denotes the number of vertices in a path. For
each path cardinality, we select a minimum of 10 paths with more
than 100 trajectories to have sufficient data to construct a ground-
truth distribution. Then, we calculate the distribution of each path
using Algorithm 2 with varying k and compare with the distribution
of the same path derived using only convolution.

Figure 5: Hybrid model on long paths.

The results show that the hybrid model achieves better accuracy
(i.e., lower KL-divergence values). In addition, the hybrid model
with a larger k achieves better accuracy. This is due to a larger
reliance on the binary classifiers, giving Algorithm 2 more choices
of which technique to use for the cost computation. This suggests
that using the hybrid model is advantageous.
Discussion: The proposed hybrid learning model distinguishes it-
self from other machine learning-based path cost estimation meth-
ods in two ways. First, existing methods often consider determ-
inistic costs, e.g., average travel times. In contrast, the hybrid
model targets cost distributions and explicitly considers distribu-
tion dependencies, while existing methods do not touch upon this.
Second, existing methods often only consider estimating the cost
of a path, i.e., the first setting when a full path is given, and do not
satisfy the incremental property. Thus, if using existing methods in
a routing algorithm, whenever we extend a path P by e, we need to
estimate the cost of path 〈P, e〉 from scratch without being able to
reuse the cost of P . This affects efficiency adversely.

4. ANYTIME HYBRID ROUTING

4.1 Limitations of Existing Routing
Finding the lowest-cost path from a source s to a destination

d in a deterministic graph with non-negative edge weights can be
solved using Dijkstra’s algorithm. Dijkstra’s algorithm relies on
the subpath optimality property. For example, assume that P1 takes
less time than P2 in Figure 6. As traversal costs are calculated as
sums, we can guarantee that P ′1 = 〈P1, e〉 has a lower cost than
P ′2 = 〈P2, e〉. Thus, at vertex i, we can safely prune P2 and only
consider P1.

In an uncertain network, the cost of a path is given by a dis-
tribution, which makes it more difficult to compare two paths. In
this setting, the lowest-cost path can be defined as the path with a
stochastically non-dominated distribution among all paths with the
same source and destination [1, 2, 6]. Thus, we have to compare
distributions to determine dominance relationships.

Given two discrete distributions D1 and D2, and their corres-
ponding cumulative distribution functions CDFD1 and CDFD2,
we say that D1 dominates D2 if:

∀x(CDFD1(x) ≥CDFD2(x))∧∃x(CDFD1(x) >CDFD2(x)),

where x is a travel cost. Thus, the cumulative probability of any
cost x in D1 is never lower than that of D2, and there is at least
one cost x for which D1 has a strictly larger cumulative probability
than has D2. If Pi’s distribution dominates that of Pj , Pi always
gives a higher or equal probability of arrival within a time budget
no matter what time budget is considered. In other words, given
Pi, Pj is not interesting and thus can be pruned.

Based on the notion of stochastic dominance, existing routing al-
gorithms employ a similar strategy to prune uncompetitive paths, as
the subpath optimality property still holds [2, 10, 11]. For instance,
consider Figure 6 where paths P1 and P2 reach vertex i, and assume
that the distribution of P1 stochastically dominates that of P2. In
a traditional setting, where we use convolution to compute the cost
distributions of paths, we have P ′1 = P1 ⊕ e and P ′2 = P2 ⊕ e,
where ⊕ denotes convolution, and we use Pi and e to also indic-
ate the distributions of path Pi and edge e. Since P1 stochastically
dominates P2, it also holds that P1 ⊕ e also dominates P2 ⊕ e.
Then, at vertex i, P2 can be pruned.

However, when using machine learning methods to estimate path
cost distributions, we may not be able to perform pruning based on
stochastic dominance as in the traditional setting. This is because
we cannot guarantee that the dominance relationship between two
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Figure 6: Two paths being extended by the same edge.

paths also holds for the paths when they are extended by the same
edge. For instance, in Figure 6 assume that the distribution of P1

stochastically dominates that of P2. With hybrid learning, we can-
not guarantee that P ′1 = NN (P1, e) dominates P ′2 = NN (P2, e),
as a neural network is a complex, non-linear function. This breaks
the subpath optimality property, and affects pruning.

Thus, when using Dijkstra’s algorithm, and replacing convolu-
tion with regression, pruning cannot be done on all vertices. As
a consequence, we cannot apply Dijkstra’s algorithm directly in
combination with regression-based cost estimation. However, we
can construct a pruning-free, brute-force variant of Dijkstra’s al-
gorithm with a priority queue that contains all explored paths or-
ganized according to the cost expectation. An example is shown
in Algorithm 3. This approach is naturally very inefficient, as the
entire search space is explored before a path is returned.

Algorithm 3: Brute-force Search
Input:

Graph G = (V,E,W ); Time budget t;
Source s and destination d;

Output:
Path from s to d with max probability of arriving by t;

1: PQ← priority queue of paths sorted on expected cost;
2: Insert all outgoing edges from s into PQ;
3: result← set of non-dominated paths to be returned;
4: while PQ is not empty do
5: P ← extract-min from PQ
6: for all e ∈ outgoing neighbors of P.d do
7: P ′ ← 〈P, e〉, calculate cost using Algorithm 2;
8: if P ′.d = d then
9: result← argmaxx∈{P ′,result} prob(x, t);

10: else
11: if P ′ is a simple path then
12: insert P ′ into PQ;
13: Return result;

Algorithm 3 returns the best path given budget t between vertices
s and d. It iteratively expands the search from s, extending the
cheapest path, and it only prunes a path candidate if it no longer is
simple or if d is found. The path in result is the best current path
found between s and d, and whenever a new path between s and d
is found, we compare it to result . We use Algorithm 2 in line 7 to
build the cost of path P ′, as it enables the reuse of distributions that
are already computed for P .

Algorithm 3 is inefficient mainly because no pruning can be ap-
plied at intermediate vertices, and a path can only be returned in the
end. This is not acceptable in practice because users would have to
wait too long to see a recommended path.

Instead, we propose an anytime routing algorithm. The main
consideration is that since we cannot prune paths at all intermedi-
ate vertices, the routing may take a long time. Rather than waiting
for a long time to return the path with the largest probability of

arriving within the budget, we compute a “good enough” path in-
stantaneously and try to efficiently identify better paths (i.e., with
higher probabilities). By doing so, we are able to return a path at
any time; and as time passes, the algorithm is able to return a path
with higher and higher probability.

4.2 Anytime Hybrid Routing
For anytime hybrid routing, we need an additional input x that

specifies an acceptable maximum running time, e.g., 3 seconds.
The algorithm then stops after x time units. The algorithm uses
a so-called pivot path. Specifically, we use simple heuristics to
quickly identify a pivot path and then keep improving the pivot
path such that its probability of arriving within the time budget in-
creases. Then we can return the pivot path at any time.

Further, the algorithm, detailed in Algorithm 4, employs sev-
eral pruning techniques to improve performance. The pruning tech-
niques include (a) using an A* inspired optimistic cost of reaching
the destination for each vertex, (b) using a pivot path that represents
the most promising return candidate at any point during the search
in combination with (c) distribution cost shifting that enables com-
parison between the pivot path and any path that does not yet reach
the destination vertex d, and (d) stochastic dominance pruning on
all fully independent vertices, i.e., vertices where all combinations
of in-edges and out-edges are classified as independent.

We initiate a hybrid search by performing three Dijkstra searches.
First, we conduct a one-to-all Dijkstra search from the source ver-
tex on a graph where each edge is associated with the minimum
travel cost of its distribution. Then we identify a sub-graph G′ =
(V ′, E′), where V ′ represents all reachable vertices from source s
within time t and E′ includes the edges whose incident vertices are
in V ′. This sub-graph excludes the vertices and edges that are not
reachable from s within time t when always using the most optim-
istic traversal cost, i.e., always using the minimum travel cost. If
V ′ does not include the destination d, it is impossible to reach d
within time budget t.

Second, to enable A*-like search, we need an admissible heur-
istic for estimating a cost from each vertex to the destination vertex
d. An admissible heuristic is one that overestimates the cost of
reaching the destination. To this end, we perform a one-to-all Dijk-
stra search from destination d based on graph G′, where each edge
is annotated with the minimum cost from the edge’s distribution.
Then we label each vertex v with v.min, i.e., the least required
cost of reaching the destination vertex from v. Doing this, we also
determine the fastest optimistic path Pa when every edge contrib-
utes its minimum cost. We treat Pa as the pivot path for now.

Third, we perform a new Dijkstra search on G′, where each edge
is annotated with the maximum travel cost, thus identifying the
fastest pessimistic path Pb. Then, we use Algorithm 1 to com-
pute the distributions of both paths Pa and Pb. The path with the
higher probability of arriving at the destination within time budget
t is saved as pivot .

The algorithm next explores paths using a priority queue PQ.
The queue is sorted in increasing order on (a, b), where a is the
optimistic probability of arriving at d by t and b is the expected
cost of reaching destination d. The intuition is that we wish to find
as many promising candidate paths as possible before termination,
and sorting on the A* cost estimate means that paths closer to the
destination have a larger priority than paths further away.

Specifically, for a path P from s to vertex v, we shift the cost
distribution D1 of the path to the right by v.min to derive the op-
timistic distribution of continuing along the path to d, which is used
as the A* cost estimation. This ensures that the A* cost estimation
is admissible, as it uses the most optimistic cost v.min to destina-
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Algorithm 4: Anytime Hybrid Search
Input:

Graph G = (V,E,W ); Time budget t;
Source s and destination d; Runtime limit x;

Output:
Path with maximum probability of arriving at d by t after
the algorithm runs x seconds;

1: tstart ← start time;
2: HPS ← hash map of (vertex, path set);
3: V ′ ← all vertices reachable from s within t time using the

minimum traversal time of each edge;
4: if V ′ does not contain d then
5: Return;
6: One-to-all Dijkstra search from d using minimum

travel costs, annotating all vertices with the
minimum cost of reaching d; and identify the fastest
optimistic path Pa;

7: One-to-all Dijkstra search from d using maximum
travel costs, annotating all vertices with the
maximum cost of reaching d; and identify the fastest
pessimistic path Pb;

8: Use Algorithm 1 to compute the cost distributions of Pa

and Pb;
9: pivot← argmaxi∈{Pa,Pb} Prob(i, t);

10: if Prob(pivot, t) = 1.0 or Pa.edges = Pb.edges then
11: Return pivot;
12: PQ← priority queue of paths sorted on (shifted prob

of reaching d at t, expected cost + estimated cost to d);
13: Insert all outgoing edges from s into PQ;
14: while PQ is not empty do
15: if Time elapsed since tstart is larger than x then
16: Return pivot;
17: P ← PQ.ExtractMin();
18: if Prob(P.D1 + P.d.min, t) < Prob(pivot, t) then
19: Return pivot;
20: if P.d = d then
21: pivot← argmaxi∈{pivot,P} Prob(i, t);
22: Continue;
23: else if P.d is a fully-independent vertex then
24: Insert P into HPS [P.d] and update such that no

dominance occurs within HPS [P.d];
25: Remove all paths Pm from PQ that go through P.d,

where sub-path P ′m = 〈s, . . . , P.d〉 /∈ HPS [P.d];
26: if P /∈ HPS [P.d] then
27: Continue;
28: for all e ∈ Outgoing edges of P.d where e.d ∈ V ′ do
29: Pk ← 〈P, e〉;
30: Calculate cost of Pk using Algorithm 2;
31: if Pk is not simple then
32: Continue; // Paths with loops are never best
33: L← Pk.D1 shifted e.d.min to the right; // Most

optimistic probability of reaching d within t;
34: if Prob(L, t) ≥ Prob(pivot, t) then
35: Continue;
36: Insert Pk into PQ with queue cost

(Prob(L, t), expectation(Pk) + e.d.min);
37: Return pivot;

tion d that never overestimates the actual cost. For example, shift-
ing the histogram {([3, 5), 0.3), ([5, 7), 0.7)} by v.min = 6 to the
right yields histogram {([9, 11), 0.3), ([11, 13), 0.7)}. We use D1

and not DFC because doing so may lead to a path expansion with
an increased likelihood of arriving by t, whereas using D1 ensures
a probability that is strictly non-increasing during path expansion.
This property is important for the statement in line 19, which re-
turns the pivot path if all other paths in the queue have a smaller
optimistic probability of arrival by t.

Based on the shifted distribution, we are able to compute b, i.e.,
the optimistic probability of arriving at d by t.

Recall that the two final searches determine the fastest optimistic
and pessimistic paths between s and d in a deterministic setting.
The best of these two with respect to time budget t is chosen as a
pivot path. Whenever we find a new path reaching the destination,
we compare it to the pivot and select the best of the two as the new
pivot, in lines 20–22. The pivot path is guaranteed to have a non-
zero probability of reaching d within t and is used for comparison
with path candidates throughout the algorithm.

The comparison can be performed between the pivot and any
path P with an arbitrary end vertex v by shifting P ’s cost distri-
bution v.min values, where v.min is the minimum traversal time
of reaching d from v, which is available via the second Dijkstra
search. After the distribution shift, we calculate the probability of
arriving by t—if the probability is lower than that of the pivot, we
can disregard P as it cannot possibly lead to a path with a higher
probability of arriving by t than the pivot path. If the probability is
the same or exceeds that of the pivot, we proceed using P .

Finally, we perform stochastic dominance based pruning on all
fully independent vertices, in lines 23–27. A vertex is fully inde-
pendent if the vertex is classified as independent for all combina-
tions of its in-edges and out-edges. Thus, when extending a path
that reaches a fully independent vertex v, no matter which edge is
followed from v, convolution is always used to compute the cost
distribution of the extended path. Thus, it is safe to prune using
stochastic dominance.

We use a hash map HPS (line 2) to maintain a path set for
each fully independent vertex n containing all non-dominated paths
between s and n. Whenever a new path P between s and a fully
independent vertex n is discovered, we compare P to all previ-
ously discovered non-dominated paths ending at n to determine
whether it is necessary to expand P any further. The fully inde-
pendent vertices are different from the independent vertices used
in Algorithm 2. In Algorithm 2, a path is given, so we take into
account only the specific edge pair from the path when classifying
a vertex as independent or not.

In Algorithm 4, we build path costs in two cases. During routing,
we add an edge to an existing path (line 30); and during the initial
stage, we build the costs for the fastest optimistic and pessimistic
paths (line 8). These two use different inputs. When we expand
a path with a single edge, we use Algorithm 2, whereas when we
compute the cost of a full path, we use Algorithm 1.

The running time of Algorithm 4 is dominated by the regression
and convolution operations. The algorithm can return the pivot path
at any time after x time units. The pivot path is improved as the
algorithm runs, and the closer the algorithm is to termination, the
more likely it is that the pivot path is different from Pa or Pb.

The anytime property breaks the guarantee of returning the path
with the largest probability of arriving by t. Instead, Algorithm 4
returns a path that is at least as good as Pa, the best path using
deterministic minimum edge costs. In the next section, we assess
the quality of the paths returned.

Finally, we note that Algorithm 4 can be used as a routing frame-
work for future stochastic travel cost building models that use ma-
chine learning. In order to utilize another cost model, one can
change the cost building strategy in lines 8 and 30.
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5. EMPIRICAL STUDY

5.1 Experimental Setup
Road network and GPS Data. We use the road networks of Den-
mark and Chengdu, China, both extracted from OpenStreetMap
(http://www.openstreetmap.org). The Danish road net-
work consists of 667,950 vertices and 1,647,724 edges, and comes
with some 180 million GPS records. We call this data set DK. The
road network of Chengdu consists of 27,671 vertices and 38,722
edges and comes with some 35 million GPS records. We call this
data set CD. We map match the GPS data to the underlying road
networks.
Uncertain Road network. We instantiate the cost function C:E →
D in G as follows: if an edge is covered by GPS records, we derive
a travel-time distribution using the GPS records. Otherwise, we
derive a travel time tt based on the length and speed limit of the
edge. Then, we generate a triangular distribution centered around
tt · 1.2 with lower bound tt and upper bound tt · 1.4. We utilize
triangular distributions because they enable explicit cost bounds.
The intuition is that drivers may not always drive as fast as the
speed limit due to traffic and often spends more time than tt. This
approach ensures uncertainty across all edges.
Time Budgets. The time budgets in probabilistic budget rout-
ing impact routing efficiency significantly. Selecting a very large
budget t enables Algorithm 4 to return one of the two paths found
in the deterministic searches, since each path has probability 1.0 of
arriving at destination d by t. Conversely, a very small t decreases
the search space given by V ′, which in turn improves efficiency.
However, if budget t is too small, no path is able to reach d by t.
Thus, we need to select time budgets carefully.

Given a source and destination pair, we run Algorithm 4, but
terminate after line 6 to obtain Pa, the fastest optimistic path when
all edges are annotated with their minimum costs. Next, we first
compute the cost distribution of Pa using the hybrid model and
then choose time budgets b1, b2, and b3 such that the probabilities
that path Pa has travel time smaller than b1, b2, and b3 are 25%,
50%, and 75%, respectively. This yields meaningful budgets.
PBR Queries. We focus on routing in intra-city settings as the
traffic uncertainty in cities is higher and multiple paths often ex-
ist between a source and a destination. Inter-city travel paths often
use highways, and the choices are limited.. Thus, we generate 100
source-destinations pairs in cities based on three distance (km) cat-
egories: [0, 1), [1, 5), and [5, 10). Each pair is associated with three
time budgets as described above.

Before performing the routing, we compute the dependence re-
lations in the graph using the binary classifiers described earlier.
Edges with no trajectory coverage are assumed to be independent
in all associated relations. Roughly 75% of all edge pairs with costs
derived from observed trajectories are cost dependent. We learn 10
different NNs for summing dependent distributions with different
cost and distance bounds (cf. Section 3.2.1).
Baselines. We consider paths returned by four methods. (1) P∞ is
the path returned by Algorithm 4 when it has finished all computa-
tions, which is considered as the optimal path for a query. (2) Px

is the path returned by Algorithm 4 after running x seconds, which
simulates an anytime routing. Specifically, we consider paths P1,
P5, and P10. (3) P⊕ is the path returned by a stochastic baseline
method that only uses convolution to compute path cost distribu-
tions. This approach assumes all costs are independent [11]. (4)
P0 is the path returned by a deterministic baseline, namely the path
identified in line 9 in Algorithm 4.
Implementation. All algorithms are written in Python version 3.7.
The experiments are conducted in a single process on a machine

running Windows 10 with an 8-core Intel 8900K 4.2 GHz CPU
with 32GB DDR4 main memory.

5.2 Experimental Results

5.2.1 Comparisons with Baselines
We compare P∞ to both deterministic baseline P0 and stochastic

baseline P⊕. If P∞ and P0 are the same in most cases, there is no
need to consider stochastic costs, i.e., cost distributions, and thus
no need for the hybrid model. Table 7 shows the average percent-
age that P∞ is different from P0. For short queries, we often obtain
the same paths, as P0 has a high likelihood of being the best path
because most paths are so short that there is little uncertainty. How-
ever, as the query distance increases, P∞ and P0 are increasingly
dissimilar, on both data sets.

Following the same idea, we examine the percentage of P1, P5,
and P10 being different from P0. For each query, it is always the
case that if Px 6= P0 then P∞ 6= P0, and if P∞ = P0 then
Px = P0. As a consequence, no Px can have a larger percentage of
being different from P0 than does P∞. Since all short queries finish
within a second, P1, P5, and P10 are identical to P∞ thus having
the same percentages. However, for longer queries, the uncertainty
makes a significant difference.

Table 7: Comparisons with Deterministic Baseline P0

DK CD
P∞ P1 P5 P10 P∞ P1 P5 P10

[0, 1) 13% 13% 13% 13% 24% 24% 24% 24%
[1, 5) 53% 51% 53% 53% 65% 61% 63% 63%
[5, 10) 60% 54% 59% 60% 90% 66% 71% 74%

We observe similar results on both data sets for the first two dis-
tance categories. However, for the longest distance category, we
observe a large difference between the two data sets. For DK, P∞
is different from P0 in 60% of the cases, while for CD, the percent-
age is up to 90%. This suggests that CD exhibits large uncertainty
and dependence. In addition, for DK, P5 is already very close to
P∞, suggesting that it may be acceptable to have a time limit of 5
seconds for long queries. In contrast, CD has a set of queries that
do not find a path different from P0 after 10 seconds, but eventu-
ally do. This suggests that the routing algorithm has a large search
space due to a high degree of uncertainty.

Next, we examine in detail the cases where P∞ and P0 are dif-
ferent. Here, we also include the stochastic baseline P⊕. If P∞
and P⊕ differ in most cases, a strong cost dependence occurs in
the search space; otherwise, paths P∞ and P⊕ should be identical.
This suggests that if there is no strong cost dependence, there is
also no need to use hybrid routing.

Given two baseline paths P0 and P⊕, we use Jaccard similar-
ity [12] to measure their path similarities against the optimal path
P∞. The Jaccard similarity between paths P and P∞ is

PathSim(P, P∞) =
|P ∩ P∞|
|P ∪ P∞|

,

where each path is represented by its vertices.
Tables 8 and 9 report the average path similarities against P∞.

The similarity between the optimal path P∞ and the deterministic
baseline path P0 is low. This suggests that stochastic modeling
is necessary. Next, stochastic baseline P⊕ has higher similarit-
ies than deterministic baseline P0 has, which further justifies the
stochastic modeling. More importantly, we observe that P⊕ is still

1563



Table 8: Path Similarity Against P∞, when P∞ 6= P0, DK

25% 50 % 75 %
k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

[0, 1) P0 0.47 0.40 0.45 0.43 0.37 0.42 0.39 0.34 0.41
P⊕ 0.65 0.64 0.62 0.67 0.57 0.59 0.63 0.55 0.59

[1, 5) P0 0.47 0.46 0.49 0.47 0.43 0.47 0.46 0.44 0.46
P⊕ 0.59 0.57 0.55 0.61 0.57 0.57 0.63 0.59 0.58

[5, 10) P0 0.48 0.47 0.45 0.48 0.50 0.48 0.47 0.48 0.48
P⊕ 0.56 0.52 0.48 0.59 0.56 0.53 0.57 0.57 0.53

Table 9: Path Similarity Against P∞, when P∞ 6= P0, CD

25% 50 % 75 %
k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

[0, 1) P0 0.31 0.27 0.29 0.33 0.27 0.25 0.30 0.24 0.20
P⊕ 0.91 0.87 0.86 0.89 0.89 0.86 0.90 0.84 0.85

[1, 5) P0 0.52 0.53 0.50 0.50 0.51 0.50 0.50 0.49 0.51
P⊕ 0.83 0.81 0.79 0.83 0.84 0.82 0.84 0.87 0.86

[5, 10) P0 0.44 0.43 0.40 0.42 0.40 0.40 0.40 0.41 0.40
P⊕ 0.80 0.80 0.79 0.81 0.80 0.80 0.80 0.77 0.77

quite different from P∞. This suggests that considering distribu-
tion dependencies makes a difference and is important. Comparing
Tables 8 and 9, we find that P⊕ is much closer to P∞ for CD than
for DK. This suggests that CD exhibits less dependence. Finally,
parameter k and different time budgets do not significantly impact
the path similarity.

The above experiments indicate that it is essential to consider
cost distributions and dependencies among distributions, especially
for medium and long queries. Only the hybrid model does this.

5.2.2 Quality of Anytime Routing
We proceed to further examine the quality of anytime routing.

We observe that the returned paths Px with different time limits
may vary greatly, while the probability of arrival within the time
budget t never decreases. Thus, we design two metrics to examine
the quality of Px. The first considers the path similarity between
Px and optimal path P∞. The second compares the arrival probab-
ilities of Px and P∞.
Path similarity: We continue to use Jaccard similarity to measure
the similarity between paths Px and P∞. We first construct a path
similarity profile for Algorithm 4 to show how the path similarity
improves as runtime limit x increases. Here, we include all queries,
even when P0 = P∞, to better capture the path quality a user can
expect as a function of x. This experiment is conducted on DK
with k = 2, meaning that we apply regression at most once before
switching to convolution. We omit figures for a 50% time budget
due to space limitations. Experiments on CD give similar results.

(a) Time budget 25% (b) Time budget 75%

Figure 7: Path similarity profile, DK, k = 2.

Table 10: Path Similarity Against P∞ when P∞ 6= P0, DK

25% 50 % 75 %
k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

[1, 5) P1 0.90 0.89 0.88 0.88 0.88 0.88 0.87 0.88 0.87
P5 0.95 0.94 0.92 0.95 0.93 0.93 0.93 0.93 0.91
P10 0.95 0.96 0.93 0.95 0.95 0.94 0.93 0.95 0.92

[5, 10) P1 0.81 0.82 0.78 0.82 0.81 0.79 0.82 0.79 0.78
P5 0.85 0.86 0.84 0.88 0.84 0.83 0.86 0.84 0.83
P10 0.88 0.87 0.84 0.88 0.86 0.85 0.87 0.85 0.85

Table 11: Path Similarity Against P∞ when P∞ 6= P0, CD

25% 50 % 75 %
k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

[1, 5) P1 0.88 0.83 0.86 0.86 0.80 0.83 0.83 0.84 0.85
P5 0.94 0.91 0.90 0.91 0.84 0.88 0.90 0.86 0.88
P10 0.96 0.92 0.92 0.92 0.86 0.89 0.91 0.87 0.88

[5, 10) P1 0.67 0.70 0.68 0.67 0.70 0.69 0.69 0.69 0.67
P5 0.82 0.80 0.76 0.80 0.79 0.74 0.80 0.77 0.74
P10 0.89 0.87 0.80 0.88 0.86 0.78 0.89 0.85 0.80

Figure 7 shows that the larger the running time limit is, the more
similar path Px tends to be to path P∞. Path P0 has the smallest
value, indicating that only considering deterministic costs is subop-
timal. We see the largest similarity increase when x increases from
0 to 1 or 2. This suggests that there is good potential to use anytime
routing.

Next, we examine the path similarity of the paths returned by
anytime routing in more detail. We only consider the cases where
P0 6= P∞. We disregard distance category [0, 1) where P1 is
identical to P∞ due to the short distance.

Table 10 shows the results on DK. Paths Px and P∞ in category
[1, 5) are very similar (above 85%), even when limiting the search
to 1 second. This is because the median execution time is just below
one second, and P1 = P∞ for 75% of the queries. Similarly, using
only one second for category [5, 10) queries yields the same result
as P∞ in most cases, and all tested time limits yield results very
similar to P∞. Further, using 10 seconds instead of 5 offers little
benefit. Also, the path similarities of Px are higher than those of
P⊕ (cf. the P⊕ rows in Tables 8 and 9). This suggests that although
anytime routing may not return optimal paths, it is able to provide
better paths than the stochastic baseline that assumes distribution
independence, suggesting that anytime routing is good enough.

We observe similar trends on CD—see Table 11. However, we
find a larger difference between P1 and P10, indicating that we
need wait longer time to obtain a path that is better than P⊕.

Examining values for k in Tables 10 and 11 reveals that larger
values of k generally results in lower path similarity to P∞. This
is likely due to the increased pruning opportunities when k is low.
We can, to a larger extent, utilize stochastic dominance pruning on
nodes that several paths pass through when using convolution. This
also helps anytime routing to identify the optimal path faster.
Probability similarity: We define a relative arrival probability
improvement ratio SR. In particular, given time budget t, we have

SR(Px) =
Prob(Px, t)− Prob(P0, t)

Prob(P∞, t)− Prob(P0, t)
.

Here, Prob(P∞, t) is the arrival probability within t using optimal
path P∞, which gives an upper bound on the arrival probability.
Similarly, Prob(P0, t) is the arrival probability of using path P0

that only considers deterministic costs, which serves as the lower
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Table 12: Absolute Improvements when Px 6= P0, DK

25% 50 % 75 %
k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

[0, 1) P∞ 0.38 0.36 0.33 0.26 0.22 0.20 0.14 0.11 0.10
[1, 5) P∞ 0.43 0.38 0.35 0.33 0.28 0.26 0.18 0.20 0.18

P1 0.40 0.34 0.29 0.31 0.25 0.22 0.16 0.18 0.15
P5 0.42 0.37 0.34 0.33 0.28 0.25 0.18 0.19 0.17
P10 0.43 0.38 0.35 0.33 0.28 0.26 0.18 0.20 0.18

[5, 10) P∞ 0.53 0.39 0.31 0.38 0.24 0.23 0.20 0.14 0.15
P1 0.40 0.31 0.23 0.32 0.20 0.18 0.17 0.11 0.12
P5 0.45 0.36 0.27 0.36 0.24 0.20 0.19 0.14 0.14
P10 0.48 0.38 0.29 0.36 0.24 0.21 0.19 0.14 0.14

bound on the arrival probability. Then, SR represents the ratio of
how much Px can improve wrt. the largest possible improvement.

We construct an SR performance profile for Algorithm 4 on DK
to examine how the probability of arrival within budget t improves
as runtime limit x increases. Figures 8(a–b) show that as x in-
creases, the improvement ratio increases. The sharpest improve-
ment is from 0 to 1 second; and after 1 second, the improvement
is slow. This is consistent with the observations when using path
similarity (cf. Figure 7). This suggests that the problem studied is
well suited for an anytime solution.

(a) Time budget 25% (b) Time budget 75%

Figure 8: SR performance profile, DK, k = 2.

Next, we examine the absolute arrival probability improvements
on anytime routing results—the difference in probability of arrival
within t between Px and P0: Prob(Px, t)− Prob(P0, t).

Tables 12 and 13 show that the absolute differences are large,
suggesting that there is a strong cost dependence, and paths Px ex-
ist that are significantly better than P0. When changing the budget
from 25% to 75%, the average differences decrease for both data
sets. This is due to the probability of P0 being at least as large as
the budget percentage, and thus offering less space to improve the
probability with a large budget percentage. We also observe that
increasing the value of k generally leads to a slightly lower prob-
ability improvement as queries become slower and fewer finish by
x. However, the differences are small, suggesting low sensitivity to
k when using the hybrid cost estimation.

Tables 7 and 12 show that we sometimes find a path Px that
is different from both P0 and P∞. For example, for DK, in the
[1, 5) category with a 25% budget and k = 2, P5 has a lower
average probability difference than P∞ in Table 12; yet, according
to Table 7, P5 and P∞ have the same number of paths that are
different from P0 with this configuration. This suggests that cases
exist where the anytime algorithm finds a path Px that is better than
P0, but is still not the best.

Examining Px vs. P∞ for both data sets, we find that 5 seconds
is an acceptable limit for queries in distance category [1, 5) while
queries in category [5, 10) need at least 10 seconds. However, with

Table 13: Absolute Improvements when Px 6= P0, CD

25% 50 % 75 %
k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

[0, 1) P∞ 0.47 0.44 0.41 0.34 0.36 0.32 0.18 0.21 0.19
[1, 5) P∞ 0.22 0.21 0.21 0.22 0.20 0.20 0.14 0.14 0.13

P1 0.20 0.17 0.18 0.20 0.17 0.17 0.13 0.12 0.12
P5 0.22 0.19 0.19 0.21 0.18 0.18 0.13 0.13 0.12
P10 0.22 0.21 0.20 0.21 0.19 0.19 0.13 0.13 0.13

[5, 10) P∞ 0.34 0.31 0.30 0.30 0.27 0.25 0.18 0.17 0.15
P1 0.28 0.26 0.25 0.24 0.24 0.22 0.15 0.14 0.14
P5 0.30 0.26 0.26 0.26 0.24 0.23 0.16 0.15 0.15
P10 0.30 0.28 0.27 0.27 0.25 0.23 0.16 0.15 0.15

a large budget, it is also more acceptable to decrease x. For ex-
ample, for 75% in [5, 10), we obtain the same result with P5 as
with P10, no matter the data set, suggesting that time limits should
be stated relative to budget sizes.

We conclude that the use of hybrid routing is attractive in road
networks with cost dependence. Further, it is acceptable to limit
the worst case execution time by using an anytime variant of Al-
gorithm 4.

5.2.3 Time Dependence
We proceed to explore how to support time dependence in the

Hybrid Model. We split a day into two time periods, peak periods
including 7:00–9:00 and 15:00–17:00 and off-peak periods includ-
ing all remaining time. We separate the trajectories according to
the peak and off-peak periods, and we further split each trajectory
set into a training set (80%) and a test set (20%). Next, we build
two sets of regression models and binary classifiers using the peak
training set and off-peak training set, respectively. Table 14 reports
the KL-divergence when using the two models to estimate path cost
distributions given the peak and off-peak test sets.

Table 14: KL-divergence of Time Dependent Models

Peak testing data Off-peak testing data
Peak model 0.16 0.27
Off-peak model 0.21 0.14

The results show that the time-specific models built on data from
different periods can offer increased accuracy. However, two chal-
lenges make the integration of time dependence non-trivial. First,
when building time dependent models, we may not have sufficient
data to train the models, e.g., when training a model for every 15
minutes. Second, peak periods may be different across edges. Us-
ing global peak and off-peak periods may yield inaccurate peak
and off-peak models. For example, we may include training data
from edges with no peaks when building the peak model. Thus, it
is non-trivial to support time dependence when using regression-
based estimation models. This requires sophisticated designs, e.g.,
use of transfer learning or multi-task learning [13, 14]. We leave
this as future work.

5.2.4 Efficiency without Anytime Routing
In the final experiments, we study the efficiency when not using

anytime routing. We study the runtime of computing P∞, the time
needed to obtain the optimal path. Although the worst-case run-
ning time can be very long, it does not limit the practicality of the
proposed hybrid routing since we can terminate the algorithms at
any time and get good enough results as shown in Section 5.2.2.
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(a) [1, 5), k = 2 (b) [1, 5), k = 4

(c) [5, 10), k = 2 (d) [5, 10), k = 4

Figure 9: Efficiency without anytime routing, CD.

Figures 9(a-d) show boxplots of the running times of computing
P∞ with Algorithm 4 when using different query distance categor-
ies, values of k, and time budgets. The whiskers represent 5th and
95th percentiles. We omit figures for distance category [0, 1) as all
short queries terminate in less than a second, no matter the con-
figuration. We also omit figures for k = 3 as they offer similar
results.

Examining the results for longer distance queries reveals that lar-
ger budgets lead to an increased variance in execution time. Given
the same budget, varying k has a significant effect on the run time.
Larger k offer less pruning potential and thus requires longer run
time.

For all configurations, the mean running time exceeds the me-
dian substantially due to a few slow queries. There can be several
reasons for this. First, query pairs are categorized w.r.t. their Eu-
clidean distances, while shortest path distances always exceed the
Euclidean distances. This may affect the search space, yielding a
much larger set of potential paths than what is typical for the query
category. For example, near a fjord or a river, we may need to
take a detour to cross a bridge. This is particularly the case for the
long category queries, where P∞ sometimes has a length exceed-
ing 15 km.

Second, varying numbers of measurements on edges may yield
loose cost bounds. This happens in cases with many traversals on
edges. Here, outlier measurements of traversals at very low speeds
give some edges a very small probability of having a very high
traversal cost. This yields a larger search space for Algorithm 4.
We have applied simple heuristics to remove obvious outliers, but
some outliers may still exist, which calls for the use of advanced
outlier detection methods [15, 16].

Third, the use of NN models to estimate cost distributions is
expensive. The impact of this can be seen in Figures 9 (c) and (d),
when k is increased from 2 to 4, it greatly increases the frequency
of regression-based estimation, and almost doubles the worst case
time it takes to obtain P∞.

6. RELATED WORK
Travel Cost Modelling. Extensive research has been conducted
on modeling travel costs such as travel time, greenhouse gas emis-

sion [17], and fuel consumption [18], and some methods employ
machine learning [19–21]. However, most of these studies con-
sider only deterministic costs, e.g., average travel times. Instead,
we focus on stochastic travel costs. It is non-trivial to extend exist-
ing studies to support stochastic travel costs. In addition, existing
methods consider a setting where a path is given and thus do not
satisfy the incremental property. This means that existing path cost
estimation methods do not fit the setting of a routing algorithm. A
study [22] considers stochastic costs, but only works for individual
edges not for paths.

Stochastic travel costs have also been studied, but often assum-
ing cost independence [23–25]. Some studies consider traversal
costs as a function of time but assume no cost dependence between
neighboring edges if a departure time is given [6, 26, 27]. This pa-
per’s cost model considers spatial dependence, i.e., adjacent edges
may be cost dependent. One study integrates spatial dependence
into the cost model by examining historical trajectories to reuse
path costs [8], but it is only able to model cost dependence if tra-
jectories exist that cover two or more consecutive edges in the path.
Our approach also relies on trajectories to model spatial depend-
ence, but it does not need trajectories that follow the path for which
a cost is computed. Another study also models spatial dependence
between edges [28]. This approach relies on assumptions such as
turn speed bounds, and it neither utilizes real-world costs nor con-
siders stochastic costs. In contrast, we make no assumptions about
which elements affect spatial dependence. Finally, a study models
spatial dependence between adjacent edges [29], but assumes that
all pairs of adjacent edges have a known joint distribution. To the
best of our knowledge, we are the first to propose a cost model that
combines convolution and machine learning to approximate path
cost distributions more accurately.
Stochastic Routing. Existing stochastic routing algorithms often
assume that edge cost distributions are independent and perform
pruning based on stochastic dominance [6, 23, 27]. A few stud-
ies consider cost dependence [30–32], but they only use stochastic
dominance-based pruning if two edges are independent and thus
inefficient. We utilize an anytime algorithm design that provides
good results within a runtime limit. In addition, to achieve effi-
ciency, we propose two additional pruning techniques using pivot
paths and A* like optimistic costs. The present paper offers a sub-
stantially extended coverage over an earlier four-page report [7].

7. CONCLUSION AND FUTURE WORK
We propose means of stochastic routing together with a hybrid

model for path cost computation. We first show that it is beneficial
to use machine learning for path cost computation because this en-
ables the capture of cost dependencies among the edges in paths.
Next, we propose a hybrid model that computes costs, and then we
integrate this model into an anytime routing algorithm. We con-
duct extensive experiments that offer insight into the efficiency and
result quality achieved by the algorithm.

In future work, it is of interest to attempt to consolidate different
NN s into a single model using to avoid the process of model se-
lection and to employ advanced learning models that better capture
road network topology, e.g., graph convolution networks [33, 34].
In addition, it is of interest to consider context aware routing [35],
such as time-dependent routing and personalized routing.
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