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ABSTRACT
We investigate the problem of correlated subgraphs mining (CSM)
where the goal is to identify pairs of subgraph patterns that fre-
quently co-occur in proximity within a single graph. Correlated
subgraph patterns are different from frequent subgraphs due to the
flexibility in connections between constituent subgraph instances
and thus, existing frequent subgraphs mining algorithms cannot be
directly applied for CSM. Moreover, computing the degree of cor-
relation between two patterns requires enumerating and finding dis-
tances between every pair of subgraph instances of both patterns -
a task that is both memory-intensive as well as computationally de-
manding. To this end, we propose two holistic best-first exploration
algorithms: CSM-E (an exact method) and CSM-A (a more effi-
cient approximate method with near-optimal quality). To further
improve efficiency, we propose a top-k pruning strategy, while to
reduce memory footprint, we develop a compressed data structure
calledReplica, which stores all instances of a subgraph pattern on
demand. Our empirical results demonstrate that the proposed algo-
rithms not only mine interesting correlations, but also achieve good
scalability over large networks.
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1. INTRODUCTION
In this paper, we explore the problem of correlated subgraphs

mining (CSM) in a single large network. In particular, we define
a pair of subgraphs1 as correlated if they co-occur frequently in
proximity within a single graph. Correlated subgraphs are differ-
ent from frequent subgraphs due to the flexibility in connections
between constituent subgraph instances. To elaborate, in Figure 1,
we highlight three regions inside the chemical structure of Taxol,
an anti-cancer drug, where CCCH and O occur closely albeit con-
nected in three different ways. For simplicity, we do not consider
the edge types (i.e. single or double bonds) in this example. This
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1Keywords subgraph, pattern, and subgraph pattern are used interchangeably.
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Figure 1: Correlation between CCCH and O in Taxol, an anti-
cancer drug. CCCH and O frequently occur closely but can be
connected in multiple different ways.

figure illustrates that while CCCH and O form a frequently oc-
curring correlated pair of subgraphs, the individual instances (for
example, HCC(-O)C) may not be frequent patterns themselves.
Therefore, existing frequent subgraphs mining techniques cannot
mine such pairs of correlated subgraph patterns.

CSM will be useful for many applications. For example, it can
be used in the identification of co-operative functions in biological
networks. In a genome graph, each node represents a gene and each
edge connecting two nodes denotes the interaction between the two
genes. In practice, there are some combinations of dominant genes
that co-occur frequently and these are more likely to express criti-
cal phenotypes of an individual. Previous studies demonstrate that
pairs of dominant gene combinations can occur frequently in an in-
dividual, and that such co-occurring patterns often reflect the func-
tionality that is needed for co-operative biochemical functioning
such as chemical bonding or binding sites interactions [41]. We
can use these pairs of correlated genes to predict co-operative bio-
logical functions. We produce a case study in § 5.5.

1.1 Technical Challenges and Related Work
Frequent subgraphs mining. Detecting correlated subgraphs is
harder than the frequent subgraphs mining (FSM) problem [63,
28, 39, 65, 62, 12, 27, 48, 66], which already has an exponen-
tial search space (a graph with m edges can have 2m subgraphs).
Techniques have also been developed for discriminative [64, 51],
statistically significant [25, 31, 53, 50, 54, 55] and representative
subgraphs mining [24, 67, 46, 47, 52]. For correlated subgraphs
mining (CSM), the search space is doubly exponential (because
one needs to compute the correlation between every pair of sub-
graph instances). Additionally, unlike FSM, CSM neither exhibits
downward closure nor upward closure (we shall demonstrate this
formally in § 2.2), thereby making it difficult to directly apply
apriori-based pruning techniques. Moreover, only mining frequent
subgraphs is not sufficient for CSM. Since we call subgraph A as
correlated to subgraph B if their instances are frequently located
close to each other, we need to enumerate all instances of those
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Figure 2: Performance of CSM-A against GRAMI+VF3.

frequent subgraphs to compute the degree of correlation between
A and B. This makes our problem more challenging from both
computational and memory perspectives.

To establish this empirically, we perform frequent subgraphs min-
ing using GRAMI [17]. For each frequent subgraph identified via
GRAMI, we enumerate all its instances using the state-of-the-art
VF3 algorithm [14] and finally compute the correlated pairs. Fig-
ure 2 presents the results on two datasets; the dataset description
is provided in § 5.1.1. We observe that the FSM-based approach
takes more than 15 days for Citation (DBLP). On the other hand,
the proposed approach, CSM-A, is up to 5 orders of magnitude
faster. Real networks contain millions of nodes and it is desirable
to obtain results within minutes. In this paper, we achieve this task.
Correlated subgraphs mining in graph databases. The closest
related work in the space of correlated subgraphs mining is by Ke
et al. [32]. However, there are two fundamental differences:

(1) Definition of correlation: Ke et al. target the graph database
scenario where there are multiple graphs: two subgraphs A and B
are called correlated if the containment of A within a data graph
increases the likelihood of containing B as well. In our problem,
we have only one large data graph. In this graph, subgraphs A and
B are defined to be correlated if the instances of A are frequently
located in close proximity to the instances of B.

(2) Notion of proximity: Owing to the difference in the defi-
nition of correlation, there is no concept of proximity in [32]. In
our problem, for each instance of a subgraph, we need to search
and track instances of all other subgraphs that occur within a user-
specified distance threshold. This operation is the root of the pri-
mary computational bottleneck, which does not arise in [32].
Relaxed notions of frequent subgraphs mining and search. Our
problem also has similarities with various relaxed definitions for
frequent subgraphs mining and search. For example, proximity
patterns [36] were introduced to mine the top-k set of node labels
that co-occur frequently in neighbourhoods. Correlations between
node labels and dense graph structures were identified in [22, 56].
In our problem, while we allow certain flexibility in terms of how
the constituent subgraph instances are connected, we still maintain
fixed structures for subgraph instances.

Inexact subgraphs matching has been extensively studied [33,
58, 42, 57, 34, 35, 59, 45, 61, 19, 23, 49] (see [21] for a sur-
vey). There are several works on simulation and bisimulation-
based graph pattern matching [26, 18, 43], which define relaxed
subgraphs matching as a relation between the query and target
nodes. The one-hop neighbourhood information is preserved via
this relation. The CSM problem is different from graph simulation.
Notice that between instances 1 and 2 in Figure 1, there exists no
graph simulation: the one-hop neighbourhood information for dif-
ferent C atoms (nodes) is different in these two instances. Owing to
these fundamental differences in the formulation and the resulting
algorithmic challenges, we need a novel technique that is tailored
for the proposed problem.

1.2 Contributions and Roadmap
(1) We formulate the problem of correlated subgraphs mining in a
single large graph, where correlated subgraphs is defined as a pair
of subgraph patterns that frequently co-occur in proximity within
the data graph (§ 2).
(2) The key differentiating factor in our problem compared to ex-
isting subgraphs mining problems is that we not only need to iden-
tify the subgraph patterns, but also enumerate and store all its in-
stances. This requirement imposes a huge scalability challenge on
both computation and storage. We address this issue by designing
a novel data structure called Replica, which stores all instances
of a subgraph pattern on-demand in a compressed manner. Us-
ing Replica as the data storage platform, we design a single-step,
best-first exploration algorithm to detect correlated subgraph pairs
efficiently (§ 3). We also discuss the novelty of the Replica over
existing compressed structures for various graph mining tasks, as
well as its potential applicability in other workloads.
(3) We further speed up the mining process by designing a near-
optimal approximation algorithm (§ 4).
(4) We empirically demonstrate the effectiveness and efficiency of
our methods on eight real networks while also detailing concrete
case studies over biological and social networks. We establish that
the proposed algorithm is up to 5 orders of magnitude faster than
baseline strategies and scales to million-sized networks (§ 5).

2. PRELIMINARIES

2.1 Background
A data graph G = (V,E, L) has a set of nodes V , a set of edges

E ⊆ V × V , and a label set L such that every node v ∈ V is
associated with a label, i.e., L(v) ∈ L.

Definition 1 (Subgraph Isomorphism). Given a graphG = (V,E,
L) and a subgraph Q = (VQ, EQ, LQ), a subgraph isomorphism
is an injective function M : VQ → V s. t. (1) ∀v ∈ VQ, LQ(v) =
L(M(v)), and (2) ∀(v1, v2) ∈ EQ, (M(v1),M(v2)) ∈ E.

To quantify the frequency of a subgraph, we use the minimum
image-based (MNI) support [13] metric.

Definition 2 (MNI Support [13]). It is based on the number of
unique nodes in G that a node of the pattern Q is mapped to, i.e.,

σ(Q) = min
v∈VQ

|{M(v) : M is a subgraph isomorphic mapping}|

MNI follows downward closure: the support of a supergraph
Q1 � Q is at most that of its subgraph Q, i.e., σ(Q1) ≤ σ(Q).

Example 1. Figure 3 shows subgraph isomorphism. For a sub-
graph isomorphic mapping M , the nodes {M(v) : v ∈ VQ}
and the corresponding edges {(M(v1),M(v2)) : (v1, v2) ∈ EQ}
form a subgraph isomorphic instance ofQ inG. There can be many
subgraph isomorphic mappings and instances, e.g., (1) M1(v1) =
u3, M1(v2) = u2, M1(v3) = u7; (2) M2(v1) = u3, M2(v2) =
u1, M2(v3) = u2, etc. The MNI support of Q is 1, which is due
to v1 being mapped to only one node in G (u3) for all isomorphic
mappings. The nodes in the set {M(v)} are called the images of v.

Definition 3 (Frequent Subgraphs). Given a data graph G, a defi-
nition of support σ, and a user-defined minimum support threshold
Σ, the frequent subgraphs mining (FSM) problem identifies all sub-
graphs Q of G, such that σ(Q) ≥ Σ.
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Figure 3: Subgraph isomorphism from Q to G. Correlation
between Q1 and Q2 in G.

2.2 Problem Formulation
Informally speaking, our objective is to identify all pairs of pat-

terns 〈Q1, Q2〉 that occur closely for a sufficiently large number
of times in the input data graph G. We formalise this notion of
correlation by incorporating the following constraints: (1) The cor-
relation between two subgraph patterns must be symmetric, and,
(2) it should be consistent with the definition of MNI support.

For consistency with MNI, we group subgraph instances.

Definition 4 (Instance Grouping). Given a data graph G, a pat-
tern Q, and its instances in G denoted as I = {I1, I2, . . . , Is}, we
define by v∗ the node in Q which has the minimum number of im-
ages (mappings). We denote by M(v∗) = {M1(v∗),M2(v∗), . . . ,
Mσ(Q)(v

∗)} the images of v∗. We form a grouping of instances,
denoted as I′ = {I ′1, I ′2, . . . , I ′σ(Q)}, where I ′j = {I : Mj(v

∗) ∈
I, I ∈ I}. Intuitively, I ′j is the group of instances having image
node Mj(v

∗).

Example 2. For data graph G and pattern Q1 in Figure 3, the
instances are given by I = {u1u3, u2u3, u7u3, u7u6}. However,
its MNI support is 2, since node v2 has only two corresponding
images: u3 and u6. Thus, we group the instances according to the
presence of u3 and u6 as follows: I′ = {u1u2u7u3, u7u6}.

The distance between two instance groups is defined as follows.

Definition 5 (Instance group distance). Let sp(u, v) denote the
length of the shortest path from node u to v. Then, instance group
distance δ(I ′, J ′) between instance groups I ′ and J ′ is defined as:

δ(I ′, J ′) = min∀u∈I′,∀v∈J′{sp(u, v)}

Definition 6 (Correlation). Let Q1 and Q2 be two subgraphs of
data graph G with instance groups I′ = {I ′1, I ′2, . . . , I ′σ(Q1)

} and
J′ = {J ′1, J ′2, . . . , J ′σ(Q2)

} respectively. Without loss of generality,
we assume σ(Q1) < σ(Q2)2. Given a distance threshold h ≥ 0,
the correlation κ(Q1, Q2, h) between Q1 and Q2 is the number of
instance groups of Q1 that occur within a distance of h from an
instance group of Q2. Mathematically,

κ(Q1, Q2, h) =
∑
∀I′∈ I′

close(I ′, J′, h)

where, close(I ′, J′, h) =

{
1 if ∃J ′ ∈ J′, δ(I ′, J ′) ≤ h
0 otherwise

Note that the contribution of an instance group to the correla-
tion count is independent of the instance group size. We adopt this
approach due to two reasons. First, computing the size of an in-
stance group, i.e., the number of unique instances within the group

2If σ(Q1) = σ(Q2), then for tie-breaking, we accord lower support to the
pattern with the lower minimum DFS code [65].

is NP-hard [13]. Furthermore, it is needed to keep the definition of
correlation count consistent with the definition of MNI support.

Instead of raw counts, one may also use a normalised measure.

Definition 7 (Normalised correlation). Normalised correlation is
(absolute) correlation normalised by support.

κ̃(Q1, Q2, h) =
κ(Q1, Q2, h)

min{σ(Q1), σ(Q2)}

For brevity, hereon, we assume Definition 6 for correlation value.
Both the absolute and normalised correlation functions are sym-
metric, i.e., κ(Q1, Q2, h) = κ(Q2, Q1, h) and κ̃(Q1, Q2, h) =
κ̃(Q2, Q1, h). Furthermore, the correlation of a pair can only in-
crease with h, since any pair that satisfies the distance constraint
for h = x will also satisfy for h = x+ ∆, for any ∆ ≥ 0.

Example 3. Consider patterns Q1 and Q2 and graph G in Fig-
ure 3. Instance groups ofQ1 are given by I′ = {u1u2u7u3,u7u6},
where the groupings are performed based on the images of node
v2 ∈ VQ1 in G. Similarly, the instance groups of Q2 are given
by J′ = {u5u4, u8u4, u11u12u13}, with the groupings performed
based on the images of node v3 ∈ VQ2 . Assuming h = 1, since
σ(Q1) = 2 < σ(Q2) = 3, we count how many of the two instance
groups of Q1 exist within h = 1 hop of at least one instance group
of Q2 to get correlation between Q1 and Q2. For G, this gives us
κ(Q1, Q2, h = 1) = 2 and κ̃(Q1, Q2, h) = 2/min{2, 3} = 1.

Problem 1 (Top-k Correlated Subgraphs Mining). Given a data
graph G, a user-defined distance threshold h ≥ 0 and a mini-
mum support threshold Σ, find the top-k pairs of subgraph patterns
〈Q1, Q2〉 of G having the highest correlation κ(Q1, Q2, h) , such
that ∀Q1, Q2, σ(Q1) ≥ Σ, σ(Q2) ≥ Σ.

Sanity constraint. We do not consider two patterns as correlated
if one of the following conditions holds. (i) If Q1 is a subgraph of
Q2 (or vice-versa), the correlation is implicit. (ii) If Q1 and Q2

have high correlation only because they are subgraphs of a frequent
pattern Q3, i.e. Q3 � Q1 and Q3 � Q2, the pair 〈Q1, Q2〉 is not
interesting. In our solution framework, we devise a technique to
eliminate such subgraph pairs from the top-k results.

2.2.1 Parameters
There are three input parameters: k, distance threshold h, and

support threshold Σ. k is easy to set and depends on how many
correlated pairs one wants to examine.

The value of h dictates when we call two subgraph instances to
be in close proximity. h could be set either by domain scientists
based on domain knowledge or based on statistical significance.
In the statistical significance mode, we term two instances to be
close if the distance between them is significantly smaller than two
randomly picked subgraph instances. To formalise this intuition,
we compute the distribution of distances between random pairs
of subgraph instances. h can be set such that the probability of
p(sp(g1, g2) ≤ h) ≤ θ, where θ is a probability threshold. This
formulation computes the p-value.

We employ Σ to classify a subgraph as frequent. One heuristic
to set Σ is to set it as X% of the support of the most frequent node
label in the dataset, since MNI support of any subgraph is upper
bounded by the support of the most frequent node label.

2.3 Theoretical Characterisation

Lemma 1. κ(Q1, Q2, h) does not have downward closure prop-
erty. Specifically, consider a subgraph of Q2, say Q3 (i.e., Q2 �
Q3). Then, κ(Q1, Q3, h) ≥ κ(Q1, Q2, h) does not always hold.
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The downward closure property does not hold because as one
grows the pattern (say from Q3 to Q2), the supergraph (Q2) may
now map to larger-sized instances in the data graph that could result
in additional spatial proximity to instances of the other pattern (Q1)
and consequently, a higher correlation. For example, in Figure 3,
considerQ3 as a single node with labelW ; patternsQ1 andQ2 are
as shown. Clearly, Q2 � Q3. We notice that κ(Q1, Q3, h = 1) =
1, however κ(Q1, Q2, h = 1) = 2.

Lemma 2. Correlation metric κ(Q1, Q2, h) does not have upward
closure property. Specifically, consider Q4 � Q1. Then,
κ(Q1, Q2, h) ≤ κ(Q4, Q2, h) does not always hold.

The upward closure property does not hold because as one grows
the pattern (say from Q1 to Q4), the supergraph (Q4) may now
have lower MNI support (due to downward closure property of
MNI support) that could result in a decrease in the count of instance-
groups remaining in proximity to instances of the other pattern
(Q1) and consequently, a lower correlation. For example, in Fig-
ure 3, consider Q4 as consisting of three nodes X-Y -X; patterns
Q1 and Q2 are as shown. Clearly, Q4 � Q1. We notice that
κ(Q1, Q2, h = 1) = 2, however κ(Q4, Q2, h = 1) = 1.

Since downward and upward closure properties are commonly
used in frequent pattern mining [10, 39, 13, 20, 40, 65], in par-
ticular for enabling early termination of mining algorithms, Lem-
mas 1 and 2 demonstrate the inherent complexity of our problem.
Fortunately, however, Lemma 3 below provides a bound on κ that
enables the design of early termination criteria for our algorithm.

Lemma 3. Correlation κ(Q1, Q2, h) between a pair 〈Q1, Q2〉
cannot exceed the MNI support of either Q1 or Q2. That is,

κ(Q1, Q2, h) ≤ min{σ(Q1), σ(Q2)}

Lemma 3 directly follows from Definition 6, which states that κ
is computed from the instance groups of the pattern having lower
support. Therefore, κ cannot exceed MNI support of the less fre-
quent pattern. Using the same reasoning, the normalised correla-
tion value κ̃ is bounded between 0 and 1.

3. EXACT MINING: CSM-E
In this section, we design an exact and holistic algorithm, called

CSM-E (abbreviation for Correlated Subgraphs Mining - Exact)
that follows best-first exploration of frequent subgraph patterns cou-
pled with an early termination strategy to mine the top-k highest
correlated subgraph pairs in a large network.

3.1 Overview
To find the relevant frequent patterns and the top-k correlated

pairs in a holistic manner, we consider a pattern search tree T ,
whose m-th level vertices3 represent m-edged frequent subgraphs.
The first level of T consists of all frequent edges from the data
graph G. For any frequent subgraph in the pattern search tree, we
use subscripts to label its nodes according to their discovery order
[65]. Thus, in a frequent subgraph in T , i < j indicates that node
vi is discovered before vj . An edge from vi to vj with i < j is
called a forward edge; if i > j, the edge is termed backward edge.
We call v0 the root and vn the rightmost vertex, where n+ 1 is the
number of nodes in the subgraph. The direct path (consisting of
forward edges only) from v0 to vn is called the rightmost path.

To construct the (m + 1)-th layer of T from its m-th layer, a
vertex in the m-th layer (i.e., a frequent subgraph), say P , is aug-
mented with a new edge thus creating a new subgraph, say C. We

3To distinguish the nodes of the pattern search tree T from those of the data graph
G, we use the notation vertices for nodes of T .

insert C as a vertex in the (m + 1)-th layer of T if and only if C
is determined to be a frequent subgraph in G. We refer to P as
a parent vertex of C and C as its child vertex in T . Note that C,
having (m + 1) edges, can be generated from upto m + 1 parent
vertices in T . The generation of duplicate graphs in this manner is
redundant and affects the overall efficiency. To reduce the creation
of duplicate graphs, we take inspiration from the rightmost exten-
sion strategy [65]. In particular, (1) forward edges can grow from
nodes along the rightmost path in P , while (2) backward edges can
only grow from the rightmost node vn of P .

While the aforementioned search tree based mining strategy fol-
lows classical frequent graph pattern mining [65], in the following
we shall introduce our three novel technical contributions: (1) the
best-first exploration algorithm, (2) early-termination criteria, and
(3) a memory-efficient structure, Replica, for storing all instances
of a frequent pattern and thus efficiently computing correlation.

In particular, the search tree T is not fully materialised. Instead,
it is built on demand. The exploration strategy varies across differ-
ent graph mining algorithms. For instance, GSPAN explores T in a
depth-first manner [65], while some other apriori-based approaches
such as AGM [28] and FSG [39] construct T in a breadth-first
manner. However, we find that for solving the Top-k Correlated
Subgraphs Mining problem, we can perform search more effi-
ciently than both depth-first and breadth-first exploration strategies.
In § 3.1.1, we propose our novel best-first exploration algorithm.

Next, when a new frequent pattern C is added in T , we com-
pute C’s correlation with all previously explored vertices in T (i.e.,
frequent subgraphs of G that have been discovered prior to C). In
§ 3.2, we discuss details of the memory-efficientReplica structure
for computing correlation.

Finally, we employ a priority queue Q for storing and updating
the top-k highest correlation values and the corresponding pairs,
as they are found. In § 3.1.2, we further propose an early termi-
nation strategy to speed up search, while returning the exact top-k
correlated pairs upon termination. This completes our algorithm.

3.1.1 Best-First Exploration
A pair of subgraph patterns having individual higher support val-

ues can be expected to have higher correlation between them. This
is because such subgraph patterns will have many instances which
would likely be closer to each other in the data graph G. There-
fore, in the earlier stages of our algorithm, it is more beneficial to
consider patterns with higher support values; it can be achieved via
a best-first exploration of the pattern search tree. Let P denote the
set of frequent patterns currently in T and C denote the set of their
children that are frequent and also not included in T . Among all
patterns in C, we pick the one C∗ with the maximum support for
inclusion in T 4, while also removing it from C. We implement C
as another priority queue (referred to as the search queue in our
algorithm) to easily extract C∗ from C. Formally,

C = {C : ∃P ∈ T,C is P ’s child, σ(C) ≥ Σ, C 6∈ T}
C∗ = arg max

C∈C
σ(C)

We notice that unlike GSPAN, a depth-first exploration of the
pattern search tree is not optimal since it identifies many subgraph-
supergraph pairs at earlier stages, which are not useful for the CSM
problem. On the other hand, breadth-first exploration is more mem-
ory intensive and based on empirical results reported in § 5, it is still
less efficient compared to our proposed best-first strategy.

4If multiple patterns in C have the same maximum support, we break the tie based
on minimum DFS code [65] of these patterns.
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Pruning duplicate subgraphs. Following the rightmost extension
rules reduces the generation of duplicate graphs but the problem
is not entirely eliminated. To avoid processing a duplicate pat-
tern, we take advantage of the minimum DFS code [65]. We use
a hash table H to store the minimum DFS codes for all vertices
(i.e. frequent subgraphs) already in T . Whenever a subgraph C∗

is selected from C, we compute its minimum DFS code, denoted
byMinDFS(C∗) and perform a lookup inH . IfMinDFS(C∗)
is found, then C∗ must have been discovered previously since two
graphs have the same minimum DFS code if and only if they are
isomorphic [65], in which case, we do not insert C∗ in T .

The completeness guarantee of generating all frequent subgraphs
via rightmost extension along with the aforementioned pruning strat-
egy for eliminating duplicate patterns directly follows from guaran-
tees proven in GSPAN; we omit the proof for brevity.
Eliminating subgraph-supergraph pairs. To avoid calculating
correlations between subgraph-supergraph pairs, we perform sub-
graph isomorphism checks between C∗ and every frequent pattern
Q in T and eliminate all pairs where such a relationship exists.

3.1.2 Early Termination Criteria
Our objective is to mine the top-k pairs of correlated (frequent)

subgraphs, and ensure that no other pair has a higher correlation
value κ than any pair in our top-k priority queue Q. Lemma 3
(§ 2.3) allows us to deduce the following. Assume,C∗ is the current
frequent subgraph selected from C. By Lemma 3, κ(C∗, Q, h) ≤
σ(C∗), for all frequent subgraphs Q already in the pattern search
tree T . Moreover, for any other patternC1 that would be added in T
after C∗, σ(C1) ≤ σ(C∗) due to best-first exploration, thereby re-
sulting in κ(C1, Q, h) ≤ σ(C1) ≤ σ(C∗), for all Q in T . Hence,
if at any stage, we have σ(C∗) lower than the least correlation value
in Q, while Q being full, we can safely terminate our search, and
report the subgraph pairs inQ as our exact solution set.

It is also possible that k correlated pairs do not even exist in the
data graphG, given some higher minimum support threshold Σ and
larger values of k. In this case, Q would not be full and yet there
would not exist any more frequent subgraphs to include in T . Thus,
we terminate our algorithm.
Eliminating pairs with high correlation only due to a frequent
supergraph. This case arises for a subgraph pair 〈Q1, Q2〉 in pri-
ority queue Q, where C∗ � Q1 and C∗ � Q2, only if C∗ has
the same support as the correlation between Q1 and Q2. Since
σ(C∗) = κ(Q1, Q2, h), and 〈Q1, Q2〉 is inQ, the termination cri-
teria of our algorithm will not be satisfied. To remove 〈Q1, Q2〉
from Q, we incorporate the following procedure in our mining al-
gorithm: whenever a new pattern C∗ is extracted from the search
queue C and the termination criteria remains unsatisfied, we check
for the existence of a correlated pair 〈Q1, Q2〉 inQ, such that both
Q1 and Q2 are subgraphs of C∗ and σ(C∗) = κ(Q1, Q2, h), in
which case, we eliminate 〈Q1, Q2〉 and the associated correlation
value κ(Q1, Q2, h) fromQ.

3.1.3 Putting Everything Together
Algorithm 1 describes our pipeline. It begins by finding all fre-

quent edges in data graph G, which are then queued in the search
queue C following a frequency-determined priority ordering (Line
2). Search begins and continues as long as C contains queued pat-
terns and the termination condition remains unsatisfied (Lines 5-
18). C∗, selected as the best-first choice from C, is processed for
correlation (§ 3.2.4) with every other previously explored pattern
Q in search tree T subject to satisfaction of constraints described
in § 3.1.1, 3.1.2 (Lines 6-13). Top-k priority queue Q is updated
based on the computed κ values (Line 14). C∗ is then inserted in

Algorithm 1: MINING TOP-k CORRELATED PAIRS

Input: data graphG = (V,E, L), parameters Σ, h ≥ 0, k
Output: Top-k pairs of correlated patterns s.t. each pattern has support≥ Σ

1 Initialize Pattern Search Tree T ← ∅
2 Initialize Search Queue C← Frequent Edges inG
3 Initialize Hash TableH ← ∅
4 Initialize Priority QueueQ ← ∅ with size-bound k
5 while C is non-empty do // Search
6 Pattern C∗ ← BEST-FIRST-POP(C) (§ 3.1.1)
7 if TERMINATION CONDITION (§ 3.1.2) is True then
8 Goto Line 19

9 ifMinDFS(C∗) 6∈ H then
10 if ∃〈Q1, Q2〉 ∈ Q, κ(Q1, Q2, h) = σ(C∗), C∗ � Q1, Q2

then Remove 〈Q1, Q2〉 fromQ
11 foreachQ ∈ T do
12 ifQ is not a subgraph of C∗ then
13 Compute correlation κ(C∗, Q, h) (§ 3.2)
14 Insert κ(Q1, Q2, h) inQ (if necessary)

15 Insert C∗ in T ,MinDFS(C∗) inH
16 Find Children(C∗) via RIGHTMOST EXTENSION (§ 3.1)
17 foreach Child∈ Children(C∗) do
18 if σ(Child)≥ Σ then Insert Child in C

19 return Top-k correlated pairs currently inQ

T and its minimum DFS Code in H (Line 15), followed by the ex-
tension of C∗ to generate its child patterns (Line 16). All frequent
children of C∗ are queued in C for processing (Lines 17-18) and
the loop continues. Upon termination, the algorithm returns top-k
pairs of correlated subgraphs (Line 19).

3.2 Storing Subgraph Instances
Computing correlation κ between two subgraph patterns requires

enumerating and finding distances between every pair of instances
for both these patterns. This is a challenging problem due to the fol-
lowing reasons: (1) storing all instances of all frequent subgraphs
explored by our algorithm can easily overwhelm the memory. Note
that frequent subgraphs mining algorithms such as GSPAN [65]
and GRAMI [17] do not require all instances of all discovered fre-
quent subgraphs to be stored. In particular, GRAMI employs a con-
straint satisfaction problem (CSP) that only finds the minimal set
of instances needed to meet the frequency threshold and avoids the
costly enumeration of all instances. Therefore, such a requirement
for CSM presents an additional challenge. (2) Moreover, many
redundant distance computations could take place. For example,
assume instances I1 and I2, corresponding to patterns Q1 and Q2

respectively, occur in data graph G within h-hops. Consider a su-
pergraph Q3 � Q1 and its instance I3. Assume that I3 � I1 in
G. To compute correlation between Q3 and Q2, evaluating the dis-
tance between their corresponding instance pair I3 and I2 is redun-
dant since it is guaranteed that they would also exist within h-hops
of each other.

To address both these challenges, we propose an efficient data
structure calledReplica, defined as follows.

3.2.1 The Replica Data Structure
Given a data graph G and pattern Q = (VQ, EQ, L), the corre-

sponding Replica(Q) = (VR(Q), ER(Q), L) is a subgraph of G,
constructed by the graph-union5 of all instances of Q in G. Since
Replica(Q) is a subgraph, it is stored as an adjacency list.

In addition to the aforementioned graph, we store two kinds of
node mappings as follows:

5The union G = G1 ∪ G2 of graphs G1 = (V1, E1, L) and G2 =

(V2, E2, L) is G = (V1 ∪ V2, E1 ∪ E2, L).
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Forward Node Mapping. ∀u ∈ VQ, we define a forward node
mapping MR(Q)(u) that stores the set of all nodes v ∈ VR(Q),
such that v is a mapping of u in some instance I of Q within
Replica(Q).

Inverse Node Mapping. ∀v ∈ VR(Q), we define an inverse node
mapping M−1

Q (v) that stores the set of all nodes u ∈ VQ such that
v ∈ MR(Q)(u).
Replica provides a middle ground between two extreme strate-

gies, i.e. (1) explicitly storing all instances of all generated pat-
terns [40], or, (2) enumerating all instances of a pattern on-demand
(during runtime) in the entire data graph G. In contrast to these
alternatives, theReplica is economical from the viewpoints of both
storage and efficiency. It not only avoids a potential out of memory
(OOM) state by implicitly storing all instances of a pattern, but
also lays a robust foundation for carrying out efficient correlation
calculations that we shall discuss in § 3.2.4.

Note that both Forward and Inverse Node Mappings can be de-
duced from the Replica(Q) subgraph via subgraph isomorphism
with pattern Q. However, we explicitly maintain these mappings
for computational efficiency since Forward Node Mapping allows
us to readily compute MNI support σ(Q) and also assists inReplica
generation, while the Inverse Node Mapping enables us to quickly
prune candidate nodes of Replica(Q) for matching with a node in
Q while performing subgraph isomorphism (§ 3.2.2).

3.2.2 Building On-Demand Replica for New Patterns
We createReplicas in an incremental manner. GivenReplica(Q)

of a parent pattern Q, we generate Replica(R) of its child pattern
R. Our approach for exact Replica extension is given in Algo-
rithm 2, which essentially describes a backtracking procedure for
subgraph isomorphism similar to the Ullman’s algorithm [60].

Algorithm 2 begins with a depth-first search (DFS) procedure
(Line 1) executed on parent Q, selecting u ∈ VQ at which the ex-
tending edge (u, v) is grown, as the root. We call u the extending
node. Both forward and backward edges encountered in the DFS
starting at u are recorded in an ordered list called the DFS List,
which guides the isomorphism performed subsequently. For every
mapping u′ of u inReplica(Q), the algorithm attempts to enumer-
ate all instances of childR inG fixing u 7→ u′ (Lines 3-10). It does
so by matching v next, the newly extended node to all nodes v′ ∈ V
adjacent to u′, such that edge (u′, v′) ∈ E is a valid mapping for
(u, v) ∈ ER (Lines 5-6). It then invokes FINDALLINSTANCES
(Algorithm 3) which uses Replica(Q) to find every instance of R
such that u 7→ u′ and v 7→ v′ (Line 7).

Algorithm 2: BUILD REPLICA FOR A NEW PATTERN

Input: data graphG = (V,E, L), parent patternQ = (VQ, EQ, L),
Replica(Q) = (VR(Q),ER(Q), L), child patternR = (VR,ER, L),
extending node: u ∈ VQ, extending edge: (u, v) ∈ ER

Output: Replica(R)

1 DFS List(Q)← get edge list via rooted DFS inQ with u as root
2 Initialize instance← ∅, I← ∅
3 foreach u′ ∈ MR(Q)(u) do
4 instance.add(u 7→ u′)

5 foreach edge (u′, v′) ∈ E that maps to the extending edge
(u, v) ∈ ER do

6 instance.add(v 7→ v′)
7 I← FINDALLINSTANCES(G, Q,Replica(Q), R,

DFS List(Q), instance, I)
8 UPDATEREPLICA(R,Replica(R), I)
9 instance.delete(v 7→ v′)

10 instance.delete(u 7→ u′)

11 returnReplica(R)

Algorithm 3: FINDALLINSTANCES: EXACT METHOD

Input: data graphG = (V,E, L), parent patternQ = (VQ, EQ, L),
Replica(Q) = (VR(Q),ER(Q), L), child patternR = (VR,ER, L),
DFS List(Q), partial isomorphism ofR: instance, I

Output: I : set of all instances ofR inG consistent with input partial
isomorphism instance

1 if instance is Found then
2 return {instance}
3 else
4 e = (p, c)← NEXTQUERYEDGE(DFS List(Q))
5 p′ ← instance(p)
6 if e is a backward edge then
7 if an edge (p′, instance(c)) exists inER(Q) then
8 I← I ∪ FINDALLINSTANCES(G, Q,Replica(Q), R,

DFS List(Q), instance, I)
9 else

10 return ∅

11 else
12 Pc ← FILTERCANDIDATES(p′ , c, Q,Replica(Q))
13 foreach c′ ∈ Pc s.t. c′ is not matched in instance do
14 instance.add(c 7→ c′)
15 I← I ∪ FINDALLINSTANCES(G, Q,Replica(Q), R,

DFS List(Q), instance, I)
16 instance.delete(c 7→ c′)

17 return I

Algorithm 3, as invoked above, recursively enumerates all in-
stances of R in a depth-first manner following DFS List(Q). In the
general case (Lines 4-17), the algorithm begins by invoking NEX-
TQUERYEDGE which returns one edge at a time from EQ in the
order of DFS List(Q). Edge e = (p, c), thus returned, connects
nodes p, c ∈ VQ such that c is the pattern node to be matched next;
p is already matched to p′ ∈ VR(Q). (The first call to Algorithm
3 in every iteration of the inner loop in Algorithm 2 always has
p matched with u′, i.e., instance(p) = u′ since p = u). If e
is a backward edge, c is already matched in which case the algo-
rithm checks whether an edge exists in Replica(Q) connecting p′

and instance(c): if it does exist, it proceeds with the search for
the next node matching, but returns unsuccessfully if it does not.
If e is a forward edge, the algorithm calls FILTERCANDIDATES
to compute the candidates set Pc for storing all candidate nodes
c′ ∈ VR(Q) for matching c such that: (1) c′ is a neighbor of p′ in
Replica(Q), and, (2) c exists in the Inverse Node Mapping set for
c′ in Replica(Q), i.e., c ∈ M−1

Q (c′); Next, for every node c′ ∈ Pc
such that c′ has not already been matched in the current instance,
the algorithm attempts the match c 7→ c′ in instance and recursively
calls FINDALLINSTANCES to match remaining pattern nodes fol-
lowing the edges in DFS List. Base case (Lines 1-2) occurs when
the algorithm finds an instance of R after matching every edge in
DFS List(Q), which it returns.

The set of all instances I thus found is returned by Algorithm 3
(Line 17) and recorded by Algorithm 2. In UPDATEREPLICA (Line
8, Algorithm 2), the algorithm updates Replica(R) by performing
a graph union with all the mined instances in I. It also updates
the MR(R) (Forward) and M−1

R (Inverse) Node Mapping indices
to record new mappings found for every instance in I. Thus, we
obtain theReplica of a child pattern using theReplica of its parent.

Example 4. Consider data graph G, pattern Q and the corre-
sponding Replica(Q) as shown in Figures 4a, 4b and 4c respec-
tively. Pattern Q is extended at the extending node s0 using the
extending edge (s0, s3) to generate child R, shown in Figure 4d.
Assume DFS List for DFS(Q) starting at root s0 records edges
(s0, s1) and (s0, s2) in order. To construct Replica(R), the al-
gorithm iterates over MR(Q)(s0), i.e., the set {v0, v1}. With s0 7→
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Figure 4: Replica generation for a new subgraph pattern using theReplica of its parent pattern

v0, the algorithm then considers nodes inG for matching the newly
extended node s3. Clearly, the candidate nodes for matching s3 are
v2 and v3. Next, for each of s3 7→ {v2, v3}, the algorithm makes
recursive invocations to enumerate valid mappings for nodes s1
and s2 following the DFS List, thus successfully enumerating in-
stances ofR. With s0 7→ v1, however, no mappings exist for match-
ing s3 in G. Graph union of all instances of R thus enumerated
results inReplica(R) as depicted in Figure 4e.

3.2.3 Replica Deletion for Parent Patterns
We build and maintain the following two distance-based global

indices, which allow the deletion of Replicas of parent patterns
once all their frequent child patterns (generated via rightmost ex-
tension) have been included in the pattern search tree T .
Proximate-Nodes Index. For each frequent node u in graphG, we
store the set CorV (u) = {v ∈ V | sp(u, v) ≤ h, v is frequent}.
We store this information as a hashmap where the key is the node
ID and the value is the CorV set for that node. This index is con-
structed only once before our mining process starts by performing
a breadth-first search from each frequent node.

The memory consumption significantly depends on the distance
threshold h. As h increases, more nodes satisfy the distance con-
straint and therefore need to be stored in CorV (u). While in our
empirical evaluation, we never encounter the case where the size
of this index exceeds the main memory capacity, we discuss two
strategies to handle such a situation should it arise. First, if the
fraction of nodes satisfying the distance constraint is above 50%
on average, which is typically the case for h ≥ 3 (see Figure 7a),
then one may instead store the complement set, i.e. nodes that do
not satisfy the distance constraint. This set encodes the same in-
formation while being smaller in size. Second, one could adopt a
hybrid approach. Specifically, for each frequent node u, we can
store all frequent nodes within a distance threshold h′ < h such
that this information can be stored in main memory. To compute
if sp(u, v) ≤ h, we first fetch the set of nodes U1 within h′ from
u in constant time. If v 6∈ U1, we recursively fetch U2 = {u2 |
sp(u1, u2) ≤ h′, u1 ∈ U1} and check if v ∈ U2. This process
continues iteratively for i iterations till i× h′ exceeds h.
Proximate-Patterns Index. For each frequent node u in data graph
G, this index, denoted by CorP (u), stores the set of all frequent
patterns that are already included in T and whose instance(s) exist
within h distance of u. Mathematically, ∀Q ∈ CorP (u), (1) Q ∈
T , and (2) given the instance groups I′ = {I ′1, I ′2, . . . , I ′σ(Q)} of
Q, ∃I ′ ∈ I′, ∃v ∈ I ′ such that sp(u, v) ≤ h. CorP index is
incrementally updated each time a new pattern Q is inserted in T .
The details of CorP maintenance will be discussed in § 3.2.4.

3.2.4 Correlation Computation
We recall that when a pattern C∗ is extracted from the search

queue C, its correlation is calculated with every pattern already
in the pattern search tree T . In the following, we focus on the
computation of correlation κ(C∗, Q, h) betweenC∗ and someQ ∈
T . Due to our best-first exploration strategy, σ(C∗) ≤ σ(Q), thus

we need to verify whether for every instance group I ′ of C∗, there
exists an instance group of Q within distance h of I ′.

First, to find all instance groups ofC∗ in data graphG, our novel
data structureReplica(C∗) can be immediately used. The Forward
Node Mapping MR(C∗) allows us to readily compute the MNI sup-
port of C∗, and also the node v in C∗ having the minimum MNI
support. For every node v′ ∈ MR(C∗)(v), we enumerate from
Replica(C∗) all instances of C∗ having v 7→ v′ (Algorithm 3).
This generates the instance group of C∗ where v 7→ v′. In this
way, we efficiently enumerate all instance groups of C∗.

Given an instance group I ′ of C∗, we evaluate if any instance
group of Q exists within distance h of I ′. Consider CorP (w)
for each node w ∈ I ′. If ∪w∈I′CorP (w) contains Q, it means
that there exists some instance group of Q within distance h of
I ′. Finally, we count, out of all σ(C∗) instance groups of C∗,
how many instance groups are in proximity to at least one instance
group of Q. This count is reported as the correlation κ(C∗, Q, h).
In this way, the Proximate-Patterns Index (CorP ) aids in efficient
correlation computation.
Incrementally Updating Proximate-Patterns Index. For each
node w ∈ I ′, if CorV (w) contains node u, we include the new
pattern C∗ in CorP (u). In other words, for every node u ∈
∪w∈I′CorV (w), the Proximate-Patterns Index CorP (u) is up-
dated to include pattern C∗. Thus, we ensure that at any point in
our algorithm, CorP (u) would contain all patterns in T that are
within distance h of u.

3.2.5 Novelty and Usefulness of Replica
We explained in § 3.2 the usefulness of Replica for CSM. We

conclude this section by briefly discussing its novelty in regards to
existing compression methods for graph mining, as well as pointing
out other workloads whereReplica could be beneficial.

Given a graph database consisting of multiple graphs, Chen et al.
developed Summarize-Mine [15] that first summarises the original
graphs, which are then mined for frequent patterns. In contrast,
Cook et al. [16] and Maneth et al. [44] recursively replace frequent
substructures in graphs, which minimises the minimum description
length (MDL) cost, with a meta-node. A pattern that compresses
a large portion of most graphs in the mining set, but that occurs
less frequently, could be preferred over a less complex but more
frequent pattern. Replica has a different objective: it enumerates
all instances of a frequent pattern for a single large graph in a com-
pressed and efficient manner.

We envision thatReplica could also be useful in interactive and
iterative search and exploration scenarios [30, 29], for instance,
when a user reformulates a past query by adding more constraints.
Since Replica enables an efficient computation of instances of a
supergraph pattern extended from its parent (§ 3.2.2), it could be
beneficial in such interactive query processing workloads.

3.3 Complexity Analysis
Consider data graph G with n nodes and m edges of which nf

nodes andmf edges are frequent based on the input minimum sup-
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Figure 5: Repeated traversals during subgraph isomorphism

port threshold Σ. We denote by nh and mh, the maximum number
of nodes and edges in the h-hop neighbourhood of any node in G,
respectively. The pattern search tree T has at most nT vertices,
with n′T vertices having at least one frequent child in the search
queue C, during the execution of our algorithm. Let the maximum
number of nodes and edges in any pattern Q mined by our method
be nQ andmQ and those in aReplica be nR andmR respectively.
Also, assume the maximum size of Forward Node Mapping Set is
M for some node in a frequent pattern mined by our algorithm.
Time Complexity. Consider Replica generation for a new pattern
Q (§ 3.2.2). Building Replica(Q) requires performing subgraph
isomorphism for Q in G. Hence, the associated time complexity
is O(MnQ). Next, the construction of the Proximate-Nodes In-
dex (§ 3.2.3) requires h-hop BFS from every frequent node in G,
hence it has a time complexity of O(nf (nh + mh)). In contrast,
the Proximate-Patterns Index is updated whenever a new frequent
pattern is mined. It requires traversing all nodes in the correspond-
ing Replica subgraph and accessing their CorV indices, costing
O(nRnf ) time. Since T has at most nT vertices, the total com-
plexity of updating CorP is O(nRnfnT ). Finally, the complex-
ity of correlation computation (§ 3.2.4) between a new pattern Q
and any existing pattern in T is essentially determined by the cost
of performing subgraph isomorphism for Q in Replica(Q), i.e.,
O(MnQ). Since there can beO(n2

T ) correlation computations, the
total time complexity isO(n2

TM
nQ). Overall, the time complexity

of CSM-E6 is O(MnQn2
T + nRnfnT + nf (nh +mh)).

Incremental Top-k Computation. Assume that a user starts with
a low value for k and increases k incrementally based on how many
more pairs they want to explore. It is desirable that the computation
is not restarted. Rather, the information already mined should be
reused and any additional computation should only be performed
to identify additional pairs. Our strategy supports this incremental
computation mode as the answer set of top-k is a proper subset of
top-(k + 1). Following the previous discussion, the complexity of
computing the (k + 1)-th correlated pair, assuming that the top-k
pairs were already mined, is: O(MnQ + nRnf ).
Space Complexity. The space complexity is bounded by the size
of Replica structures and all indices i.e., MR(Q) and M−1

Q Map-
pings (corresponding to eachReplica), as well asCorV andCorP
global indices. Since we only store theReplica ofO(n′T ) patterns,
this requires O((nR + mR)n′T ) space. Both MR(Q) and M−1

Q

mappings require O(nQM) memory. Finally, CorV and CorP
requireO(n2

f ) andO(nfnT ) space respectively. The overall com-
plexity is O((nR +mR + nQM)n′T + n2

f + nfnT ).

4. APPROXIMATE MINING: CSM-A
TheReplica construction algorithm (§ 3.2.2) for a subgraph enu-

merates all its isomorphisms in the data graph. This computation

6We neglect the times required for maintaining search queue C, verifying
supergraph-subgraph relationships between Q and existing patterns in T , comput-
ing minimum DFS codes and rightmost extensions due to relatively smaller sizes of
frequent patterns mined by our algorithm.

is expensive since subgraph isomorphism is NP-hard. Moreover,
the number of instances of a pattern generally grows exponentially
with increasing density and size of the data graph. As a result, Al-
gorithm 3 might not scale well. For better scalability, we develop
a near-optimal approximation algorithm that skips enumerating in-
stances that are likely redundant (§ 4.1).

4.1 Identifying Redundancy
In many cases, to construct aReplica, the identification of all in-

stances of the query pattern may not be necessary. To illustrate, let
us revisit pattern Q and Replica(Q) in Example 4 (Figure 4). To
build Replica(R) for Q’s child pattern R via the exact approach,
edges e1 = (v0, v2) and e2 = (v0, v3) in G are tried as map-
pings for the extending edge (s0, s3) ∈ ER. To record e1 as a
valid extension edge mapping, we enumerate all instances of R
using Replica(Q) that are consistent with (s0, s3) 7→ e1. Now,
while considering the second edge e2 = (v0, v3) as a mapping
of (s0, s3), the enumeration scheme is exactly repeated. Here, we
observe that e2 is symmetric to e1 since both of them share the ex-
tending node v0 and both v2 and v3 map to s3. Consequently, any
instance mapping that is applicable for e1 is also likely to be appli-
cable for e2. Thus, enumeration of all instances may be redundant.

The impact of redundant computations in symmetric extensions
can be further appreciated from the following example. In Figure 5,
R′ is a subgraph pattern and Replica(R′) is its Replica subgraph.
As in Example 4, we are again considering edge (s0, s3) as the
extending edge. However, unlike Figure 4 where s1 and s2 are
leaf nodes, here two arbitrary subgraphs α and β are attached at s1
and s2 respectively. To constructReplica(R′), the exact algorithm
would enumerate every instance of R′, which means that the same
three mappings of α in Replica(R′) would be visited multiple
times through nodes v3 and v4 for the two extending edge mappings
(s0, s3) 7→ e1 = (v0, v1), followed by (s0, s3) 7→ e2 = (v0, v2);
worse, for each α, both the mappings of β would be enumerated
twice — once each through nodes v5 and v6. Clearly, these re-
peated traversals over the same portion of the graph do not yield
new information. These redundant traversals can be avoided if
we have the ability to identify symmetric edges in the Replica.
For instance, edges e1 and e2 in Replica(R′) are symmetric and
hence while considering the second extending edge e2, we can
simply reuse the instance enumerations mined with the first edge
e1. Moreover, while enumerating the instances corresponding to
(s0, s3) 7→ e1, we observe that edges (v3, v7) and (v4, v7) are
symmetric and therefore enumerating the three α subgraphs twice
can be avoided by reusing the instance mappings obtained with e1,
for instances mining with e2. The same applies to edges (v5, v8)
and (v5, v9) as well. Armed with this intuition, our objective, there-
fore, is as follows: (1) identify if two or more edges in aReplica are
symmetric to each other, and, (2) for a group of symmetric edges,
enumerate all instance mappings for only one edge from the group
and reuse these mappings for remaining symmetric edges.

4.2 Algorithm
Definition 8 (Symmetric Edges). Given patternQ andReplica(Q),
edges e1 = (va, vb) ∈ ER(Q) and e2 = (vc, vd) ∈ ER(Q) are de-
fined to be symmetric if (1) a = c, and (2) both vb and vd map to
the same node in pattern Q.

We now describe the approximation algorithm called CSM-A
(Correlated Subgraphs Mining - Approximate), which uses sym-
metric edges to reduce repeated traversals. Recall, Replica edges
are mapped to pattern edges following the DFS order. While pro-
cessing a Replica edge following this order, we check if it is sym-
metric to one of the already enumerated Replica edges (for the
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same pattern edge). If it is not, the algorithm proceeds in exactly
the same manner as in CSM-E (Algorithm 3) but for one differ-
ence: now, all the newly mined Replica edges are indexed and
stored. In contrast, if the candidate Replica edge is determined to
be symmetric, we do not recompute all mappings. Rather, we reuse
the Replica mappings that have been indexed in a previously enu-
merated symmetric edge and among those mappings check if there
exists at least one instance. If one such instance is found, this can-
didate edge is also added to the Replica graph and indexed. Thus,
we reduce repeated traversals over explored mappings.

Example 5. Consider data graph G and patterns Q and R as
shown in Figure 6. With extending edge (s2, s3), pattern R is ex-
tended from parent Q. To generateReplica(R) fromReplica(Q),
CSM-A attempts to enumerate instances of R in G by first map-
ping extending edge (s2, s3) 7→ (v0, v2). Following this map-
ping, CSM-A, like CSM-E, mines all isomorphisms by mapping
(s2, s1) 7→ (v0, v3) and (s1, s0) 7→ (v3, v5) and (v3, v1), in DFS
order. Thus, nodes v5 and v1 are considered valid mappings for s0.
Next, when CSM-A attempts to enumerate instances after mapping
(s2, s3) 7→ (v1, v4), it recognises the symmetricity between edges
(v1, v3) and (v0, v3) and so in order to map edge (s1, s0), it only
traverses the already confirmed mappings set {(v3, v5), (v3, v1)}
instead of all the edges adjacent to v3 again. Furthermore, even
while traversing the set of confirmed mappings, we stop as soon as
one instance is found, which further reduces the computation cost.

4.3 Properties
To understand the approximation in the above algorithm, let us

revisit Example 5. While enumerating instances with the extend-
ing edge mapped to (v1, v4), due to the symmetric relation be-
tween (v1, v3) and (v0, v3), the algorithm searched only within the
confirmed edges (v3, v5) and (v3, v1) to map (s1, s0). However,
(s1, s0) could also be mapped to (v3, v0) to constitute an instance
with s3 7→ v4, s2 7→ v1, s1 7→ v3 and s0 7→ v0, which CSM-A
failed to enumerate. To generalise, CSM-A may miss a mapping
if some node in the data graph can be mapped to multiple nodes
of the subgraph pattern. In Figure 6, this occurs, where v0 (or v1)
may be mapped to either s2 or s0. It can be guaranteed, however,

Table 1: Datasets and characteristics

Dataset Nodes Edges Node labels Edge labels Domain
Chemical 207 205 4 2 Biological
Yeast 4K 79K 41 1 Biological
Citeseer 3K 4.5K 6 5 Collaboration
MiCo 100K 1M 30 106 Collaboration
LastFM 1.1M 5.2M 83K 1 Social Network
Coauthor (DBLP) 1.7M 7.4M 11K 1 Collaboration
Citation (DBLP) 3.2M 5.1M 11K 1 Collaboration
Memetracker 96.6M 418.2M 24.75M 1 Web

that there are no false positives since any edge that we add to the
Replica corresponds to at least one valid instance from the sub-
graph. Consequently, we can state the following theorem.

Theorem 1. For any pair of subgraphs Q,R ∈ T , consider σ(Q)
to be the MNI support of Q and κ(Q,R, h) the correlation be-
tweenQ andR at separation h computed via CSM-A, and σ∗(Q),
κ∗(Q,R, h) be the respective values computed via CSM-E. Then,
(1) σ(Q) ≤ σ∗(Q), and (2) κ(Q,R, h) ≤ κ∗(Q,R, h) hold true.

5. EXPERIMENTAL EVALUATION
In this section, we benchmark the proposed exact (CSM-E) and

approximation (CSM-A) algorithms. The implementation is avail-
able at https://github.com/idea-iitd/correlated-subgraphs-mining.

5.1 Experimental Setup
All algorithms have been implemented in C++11 using GCC

7.4.0 compiler on a system running Ubuntu 18.04 with a 2.1 GHz
Intel R© Xeon R© Platinum 8160 processor and 256 GB RAM.

5.1.1 Datasets
We use eight real networks (Table 1).

Chemical [3]. This graph represents the structure of an anti-breast
tumor compound in the MCF7 Dataset [65]. Each node represents
a chemical atom, and two nodes are connected by an edge if they
share a chemical bond.
Citeseer [4]. Each node is a publication with its label categorising
the area of research. Two nodes are connected if one of the two
papers is cited by the other. The edge label is an integer in the range
[0, 5], representative of the similarity between the two papers such
that a smaller label denotes stronger similarity (label 0 indicates
similarity among the top 20 percentile, and so on).
Coauthor (DBLP) [5]. A coauthorship network in which two au-
thors (represented by nodes) are connected if they have collabo-
rated on at least one paper together. The label of a node is the
conference in which that author has published the most.
Citation (DBLP) [5]. Each node is a publication and the label is
the publication venue. Two nodes share an edge if one of the two
papers is cited by the other.
LastFM [6]. LastFM is a social network of users where the node
label represents the most frequent music band that the correspond-
ing user listens to.
Memetracker [7]. In this dataset, each node corresponds to a web
document and two documents are connected if one document con-
tains a hyperlink to the other. The node labels correspond to the
memes contained in the document. A meme corresponds to quotes
or phrases that appear frequently over a time period.
MiCo [8]. MiCo models Microsoft coauthorship information. Each
node represents an author and the label is the author’s field of in-
terest. Edges represent collaboration between authors and the edge
label is the number of coauthored papers.
Yeast [9]. This dataset represents the Protein-Protein Interaction
(PPI) network in Yeast. The node labels denote their gene ontology
tags [11], which capture their biological functions and properties.

5.1.2 Parameters
Unless otherwise stated, the default value of k is 20. The de-

fault distance threshold is set to h = 1. Here, we point out that
h ≥ 3 is not semantically meaningful since at large h, most nodes
are reachable from each other, and hence, almost all pairs of fre-
quent patterns report high correlation values. We provide empirical
evidence in Figure 7a: while varying h, the average proportion of
frequent pattern instances that are reachable from a randomly cho-
sen frequent pattern instance is measured. Notice that at h = 3,
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Figure 7: (a) Growth of average reachability against h. (b-e) Growth of running time against support threshold.

barring Citation, datasets have a reachability of at least 70%. Even
in Citation (a sparse dataset), the reachability is almost 25% and
increases exponentially with h.

5.1.3 Baselines
(1) GRAMI+VF3 (GVF3): This baseline approach has been dis-
cussed in detail in § 1.1. As reported, CSM-A is up to 5 orders of
magnitude faster than GVF3 on Citation.
(2) GROWSTORE (GS): GS [40] employs the same algorithm as
CSM-E but for one key difference: instead of employing Replica
to summarise all instances, GS explicitly stores every instance in
memory. Comparison against GS allows us to quantify the benefits
of using theReplica data structure.

5.2 Impact of Optimisation Techniques
Our approach leverages three different optimisation techniques:
Replica for data compression, CSM-A, which is a near-optimal
approximation strategy to remove redundant enumerations and best-
first search for efficient searching. In this section, we systemati-
cally study the impact of each of these optimisation strategies.
Impact ofReplica and CSM-A on Running Time. First, we mea-
sure the impact of Replica and CSM-A. To that end, we compare
the performance of CSM-E with CSM-A and GS. Due to large
memory consumption in GS, in this experiment, we restrict to min-
ing correlations only among subgraphs of size up to 5 nodes.

Figures 7b-7e present the running times across various datasets.
Several insights can be derived from these results. First, Replica
imparts a computational speed-up of 1.5X-6X as is evident from
the differences in running times between CSM-E and GS. Sec-
ond, the impact of removing redundant enumerations, i.e., CSM-
A, varies across datasets with the difference being more prominent
at lower support threshold Σ. This is expected since as Σ is low-
ered, the search space increases exponentially and the impact of
avoiding repetitive computation (§ 4.2) magnifies. While in MiCo
and Coauthor, the time gap between CSM-A and CSM-E is sig-
nificant, in LastFM and Citation, we do not observe a significant
speed-up. CSM-A removes enumeration of symmetric extensions.
Thus, the speed-up achieved due to CSM-A is directly correlated
to the prevalence of symmetric extensions in the dataset. Third,
Replica has a higher impact on efficiency than removing redundant
enumerations in CSM-A. Fourth, CSM-A is the fastest across all
datasets due to utilising Replica and avoiding redundant enumer-
ations. In Figures 7b-7e, for CSM-A, we include both (absolute)
correlation κ and normalised correlation κ̃ as ranking metrics. The
execution times remain almost identical for both metrics.
Impact ofReplica on Memory Footprint. In Figure 8a, we com-
pare the memory footprint of CSM-A with GS in Citeseer. Since
CSM-E has similar memory requirements as CSM-A, we do not
present CSM-E results in Figure 8a. So far, we have used the re-
striction of mining correlations only among subgraphs of size up to
5. Without this constraint, even in Citeseer which is a small dataset

of 4500 edges, GS consumes more than 10GB at Σ = 175, which
increases to exceed 256GB at Σ = 150. In contrast, the memory
footprint of CSM-A is 100 times lower on average. Overall, the
stark difference in memory consumption between CSM-A and GS
highlights the benefits of usingReplica as a compact data structure
to store isomorphisms.
Search Strategy. We adopt best-first search (BEST) strategy to
explore the search space. How is the performance impacted if we
adopt BFS or DFS instead? Our next experiment answers this ques-
tion. We explore the search space using each of these strategies and
empirically track their pruning capacity by counting the number of
patterns popped from the Search Queue.

Figures 8b-8c present the results against k. BEST is built on the
observation that subgraphs with higher frequency tend to have a
higher correlation with other frequent subgraphs. This prioritisa-
tion scheme yields better results.

We observe that the impact of BEST is higher in Chemical than
in LastFM. To better understand this result, we extract the corre-
lation and support values of all patterns explored by BEST. Recall
that BEST terminates when the maximum support of any unex-
plored subgraph is smaller than the k-th correlation count. Since
BEST explores subgraphs in descending order of support, the max-
imum possible support of any unexplored subgraph is at most the
minimum support of all explored subgraphs. In Chemical, if we
sort the explored subgraph patterns based on support in descend-
ing order, the support drops steeply as we go down the sorted or-
der. In LastFM, this decrease in support in the sorted order is more
gradual. Consequently, the termination condition in Chemical is
satisfied much earlier than in LastFM.

5.3 Approximation Quality
We evaluate the approximation quality of CSM-A by comparing

it with the top-k answer set of CSM-E (ground-truth). The accu-
racy of CSM-A is quantified with F-score, Kendall’s Tau [2], and
Percentage error in correlation count. The percentage error for a

given pattern p is
κ∗p−κp

κ∗p
× 100, where κp is the correlation count

for the pair of subgraphs p in CSM-A and κ∗p is the exact value in
CSM-E for this same pair. From Lemma 1, we are guaranteed that
κ∗p ≥ κp for any pattern p. We compute the percentage error across
all common top-k patterns in the approximate and the exact set and
report the mean error (in percentage). Table 3 shows that CSM-A

Table 2: Running time efficiency(s)

Datasets CSM-A CSM-E GVF3
Chemical 0.1 0.1 2.5

MiCo 4.5 8.9 1521
LastFM 14.0 16.3 346000

Coauthor (DBLP) 27.8 64.3 503015
Citation (DBLP) 18.2 18.2 1311474

Citeseer 0.1 0.1 10
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Figure 8: (a) Growth of memory consumption against support threshold. (b-c) Impact of different search strategies. (d-e) Approx-
imation quality of CSM-A against support threshold. (f-i) Growth rate of running time against support threshold for CSM-A. (j)
Impact of k on running time at support thresholds: LastFM: 1200, Coauthor: 11000, Citeseer: 150, Memetracker: 2000.

produces near-optimal results. To further analyse how the quality
changes with support threshold, in Figures 8d and 8e, we plot the
percentage error and Kendall’s Tau against support for various val-
ues of h. Consistent with previous observations, the results remain
near-optimal throughout.

5.4 Impact of Parameters
Running time. Figures 8f-8i present the results from the four
largest datasets listed in Table 1. As expected, the running time
decreases with increasing support. It is worth noting that even at
h = 2, CSM-A terminates within 20 minutes on million-scale
datasets. As we increase h, time and memory required to compute
proximate-nodes index (CorV ) increases and as a result, the time
taken for correlation computation also increases.

Figure 8j analyses the growth rate of running time against k. As
k increases, it is expected that more patterns will be processed and
hence the running time should increase. The increase, however,
is minimal since in proportion to the number of subgraphs in the
search space, k is very small.

It is interesting to observe that despite Memetracker network be-
ing the largest among the benchmarking datasets, its running times
are lower than those for Coauthor and LastFM. Upon analysing
the datasets, we observe three properties in Memetracker that con-
tribute towards faster execution. First, the diversity of labels in
Memetracker is higher, which leads to less instances of a frequent
pattern. Second, homophily is not as abundant, which leads to
smaller sizes of frequent patterns. Third, the graph density of Meme-
tracker is less than that of Coauthor and LastFM, which leads to
less chances of two patterns being present within h hops.
Incremental top-k. Figure 9a presents the results where we start

Table 3: Quality evaluation of CSM-A

Datasets F-score Kendall’s Tau % Error ΣΣΣ
Chemical 1.0 1.0 0 10

Yeast 1.0 1.0 0 300
MiCo 1.0 1.0 0 9500

LastFM 1.0 1.0 0 1200
Coauthor (DBLP) 1.0 0.98 2.26 11000
Citation (DBLP) 1.0 1.0 0 4000

Citeseer 1.0 1.0 0 150

at k = 1 and increase it incrementally by 5 units. In the y-axis,
Figure 9a plots the time incurred to add each increment of 5 more
patterns. As visible, the additional time incurred to increase k by 5
is always less than a minute and typically around 25 seconds even
in LastFM, which has running times of ≈ 800 seconds (Figure 8j).
This behaviour reduces reliability on setting the optimal value of
k since it can be easily updated with low computational overhead.
Note that we do not expect a monotonic increase in running times
with incremental increase in k. Although every increment adds
exactly 5 more patterns, the time to process this increment depends
on the number of candidate pairs explored by best-first search. The
number of explored candidates is not a monotonic function of k.
Memory footprint. Figures 9b-9c analyse the memory footprint
against support threshold for various values of h. In Figure 9d, we
plot the growth in memory against h.
•Memory consumption of components. We individually evaluate

the memory consumption of the four primary components: the data
graph, the proximate-nodes index CorV storing which frequent
nodes are reachable from each other within h hops, the proximate-
patterns index CorP , and the Replica. We find that the combined
memory footprint of the graph and CorV is about 95% of the total
consumption. This happens as we do not store the Replicas of
all identified frequent patterns, i.e., we delete the Replicas of old
(parent) patterns once all their frequent child patterns (generated
via rightmost extension) have been included in the pattern search
tree T . Thus, at any point in time, only the Replicas of the leaves
of the best-first search tree are stored. CorP , on the other hand,
stores only the patterns (but not their instances) and therefore has a
minimal impact on the overall memory consumption.
• Impact of support threshold Σ. As support increases, the de-

crease in memory consumption of CSM-A is minimal. This obser-
vation can be explained from the behaviour of its four components.
The size of the data graph, which is one of the major contributors
to memory consumption, is independent of Σ. The size of CorV
does depend on Σ, however, the impact of Σ on its memory con-
sumption is minimal. CorV stores reachability information only
among those nodes whose label frequency is higher than Σ. Since
the distribution of node label frequencies follows power-law, there-
fore, even if Σ were high enough to prune out most of the node
labels, the top-k most frequent labels span a large portion of the
entire nodes set. Consequently, as Σ is lowered, despite some new
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Figure 9: (a) Running times in incremental increase of k. Memory usage of CSM-A against (b-c) support threshold and (d) h.

ion 
binding

ion 
binding

ion 
binding

ion 
binding

(a) Pattern Q1 (b) Pattern Q2

response to 
chemical

response to 
chemical

response to 
chemical

response to 
chemical

(c) Pattern Q3 (d) Pattern Q4 (e) Pair in LastFM (f) Pair in Coauthor

Figure 10: Case study. (a-d) Correlated subgraph pairs 〈Q1, Q2〉 and 〈Q3, Q4〉 in Yeast. (e) Correlated pair in LastFM. CP denotes
Coldplay and RH denotes Radiohead. (f) Correlated pair in Coauthor.

labels becoming frequent, the number of new nodes that they bring
in is a small percentage of the entire nodes set. Hence, size of the
CorV index remains minimally impacted. Finally, although the
size of the Replica and CorP index increases with decrease in Σ,
in the context of the total memory consumption, it does not have
any significant impact.
• Impact of h. The primary contributor to memory consumption

at h > 1 is the CorV index. As h increases, more frequent nodes
become reachable from each other and thus CSM-A requires more
memory. Note that the memory consumption values at h = 0 and
h = 1 are almost identical since in these cases the adjacency list of
the data graph suffices to serve as the CorV index.

5.5 Case Study: Qualitative Analysis
To demonstrate the utility of CSM, we present insights derived

from the correlated pairs mined in the following datasets.
Yeast [9]. The node labels (Gene Ontology tags) in this Protein In-
teraction (PPI) network (§ 5.1.1) indicate their biological function.
In Figure 10, we present two of the top-10 correlated pairs mined at
Σ = 300. Figures 10a (Q1) and 10b (Q2) show the first pair. Q1 is
constituted entirely of units specialising in ion binding, and Q2 is
composed of those specialising in transferase activity. Keike et al.
[37, 38] have shown that transferases can gain enzymatic activity
following the binding of ionic ligands, undergoing conformational
changes to insulate the ligands from surrounding water molecules.

We highlight another pair 〈Q3, Q4〉 in Figures 10c and 10d. Q3

is made up of genes that regulate responses to chemicals and Q4

is associated with transcription. This co-occurrence is not a coin-
cidence. Specifically, the Gene Ontology [1] database describes in
detail the involvement of positive transcription regulation in cellu-
lar response to chemical stimulus. Finally, we verified each of the
top-10 correlated pairs through domain experts to determine what
percentage of pairs suggested biological correlation. The experts
could not reject any pair as biologically non-linked. In their opin-
ion, all 10 correlated pairs are either definitely linked, or suggest
interesting correlations requiring further investigation.
LastFM [6]. Figure 10e depicts a correlated pair from the top-k
set. This pair showcases that communities of users who like the
music band Coldplay, are often in close proximity to communities

of users who like Radiohead. These two bands are contemporaries,
originate from UK and they are often compared on social media.
Coauthor [5]. Figure 10f presents a pair from the top-10 list in
the Coauthor (DBLP) network. Nodes correspond to authors and
node labels denote the most frequent publication venue of the au-
thors. In this regard, the presented pair is interesting since it re-
veals proximity between the networking community (ICCCN) and
the architecture community (SIGARCH). While most of the other
pairs are between conferences centred on similar areas, this pair
shows that there is high collaboration between networking and ar-
chitecture communities. More importantly, this pair reveals that
correlated subgraphs may unearth non-trivial connections between
communities.

6. CONCLUSIONS
A large body of work exists on mining recurring structural pat-

terns among a group of nodes in the form of frequent subgraphs.
However, can we mine recurring patterns from frequent subgraph
patterns themselves? In this paper, we explored this question by
mining correlated pairs of frequent subgraphs. Unlike frequent sub-
graphs mining, we not only need to identify if a subgraph pattern is
frequent, but also enumerate, maintain, and compute distances be-
tween all instances of all frequent subgraphs. Managing instances
imposes a severe scalability challenge both computationally and
memory-wise. We tackled this challenge by designing a data struc-
ture calledReplica, which stores all instances in a compact manner.
Replica also allowed us to design a near-optimal approximation
scheme to identify and enumerate instances efficiently. Through
extensive evaluation across a series of real datasets, we demon-
strated that the proposed mining algorithms scale to million-sized
networks, exhibit up to 5 orders of magnitude speed-up over base-
line techniques and discover correlations that existing techniques
fail to reveal. Overall, our work initiates a new line of research by
mining higher-level patterns from the pattern space itself.

For future, we propose to extend the analysis to include mining
arbitrary-sized groups of correlated subgraphs.
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