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ABSTRACT
Blockchains are distributed secure ledgers to which trans-
actions are issued continuously and each block of transac-
tions is tightly coupled to its predecessors. Permissioned
blockchains place special emphasis on transactions through-
put. In this paper we present FireLedger, which leverages
the iterative nature of blockchains in order to improve their
throughput in optimistic execution scenarios. FireLedger
trades latency for throughput in the sense that in FireLedger
the last f + 1 blocks of each node’s blockchain are consid-
ered tentative, i.e., they may be rescinded in case one of
the last f + 1 blocks proposers was Byzantine. Yet, when
optimistic assumptions are met, a new block is decided in
each communication step, which consists of a proposer that
sends only its proposal and all other participants are send-
ing a single bit each. In our performance study FireLedger
obtained 20% − 600% better throughput than state of the
art protocols like HotStuff and BFT-SMaRt, depending on
the configuration.
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1. INTRODUCTION
Blockchains are becoming popular in many areas such as

cryptocurrencies, supply-chains, insurance, and others [12].
Blockchains are often characterized as either unpermissioned
or permissioned. In permissioned mode, the blockchain is
executed among a set of n known participants under the as-
sumption that at most f of them are faulty [29]. In this set-
ting, blockchain becomes a special case of traditional repli-
cation state machine (RSM) [58, 70]. A common approach
to implementing RSM is by repeatedly running a consen-
sus protocol to decide on the next transaction to be exe-
cuted [59] with the optimization of batching multiple trans-
actions in each invocation of the consensus protocol [49].
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The assumed possible type of failures affects the type of
consensus protocols that are used. Benign failures such as
a node crash and occasional message omission can be over-
come by benign consensus protocols, e.g., [32, 53, 59, 65].
On the other hand, Byzantine failures [60] in which a faulty
node may arbitrarily deviate from its code require Byzantine
fault tolerant protocols (BFT), e.g., [18, 30, 56]. In the to-
tally asynchronous case, the seminal FLP result showed that
even benign consensus cannot be solved [46]. Yet, when en-
riching the environment with some minimal eventual syn-
chrony assumptions, e.g., partial synchrony [39, 42], or with
unreliable failure detector oracles [33], benign consensus be-
comes solvable when f < n/2 and Byzantine consensus re-
quires f < n/3. This is as long as the network does not
become partitioned [21].

We focus on permissioned blockchains assuming Byzan-
tine failures and partial synchrony. According to a recent
survey by PwC [12] only a third of companies currently us-
ing or planing to use blockchains intend on using unpermis-
sioned blockchains. Many recent unpermissioned proposals,
e.g., Algorand [51], Tendermint [25], Thunderella [66], and
HoneyBudger [63], can be viewed as running a permissioned
protocol coupled with a higher level meta-protocol that con-
tinuously selects which nodes can participate in the internal
permissioned one. Variants of this approach are sometimes
referred to as delegated proof of stake (dPoS) and Proof of
Authority (PoA). Hence, any improvement in permissioned
protocols will likely yield better unpermissioned protocols.

Many such works try to optimize performance in the “com-
mon case” in which there are no failures and the network
behaves in a synchronous manner. These are likely to be
common in permissioned blockchains, e.g., executed between
major financial institutions, established business partners,
etc. Yet, all the above mentioned works run each protocol
instance for completion. Alas, we claim that in a production
blockchain system, where transactions are being submitted
continuously for as long as the service exists, there is poten-
tial for reducing the per transaction and per block communi-
cation overhead. This is by assuming optimistically that the
initial proposer of each consensus invocation is correct, and
only performing a recovery phase periodically for a batch of
affected consensus invocations and only if it is needed.

Our Contributions. We propose FireLedger, a new com-
munication frugal optimistic permissioned blockchain proto-
col. FireLedger utilizes the rotating proposer scheme while
optimistically assuming that the proposer is correct and that
the environment behaves synchronously. This is supported
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by our novel Weak Reliable Broadcast (WRB) abstraction.
With WRB, nodes only agree on whether to (tentatively)
accept a block proposed by the proposer, without agreeing
on the content of the block (in case the proposer is Byzan-
tine). Specifically, if these assumptions are violated, we do
not insist on enforcing agreement immediately. Instead, we
rely on the fact that at least one out of every f+1 proposers
is correct. When a correct node discovers, using blockchain’s
authentication data, that any of the last f+1 blocks was not
decided correctly in the initial transmission phase, it runs a
combined recovery phase for all these incorrectly executed
invocations. This is by invoking a full Byzantine consensus
protocol. At the end of this combined recovery phase, it is
ensured that the current prefix of the blockchain is agreed
by all correct nodes and will never change as long as there
are at most f Byzantine failures. A single recovery phase
may decide the last f blocks, thereby amortizing its cost.

The main benefit of our approach is that when the op-
timistic assumption holds, the communication overhead of
deciding on a block involves a single proposer broadcasting
its block and all other nodes broadcasting a single bit of un-
signed protocol data (WRB). Further, a new block is being
decided in each communication step. This is by leveraging
the iterative nature of blockchain as well as the authentica-
tion data that is associated with each block header.

Notice that f is an upper bound on the maximal number
of Byzantine nodes in the system. Yet, in many permis-
sioned blockchains settings, nodes are likely to be highly
secured. Further, in our protocol any Byzantine deviation
from the protocol results in a strong proof of which node was
the culprit. Hence, we expect that in real deployments the
optimistic assumptions will hold almost always. In particu-
lar, once a proof of Byzantine behavior is being generated,
the corresponding Byzantine node will be removed from the
system, often resulting in financial penalties and loss of face
for the owner of this node.

The price paid by our algorithm is that finality of a de-
cision is postponed for f + 1 invocations (or blocks). That
is, we trade bandwidth and throughput for latency of ter-
mination. As we show when evaluating the performance of
our protocol, the average termination latency of blocks is
at most a few seconds. In return, when running on non-
dedicated virtual machines and network, in a single Ama-
zon data-center, we demonstrate performance of up to 160K
transactions per seconds (tps). In a non-dedicated multi
data-center settings, we obtain up to 30K tps.

2. RELATED WORK
Optimistic Consensus: Two main methods were sug-
gested for designing optimistic consensus protocols: (i) sat-
isfying safety from the nodes’ point of view [48, 57, 62] or (ii)
satisfying safety only from the clients’ point of view [13, 18,
56]. In the first approach, to detect inconsistencies, nodes
must continuously update other nodes with their state (the
exception is [48] that uses randomization). In the second
approach, nodes are allowed to be temporarily inconsistent.
Only when a client detects an inconsistency, e.g., by receiv-
ing inconsistent replies, it initiates a special recovery mech-
anism to restore the system’s consistency. Also, in proto-
cols like [56], a single slow replica causes the protocol to
switch to its slow path mode. Concerning blockchains, the
first method ignores blockchain’s unique features that can
be leveraged. In contrast, running the blockchain nodes as

clients of an agreement service results in at least two com-
munication steps protocol even in the “good cases”.

Blockchain Systems: Most permissioned blockchain pro-
tocols assume a partially synchronous network while utiliz-
ing traditional BFT concepts. Such platforms run a more
computationally efficient protocol than unpermissioned bloc-
kchains but require an a-priori PKI infrastructure. Tradi-
tional BFT solutions are not scalable in the number of par-
ticipants [74] as their communication complexity grows quad-
ratically in the number of nodes. Hence, such solutions focus
on (i) sharding the execution’s roles between multiple layers,
leaving the consensus to be run by a small set of nodes, and
on (ii) designing optimized dedicated BFT consensus proto-
cols. Known platforms like HLF [3, 5, 16, 72] and R3 Corda
[2] offer new models of layered computation and run the
BFT-SMaRt [20] protocol, or a variant of it, for ordering.

Platforms such as Chain Core [1, 31], Iroha [6], Symboint-
Assembly [8] and Tendermint [9] offer new optimized BFT
Consensus algorithms. Iroha, inspired by the original HLF
(v0.6) architecture, runs the Sumeragi consensus protocol
which is heavily inspired by BChain [41]. BChain is a chain-
replication system in which n nodes are linearly arranged
and a transaction is moved among the nodes in a chain
topology. Namely, each node normally receives a message
only from its predecessor. Like FireLedger, BChain trades
latency for throughput and it has the potential to achieve
the best possible throughout [18, 52]. Unlike FireLedger,
BChain’s latency is bounded by at least n rounds. Symboint-
Assembly implements its own variant of BFT-SMaRt. Ten-
dermint implements an iterative variant of PBFT [30] de-
signed by Buchman et el. [25]. Chain Core runs the Fed-
erated consensus protocol in which one node is the leader
and n are validators. This protocol is Byzantine resilient
for f < n

3
only as long the leader is correct. Red Belly

blockchain [7] offers both, a new computation model that
balances the verification load among verifies nodes and the
Democratic BFT consensus [37] that is able to scale the
throughput with the number of proposers. Finally, Honey-
Badger BFT (HBB) [63, 4] is a randomized protocol .

HotStuff [75] extends transactions’ finality to 3 rounds and
employs signature aggregation [22] in order to obtain linear
communication overhead. HotStuff requires all nodes to sign
an asymmetric signature on each block in the optimistic case
while in FireLedger this is done only by the proposer that
generated the block. Since signing takes pure CPU time,
fewer asymmetric signatures enable better throughput.

The goal of StreamChain [54] is to dramatically reduce
transactions finality times in permissioned blockchains. This
is done by adopting a streaming architecture and utilizing
batching (blocks) only to amortize disk writing times of
committed transactions. The finality times obtained with
StreamChain are below 10 ms and throughput of 1, 500 tps.

BlockchainDB [44] builds a database layer on top of a
sharded blockchain. The latter is used as a trusted de-
centralized data-store. This design enjoys improved perfor-
mance for applications that share data on blockchains and
benefits from a standard DB query language capabilities.

3. PRELIMINARIES

3.1 System Model
We consider an asynchronous fully connected environment

consisting of n nodes out of which at most f < n
3

may incur
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Byzantine failures [17, 67]. Asynchronous means that no
upper bound on the messages’ transfer delays exists and
nodes have no access to a global clock. Fully connected
means that any two nodes are connected via a reliable link.
Reliable means that a link does not lose, modify or duplicate
a sent message. Notice that unreliable fair lossy links can
be transformed into reliable ones using sequence numbering,
retransmissions, and error detection codes [69]. A Byzantine
failure means that a node might deviate arbitrarily w.r.t. its
protocol code including, e.g., sending arbitrary messages,
sending messages with different values to different nodes,
or failing to send any or all messages. Yet, we assume that
nodes cannot impersonate each other. A node suffering from
a Byzantine failure at any point during its operation is called
Byzantine; otherwise, it is said to be correct.

In order to circumvent the FLP result [46], we enrich the
system with the 3Synch assumption [23]. That is, after
an unknown time τ there is an unknown upper bound δ on
a message’s transfer delay. As in most Byzantine fault
tolerance works [18, 30, 56], 3Synch is only needed to en-
sure liveness, meaning that even under severe network delays
safety is never violated1. Finally, a node may sign a mes-
sage by an unforgeable signature. We denote the signature
of node p on message m by sigp(m). The implementation
of the signature mechanism is done by a well known crypto-
graphic technique, such as symmetric ciphers [43], RSA [68]
or an elliptic curves digital signature (ECDS) [55].

3.2 Underlying Protocols
The following serve as building blocks for FireLedger.

Reliable Broadcast (RB). The reliable broadcast abstrac-
tion [24] (denoted RB-Broadcast) ensures reliable mes-
sage delivery in the presence of Byzantine failures. To uti-
lize RB-Broadcast nodes may invoke two methods: RB-
broadcast and RB-deliver. A correct node that wishes to
broadcast a message m invokes RB-broadcast(m) while a
node that expects to receive a message invokes RB-deliver.
By a slight abuse of notation, we denote RB-deliver(m) the
fact than an invocation of RB-deliver returned the message
m and say that the invoking process has RB-delivered m.
The RB-Broadcast abstraction satisfies the following:

RB-Validity: If a correct node has RB-delivered a mes-
sage m from a correct node p, then p has invoked RB-
broadcast(m).

RB-Agreement: If a correct node RB-delivers a message
m, then all correct nodes eventually RB-deliver m.

RB-Termination: If a correct node invokes
RB-broadcast(m), then all correct nodes eventually
RB-deliver m.

Atomic Broadcast (AB). Atomic broadcast [38] requires
in addition to the RB-Broadcast properties the Atomic-
Order property, i.e., all messages delivered by correct nodes
are delivered in the same order by all correct nodes.

1With the 3Synch property, Byzantine nodes can continue
reordering messages forever, however after a bounded un-
known time (GST), all messages sent by correct nodes arrive
within a bounded latency despite Byzantine activity.

(Optimistic) Binary Byzantine Consensus. Binary Byza-
ntine Consensus (BBC) is the simplest variant of Multi-
value Byzantine Consensus (MVC) [60] in which only two
values are possible. A solution to the BBC problem satisfies
the following properties [42, 36]:

BBC-Validity: If all correct nodes have proposed the same
value v, then v must be decided.

BBC-Agreement: No two correct nodes decide differently.

BBC-Termination: Each correct node eventually decides.

As there are only two possible values in BBC, an Opti-
mistic BBC (OBBC) is capable of achieving an agreement
in a single communication step if a predefined set of favor-
able conditions are met [26, 27, 48, 64].

3.3 Problem Statement
Blockchain algorithms require an external validity mecha-

nism as sometimes even Byzantine nodes may propose legal
values (or blocks) [61]. Therefore, the validity of a value may
be defined by an external predefined method. The Validity
Predicate-based Byzantine Consensus (VPBC) [28, 37] ab-
straction captures this observation by replacing the validity
property with VPBC-Validity, i.e., a decided value satis-
fies an external predefined valid method.

Recall that our goal is to enable a relaxed form of final-
ity in exchange for better throughput and fast light weight
agreement when the optimistic assumptions hold. To that
end, we present the following definitions: In a blockchain,
each block carries a glimpse to its creator knowledge of the
system’s state. This glimpse is encapsulated in the hash
that each block carries. In order to leverage the iterative
nature of blockchains, we define a weaker model than VPBC
in which we denote each iteration with a round number r.
Next, we define the following per round notions:

Tentative decision: A decision of the protocol at a given
node and round that might still be changed.

Definite decision: A decision of the protocol at a given
node and round that will never change.

vr
p: A value that was decided or received by p in round r of

the protocol. vr denotes a value that was decided or
received by some node in round r.

d(vr
p): Let r′ be the current round of the protocol that node
p runs. For a given vrp (possible tentative), we denote
its depth as d(vrp) = r′ − r.

Definition 3.3.1. Blockchain Based Finality Consensus
(BBFC) Let valid be a predefined method as in VPBC and
let ρ be a predefined fixed constant. The ρ-Blockchain Based
Finality Consensus (BBFC(ρ)) abstraction defines the fol-
lowing properties:

BBFC-Validity: A decided (possible tentative) value v sat-
isfies the valid method.

BBFC-Agreement: For any two correct nodes p, q with
vrp, v

r
q as their decided value in round r. If both d(vrp) >

ρ and d(vrq) > ρ then vrp = vrq .

BBFC-Termination: Every round eventually terminates.

BBFC-Finality: In every round r′ > r + ρ, vrp is definite.
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BBFC guarantees the VPBC’s properties only for decisions
at depth greater than ρ. With blockchains, as every block
contains an authentication data regarding its predecessors,
it provides a cryptographic summary of its creator history.
This information assists in detecting failures without the
necessity of sending more information. In addition, blocks
are continuously added to the chain. Thus, a block eventu-
ally becomes deep enough such that it satisfies the standard
VPBC properties. Let us note that the BBFC-Agreement
property is similar to the notion of common prefix in [50].

In a blockchain setting, clients of the system submit trans-
actions to the nodes, and the decisions values are blocks,
each consisting of zero or more transactions previously sub-
mitted by clients. In case the valid method may accept
empty blocks, we would like to prevent trivial implemen-
tations in which every node locally generates empty blocks
continuously. Obviously, the throughput of such a protocol
would be 0, and thus it would be considered useless. Yet,
in order to prove that a protocol does not unintentionally
suffer from such a behavior even under Byzantine failures
we add the following requirement:

Non-Triviality: If clients repeatedly submit transactions
to the system, then the nodes repeatedly decide defini-
tively non-empty blocks.

4. WEAK RELIABLE BROADCAST

4.1 Overview
The Weak Reliable Broadcast (WRB) abstraction serves

as FireLedger’s main message dissemination mechanism. It
offers weaker agreement guarantees than Bracha’s RB-Bro-
adcast [24]. In general, WRB ensures that the nodes agree
on (i) the sender’s identity and (ii) whether to deliver a mes-
sage at all, rather than the content of the message2. WRB is
associated with the WRB-broadcast and WRB-deliver meth-
ods. A node that wishes to disseminate a message m in-
vokes WRB-broadcast(m). If a node expects to receive a
message m from k through this mechanism it invokes WRB-
deliver(k). WRB-deliver(k) returns a message m where m is
the received message. If the nodes were not able to deliver
k’s message, WRB-deliver(k) returns nil. Formally, WRB
satisfies the following properties:

WRB-Validity: If a correct node WRB-delivered(k) m 6=
nil, then k has invoked WRB-broadcast(m).

WRB-Agreement: When two correct nodes p, q WRB-
delivered(k) mp,mq respectively from k, then either
mp = mq = nil or mp 6= nil ∧mq 6= nil.

WRB-Termination: If a correct node p WRB-deliver(k)
m from k, then every correct node that is trying to
WRB-deliver(k) eventually WRB-deliver(k) some mes-
sage m′ from k.

WRB-Non-Triviality: If a correct node k repeatedly in-
vokes WRB-broadcast(m) then eventually all correct
nodes will WRB-deliver(k) m.

2To the best of our knowledge, we are the first to discuss
WRB. Bracha’s approach [24] can be viewed as the oppo-
site, first agree on the content of the message (consistent
broadcast), and then agree whether it should be delivered.

[1] timer ← τ ;
[2] Procedure WRB-broadcast(m)
[3] broadcast (m, sigp(m)); /* push phase */

[4] Procedure WRB-deliver(k)
[5] start timer ;
[6] /* timer’s value is set in lines 1, 14

and 19 of WRB-deliver’s last
invocation */

[7] wait until a valid (m, sigk (m)) has been
received or timer has expired ;

[8] if a valid (m, sigk (m)) has been received then
[9] d← OBBC .propose(1);

[10] /* If no node has proposed 0, then
OBBC .propose ends in a single
communication step */

[11] else
[12] d← OBBC .propose(0 );
[13] end
[14] increase timer ;
[15] if d = 0 then
[16] return nil ;
[17] end
[18] if a valid (m, sigk (m)) has been received then
[19] adjust timer ;
[20] return m;
[21] end
[22] broadcast(REQ , k);
[23] wait until a valid (m′, sigk (m′)) has been

received ;
[24] return m′;

[25] upon receiving (REQ , k) from q∧ a valid
(m, sigk (m)) has been received do

[26] send(m, sigk (m))) to q;
[27] end

Algorithm 1: Weak Reliable Broadcast - code for p

By FireLedger’s use of WRB-broadcast, outlined in Sec-
tion 5, it is possible that messages of a given leader are
delayed to the point they are not delivered, i.e., the WRB-
broadcast protocol ends by delivering an empty message.
However, due to the WRB-broadcast protocol, either all cor-
rect nodes deliver a message that was sent by the leader (per-
haps not the same one at all nodes), or none does so. The
correctness of the below implementation of WRB-broadcast
is independent of any timing assumptions. The performance
benefits of WRB for FireLedger are discussed in Section 5.4.

4.2 Implementing WRB
The pseudo-code implementation of WRB is listed in Al-

gorithm 1. To WRB-broadcast a message, a node simply
broadcasts it to everyone (line 3). When p invokes WRB-
deliver(k) it performs the following:
� It waits for at most timer to receive k’s message (line 7).
� If such a valid message has been received, then p votes
to deliver it using an OBBC protocol. Else, p votes against
delivering k’s message (lines 8-13). Recall that if no node
has proposed 0, OBBC ends in a single communication step.
� If the decision is not to deliver (OBBC returned 0), p re-
turns nil and increases the timer (lines 14-17).
� If it is decided to deliver the message (OBBC returned
1) and the message has already been received by p, then p
adjusts the timer and returns m (lines 18-21).
� Else, OBBC decided 1, meaning that at least one cor-
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rect node received k’s message and voted for its acceptance.
Thus, p moves to a pull phase and pulls k’s message from
the nodes who did receive it. When p eventually receives a
valid message, p returns it (lines 22- 24).
� Upon receiving q’s request for k’s message, if p has k’s
message m, it sends (m, sigk (m)) to q (lines 25-27).

To ensure liveness, the timer is increased each time p does
not receive the message (line 14). To avoid having too long
timers for too long, timer is adjusted downward when a
message is received by p (line 19). The exact details are
beyond the scope of this paper, but see for example [30].

In a typical implementation of OBBC each node broad-
casts its vote [27, 67]. Then if a node receives enough votes
for the same value v to safely decide v after this single com-
munication step, it decides v and returns. We present our
own OBBC protocol in the full version of this paper [26].

Since the correctness proof of Algorithm 1 is technical, it
is deferred to the full version of this paper [26].

5. THE FireLedger PROTOCOL
We present FireLedger in a didactic way: We first show

a two-phased crash fault tolerant (CFT) ordering protocol
based on WRB. We then improve it to a single-phased pro-
tocol. Finally, we extend the protocol to tolerate Byzantine
failures. The pseudo-code of the protocol appears in Algo-
rithm 2 and 3. Regularly numbered lines correspond to the
CFT aspects of the protocol, while lines prefixed with ‘b’
are the additions to handle Byzantine failures.

5.1 Simplified CFT FireLedger
As mentioned in Section 4, WRB supports an all or noth-

ing delivery that is blind to the message’s content. When
there are no Byzantine failures, a node never sends differ-
ent messages to different nodes. Hence, a simple two phase
blockchain protocol would be a round based design in which
a deterministically selected leader disseminates its block pro-
posal to all nodes using WRB. In case all nodes deliver the
proposed block, then this becomes the next block.

Given the continuous iterative nature of blockchains, we
may improve the algorithm’s round latency to an amortized
single phase. For this, we piggyback the r + 1th block on
top of the first message that WRB-deliver sends when try-
ing to deliver the rth block. We support this by augmenting
the WRB-deliver method to receive two parameters, WRB-
deliver(k,pgd), such that pgd is the potential piggybacked
data (can be nil). The OBBC protocol is also augmented to
receive pgd and piggyback it on the first message it broad-
casts. Recall that we assume an OBBC protocol that always
starts by having each node broadcast its vote. Hence in the
augmented protocol, each node that starts the OBBC proto-
col broadcasts its vote alongside the piggybacked pgd mes-
sage, which is made available to the calling code together
with the decision value.

The details appear in Algorithm 2. Specifically, on each
round r the algorithm performs the following:
� If pi is (r + 1)’s proposer, it prepares a new block (lines 12-
14). To ensure liveness, if in the previous iteration WRB has
failed to deliver a message, then r’s proposer also prepares
a block and WRB-broadcast it (lines 6-11).
� Meanwhile, all nodes are trying to WRB-deliver r’s block
(line 15). Note that the r + 1th proposer piggybacks the
next block on top of this message.

1 ri ← 0;
2 proposerri ← p0;
3 full mode ← true;
4 while true do
5 b← nil;

[b1] while proposerri ’s block was tentatively
decided in the last f rounds do

[b2] proposerri ← (proposerri + 1) mod n;
[b3] end

6 if i = proposerri ∧ full mode = true then
7 /* executed if nil has been

WRB-delivered in the last
iteration */

8 b← prepared block;
9 WRB-broadcast(b);

10 b← nil;
11 end
12 if (proposerri + 1) mod n = i then
13 b← prepared block;
14 end
15 brii ← WRB-deliver(proposerri , b);
16 if brii = nil then
17 full mode ← true;
18 proposerri ← (proposerri + 1) mod n;
19 continue;
20 end
21 full mode ← false;

[b4] if brii is not valid then
[b5] /* validating the block hash against

the previous block */

[b6] proof ← (brii , sigproposerri (b
ri
i ),

bri−1
i , sigproposerri−1 (bri−1

i ));
[b7] RB-broadcast(proof);
[b8] invoke RECOVERY(ri, proof);
[b9] continue;

[b10] end
22 append brii to the chain;

[b11] decide b
ri−(f+2)
i ;

23 proposerri ← (proposerri + 1) mod n;
24 ri ← ri + 1;
25 end

[b12] upon RB-deliver a valid proof ←
(br, sigproposerr (br), br−1, sigproposerr−1 (br−1)) do

[b13] invoke RECOVERY(r, proof);
[b14] end

Algorithm 2: FireLedger – code for pi; the lines
that start with ‘b’ depict the BFT additions

� If a block br 6= nil has been delivered, then br is appended
to the chain (line 22) and the protocol continues to round
r + 1 (line 23- 25).
� Else, all correct nodes switch proposer and continue to
the next try (lines 16- 20).

We prove the correctness of the full BFT protocol in Sec-
tion 5.3. Note that due to WRB and the piggybacking
method, Algorithm 2 establishes a single-phased protocol
as long as there are no Byzantine failures, and the failure
pattern matches the specific OBBC optimistic pattern.

Figure 1 presents normal case operation. Each optimistic
period starts with the current proposer broadcasting its block.
Then, on every round, each node broadcasts a single mes-
sage (as the first OBBC message), except the next proposer
that piggybacks the next block on top of that message.
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p1

p2

p3

 p0

Round r Round r + 1 Round r + i

WRB-broadcast( )b
r WRB-deliver( ), nilpi WRB-deliver( ) ,pi b

r+i+1

...

Figure 1: FireLedger in the normal case operation.

[1] Procedure RECOVERY(r, proof)
[2] versionsr ← {};
[3] if ri < r − 1 then
[4] v ← empty version;
[5] else
[6] v ←

[(br−(f+1), sigproposerr−(f+1)
(br−(f+1))), ...,

(br−1, sigproposerr−1 (br−1)), ...,
(bri , sigproposerri (b

ri))];
[7] end
[8] Atomic-broadcast(v);
[9] repeat
[10] Atomic-deliver vj from pj ;
[11] if vj is valid then
[12] versionsr ← versionsr ∪ {vj};
[13] end
[14] until |versionsr | = n− f ;
[15] v′ ← the first received among

{vj ∈ versionsr |rj = max{rk|vk ∈
versionsr ∧ (brk , sigproposerrk (brk ) ∈ vk}};

[16] adopt v′ and update ri, and proposerri ;
[17] full mode ← true;

Algorithm 3: Recovery Procedure – code for pi

5.2 Full BFT FireLedger
To extend the basic FireLedger to handle Byzantine fail-

ures, FireLedger utilizes the fact that there is at least one
correct node pc in all sets of f + 1 different proposers. Since
pc is correct, when pc’s block is WRB-delivered, all correct
nodes receive the very same block, including the hash to
its predecessor block. When a correct node detects a chain
inconsistency (due to the hash that each block carries), it
initiates a traditional BFT based recovery procedure. At
the end of the recovery phase, all correct nodes synchronize
their chain to the same single valid version. For the recovery
procedure, FireLedger maintains the following invariant:

Invariant 1. A node p proceeds to the next round of the
algorithm only if it knows that at least f + 1 correct nodes
will eventually proceed as well.

As a consequence of Invariant 1, if a block br is at depth f+1
in p’s local chain, then there are at least f + 1 correct nodes
for which br is at depth of at least f+1 in their local chains.
In principle, preserving Invariant 1 requires waiting to verify
that at least f other correct nodes are moving to the next
round. Yet, as the communication pattern we described

above already includes an all-to-all message exchange3 in
each round (while executing OBBC), it serves as an implicit
acknowledgement, so we have a single-phased algorithm
when the optimistic assumptions hold.

Recall that line numbers prefixed by ‘b’ in Algorithm 2
describe the additional actions to accommodate Byzantine
failures. Specifically:
� First pi finds, by a pre-defined order, a prosper that has
not successfully proposed a block in the last f + 1 rounds
(lines b1- b3).If pi detects an inconsistency in the chain, it
starts the recovery using reliable broadcast (lines b4- b10).
� Upon receiving a valid announcement of inconsistency,
pi initiates the recovery procedure (lines b12- b14). Note
that the announcement validation is done against digital
signatures and the blocks’ hashes.

The recovery installs agreement among all correct nodes
regarding the longest possible blockchain prefix as detailed
in Algorithm 3. Executing RECOVERY by pi involves:
� pi proposes, using Atomic-broadcast, a valid version of
the f blocks that are in disagreement (excluding br itself)
followed by all the newer blocks it knows about (lines 2–8).
� Then pi collects n − f valid versions (including empty
ones) and adopts the first longest agreed prefix of the block-
chain (lines 9–17).

Finally, as the recovery procedure may alter only the last
f+1 blocks, the node decides on the block which is in depth
of f + 2 (line b11)

5.3 Correctness Proof

Lemma 5.3.1. BBFC(f + 1)-Validty: A decided (possible
tentative) value v satisfies the valid method.

Proof. From Algorithm 2’s code, a value is appended to
the blockchain only if it satisfies the valid method.

Lemma 5.3.2. Every f+1 consecutive decided blocks were
proposed by f + 1 different nodes.

Proof. By Algorithm 2’s code (lines b1–b3), if the cur-
rent proposer has successfully proposed a block in the last
f+1 rounds, then its role is switched to a new proposer.

Lemma 5.3.3. At the recovery procedure’s end, all correct
nodes adopt the same version.

Proof. By the Atomic-Order property of the atomic
broadcast primitive all correct nodes receive the same ver-
sions in the same order. Hence, applying the deterministic
rule described in Algorithm 2 results in an agreement among
the correct nodes.

Lemma 5.3.4. For any two correct nodes p, q with decided
values brp, b

r
q in round r, if d(brp) > f∧d(brq) > f then brp = brq.

For lack of space, the proof of this lemma is deferred to the
full version of this paper [26].

Lemma 5.3.5. BBFC(f+1)-Agreement: For any two cor-
rect nodes p, q, let brp, b

r
q be their decided value in round r.

If d(brp) > f + 1 ∧ d(brq) > f + 1 then brp = brq.

Proof. Follows directly from Lemma 5.3.4.

3An “all-to-all exchange” only means that each correct pro-
cess must send a message to all other processes, yet none of
the processes is required to wait for all such messages.
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Definition 5.3.1. Let brp, b
r′
p be two decided (possibly ten-

tative) blocks of p such that r′ > r. br
′

p is valid with respect

to brp if the sub-chain [brp, b
r+1
p , ..., br

′
p ] satisfies the predefined

valid method. A sub-chain [brp, b
r+1
p , ..., br

′
p ] is valid with re-

spect to br−k
p , for some k ≤ r, if sub-chain [br−k

p , ..., brp, ..., b
r′
p ]

satisfies the predefined valid method and each f +1 consec-
utive blocks are proposed by f + 1 different proposers.

Lemma 5.3.6. If during the recovery procedure for round
r, a correct node p receives a version v from correct node q,

then v is valid with respect to b
r−(f+2)
p .

Proof. If the received version is an empty one, it is triv-

ially valid with respect to b
r−(f+2)
p . Else, by Lemma 5.3.4 all

correct nodes agree on br−(f+2). As q is correct, by Lemma
5.3.1 q appends only valid blocks to its blockchain. Hence,

q’s version (that starts with b
r−(f+1)
q ) is valid with respect

to b
r−(f+2)
q which is identical to b

r−(f+2)
p .

Definition 5.3.2. Let rg be the most advanced round of
the algorithm that any correct node runs. We define the
group of nodes whose current round is ∈ {rg, rg − 1} by
front = {p|rp ∈ {rg − 1, rg}}. When Invariant 1 is kept,
there are at least f + 1 correct nodes in front.

Lemma 5.3.7. While Invariant 1 is kept, a correct node
executing the recovery procedure receives n−f valid versions
and at least one of them was received from a node in front.

Proof. By RB-Termination if a correct node p detects
an invalid block and invokes the recovery procedure, eventu-
ally every correct node will receive p’s proof and will invoke
the recovery procedure. Following the system model, the ra-
tio between n and f and Lemma 5.3.6, a correct node does
not get blocked while waiting for n− f valid versions (part
of whom may be empty). By Invariant 1, p receives at least
one version from a correct node in front .

Lemma 5.3.8. BBFC(f + 1)-Termination: Every round
eventually terminates.

For lack of space, the proof of this lemma, which is technical,
is deferred to the full version of this paper [26].

Definition 5.3.3. Let r be a round of the algorithm, we
define by frontr = {p|rp > r + f + 1} the group of nodes
whose current round is greater by at least f + 1 than r.

Lemma 5.3.9. BBFC(f+1)-Finality: In every round r′ >
r + f + 1, vrp is definite.

Proof. Following Algorithm 2’s code, after a valid block
is WRB-delivered, the only way it can be replaced is by
an invocation of the recovery procedure. By Algorithm 2’s
code and Lemma 5.3.7, if the recovery procedure has been
invoked regarding round r, then p adopts a prefix version
that was suggested by q ∈ front. Obviously, front ⊆ frontr.
By Lemma 5.3.5, ∀q, p ∈ frontr, b

r
q = brp, i.e., brp is definite.

Note that the ratio between n and f as well as the ver-
sion’s validation test ensure that no Byzantine node is able
to propose a version that does not include brq.

From Lemmas 5.3.1, 5.3.5, 5.3.8 and 5.3.9 we have:

Theorem 5.3.1. Algorithm 2 solves BBFC(f + 1).

fault-
free

Timing,
and omission

failures

Byzantine
failures

Communi-
cation
steps

1 2 + OBBC
RB

+n parallel
AB

Digital
signature
operations

1 OBBC
RB+AB
+(n − f)

·(chain size)
Latency

(in rounds)
f + 1

no additional
overhead

no additional
overhead

Table 1: Performance characteristics of FireLedger. RB and
AB stand for Reliable and Atomic Broadcast respectively.
The first column shows the performance in the fault-free
synchronized case. The second column depicts the addi-
tional costs in an unsynchronized period and omission fail-
ures. The third column depicts the additional expenses in
the presence of a non-benign fault.

Lemma 5.3.10 (Atomic Order). Correct nodes using
Algorithm 2 deliver blocks in the same order.

Proof. Follows directly from Lemma 5.3.5 and the iter-
ative nature of the algorithm.

By Lemma 5.3.10 and Theorem 5.3.1, we have:

Theorem 5.3.2. The protocol listed in Algorithm 2 im-
pose a total order of all blocks.

Theorem 5.3.3. The protocol listed in Algorithm 2 sat-
isfies Non-Triviality.

The proof of Theorem 5.3.3 follows directly from Lem-
mas 5.3.8 and 5.3.9, given that correct nodes propose non-
empty blocks whenever they hold clients’ transactions that
have not been included in any previously decided block.

5.4 Theoretical Bounds and Performance
Table 1 summarizes the performance of FireLedger in each

of its three modes. In case of no failures and synchronized
network, FireLedger performs in the OBBC of WRB-deliver
a single all-to-all communication step as well as one digi-
tal signature operation. Further, only one node broadcasts
more than one bit. This can be obtained since the latency
for a definitive decision can be up to f + 1 rounds. In case
a message is not received by WRB-deliver due to timing,
omission or benign failures, the algorithm runs the non op-
timistic phase of OBBC as well as two more communication
steps (one-to-all and one-to-one) in which a node asks for
the missed message from the nodes who did receive it. Also,
the amount of digital signature operations depends on the
specific OBBC implementation that is used by WRB-deliver.
Finally, in case of Byzantine failures, FireLedger runs the re-
covery procedure which depends on the Reliable Broadcast
and the Atomic Broadcast implementations. Yet, when
Byzantine failures manifest, a node does not lose blocks so
the latency in terms of rounds remains the same.

6. IMPLEMENTATION

6.1 Optimizations

Separating Headers and Blocks. FireLedger’s protocol
enables to easily separate the data path from the consen-
sus path, such that only block headers need to pass through
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the consensus layer while the block itself is being sent asyn-
chronously in the background.

That is, a node p broadcasts a block as soon as the block
is ready. On p’s next proposing round, p WRB-broadcasts a
header of a previously sent block. Respectively, upon WRB-
delivering a header, if p did not receive the block, it votes
against delivering it (See Algorithm 1, lines 8–13). In ad-
dition, if a decision was made to deliver a header, but the
block itself has not been received by p, then p has to retrieve
the block from a correct node q that has it. Such a q exists
because the decision to deliver is done only if at least one
correct node has voted in favor of delivering, which means
that q has the block.

Dynamically Tuning the Timeout. To adjust the timer
to the current network delays status, we dynamically adjust
its value based on the exponential moving average (EMA) of
the message delays over the last N rounds. Namely, denote
by dk, timerk the delay of a message and the timer of round
k respectively. Then for every round r

timerr =
2

N + 1
· dr−1 + timerr−2 · (1−

2

N + 1
).

A formal discussion of the above tuning model is out of the
scope of this paper, but see, e.g., [19, 34, 47].

Benign FD. FireLedger’s algorithm enables implementing
a simple benign failure detector (FD) such that a crashed
node will not cause an unrestricted increase in the timer
value. Largely speaking, every node p maintains a suspected
list of the f nodes to which p has waited the most and above
a predefined threshold. For every node q in that list, on a
WRB-deliver, p does not wait for q’s message but rather im-
mediately votes against delivering. By the ratio between n
and f there is at least one correct node c that is not sus-
pected by any correct node and thus the algorithm’s liveness
still holds. Despite the above, if c is one of the last f pro-
posers it would not be able to suggest a new block. Hence,
the suspected list is invalidated every time FireLedger is
skipping a node that is in the last f proposers (see Algo-
rithm 2, lines 1–3). Also, if a Byzantine activity was de-
tected, to avoid considering more than f nodes as faulty, we
invalidate the suspected list.

6.2 FireLedger’s Instance Implementation
Figure 2 depicts the main components of a FireLedger’s

instance. Using FireLedger’s API one can feed the TX pool
with a new write request. The main thread creates a new
block and WRB-broadcasts it in its turn. In addition, the
main thread tries to WRB-deliver blocks relying on OBBC.
If it succeeds, the block is added to the Blockchain. Mean-
while, the panic thread waits for a panic message. When
such a message is Atomic-delivered, the panic thread inter-
rupts the main thread which as a result invokes the recov-
ery procedure. FireLedger is implemented in Java and the
communication infrastructure uses gRPC, excluding BFT-
SMaRt which has its own communication infrastructure.
Atomic Broadcast is natively implemented on top of BFT-
SMaRt whereas OBBC uses BFT-SMaRt only as the fall-
back mechanism when agreement cannot be reached through
the optimistic fast path (which relies on gRPC).

FireLedger

Main Thread

Block-
chain

TX
pool

Consensus Layer

bft-SMaRt

Atomic Broadcast OBBC

Recovery Layer

Recovery

Panic Layer

Panic Thread

WRB Layer

WRB-service

FireLedger API 

Figure 2: An overview of FireLedger instance’s (a single FL
worker) main components

Write to the
least loaded

worker

Client
Manager

FLO

FL worker

Read in a
RR fashion

Figure 3: An overview of a FLO node

6.3 FLO – FireLedger Orchestrator
While FireLedger assumes partial synchrony, its rotat-

ing leader pattern imposes synchronization in that a node
may propose a value only on its turn, making FireLedger’s
throughput bounded by the actual network’s latency. To
ameliorate this problem, we introduce another level of ab-
straction, named workers, by which each node runs multiple
instances of FireLedger and uses them as a blockchain based
ordering service. The use of workers brings two benefits: (i)
workers behave asynchronously to each other which compen-
sates for the above synchrony effect of FireLedger and (ii)
while a worker waits for a message, other workers are able
to run, resulting in better CPU utilization. To preserve the
overall total ordering property of FireLedger, a node must
collect the results from its workers in a pre-defined order,
e.g., round robin. This requirement may imposes higher
latency when the system is heavily loaded because even if
a single worker faces the non-optimistic case, it delays all
other workers from delivering their blocks to the node.

Figure 3 depicts an overview of a FLO node. Upon receiv-
ing a write request, the client manager directs the request
to the least loaded worker. When a read request is received,
the client manager tries to read the answer from the relevant
worker. Only if the answer was already definitely decided
and its block can be delivered in the pre-defined order, the
node returns the answer4.

An alternative design could be to maintain a semi-static
leader that only changes when it misbehaves, while enabling
it to propose new blocks back-to-back up to some threshold
window. Such a design offers another performance tradeoff
between latency and throughput compared to FLO. We have

4This is similar to the deterministic merge idea of [14].
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parameter range units

cluster size n ∈ {4, 7, 10} -
workers 1 ≤ ω ≤ 10 -

transaction size σ ∈ {512, 1K, 4K} Byte
batch size β ∈ {10, 100, 1000} Transaction

Table 2: The default evaluation’s parameters: The first row
presents FLO’s cluster size. The system model assumes f <
n
3

, hence, n ∈ {4, 7, 10} imposes f ∈ {1, 2, 3} respectively.

chosen FLO since it fits more naturally to the overall design
of FireLedgerand its rotating leader paradigm[15, 35, 73].

7. PERFORMANCE EVALUATION
Our evaluation studied the following questions: (i) Is

FLO/FireLedger CPU bounded or network bounded? (ii)
How do Table 2’s values affect FireLedger’s performance?
(iii) How does node distribution affect FireLedger’s perfor-
mance? (iv) How does FireLedger handle failures?

Deployment Specification. Our setup for most measure-
ments includes n nodes running on n identical VMs with
the following specification: m5.xlarge with 4 vCPUs of In-
tel Xeon Platinum 8175 2.5 GHz processor, 16 GiB memory
and up to 10 Gbps network links (Section 7.6 uses a stronger
configuration as detailed there).

Workload Specification. To stress test FireLedger’s per-
formance as an ordering protocols for blockchains, we have
used the following workloads: During every run, each pro-
poser in its turn generates a block containing β transactions
of σ bytes each. All transactions are “write” transactions,
meaning that they are ordered by the protocol. We do not
simulate the transactions execution time, but rather after
a block enters the blockchain, it is asynchronously written
to the disk and database. To reduce variability caused by
external factors, we have measured the throughput as expe-
rienced by each node (i.e., total definite transactions during
the test time) and the latency as the time from when the
proposer generates the block until it becomes definite. Note
that we create new random transactions for every new pro-
posal, meaning that we have to calculate new signatures and
hashes for each new block.

7.1 Signature Generation
In FLO/FireLedger, as long as the optimistic assumptions

hold, a proposer signs its block only once and any other node
is verifying the signature only once. Hence, the maximal
signature rate serves as an upper bound on the potential
throughput of FireLedger.

To undrestand whether FLO/FireLedger is CPU bounded
or I/O bounded we start by presenting an evaluation of
the signatures generation rate (sps) which is typically the
most CPU intensive task. We use ECDSA signatures with
the secp256k1 curve. When signing a block, all the block’s
transactions are hashed and the result is signed alongside
the block header. We vary the ω, β and σ values in the
ranges described in Table 2.

For each configuration we run the benchmark for 1 minute.
Figure 4 depicts the benchmark results. As expected, with
small blocks the sps is higher than with larger ones. Also,
as our machines have 4 vCPUs, increasing ω beyond 4 has
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Figure 4: Signatures generation rate on a single VM
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Figure 5: FLO’s bps rate for n ∈ {4, 7, 10} in a single data-
center cluster

a minor effect if any. As seen below, the performance of
FLO is not limited by the sps rate.

7.2 FLO Cluster in a Single Data-Center
We deployed a FLO cluster where all machines reside in

the same data center. In the current version, FireLedger uses
a clique overlay for disseminating both blocks and headers.
To avoid clogging the network, FireLedger has a basic flow
control mechanism that prevents nodes from sending new
blocks if the network is overloaded or if they have already
disseminated enough blocks that have not been decided yet.
Due to its modular design, a more sophisticated mechanism
can be plugged into the system. This is left for future work.

7.2.1 FLO’s Throughput
For each configuration we run the experiment for 3 min-

utes. The results were collected from all nodes and we took
the average among them.

7.2.1.1 BPS Rate.
Due to the separation of blocks and headers, FLO’s throu-

ghput is mostly bounded by its bps rate. Figure 5 presents
FLO’s bps rate for different n and ω values. As expected,
increasing ω yields higher bps due to better CPU utilization.
In contrast, increasing n decreases the bps because each de-
cision requires more communication. Even so, FLO delivers
thousands of bps under the majority of the tested configu-
rations. FLO’s throughput is bounded by tps ≤ β · bps.

7.2.1.2 TPS Rate.
We tested FLO’s throughput while varying n, ω, σ and β

values in the ranges described in Table 2. Figure 6 shows
FLO’s throughput with the above configurations. Except
few configurations where β = 10, FLO achieves between
tens to hundreds of thousands of tps, depending on the spe-
cific configuration. Especially, with σ = 512, which accord-
ing to [11] is the average size of a Bitcoin’s transaction,
FLO peaks at around 160K tps even with n = 10. As ex-
pected, for larger σ the performance decreases because less
of the network’s bandwidth remains available for the head-
ers, which limits the bps rate. It can be observed that the
performance for large blocks with n ∈ {7, 10} is better than
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Figure 6: FLO’s transactions throughput for various config-
urations in a single data-center deployment
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Figure 7: CDF charts for σ = 512, n ∈ {4, 7, 10}, ω ∈
{1, 5, 10} and β ∈ {10, 100, 1000} in a single data-center

when n = 4. This can be explained by the fact that the
separation of blocks from headers allows for nodes in bigger
clusters to collect more blocks that have not been decided
yet. Thus, as the bps grows w.r.t. the number of workers, it
respectively increases the tps rate. This does not manifest
in small block sizes because with very small blocks there
is little benefit from transmitting a block before its header.
Further, when ω = 10, there are significantly more workers
than hardware threads, which increases performance sensi-
tivity sometimes yielding lower overall throughput.

7.2.2 FLO’s Latency
To evaluate FLO’s latency, we measured the time it takes

for a full block to be delivered by FLO. This time includes
disseminating the block, its header, and to wait until it can
be delivered by the round robin between FLO’s workers.
We focus on the configurations in which σ = 512 (same
as Bitcoin transactions). Figure 7 shows CDF charts for
various configurations. As expected, with ω = 1 FLO’s
latency is minimal and is less than 1 second even with n = 10
and β = 1000. Increasing ω results in an increase in the
latency respectively. This is due to the fact that even a single
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Figure 8: Heatmaps that depicts the relative execution time
of FLO between 5 different events for σ = 512
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Figure 9: FLO’s tps rate with n = 100, σ = 512, β ∈
{10, 100, 1000} and 1 ≤ ω ≤ 5

worker’s delay is reflected in all, due to FLO’s round robin.
Yet, even with n = 10, ω = 10 and β = 1000 the latency in
a single data-center deployment is below 8 seconds.

To understand the main bottlenecks of FLO, we divided
every round of the algorithm into 5 different events: (A)
block proposal, (B) header proposal, (C) tentative decision,
(D) definite decision, and (E) delivering by FLO. Finally, we
measured the time between each pair of consecutive events.

Figure 8 shows the relative execution time between each
two consecutive events. It is easy to see that due to the
separation of blocks and headers, the majority of time is
spent between receiving a block and receiving its header.
In addition, for ω > 1, the workers cause an increase in
the latency, as even a single worker’s delay delays the whole
system. Finally, increasing n as well as β causes the blocks
dissemination event to take longer. This is despite using a
clique layout. Other methods (e.g., gossip) may improve the
throughput but not the latency.

7.3 FLO’s Scalability
To test FLO’s scalability we deployed a single data-center

cluster of n = 100 machines and tested FLO’s tps rate with
σ = 512, β ∈ {10, 100, 1000} and 1 ≤ ω ≤ 5. We ran each
configuration for 3 minutes. Figure 9 depicts the bench-
mark’s result. Thanks to FireLedger’s frugal communication
pattern, as long as the fault free execution path take place,
FLO can achieve around 60K tps (in a single data-center
deployment). As shown, in this cluster size, the number of
workers has no effect because of the relatively large amount
of communication that even a single worker consumes.
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Figure 11: FLO’s tps rate under Byzantine failures for σ =
512, 1 ≤ ω ≤ 5, β ∈ {10, 100, 1000}, n ∈ {4, 7, 10} and f ∈
{1, 2, 3}. The lines show the tps rate and the bars shows the
recovery per second (rps) rate

7.4 FLO Under Failures

7.4.1 Benign Failures
We tested FLO while suffering from crash failures of f

nodes (yet, we maintain n = 3f+1 even in this benign case).
Here, all faulty nodes crash in the middle of a run (such a
node crashes with all of its workers), but the measurements
are taken after the faulty nodes crash. Every benchmark
was ran for 3 minutes and we calculated the average tps
among the correct nodes. Figure 10 depicts FLO’s tps rate
under various configurations while facing crash failures.

It can be seen that due to the full BBC phase that is now
needed during faulty nodes rounds, for larger n the tps is
decreasing. Yet, FLO still reaches tens of thousands of tps
despite these benign failures. This is due to the OBBC pro-
tocol and the basic failure detector described in Section 6.1.

7.4.2 Byzantine Failures
To test FLO’s performance when facing Byzantine fail-

ures, we deployed a Byzantine FLO node that operates as
following: When started, every worker divides the cluster
into two random parts, and for every given round it dis-
tributes different versions of the block to each part. Notice
that in practice, invoking the recovery procedure may cause
the nodes to become un-synchronized with each other, a fact
that affects the performance as well. This increases the vari-
ance between measurements of the same settings. Hence, to
be able to perform more measurements of each data point,
for each configuration we run a series of short benchmarks
(between 1 - 2 minutes each).

Figure 11 presents the tps rate for FLO when facing Byzan-
tine failures w.r.t. the number of workers and the number
of recoveries per second (rps). Smaller values of β and n
imply more recovery events. Recall that during the recov-
ery nodes halt. Thus, the above is expected due to the fact
that each recovery ends faster when β and n are small. Yet,
for bigger β, the batching effect compensate for the small
amount of recoveries and the long halts. The reason why
for n = 10, β = 1000 and ω = 5 the performance decreased

Figure 12: FLO’s bps rate for n ∈ {4, 7, 10} in a multi data-
center cluster
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Figure 13: FLO’s transactions throughput for σ = 512 under
various configurations in a multi data-center

so much is the underlying Byzantine consensus layer (BFT-
SMaRt), which has to handle a large amount of data. To
conclude, FLO delivers more than 10K tps in some scenarios
even when facing Byzantine failures. Although the perfor-
mance is lower than in optimistic executions, these type of
failures are expected to be rare in permissioned blockchain
clusters. And even with n = 10, if we set β = 1000 and
ω = 3 we obtain about 6K tps, roughly twice the average
tps of VISA. Hence, FLO presents an attractive trade-off
between scalability, performance and security.

7.5 FLO in a Multi Data-Center Cluster
We also tested FLO in a geo-distributed setting with nodes

spread around the world. The nodes were placed, one node
per region, by the following order, in Amazon’s Tokyo, Cen-
tral, Frankfurt, Paris, Sau-Paulo, Oregon, Singapore, Syd-
ney, Ireland and Ohio data-centers. We tested only fault free
scenarios. Thus, we kept using BFT-SMaRt rather than its
geo-distributed optimized version named WHEAT [71].

7.5.1 FLO’s Throughput
As before, we first measured the bps rate for n ∈ {4, 7, 10}.

Figure 12 depicts the bps rate for varying cluster sizes. As
expected, due to lower network performance, the bps is less
than 10% of its rate in single data-center clusters.

As in the single data-center deployment, we simulated
high load by creating random transactions and run FLO
with the following configurations: n ∈ {4, 7, 10}, 1 ≤ ω ≤
10, σ = 512, β ∈ {10, 100, 1000}. Every benchmark was run
for 3 minutes. Figure 13 presents the benchmark’s result.
Obviously, tps is increasing with w and β due to a better
CPU utilization and a batching effect. As for the increase of
the tps with n, this is, as before, thanks to the separation of
blocks from headers, which allows bigger clusters to collect
more blocks to decide on, thereby enhancing performance.

7.5.2 FLO’s Latency
We tested FLO’s latency in the above multi data-center

deployment. As before, we measured the time that takes a
block to be delivered by FLO from the moment it was pro-
posed by its creator. To avoid outliers, we omitted the 5%
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Figure 14: FLO’s latency in a multi data-center deployment
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Figure 15: Comparison of FLO and HotStuff on c5.4xlarge
AWS machines and f = dn/3e − 1

most extreme results. Figure 14 presents the benchmarks
results. For small blocks, the cluster size slightly affects
the latency because the headers dissemination process dom-
inates the bandwidth. Yet, with large blocks, as the data
dissemination process itself dominates the latency, increas-
ing the cluster size has very little effect on the latency.

7.6 FireLedger vs. Leading Alternatives
To the best of our knowledge, the current best perform-

ing alternative to FireLedger is HotStuff [75]. As we had no
access to the codebase of HotStuff, we compare the declared
performance of HotStuff from [75] with our own measure-
ments of FireLedger using the exact same environment as
in [75], namely c5.4xlarge AWS machines (16 vCPUs, 32
GiB RAM). We also compare with the numbers obtained
for BFT-SMaRt [20], the previous state-of-the-art system,
in this same setting. Figure 15 and 16 show this compar-
ison’s results w.r.t the n and σ parameters. For all cluster
sizes FLO was deployed with β = 1000 and ω = 8 with max-
imal resiliency f = dn/3e − 1. In terms of throughput, for
any σ and n FLO performs 20% − 300% better than Hot-
Stuff and 40% − 600% better than bft-SMaRt. Notice that
HotStuff is implemented in C while FLO is in Java.

This performance gap is due to the fact that in the op-
timistic case, HotStuff requires all nodes to sign an asym-
metric signature on each block and the proposer to verify
n − 1 such signatures. In contrast, in FireLedger only the
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Figure 16: Comparison of FLO and bft-SMaRt on c5.4xlarge
AWS machines and f = dn/3e − 1

proposer that generates the block signs an asymmetric sig-
nature. Since signing is a heavy pure CPU time operation,
fewer asymmetric signatures enable better throughput.

As for latency, due to the f + 1 finality of FireLedger and
the fact that we run with maximal resiliency, FLO’s latency
rises with n. In contrast, transactions’ finality with both
HotStuff and bft-SMaRt is at most three rounds (HotStuff),
so their latency is much less impacted by n. Still, in all
cases the latency obtained by FLO is better than most exist-
ing cryptocurrencies (and tokens), including the very recent
Algo (Algorand) [51]. Libra’s target 10 seconds finality [45]
is met by FLO when n ≤ 30 nodes5.

Conclusions. The performance gap between FLO and the
alternatives narrows as transactions become larger. This
is because in such cases, the basic need to disseminate the
transactions dominates the communication overhead, so a
clever consensus protocol has less room for impact. Hence,
one should consider compressing the data for large transac-
tions. Also, by employing scalable Byzantine dissemination
protocols for the transactions data, e.g., [40], FLO is likely
to better handle large clusters.

8. DISCUSSION
FireLedger is a communication frugal optimistic block-

chain algorithm targeting environments where failures rarely
occur. For example, FireLedger is likely to be very attrac-
tive for the FinTech industry, which uses highly secure and
robust systems. FireLedger leverages blockchain’s iterativ-
ity as well as its cryptographic features to achieve its goal.

Intuitively, FLO employs FireLedger as a blockchain-based
consensus algorithm rather than consensus-based blockchain.
Our performance results show that it matches the require-
ments of real demanding commercial applications even when
executing on common non-dedicated infrastructure. Our de-
sign is especially suitable for cryptocurrencies and financial
applications that tolerate a few seconds latency. In the fu-
ture, we intend to explore sharding, which can potentially
give an additional significant performance boost, as well as
scalable dissemination protocols. Finally, our prototype im-
plementation of this work is available in open source [10].

Acknowledgments. We would like to thank the anonymous
reviewers for their many insightful comments. This work
was partially funded by ISF grant #1505/16.

5Ripple and Stellar, for example, run on smaller clusters.
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