
iDEC: Indexable Distance Estimating Codes for
Approximate Nearest Neighbor Search

Long Gong† Huayi Wang† Mitsunori Ogihara‡ Jun Xu†

†Georgia Institute of Technology, USA ‡University of Miami, USA
{gonglong,huayiwang}@gatech.edu jx@cc.gatech.edu ogihara@cs.miami.edu

ABSTRACT
Approximate Nearest Neighbor (ANN) search is a funda-
mental algorithmic problem, with numerous applications in
many areas of computer science. In this work, we propose
indexable distance estimating codes (iDEC), a new solution
framework to ANN that extends and improves the locality
sensitive hashing (LSH) framework in a fundamental and
systematic way. Empirically, an iDEC-based solution has a
low index space complexity ofO(n) and can achieve a low av-
erage query time complexity of approximately O(log n). We
show that our iDEC-based solutions for ANN in Hamming
and edit distances outperform the respective state-of-the-
art LSH-based solutions for both in-memory and external-
memory processing. We also show that our iDEC-based
in-memory ANN-H solution is more scalable than all exist-
ing solutions. We also discover deep connections between
Error-Estimating Codes (EEC), LSH, and iDEC.

PVLDB Reference Format:
Long Gong, Huayi Wang, Mitsunori Ogihara, and Jun Xu. iDEC:
Indexable Distance Estimating Codes for Approximate Nearest
Neighbor Search. PVLDB, 13(9): 1483-1497, 2020.
DOI: https://doi.org/10.14778/3397230.3397243

1. INTRODUCTION
Approximate Nearest Neighbor (ANN) search is a fun-

damental algorithmic problem, with numerous applications
in many areas of computer science, including informa-
tional retrieval [44, 47], recommendations [17, 56, 62], near-
duplication detections [52,66], string similarity join [45,76],
etc. In this problem, given a query (data) object α, we
search in a massive dataset D, containing some n objects,
for one or more objects that are among the closest to α
according to some distance metric.

A natural solution to the exact Nearest Neighbor (NN)
search would be exhaustive search (aka brute-force linear
scan), where every object in D is compared with α. The
query processing cost of this natural, perhaps näıve solution
is O(dn), where d is the dimension of the metric space that

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 9
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3397230.3397243

objects in D lie in. When d is small (say d < 20), under
some mild assumptions on the data distribution in D, the
exact NN query can be answered, in O(log n) average time
complexity per query, using a multi-dimensional search tree
such as the k-d tree [13]. However, when the dimension d
is large, as is in big data applications, such a search tree
performs no better in terms of time complexity than the
linear scan, due to the “curse of dimensionality” [21].
Locality sensitive hashing (LSH) [63, Chapter 3] is a cele-

brated family of ANN solutions. The key part in the design
of LSH is its hash function family F with a nice collision
property: Any function f sampled uniformly at random
from F maps two distinct objects to the same hash value
with a higher probability if they are close to each other than
if they are not. A standard LSH-based algorithm can achieve
a query time complexity of roughly O(nρ) and a space com-
plexity of roughly O(n1+ρ) (in addition to O(dn) needed to
store the original database) [8], where ρ (0 < ρ < 1) is the
quality of the LSH family. While it is certainly desired that
the quality ρ is made as small in value (high in quality) as
possible, there is often a lower bound on ρ that can usu-
ally be expressed as a function of the desired approximation
ratio c defined in Definition 2. For example, it was proven
in [58] that, when the dimension (d in our case) is large,
there is a lower bound of roughly 1/c for any LSH function
designed for ANN in the Hamming space (ANN-H). In other
words, any LSH-based ANN-H solution has time complexity
Ω(n1/c) and space complexity Ω(n1+1/c).

1.1 Our Solution Approach: iDEC
We propose indexable distance estimating codes (iDEC),

a new solution framework to ANN. iDEC extends and im-
proves the LSH framework in a fundamental and systematic
way. Empirically, an iDEC-based in-memory solution has a
low index space complexity of O(n) and can achieve a low
average query time complexity of approximately O(log n).

An inspiration for iDEC as well as its construction comes
from the theory of error estimating codes (EEC) [20, 37–
39, 77]. EEC are designed for (approximately) estimating
the number of bit errors that have occurred to a packet (a
binary string), during its transmission over a (noisy) wireless
link. In a rough sense, EEC schemes allow for the estimation
of the Hamming distance between the transmitted packet
and the received packet. However, EEC schemes in their
current forms are not well suited for database applications
in general and ANN searches in particular, because they do
not provide efficient indexing per se in the following sense:
To use an EEC scheme for ANN search, there is only one
readily available algorithm presently, which is to measure

1483

the distance between the query point α and every point β
in the database D, by collating the EEC codeword of α and
those of β. This algorithm is precisely the linear scan.

The first contribution of this work is to discover deep
connections between iDEC, EEC, and ANN/LSH. We have
made two such discoveries. Our first discovery is that EEC
schemes can be converted into LSH schemes (codes) for
ANN-H (ANN in the Hamming distance), as will be shown
in §3. This discovery is significant for two reasons. First, it
immediately makes EEC schemes efficiently indexable in the
LSH way and hence applicable to ANN searches. Second,
the state-of-the-art EEC schemes [37, 38] offer extremely
short codewords that translate into relatively (compared to
other LSH “codes”) small index sizes when used in the ANN
context. Our second discovery is that the decoding of most
LSH “codes” can be viewed as hard-decision decoding, as
will be explained in §2.2. This discovery motivated us to
investigate whether we can perform a soft-decision decod-
ing of LSH “codes”. The investigation led to our second
contribution: the iDEC algorithmic framework.

When describing EEC in the following, we focus entirely
on its applications to ANN. iDEC generalizes EEC in two
ways. First, whereas EEC measures by definition only
the Hamming distance, our new codes can measure other
distances, such as Euclidean, edit, and angular distances.
Hence we call them distance estimating codes (DECs) in-
stead. Second, although we can convert a DEC scheme
to an LSH code and perform a hard-decision decoding of
the latter in the LSH way, we discover a new and better
way of decoding DECs: soft-decision decoding. As will be
explained next, the soft-decision decoding of DECs makes
them extremely efficiently searchable, much more so than
when they are (hard-decision) decoded in the LSH way. For
this reason, we add the letter “i” before DEC to emphasize
this superior indexing capability.

Before delving into our other contributions, we briefly de-
scribe how the iDEC framework and its soft-decision decod-
ing approach work in our iDEC-based solution for ANN-
H; how they work in other iDEC-based solutions is sim-
ilar. In ANN-H, the database D contains a large set of
points in a d-dimensional space S1 = {0, 1}d, where the di-
mension d can be large. The basic idea behind iDEC is to
map each point in S1 to a point in a low-dimensional space
S2 = Zm (Z is the set of all integers) whose dimension
m is small (typically between 6 and 12), using a random
projection function Ψ(·) that lies at the heart of three EEC
schemes [37–39]. As shown in [37], this Ψ(·) preserves statis-
tical closeness in the following sense: for any x, y ∈ {0, 1}d,
we have E[‖Ψ(x),Ψ(y)‖22] = m ∗ ‖x, y‖H , where ‖·, ·‖2 and
‖·, ·‖H are the Euclidean and the Hamming distances respec-
tively. Hence, our insight is that if a point β is among the
closest points in D (high-dimensional) to the query point α
in the Hamming distance, then Ψ(β) should also statistically
be among the closest to Ψ(α) in Euclidean distance, among
the points in Ψ(D) (low-dimensional).

Based on this insight, the query processing algorithm is
simply to search in Ψ(D) for the nearest neighbors of Ψ(α) in
the Euclidean distance. When points in Ψ(D) are organized
as a multi-dimensional search tree such as k-d tree [13], this
query can be answered with an average time complexity of
only O(log n), since the dimension m is a small constant.
This decoding approach is soft-decision in nature because,
among the points in Ψ(D), we are looking not for the ex-

act match with Ψ(α) (hard-decision decoding), but for its
nearest neighbors.

This solution also has a low index space complexity of
O(n), since each vector in Ψ(D) is stored only once. Further-
more, the constant factor in this big-O is small due to the
aforementioned high space efficiency of the underlying EEC
scheme. Thanks to this extremely low index space require-
ment, our iDEC-based solutions can perform in-memory
processing of ANN queries over very large datasets, more
so than all other solutions. However, if necessary (say when
the dataset is massive), we can easily modify our solutions
for external-memory query processing, by using a different
search tree that minimizes I/O costs, such as R-tree [35], as
will be described in §4.5.

One recent ANN solution, called SRS [68], bears some
similarity to our iDEC framework. SRS also maps a high-
dimensional D to a low-dimensional Ψ(D) (using a very dif-
ferent Ψ), indexes Ψ(D) using a multi-dimensional search
tree (in this case cover tree [14] or R-tree [35]), and searches
the tree for the nearest neighbors of Ψ(α). However, the
iDEC framework generalizes and extends SRS in two funda-
mental ways. First, whereas SRS is designed only for ANN
in the Euclidean distance, the iDEC framework is designed
to handle various distance metrics including Hamming, Eu-
clidean, edit, and angular. Second, the iDEC framework
naturally subsumes EEC, a body of literature that has never
been considered relevant to ANN/LSH. This newfound con-
nection between the EEC and the ANN/LSH literatures al-
lows both literatures to inform each other, which may lead
to new deep discoveries in the future. More detailed com-
parisons concerning their designs, query time performances,
and index space sizes will be performed in §5 and §7.3.

1.2 Our ANN Solutions
Under this algorithmic framework of soft-decision decod-

ing, we propose novel iDEC-based solutions to two classical
ANN problems. They are the third and the fourth contribu-
tions of this work. Both solutions have a low time complex-
ity of approximately O(log n) and a low index space com-
plexity of O(n). Our first solution is for ANN-H, which is
known to be a hard problem: the lower-bound time com-
plexity for any classical LSH-based solution is O(n1/c) as
mentioned earlier. Our solution outperforms the state-of-
the-art LSH-based ANN-H solutions in terms of both query
time complexity and index space complexity, for both in-
memory and external-memory query processing. Further-
more, it is much easier for our in-memory solution to scale
to massive datasets than for all existing solutions (including
those that are not LSH-based), since our solution has much
less peak memory usage and much shorter indexing time.

The other solution is for an even harder problem: ANN
in the edit distance, which we denote as ANN-E. The solu-
tion contains two iDEC scheme variants, whose respective
innovations are two different multiset features, namely q-
gram multiset and sliding-context multiset, that can support
accurate ANN-E query processing by preserving statistical
closeness: if two strings are close in edit distance then the
two corresponding multisets are close in L1 distance sta-
tistically. The L1 ANN problem is much easier to solve
even when the feature dimension is high, as will be shown
in §6. We will show both variants significantly outperform
the state-of-the-art ANN-E solutions in terms of both index
space complexity and query time complexity.

1484

Summary of Contributions.

• We discover deep connections between iDEC, EEC, and
ANN/LSH (§3).

• We propose a novel ANN solution framework called iDEC
that extends and improves the LSH framework in a fun-
damental and systematic way (§4).

• We propose a scalable iDEC-based solution for ANN-H
that has low index space and query time complexities (§5).

• We propose two novel multiset features, on which, we
build two efficient iDEC-based solutions for ANN-E (§6).

2. BACKGROUND

2.1 Problem Description
Let D be a database whose objects belong to a space H

with a distance metric ‖·, ·‖. Definition 1 formally defines c-
ANN, the approximate nearest neighbor (ANN) search prob-
lem with an approximation ratio of c (c≥1).

Definition 1 (c-ANN). Given a query object α ∈ H, and
c ≥ 1, find an object β ∈ D such that ‖α, β‖ ≤ c‖α, β∗‖,
where β∗ is the nearest neighbor of α in D.

Our iDEC-based schemes, to be described in §5 and §6,
solve this c-ANN problem in Hamming and edit distances
respectively. In contrast, the LSH schemes [23,41] were orig-
inally designed to solve a different and weaker problem called
(c, r)-ANN problem which, defined in Definition 2 next, has
an additional parameter r denoting the search radius. Us-
ing LSH, one can solve c-ANN by breaking it down into a
series of (c, r)-ANN problems in which the radius r takes
exponentially increasing values 1, c, c2, · · · respectively.

Definition 2 ((c, r)-ANN). Given a query object α ∈ H,
and c ≥ 1, r > 0, find an object in D having distance at
most cr from α, if there is an object in D having distance at
most r from α.

2.2 LSH and Hard-Decision Decoding
In this section, we formally introduce the concept of LSH

(in Definition 3) and explain why its “decoding” process is
hard-decision in nature.

Definition 3 (Locality-Sensitive Hashing (LSH) [41]). Let
r, s, p1, p2 be positive constants such that r < s and p2 <
p1 ≤ 1. Let H be a space with a distance metric ‖·, ·‖. Let
U be a certain universe. The hash function family F = {h :
H → U} is called (r, s, p1, p2)-sensitive if for all α, β ∈ H:{

Prh∈F [h(α) = h(β)] ≥ p1 if ‖α, β‖ ≤ r,

Prh∈F [h(α) = h(β)] ≤ p2 if ‖α, β‖ > s.
(1)

The quality of an LSH family is measured by ρ(F) � log 1/p1
log 1/p2

.

We now provide a succinct and simplified description of
how a classical LSH scheme is “decoded”. Despite the sim-
plification, its query time complexity of O(nρ) and index
space of O(n1+ρ) (achieved when k defined below is set
to O(log1/p2 n) and nρ hash tables are used) match those
of the classical LSH for solving (c, r)-ANN, where ρ is the
quality of the LSH family as defined above. In a classi-
cal LSH scheme, typically a group of k > 1 LSH functions
h1, h2, · · · , hk are used to map each point β in D to a k-
dimensional vector of hash values 〈h1(β), h2(β), · · · , hk(β)〉.

These n points in D are stored in a hash table using their
corresponding vectors as hash keys. Then given a query
point α, the search procedure is to probe all points in the
hash bucket that the vector 〈h1(α), h2(α), · · · , hk(α)〉 would
be inserted into, in the hope that one or more points very
close to α are mapped to the same vector and hence inserted
into this bucket. We regard this search procedure as hard-
decision decoding, since the query point α is “decoded” to
precisely the vector 〈h1(α), h2(α), · · · , hk(α)〉 and only the
corresponding bucket is probed.

2.3 ToW-Based Error-Estimating Codes
The basic idea behind EEC is that the transmitter sends,

along with a packet, a set of codewords that can be viewed
as a succinct description of the packet. The receiver can
estimate the number of bit errors that have occurred to the
received packet (equivalently its Hamming distance to the
transmitted packet) during the transmission from the dis-
crepancies (caused by the bit errors) between the received
packet and the succinct description. In the seminal EEC
scheme [20], this problem was formulated and solved as a
coding theory problem, in which each codeword is, as usual,
the parity of a group of bits randomly sampled from the
packet. In the subsequent EEC schemes [37–39] however,
this problem was formulated instead as the design of a two-
party computation protocol between the sender and the re-
ceiver [73] for estimating this Hamming distance. These
schemes achieved much higher coding efficiency using syn-
opsis data structures (aka sketch [55]).

The EEC schemes proposed in [37–39] were all adapted
from the Tug-of-War (ToW) sketch [7] for estimating the sec-
ond moment, equivalently the square of the L2 (Euclidean)
norm, of a data stream. ToW is a suitable sketch for this
two-party computation because, when binary strings x and
y are viewed as binary vectors, their Hamming distance, de-
noted as ||x, y||H , is equal to ||x, y||22, the square of their
Euclidean distance. Given a d-dimensional vector x (not
necessarily binary from this point on), a ToW-based EEC
codeword of x, denoted as ψ(x), is defined as

ψ(x) � 〈x,R〉 (2)

where R is a d-dimensional vector whose d scalars are i.i.d.
random variables each of which takes the value +1 or −1
each with probability 1/2. In the sequel, we denote the
family of such R vectors as R, and the family of ψ functions
as ψR. It is shown in [37] that ψ(·), which is a random pro-
jection function [6, 70], weakly preserves pairwise distances
in the following sense: Given any two points x, y ∈ {0, 1}d,
we have

E[(ψ(x)− ψ(y))2] = ‖x, y‖22 = ||x, y||H . (3)

3. EEC-DERIVED LSH
In this section, we describe our first contribution: the con-

version of a ToW-based EEC codeword (function) family ψR
to an LSH family in Hamming space. Each LSH function in

this family is defined as hψ,b(·) =
⌊ψ(·)+b

w

⌋
, where ψ is drawn

uniformly at random from the family ψR and b is a random
offset drawn uniformly from [0, w]; here w is a predefined
constant called bucket width in [40]. Note that in [23], the
LSH function takes the same form except that there ψ(·) is
a stable distribution sketch function, whereas here ψ(·) is a
ToW-based EEC codeword function.

1485

Now we calculate the quality of this LSH family by de-
riving the collision probability of two points α, β ∈ {0, 1}d
given such an LSH function. Let s = ‖α, β‖H . For a ψ(·)
with the underlying random “ToW vector” R, ψ(α)−ψ(β) =
〈α− β,R〉 has the same distribution as the “distance” from
the starting point in an s-step simple random walk. More
precisely, it is distributed as Ys =

∑s
i=1 Xi where Xi takes

value either 1 or −1 with equal probability (of 0.5). Us-
ing the results in [23], we obtain the collision probability
p(s) =

∑w
t=0(1− t

w
)Pr[|Ys| = t], where

Pr[|Ys| = t] =

{(
s

s/2

)(
1
2

)s
if t = 0(

s
(s+t)/2

)(
1
2

)s
+

(
s

(s−t)/2

)(
1
2

)s
otherwise

.

Here we define
(
n
x

)
= 0 when x is not an integer.

It is not hard to check that when w is an even integer,
the collision probability p(s) decreases monotonically with
s = ‖α, β‖H . Thus, this hash family can be viewed as a
(r1, r2, p1, p2)-sensitive LSH, where p1 = p(r1), p2 = p(r2).
For example, given w = 4, when r1 = 5, r2 = 10, we have
p1 = 0.5469, p2 = 0.4189, and ρ = 0.6937.
Note that this ρ is larger (i.e., lower in quality) than the

lower bound (i.e., best possible) quality value of roughly
1/2 (= r1/r2). We do not know whether this quality can be
further improved. Nonetheless, we have made no attempt at
optimizing it for two reasons. First, this conversion is itself
a significant discovery as explained earlier. Second, as we
will soon show, the soft-decision decoding of LSH “codes”
anyway leads to much better average query time complexity
and index space complexity, which makes it irrelevant to
further optimize this quality.

4. IDEC FRAMEWORK
In this section, we present our second contribution: the

iDEC algorithmic framework. This framework is shared by
all iDEC-based ANN solutions. Each solution however uses
a different random projection function ψi(·), which we will
introduce next.

4.1 Dimensionality Reduction
As mentioned earlier, all iDEC-based solutions take the

following dimensionality reduction approach. It maps the
original dataset D that lies in a high-dimensional space
S1 with distance metric ν1 to Ψ(D) that lies in a low-
dimensional space S2 (say of m dimensions) with distance
metric ν2. It does so using a random projection vector
function Ψ(·) that is statistically closeness-preserving in the
sense that for any two points α and β in S1 that are close
together according to ν1, the images Ψ(α) and Ψ(β) (both
in S2) are also statistically close together according to ν2.
Note that ν1 and ν2 can be different. For example, in
the iDEC-based solution for ANN-H that we will describe
in § 5, ν1 is Hamming distance ‖·, ·‖H whereas ν2 is Eu-
clidean distance ‖·, ·‖2. The vector function Ψ(·) is defined
as 〈ψ1(·), · · · , ψm(·)〉 where ψ1(·), ψ2(·), ..., ψm(·) are in-
dependent random projection functions sampled uniformly
randomly from the corresponding family. Each ψi(·) needs
to be statistically closeness-preserving so that Ψ(·) is also.

4.2 Indexing
This statistically closeness preservation property implies

that if the point β is among the closest points in S1 to
the query point α, then Ψ(β) should statistically be among

the closest to Ψ(α) in S2. An ANN query over the high-
dimensional dataset D is thus converted to one over the low-
dimensional dataset Ψ(D). By building a multi-dimensional
index T for the low-dimensional dataset Ψ(D), the latter
ANN query can be computed very efficiently.

Several candidate multi-dimensional tree data structures
exist for implementing T , including k-d tree [13]), ball
tree [59], vp-tree (vantage point tree) [74], and cover tree [14]
that are optimized for in-memory operations, and R-tree [35]
that is optimized for external-memory operations. In prin-
ciple, an iDEC-based solution works with any of these trees.
In this work, for in-memory operations the k-d tree is used
because it delivers better query processing performance than
the other three when the accuracy requirement is not very
high, as will be shown in §4.4; for external-memory opera-
tions, the R-tree is used like in most other external-memory
solutions. We will describe how our ANN-H solution works
with R-tree in §4.5 for external-memory operations and eval-
uate its performance in §7. Except that, below we will focus
mostly on how our solutions work with a k-d tree for in-
memory operations. In all our solutions, the dimension of
k-d tree is m, the same as the dimension of S2. It is im-
portant to keep m small, since the time complexity of the
search (in the k-d tree) grows exponentially with m.
The construction of the index T consists of two steps. The

first is the computation of Ψ(α) for all α ∈ D, which requires
O(dmn) time. The second is the indexing of the n points
with m-dimensions in a k-d tree, which requires O(mn log n)
time [29]. Since m is a small constant, we remove it and
obtain the time complexity of O(dn+ n log n) for indexing.
The space complexity of T is O(n).

4.3 Query Processing

Algorithm 1: iDEC Query Procedure

input : Query point α; multi-dimensional index T
for Ψ(D)

output: α’s ANN β∗ ∈ D
1 Search T for the set of t-NNs of Ψ(α), denoted as P
2 β∗ ← argmin

β∈Ψ−1(P)

‖β, α‖

Algorithm 1 presents the generic pseudo-code of query
processing under the iDEC framework. The algorithm is
simply to first search T for P, the set of t exact nearest
neighbors (t-NN) of Ψ(α) in Ψ(D) (Line 1 of Algorithm 1),
and then find among their inverses Ψ−1(P) the point β∗

that is closest to α (Line 2 of Algorithm 1). The rationale
is that if β∗ is indeed the nearest point to α in D, then
due to the statistical closeness preservation property of Ψ(·),
with a decent probability p, Ψ(β∗) ∈ P when t is large
enough. How large t should be depends on p, n, and the
data distribution in S1, as we will elaborate next.
Algorithm 1 can be viewed as decoding Ψ(α), the iDEC

codeword for α. This decoding is soft-decision in nature
because, among the vectors in Ψ(D), we are not looking for
the exact match with Ψ(α) (hard-decision decoding) as in
classical LSH schemes, but rather its nearest neighbors.

Query Time Complexity. Through the following analy-
sis, we will show that, under the iDEC framework, the aver-
age time complexity of answering an ANN query is roughly
O(log n). We will treat the dimension m as a small constant

1486

in the analysis. In Algorithm 1, the most expensive step
computationally is the t-NN query (Line 1). It was shown
in [29] that a t-NN query has an average time complexity of

O(log n+(t1/m+1)m), under some mild assumptions on the
distribution of points in the dataset. A rough explanation of
this complexity is that it takes O(log n) steps to walk down
the k-d tree to find a leaf node (corresponding to a tiny
cell) that is quite close to α and may contain one or more

t-NN candidates; then roughly (t1/m + 1)m cells neighbor-
ing this cell need to be searched for all other possible t-NN
candidates. The term (t1/m + 1)m can be considered O(t)

since (t1/m +1)m ≤ (t1/m + t1/m)m = 2mt and m is a small
constant. Hence the complexity reduces to O(log n+t).

We note that to guarantee a certain query quality (approx-
imation ratio) for the ANN query, this t value grows as O(n)
in theory. However, with real-world datasets, t is typically
small even when n is gigantic. For example, our iDEC-based
solution for ANN-H can achieve an average approximation
ratio at least 2.89 with t being about 258, even when n is
around 1 billion, as shown in §7.3.3. Hence, we conclude
that, in practice, t can be considered roughly O(log n), and
so can the average query time complexity.

4.4 Why k-d Tree?

Q
ue

ry
 T

im
e

(m
s)

0 50 100 150
t

10-3

10-2

10-1

100 n=0.1M

0 40 80 120 160 200
t

10-2

10-1

100 n=1M

vp-tree cover tree ball tree k-d tree

0 60 120 180 240
t

10-2

10-1

100

n=10M

Figure 1: Query time vs. t for t-NN search.

As mentioned earlier, among the four candidate search
trees optimized for in-memory operations, we use the k-d
tree in the iDEC-based solutions. We make this design de-
cision because we have found, via experiments on several
datasets that vary in dimensions, sizes, and value ranges
of coordinates (of data points), that overall k-d tree has
the best t-NN query performance among them, when t is
O(log n) as used in the iDEC-based solutions.

We now provide some evidence on the outperformance of
k-d tree over the others. In the interest of space, we only
present our experimental results on three 6-dimensional syn-
thetic datasets (mimicking real-world image datasets Ψ(D)
for m = 6) in which each coordinate of any point is an
integer random variable following a discrete uniform distri-
bution U{−100, 100}; we only consider integer coordinates
because coordinates of any point in Ψ(D) are all integers in
both iDEC-based solutions. We have compared the k-d tree
with the other three candidates, namely, vp-tree (vantage
point tree) [74], cover tree [14], and ball tree [59]. For each
of the four trees compared, we run t-NN search with 200
queries over the three synthetic datasets. For all four trees,
the average query time (in milliseconds) as a function of t,
with t varying roughly from 1 to 10 log n, is shown in Fig-
ure 1. Figure 1 clearly shows that the query time of k-d tree
is significantly (up to 12 times) shorter than those of the
other three trees, for all t values in this range.

4.5 iDEC for External-Memory Operations
When a dataset D is massive, the combined size of the

original database D and its index (including both the image
Ψ(D) and the k-d tree T) can be too large to fit in main
memory. In this case, iDEC-based solutions have to operate
with both D and its index residing on disk. As mentioned
earlier, k-d tree is no longer suitable since it is optimized
for in-memory operations. Instead, R-tree [53] is used in
the iDEC-based solutions for external-memory operations,
since it is the most commonly used technique for indexing
and retrieving multi-dimensional data residing on disk.

Space and Time Complexities. The index space and
the indexing time complexities for external-memory iDEC
are O(n) and O(dn+n log n) respectively, the same as those
of in-memory iDEC. The I/O cost and the (overall) time
complexity per query using R-tree are both O(n) with a
small constant factor, as shown in [68].

5. IDEC FOR ANN-H
In this section, we describe our third contribution: an

iDEC-based solution to ANN-H. In ANN-H, D consists of
binary strings, members of {0, 1}d for some fixed d, with
the Hamming distance as the distance metric. ANN-H is
uniquely important in the ANN/LSH literature for the fol-
lowing reason. Since ANN-H deals with only binary sym-
bols ‘0’ and ‘1’, the literature often treats it as a “clean”
case where ANN with “messier” (but not necessarily more
challenging) metrics (e.g., the angular distance) can be first
converted to it and then solved. For example, a standard
approach to document similarity search was to first map
each document in D to a binary vector with the celebrated
SimHash [19] as Ψ and organize the converted vectors into
a suffix-tree-like index [52].
As mentioned earlier, an iDEC-based solution is com-

pletely specified when the underlying ψi is. In our ANN-H
solution, each ψi is an instance of the ToW function ψ de-
fined in (2) that maps any two strings close in Hamming dis-
tance to two integer vectors close statistically in Euclidean
distance as characterized precisely in (3). Hence in this solu-
tion the corresponding t-NN search (Line 1 in Algorithm 1)
is in the Euclidean distance.

We note that our ANN-H solution, without any modifi-
cation, can be used for ANN-L2 (Euclidean distance) also.
On the other hand, the aforementioned SRS scheme [68],
which is designed for ANN-L2, can be used for ANN-H as
well. Here we briefly compare the designs and the relative
strengths and weaknesses of SRS against our solution. Like
the ψi used in our solution, the ψi used in SRS also takes
the form of 〈·, R〉, but its R is a Gaussian random vector,
not a ToW (i.e., ±1) random vector. Hence when SRS is
used for ANN-H, its ψi will map a binary (integer) vector
to a (generally) non-integer real number. This “digital-to-
analog conversion” would increase its index size, since a real
(floating-point) number takes up more storage space than
an integer. We will elaborate on this effect in §7.3. On
the other hand, when our ANN-H solution is used for ANN-
L2, the scalars of the data points (vectors) are in general
non-integer real numbers, so the ψi in our solution, despite
using an integral R, would also map each data point to a
non-integer real number in general. In this case, the “digital-
to-analog conversion” is forced upon our solution and erases
these advantages over SRS.

1487

6. IDEC FOR ANN-E
In this section, we describe the fourth contribution of this

work: two iDEC scheme variants for ANN-E (E for edit dis-
tance), namely multiset-iDEC and context-iDEC. The edit
distance between two strings α and β is defined as the min-
imum number of symbol insertions, deletions, and replace-
ments that are needed to change α to β. As mentioned
earlier, in both variants, the respective innovations are two
different multiset “features” that statistically capture the
closeness, in edit distance, of any two strings. Unlike in
ANN-H, in ANN-E, we drop the following two requirements.
First, the alphabet, or the set of symbols used in the strings,
is no longer in general binary. Second, we no longer require
every string to have the same length.

ANN-E is in general much more difficult than ANN-H,
since even when symbols are binary, in ANN-E we compare
two binary strings α and β not only for bit flipping errors,
but also bit insertions and deletions.

6.1 Multiset-iDEC
The first variant, which we call multiset-iDEC, is to

convert a string α to a multiset of q-grams [63] (also
called q-shingles in the literature), which we denote as

M (q)(α). For example, given the 20-bit binary string α =
“10100010000010001100” and with gram size q=3, the cor-
responding multiset M (q)(α) contains elements “101” (the
first 3 bits), “010” (the next 3 bits), · · · , and “100” (the

last 3 bits). It can be shown that M (q)(α) = {“000” ×
5, “001”×3, “010”×3, “011”×1, “100”×4, “101”×1, “110”×
1, “111” × 0}, in which the number after “×” is the mul-
tiplicity of the 3-gram. With the implicit understanding
that the eight possible 3-gram values are ordered lexico-
graphically, we can drop the 3-gram values and more suc-
cinctly represent the multiset M (q)(α) by its multiplicity
vector (5, 3, 3, 1, 4, 1, 1, 0). This multiplicity vector also suc-

cinctly encodes M (q)(α)’s multiplicity function μ(·) in the
sense μ(“000”) = 5, μ(“001”) = 3, μ(“010”) = 3, and so on.
Hence we consider multiplicity vector and multiplicity func-
tion the same thing in the sequel.

The rationale for converting a string into such a multi-
set is that if two strings α and β are close to each other
in edit distance, then their corresponding multisets should
with high probability be close to each other in L1 distance,
defined next. Let M1 and M2 be two multisets both de-
fined over the universe A, and μ1(·) and μ2(·) be their re-
spective multiplicity functions (vectors). Then the L1 dis-
tance between M1 and M2, denoted as ‖M1,M2‖1, is the
same as the L1-difference between their multiplicity func-
tions (vectors) μ1(·) and μ2(·). The latter is defined as∑

a∈A |μ1(a)− μ2(a)|.
Each bit flipping, insertion, or deletion error that “modi-

fies” a string α into another string β adds roughly q to the
L1 distance between M (q)(α) and M (q)(β). In other words,

q ∗ ||α, β||E≈‖M (q)(α),M (q)(β)‖1 (4)

where ||·, ·||E denotes the edit distance. Hence, the mapping

(by M (q)(·)) of a string α to its q-gram multiset M (q)(α) is
statistically closeness-preserving, a property we need and
will use in designing the random projection function ψi(·).
When the dimension (of the multiplicity vectors) of the

q-gram multisets (equivalently the size of their universe) is

small, the function M (q)(·) can be used directly as the ran-
dom projection vector function Ψ(·). More precisely, given
a query string α, we simply search for t-NN, in L1 dis-
tance, of (the multiplicity vector of) M (q)(α) in M (q)(D) �
{M (q)(β) |β ∈ D} organized as a k-d tree, taking advantage

of the statistically closeness preserving property of M (q)(·)
shown in formula (4). This way of using raw q-gram multi-
sets as Ψ(·) has the advantage that there will be no further
information loss beyond that was incurred when converting
a string to its q-gram multiset.

In most ANN search applications, however, the q-gram
multisets have a high dimension. For example, the UNIREF
dataset, which we use in our evaluations, has an alphabet
size of 25, its q-gram multisets have a dimension of 252 =
625, even when q= 2. In this case, we need to reduce this
dimension, using sketching functions ξi(·), i = 1, 2, · · · ,m.

In other words, each ψi(·) in Ψ is defined as ξi(M
(q)(·)).

Here we need to sketch the L1 distance (RHS of (4)), not
the squared L2 distance as in ANN-H, so using the stan-
dard ToW sketch (function) as ξi is no longer appropriate.
Instead each ξi here is a random instance of a variant of ToW
sketch proposed in [27] for estimating the L1 distance of two
multisets. Each ξi has the following property: For any two
multisets M1 and M2, we have E[‖ξi(M1) − ξi(M2))‖22] =
‖M1,M2‖1. Hence, for any two strings α and β, we have

E[‖ψi(α)− ψi(β)‖22] = ‖M (q)(α)−M (q)(β)‖1, of which the
RHS is close to q ∗ ‖α, β‖E according to the approximation
formula (4). The implied ANN query procedure is that,
given a query string α, to search for the t-NN (Line 1 of
Algorithm 1), in L2 (Euclidean) distance, of Ψ(α) in Ψ(D).

6.2 Context-iDEC
The multiset-iDEC has a shortcoming: If we partition a

string α into a few long substrings and permute their orders,
the resulting string β is likely very far from β in edit dis-
tance, yet M (q)(β) is pretty close to M (q)(α) in L1 distance.
This β is a spurious pattern with respect to α. For many
applications we can think of, either very few such spurious
patterns should exist “naturally”, or they should be discov-
ered and returned as query answers nonetheless. However,
for certain applications such as time series analysis, the or-
der each symbol appears in a string matters.

Our second approach, called context-iDEC, is to convert
a fixed-length context for each symbol in the string into a
multiset. The multisets of all contexts are then unioned
together to arrive at a final sliding-context multiset. The
context-iDEC scheme is robust against most of conceivable
spurious patterns because the sliding windows of (overlap-
ping) contexts implicitly encode the exact order in which
these symbols occur in the string.

We now formally define the concept of a context. Let
s = s1s2 . . . s� be a string of length �. Let i be an integer
such that w < i ≤ � − w, where w (w > 0) is the window
size of a left or right context. For each symbol si in the
string, we define its left context, denoted as C(L), as the w-
symbol-long substring preceding the center symbol si. In
other words, C(L) � si−wsi−w+1 . . . si−1. Similarly, we de-
fine its right context, denoted as C(R), as the w-symbol-long
substring following the center symbol si. In other words,
C(R) � si+1si+2 . . . si+w. We call C(L)‖si‖C(R) (where “‖”
is the string concatenation operator), the (2w+1)-symbol-
long substring concatenating the left context of si, the center
symbol si, and the right context of si together, the context

1488

of si, which we denote as C
(s)
i . Clearly, the string s has a

total of �−(2w+1)+1 = �−2w sliding contexts. These slid-
ing contexts are the “raw materials” to be processed further
into the context-iDEC “feature” for the string s.

Before we describe context-iDEC, we explain why these
sliding contexts are good “raw materials”. We say that
two (2w+1)-symbol-long contexts, taken from two differ-
ent strings, are similar (or identical if indeed so) if their
center symbols are identical, their left contexts are identical
or similar, and so are their right contexts. Conceivably, if
two strings α and β are close to each other in edit distance,
most of their contexts should be pairwise similar or identi-
cal. Hence, if a suitable feature can be found to capture the
similarity or lack there of between any two sets of sliding
contexts (of two different strings), then a good index can
possibly be built on this feature for ANN-E.

We now describe how the context-iDEC (feature vector)
of the string s in the example above is extracted from its
�− 2w sliding contexts. Each (2w+1)-symbol-long con-
text is mapped into a multiset of (q+1)-grams, each of
which is a concatenation of a q-gram in its left or right con-
text and the center symbol, as follows. Given any context

C
(s)
i =C(L)‖si‖C(R), its multiset, denoted as M (q)+1(C

(s)
i),

is defined as the union of the q-gram multisets of its left
context C(L) concatenating with the center symbol si and
the q-gram multisets of its right context C(R) concatenating

with the center symbol si. More precisely, M (q)+1(C
(s)
i)�(

M (q)(C(L))‖si
)
∪
(
si‖M (q)(C(R))

)
. Given a multiset M of

strings and a symbol a, their concatenation M‖a consists of
all strings of form e‖a where e is a string from M . More pre-

cisely, M‖a � {(e‖a) × μ(e) | ∀(e × μ(e)) ∈ M}, where μ(·)
(defined in §6.1) is the multiplicity function of M . Similarly,

a‖M � {(a‖e)× μ(e) | ∀(e× μ(e)) ∈ M}.
The (q+1)-gram multiset (function) M (q)+1(·) is intu-

itively a good “mini feature” since, like our explanations
for the approximation formula (4), two contexts that are
similar or identical (i.e., close to each other in edit dis-
tance) should have similar or identical (q+1)-gram multisets
(i.e., close to each other in L1 distance). The context-iDEC

(feature vector) of s, denoted as M (SC)(s), is defined as
the union of the (q+1)-gram multisets of all its contexts

C
(s)
w+1, C

(s)
w+2, · · · , C

(s)
�−w. More precisely, we have

M (SC)(s) �
�−w⋃

j=w+1

M (q)+1(C
(s)
i).

Since each such (q+1)-gram multiset is a good “mini fea-

ture”, the resulting context-iDEC M (SC)(·) is intuitively a
good feature in the sense if two sets of sliding contexts are
close to each other (likely because the corresponding strings
are close to each other in edit distance as explained above),

their corresponding M (SC)(·) multisets should be close to
each other in L1 distance.

Like in multiset-iDEC, we can use the context-iDEC fea-
ture M (SC)(·) directly as Ψ(·), when the dimension of the
multiset is small. Otherwise (which is usually the case),
we need to reduce the dimension, again using {ξi}mi=1 that
are instances of ToW-for-L1 sketching functions. That
is, ψi(·) � ξi(M

(SC)(·)) for i = 1, 2, · · · ,m. Therefore,
ψi has the same statistical closeness-preserving property
E[‖ψi(α) − ψi(β)‖22] = ‖M (SC)(α) − M (SC)(β)‖1 as that
in multiset-iDEC.

7. EVALUATION
In this section, we evaluate the performance of our iDEC-

based algorithms for ANN-H and ANN-E against the respec-
tive state-of-the-art solutions. After we explain performance
metrics in §7.1 and implementation details in §7.2, we de-
scribe benchmark algorithms, evaluation datatsets, and ex-
perimental results on ANN-H in §7.3 and on ANN-E in §7.4.
In the rest of this section, we refer to an iDEC-based algo-
rithm simply as iDEC whenever it is clear from the context
which algorithm we are referring to.

7.1 Performance Metrics
We evaluate the performance of ANN algorithms in three

aspects: scalability, query efficiency, and query quality. To
measure scalability (how well an algorithm can scale to very
large datasets), we use index size (excluding the size of the
original database) and indexing time (time needed to build
the index). Each index size or indexing time value presented
in this section is the average over five independent runs. To
measure query efficiency, we use query time; for external-
memory experiments, we use also the I/O cost as quantified
by the number of disk accesses. To measure query quality, we
use approximation ratio in most situations. However, some
ANN algorithms can return “a null answer”, in which case
the approximation ratio becomes ∞. For example, a classi-
cal LSH-based algorithm (e.g., [41]) returns “null” when all
buckets that the query point is hashed into are empty. For
this reason, we also use recall.

The concepts of approximation ratio and recall are de-
fined as follows. Suppose an ANN algorithm returns a data
object β given a query point α and β∗ is the true nearest
neighbor of α in D. Then the approximation ratio is defined
as ‖α, β‖/‖α, β∗‖. As mentioned in §2, in c-ANN (defined
in Definition 1), we consider the answer β to be correct and
correspondingly the recall value for this query to be 1, if
‖α, β‖ ≤ c · ‖α, β∗‖; otherwise we consider the recall value
to be 0.

Each query time, I/O cost, approximation ratio or re-
call value presented in this section is the average over many
queries. In ANN-H evaluations, we will mainly use approx-
imation ratio as the quality metric, since a few benchmark
algorithms (e.g., QALSH and C2LSH) are optimized for
providing theoretical guarantees in terms of the approxi-
mation ratio. In ANN-E evaluations, we will only use recall
with c = 1.5, since the benchmark algorithm there suffers
from the aforementioned “null answer problem”. Finally,
we note that Mean Average Precision (MAP) [9], another
query quality metric widely used in the ANN literature re-
cently, is equivalent to the concept of recall when c= 1 in
the c-ANN search.

7.2 Implementation Details
Our iDEC-based algorithms are implemented in C++.

For k-d trees, we use an efficient open-source C++ imple-
mentation [15]. For R-trees, we use the source code provided
by the authors of [68]. For computing the exact edit dis-
tance in ANN-E, we use the C++ library called edlib [67].
For all benchmark algorithms (to be described next), we
use the most efficient open-source implementation or the
source code provided by the corresponding authors. All
source codes are in C++ except that the index construction
of OPQ is implemented in MATLAB. We compile all C++
source codes with g++ 7.5 with -O3 and MATLAB source

1489

codes with MATLAB 9.1. All ANN-H experiments are done
on a workstation with Intel(R) Core(TM) i7-9800X 3.8GHz
CPU, 128G DRAM, and 4TB hard disk drive (HDD). All
ANN-E experiments are done on a workstation with Intel(R)
Core(TM) i7-6700K 4.0GHz CPU and 64G DRAM. Both
machines run Ubuntu 18.04.

7.3 Performance Evaluation for ANN-H

7.3.1 Benchmark Algorithms and Parameters
We compare iDEC with five state-of-the-art ANN search

algorithms: SRS [24, 68], Optimized Product Quanti-
zation (OPQ) [33], Hierarchical Navigable Small World
(HNSW) [51], Query-Aware LSH (QALSH) [40] and
C2LSH [32]. For SRS, OPQ, and HNSW, we have tuned
their parameters for the best respective performances. For
QALSH and C2LSH, we have set their parameters according
to the recommendations provided by the respective authors.
The parameter settings of all these algorithms, including
those of iDEC, are detailed as follows.
iDEC. We use the iDEC-based algorithm for ANN-H de-
scribed in §5, with the dimension m of the image Ψ(D) set
to 6 in all experiments, since, through experimental evalua-
tion for m varying between 4 and 16 on various datasets, we
find that m=6 appears to strike the best tradeoff between
the query quality and the query efficiency. The values of
m in ANN-E evaluation shown later in §7.4 are obtained
through a similar tuning process. We measure the query
performances under different values of t (the number of NNs
searched in Line 1 of Algorithm 1). As explained earlier
in §4.2, iDEC uses k-d trees and R-trees for in-memory and
external-memory operations, respectively.
SRS. SRS [24, 68] is an LSH-based algorithm for ANN-L2

(in Euclidean distance). As explained in §5, it can be used
for AHH-H without modification. Using cover trees and R-
trees respectively, SRS can operate both in-memory [24] and
external-memory [68].

We use m=6 for SRS, which is obtained through the same
tuning process as that for iDEC. We do not use early ter-
minations and instead stop the query process when t (same
semantics as t in Line 1 of Algorithm 1) NNs are checked
out. Like with iDEC, we measure its query performances
under different values of t.
OPQ. OPQ [33] is a quantization-based in-memory-only
ANN algorithm. We fix the length of PQ encoding for each
vector at 8 bytes. We use 26, 27, 28, 27, 28, and 27 centroids
for Audio, Mnist, Enron, GIST1M, SIFT1M, and GloVe re-
spectively. For the two large datasets, we are not able to
build their indices since both caused OPQ to run out of
memory (and crash) during index construction. We measure
its query performances for different numbers of NN candi-
dates to be checked out.
HNSW. HNSW [51] is a graph-based in-memory-only ANN
algorithm. We measure its query performances with the pa-
rameter M (the number of “neighbors” per point) varying
from 8 to 48. For each value of M , we select the efCon-
struction parameter (varying from 100 to 600) that strikes
the best tradeoff between the indexing efficiency and query
quality. Same as in OPQ, we are not able to build their in-
dices for the two large datasets due to running out of mem-
ory. We note that the index size and the indexing time of
HNSW on a dataset are generally different when the pa-
rameters M or efConstruction are different. For fairness (to

HNSW), we report the smallest index size and the shortest
indexing time of HNSW with the above parameter settings
on each of the 6 datasets in Table 2 and Table 3, respectively.
QALSH. QALSH [40] is an LSH-based algorithm optimized
for external-memory operations in Euclidean space. We set
the approximation ratio to 2, and use e−1 for the error prob-
ability and 100/n for the false positive percentage.
C2LSH. C2LSH [32] is another LSH-based algorithm opti-
mized for external-memory operations in Euclidean space.
We use the collision threshold version of C2LSH. We set the
approximation ratio, the error probability, and the false pos-
itive percentage to the same values as those in QALSH. An
additional parameter here that does not need to be set in
QALSH is the interval size, which we set to 1.
Common Parameters. The disk page size is fixed at
4,096 bytes for all algorithms on all datasets in external-
memory experiments.

7.3.2 Evaluation Datasets
We use 8 publicly available datasets of diverse dimensions,

sizes (number of points), and types (image, audio, and tex-
tual), that are widely used in the ANN literature. All these
datasets are originally in Euclidean space. Like in most ex-
isting ANN-H work, we binarize each of them into a dataset
in a d-dimensional Hamming space (i.e., {0, 1}d) whose d
is a multiple of 64 that is closest to the dimension of the
original dataset, following a standard method used in [57].
We then remove all duplicate points resulting from the bina-
rization process. Finally, we sample, uniformly at random
without replacement, a certain number of points from a bi-
narized dataset as the query workload. For each of the 8
binarized datasets, Table 1 shows the number of points in
it (excluding those in the query workload), its dimension,
its “type”, and the query time tBF (BF stands for “Brute
Force”) that a brute-force linear scan takes on it. For small
(first 3), medium (next 3), and large datasets (last 2), the
number of queries (i.e., size of the query workload) is set
to 200, 1,000, and 10,000, respectively. The binarized En-
ron dataset was converted from the feature vectors of 1,369
dimensions extracted by the authors of [68]. We drop the
word “binarized” in the sequel with the understanding that
all datasets we refer to by names have been binarized.

Table 1: Datasets and tBF (in milliseconds).

dataset n d type tBF

small
Audio [71] 54,187 192 audio 0.6
Mnist [72] 69,000 768 image 2.3
Enron [5] 94,851 1,344 text 6.3

medium
GIST1M [4] 982,661 960 image 39.4
SIFT1M [4] 993,244 128 image 6.4
GloVe [61] 1,192,505 128 text 7.3

large
GIST80M [28] 72,908,143 384 image 1,083.8
SIFT1B [4] 995,534,710 128 image 5,375.1

7.3.3 In-Memory Experimental Results
In this section, we present the in-memory experimental

results of iDEC, SRS, OPQ, and HNSW on the 8 datasets
shown in Table 1. QALSH and C2LSH are not compared
with, because as explained in §7.3.1, they are implemented
and optimized only for external-memory operations.

1490

Index Size. Table 2 shows index sizes of four compared
algorithms on all datasets (here and in Table 3, CR means
crash due to lack of memory during index construction). As
shown in Table 2, the index sizes of iDEC are at least 1.3
and 2.7 times smaller than those of SRS and HNSW respec-
tively, but are roughly twice those of OPQ. However, the
index size does not tell the whole story, especially in the
cases of HNSW and OPQ, since their memory footprints
are much larger than their respective index sizes in the in-
dex construction process. For example, our measurements
show that the peak memory usages1 of HNSW and OPQ
during index construction are one and two orders of magni-
tude larger than their index sizes, respectively.

Table 2: Comparisons of index sizes (in megabytes).

dataset iDEC SRS OPQ HNSW

Audio 1.6 2.2 0.6 4.4
Mnist 2.0 2.8 0.8 5.6
Enron 2.8 3.8 1.1 7.7

GIST1M 28.0 39.8 11.2 277.6
SIFT1M 28.5 40.2 11.4 80.7
GloVe 34.0 48.2 13.6 96.9

GIST80M 2,073.2 2,868.7 CR CR
SIFT1B 19,251.8 CR CR CR

Indexing Time. Table 3 suggests that the indexing times
of iDEC are at least 5.4 times shorter than those of SRS
and are roughly 3 orders of magnitude shorter than those of
both OPQ and HNSW.

Table 3: Comparisons of indexing times (in seconds).

dataset iDEC SRS OPQ HNSW

Audio 0.03 0.2 15.1 11.5
Mnist 0.06 0.9 99.5 36.2
Enron 0.1 2.3 401.5 93.5

GIST1M 0.8 16.8 1,800.9 2,955.8
SIFT1M 0.4 3.1 509.6 526.8
GloVe 0.5 3.8 365.0 1,444.2

GIST80M 111.4 601.0 CR CR
SIFT1B 2,210.4 CR CR CR

Query Time (Efficiency) vs. Approximation Ratio
(Quality). Figure 2 compares the query performances, in
terms of this efficiency-quality tradeoff using approximation
ratio as the query quality metric, of the 4 algorithms on
the 8 datasets; the 5 missing plots in the last two subfig-
ures correspond to the 5 CR (crash) cases shown in Table 2
and Table 3. Figure 2 shows that, on all the 7 datasets com-
pared on, iDEC significantly outperforms SRS except for a
few approximation ratio values that are close to 1 (or those
close to 2 on GIST80M). It also shows that the two non-
LSH-based algorithms, OPQ and HNSW, outperform iDEC
significantly on all the 6 datasets (except Enron) compared
on. However, due to their three orders of magnitude longer
indexing time (as just shown), it is virtually impossible for
OPQ and HNSW to in practice outperform iDEC on very

1The peak memory usages were measured using Linux
getrusage [1] and MATLAB Profiler [2] for HNSW and
OPQ, respectively.

large datasets for the following reason. The parameter set-
tings for OPQ and HNSW to attain an optimal efficiency-
quality tradeoff point (i.e., a point on the optimal tradeoff
curve) depend heavily on the characteristics of the dataset.
Hence, given a dataset D, to identify the parameter settings
(of OPQ or HNSW) that lead to a near-optimal tradeoff
point, with a quality level suitable for the target applica-
tion, require many indices (of D) to be built during the
parameter tuning process. This would be extremely time-
consuming on very large datasets, as it would take millions
of seconds to build just a single index in memory (assuming
there are terabytes of memory available) for a billion-point
dataset such as SIFT1B. Furthermore, the parameters may
need to be re-tuned whenever the datasets and/or the ap-
plication requirements change.
Query Time (Efficiency) vs. MAP (Quality). Fig-
ure 3 also compares the query performances, in terms of this
efficiency-quality tradeoff using MAP as the query quality
metric instead, of the 4 algorithms on the three small and
the three medium datasets. In the interest of space, those
on the two large datasets are not presented here, since they
lead to similar conclusions. Comparing Figure 3 with the
six sub-figures (from (a) to (f)) in Figure 2 concerning the
three small and the three medium datasets, we can see that
the relative orders for the performances of these four algo-
rithms using MAP as the query quality metric are roughly
consistent with those using approximation ratio. Further-
more, MAP may not be a better query quality metric than
approximation ratio in our experimental settings, since mul-
tiple points that have different approximation ratios in Fig-
ure 2 can share the same MAP value in Figure 3. In other
words, MAP appears to have a weaker discriminative power
than approximation ratio in our experimental settings.

7.3.4 External-Memory Experimental Results
In this section, we present the results of iDEC, SRS,

QALSH and C2LSH for external-memory experiments.
OPQ and HNSW are not included here, because as explained
in §7.3.1, they are implemented and optimized only for in-
memory operations.
Index Size. Table 4 compares the index sizes of iDEC
with those of SRS, QALSH, and C2LSH. For QALSH and
C2LSH, we were not able to obtain their exact index sizes
on SIFT1B, since QALSH had a segmentation fault during
the index construction and C2LSH did not finish the in-
dex construction in a reasonable amount of time. Instead,
we calculate the exact numbers of hash tables required by
them using the formulae provided in [40] and [32] respec-
tively, which allow us to conservatively (i.e., more than fair
to them) estimate their index sizes (the two numbers with
asterisks) in Table 4 for SIFT1B based on their actual index
sizes for the 7 smaller datasets.

Table 4 shows that iDEC outperforms SRS, and signif-
icantly outperforms QALSH and C2LSH, in index size on
the 8 datasets. More precisely, the index sizes of iDEC are
roughly 2, and at least 12 and 68 times smaller than those
of SRS, QALSH, and C2LSH, respectively. The advantage
of iDEC over QALSH and C2LSH comes mainly from that
iDEC uses a single 6-dimensional R-tree, while QALSH uses
between 63 to 125 B+ trees, and C2LSH needs between 383
to 651 B+ trees on the 8 datasets. The advantage of iDEC
over SRS may appear surprising, since SRS also uses a single
6-dimensional R-tree. However, in iDEC each coordinate of

1491

1 1.3 1.6 1.9 2.2
10-2

10-1

100

Q
ue

ry
 T

im
e

(m
s)

(a) Audio

1 1.2 1.4 1.6 1.8
10-2

10-1

100
(b) Mnist

iDEC SRS OPQ HNSW

1.1 1.5 1.9 2.3
10-2

10-1

100

(c) Enron

1.1 1.3 1.5 1.7 1.9 2.1
10-2

10-1

100

101
(d) GIST1M

1 1.2 1.4 1.6 1.8 2
Ratio

10-2

10-1

100

101

Q
ue

ry
 T

im
e

(m
s)

(e) SIFT1M

1 1.2 1.4 1.6 1.8
Ratio

10-2

10-1

100

101
(f) GloVe

1.8 2.3 2.8 3.3 3.8
Ratio

10-2

10-1

100

101

102
(g) GIST80M

1.6 2 2.4 2.8 3.2 3.6
Ratio

10-1

100

101

102
(h) SIFT1B

Figure 2: Query time vs. ratio.

10-2 10-1 10010-2

10-1

100

Q
ue

ry
 T

im
e

(m
s)

(a) Audio

10-2 10-1 10010-2

10-1

100 (b) Mnist
iDEC SRS OPQ HNSW

10-1 10010-2

10-1

100

Q
ue

ry
 T

im
e

(m
s)

(c) Enron

10-2 10-1 10010-2

10-1

100

101 (d) GIST1M

10-2 10-1 100

MAP

10-2

10-1

100

101

Q
ue

ry
 T

im
e

(m
s)

(e) SIFT1M

10-3 10-2 10-1 100

MAP

10-2

10-1

100

101 (f) GloVe

Figure 3: Query time vs. MAP.

the rectangles in the R-tree is only 16 bits long, since each
ψi(·) maps a d-dimensional data point in D to an integer
between −d to d in value, whereas in SRS each coordinate
is 32 bits long since it is a floating-point number.

We are not able to compare their indexing times fairly
due to the difference in their implementations. During the
index construction, QALSH and C2LSH store all raw data
in main memory to maximize the efficiency, whereas iDEC
and SRS store only a tiny fraction of them in main memory
to minimize main memory usage. Despite this significant
disadvantage, the indexing times of iDEC and SRS are still
comparable to those of QALSH and C2LSH thanks to their

much smaller index sizes. For example, on SIFT1M, it takes
iDEC, SRS, QALSH, and C2LSH 163.2 s, 216.3 s, 48.9 s, and
225.9 s to build their indices respectively.

Table 4: Comparisons of index sizes (in megabytes).

dataset iDEC SRS QALSH C2LSH

Audio 1.1 2.6 14.3 79.3
Mnist 1.5 3.3 18.3 103.0
Enron 2.1 4.5 25.8 145.3

GIST1M 20.6 46.1 314.8 1,751.9
SIFT1M 20.5 47.0 318.1 1,769.7
GloVe 24.3 56.4 386.5 2,147.5

GIST80M 1,518.4 2,724.0 30,836.1 162,170.1
SIFT1B 23,212.4 37,646.5 480,167.1* 2,472,279.3*

I/O Cost vs. Approximation Ratio. Now we compare
the query performance of iDEC with those of SRS, QALSH
and C2LSH. Like in most literature on external-memory
ANN search, we mainly use the I/O costs as the query effi-
ciency metric. We keep the comparisons with QALSH and
C2LSH separate from those with SRS, since QALSH and
C2LSH require slightly different experimental settings. In
the interest of space, we only present the comparison results
with QALSH and C2LSH, since those with SRS are similar
to the corresponding in-memory comparison results.

Table 5 compares the I/O costs of iDEC with those of
QALSH on the left side and those of C2LSH on the right
side, on all the 8 datasets except SIFT1B, on which index
constructions for QALSH and C2LSH cannot be success-
fully completed as explained earlier. In each comparison,
we tune the value of t in iDEC to match the approximation
ratio achieved by the corresponding benchmark algorithm
(QALSH or C2LSH). Table 5 shows that the I/O costs of
iDEC are 1.1 to 32.0 and 1.8 to 52.4 times smaller than those
of QALSH and C2LSH, respectively.

Due to their extremely long query times on GIST80M,
QALSH and C2LSH processed only 3,543 and 1,803 queries
respectively, each in around a week. We use the average

1492

over these 3,543 and 1,803 queries for QALSH and C2LSH,
respectively. For fair comparisons, the two iDEC results on
GIST80M reported in Table 5 are also averaged over the
same 3,543 and 1,803 queries respectively.

Table 5: Comparisons of I/O costs of iDEC with those of
QALSH and C2LSH for achieving the same query quality
(approximation ratio).

dataset ratio QALSH iDEC ratio C2LSH iDEC

Audio 1.08 1,804 151 1.03 4,052 289
Mnist 1.10 2,512 505 1.04 5,715 1,098
Enron 1.09 2,646 2,341 1.02 6,428 3,537

GIST1M 1.09 40,106 9,127 1.04 87,728 15,930
SIFT1M 1.07 33,408 3,347 1.01 73,127 4,439
GloVe 1.08 52,345 1,636 1.07 111,058 2,120

GIST80M 1.14 3,253,014 143,008 1.04 7,264,200 332,301

Although higher I/O cost generally predicts longer query
time, since most external-memory ANN algorithms are I/O-
intensive, we have measured their query times just to con-
firm that. In the interest of space, we summarize the re-
sults as follows. We have found that the query time re-
sults (for iDEC and SRS) are roughly consistent with the
I/O cost results except for a few approximation ratio val-
ues on some datasets (e.g., GloVe) where the query time
of iDEC is slightly longer. We have also found that iDEC
outperforms QALSH and C2LSH on all medium and large
datasets. Furthermore, the larger the dataset is, the higher
the advantage iDEC has over QALSH and C2LSH. More
specifically, the query times of iDEC are at least 1.2 and
1.4 times shorter than those of QALSH and C2LSH respec-
tively on the three medium datasets, but 12.8 and 25.2 times
shorter on the much larger GIST80M dataset, respectively.
This asymptotic behavior (that query time advantage grows
with dataset size n) is expected for the following reason.
Query time is roughly equal to I/O time and CPU time
adding up. On one hand, it is clear from Table 5 that iDEC
should use much less I/O time than QALSH and C2LSH. On
the other hand, the CPU time complexity of iDEC is O(n)
as described in §4.5, whereas those of QALSH and C2LSH
are both O(n log n) [32, 40], so iDEC’s advantage on CPU
time grows with n.

7.4 Performance Evaluation for ANN-E

7.4.1 Benchmark Algorithms and Datasets
We compare the performances of iDEC, including

multiset-iDEC and context-iDEC, with that of CGK-
LSH [76], the state-of-the-art solution to ANN-E. For both
multiset-iDEC and context-iDEC, we do not use raw mul-
tiset “features” for indexing, since their dimensions are too
high for the k-d tree. Instead we reduce their dimensions
by applying ξi(·)’s, the ToW-for-L1 sketching functions, to
them (described in §6).

CGK-LSH is a combination of the CGK-embedding [18],
which maps strings measured in edit space to longer strings
measured in Hamming space via padding, and the bit-
sampling LSH [41]. As shown in [18], the distortion of the
CGK-embedding is quite large especially when the edit dis-
tance between two input strings is large, so multiple CGK-
embeddings are used in CGK-LSH to reduce the distortion.

We use two string datasets: GEN50KS [75] and
UNIREF [75]. Table 6 summarizes the number of strings
(excluding those in the query workload), the alphabet size
|Σ|, the minimum, average and maximum lengths of the
strings, the type (DNA or protein sequences), and the aver-
age (over 1,000 queries) query time tBF that a brute-force
linear scan takes on the 2 datasets.

Table 6: Datasets and tBF (in milliseconds).

dataset n |Σ| length
type tBFMin Avg Max

GEN50KS 49K 4 4,844 5,000 5,109 DNA 77,593.6
UNIREF 399K 25 200 445 35,213 protein 9,024.2

7.4.2 Experimental Results
Table 7 and Table 8 show the experimental results, each

of which is averaged over 1,000 queries, of the CGK-
LSH, multiset-iDEC, and context-iDEC, on GEN50KS and
UNIREF. We have explored various parameter settings
for CGK-LSH, multiset-iDEC, and context-iDEC. For each
dataset, the table presents the index size, the indexing time,
and the query time for achieving each of the two target recall
values. The two target recall values for iDEC are reached
by tuning only the value of t. Hence both the index size and
the indexing time remain the same for both multiset-iDEC
and context-iDEC, for both recall values.

For the CGK-LSH, there are three parameters to tune:
the number of CGK embeddings, the number of hash ta-
bles for the embedded strings under each CGK embedding,
and the number of sampling bits. The parameter values for
achieving the two target recall values are also shown in both
tables, each as a 3-tuple after “CGK-LSH”. For the multiset-
iDEC and the context-iDEC, we set m to 10 and 12 for the
results shown in Table 7 and Table 8 respectively. The win-
dow size w for the left/right context is 12 in context-iDEC,
whereas the gram sizes are different for different datasets.
For the results in Table 7, multiset-iDEC uses grams of size
q = 5, and context-iDEC uses q = 4. The q values for the
results in Table 8 become 1 and 2 for multiset-iDEC and
context-iDEC respectively.

The results show that iDEC is significantly more space-
and time-efficient than CGK-LSH. The index sizes using
CGK-LSH are much larger (by at least 13 times) than those
using iDEC. The query time of iDEC can be up to 3 orders
of magnitude shorter than that of CGK-LSH.

The results in Table 7 show that the context-iDEC has
shorter query times than the multiset-iDEC on GEN50KS,
whereas the results in Table 8 show that they have similar
query times on UNIREF. Our interpretation of this observa-
tion is as follows. The dataset GEN50KS has a much smaller
alphabet but much larger average string length. Hence,
block-wise permutations could appear more frequently in
GEN50KS than in UNIREF. As we explained in § 6.2,
context-iDEC is more robust against such spurious patterns
than multiset-iDEC.

The results in the two tables also show that iDEC has
a much larger advantage (over CGK-LSH) on GEN50KS
(the smaller dataset) than on UNIREF (the larger dataset),
which is unusual. The reason for this “anomaly” is that,
the distribution of distances between strings in GEN50KS
is much more friendly to our iDEC framework than that in

1493

Table 7: Index sizes (in megabytes), indexing times (in
seconds) and query times (in milliseconds) on GEN50KS.

recall algorithm size indexing time query time

0.91
CGK-LSH (7, 10, 13) 41.9 11.9 6,618.0
multiset-iDEC 2.1 11.6 11.9
context-iDEC 2.0 92.5 5.0

0.95
CGK-LSH (9, 10, 13) 53.9 15.3 6,652.1
multiset-iDEC 2.1 11.6 26.8
context-iDEC 2.0 92.5 7.0

Table 8: Index sizes (in megabytes), indexing times (in
seconds) and query times (in milliseconds) on UNIREF.

recall algorithm size indexing time query time

0.90
CGK-LSH (5, 10, 13) 230.2 8.5 196.1
multiset-iDEC 17.1 4.5 65.9
context-iDEC 16.9 242.8 66.7

0.93
CGK-LSH (7, 10, 13) 322.3 12.4 355.1
multiset-iDEC 17.1 4.5 147.9
context-iDEC 16.9 242.8 146.4

UNIREF: As shown in [76], given a (random) query string
α, most of the strings in GEN50KS, except a few nearest
neighbors of α, are farther away from α, typically by 10
times or more (according to our measurements), than the
nearest neighbor of α, whereas this ratio is much smaller
in UNIREF. Consequently, the number of NNs t (see Line 1
of Algorithm 1) searched is much smaller on GEN50KS than
on UNIREF to achieve the same quality (recall) in iDEC,
resulting in shorter query times. CGK-LSH does not benefit
from the more friendly distance distribution in GEN50KS,
because the numbers of candidates (strings hashed into the
same buckets as the queries) searched by CGK-LSH re-
main comparable on both datasets, thanks to the aforemen-
tioned large distortion of CGK-embedding, and each candi-
date string takes a longer time to check out in GEN50KS
than in UNIREF since the former is on average much longer
than the latter.

8. RELATED WORK
In this section, we provide a brief survey of ANN algo-

rithms, besides those we have already described earlier, fo-
cusing on those directly related to our work. More related
work on ANN search can be found in the following three
recent ANN benchmark papers [10, 25,46].
LSH-Based Algorithms. LSH was first introduced for
use in the Hamming space in [41]. A classical LSH-based
algorithm needs to use a large number, typically in hundreds
to thousands, of hash tables [16], which results in a large
index size. To overcome this issue, many techniques, such as
LSH forest (LSHF) [12], entropy-based LSH [60] and multi-
probe LSH [50], have been proposed to reduce the number
of hash tables by allowing multiple buckets to be examined
in each table. However, doing so is found (e.g., in [64])
to result in longer query time than the classical LSH-based
algorithms sometimes.

The LSH-based techniques described above are designed
for in-memory operations. Many recent works have adapted
LSH for external-memory operations. Examples of them

include LSB-forest [69], SK-LSH [49] (a variant of LSB-
forest), C2LSH [32], QALSH [40], and I-LSH [48] (a vari-
ant of QALSH). These works usually use disk-resident data
structures, such as B+ trees [22, 26], to store each hash ta-
ble. They all have a large index size. In addition, to achieve
a relatively high level of query quality, most of them require
a large number of disk I/Os that result in long query time.
SRS [68] tackles these issues using a single low-dimensional
(say 6-dimensional) R-tree so that the index size and the
number of I/Os are reduced significantly.
Graph-Based Algorithms. Their basic idea is for each
point α in the database to maintain a list of other points
in the database that are close to α (i.e., neighbors of α),
and the query processing is performed via searching this
neighbor-relationship graph. To achieve the same level of
query quality (say recall), graph-based algorithms, such
as HNSW [51], NSG [31], FANNG [36], SSG [30] and
DiskANN [42], are in general much faster than LSH-based
solutions. However, in general their index construction
times are much longer.
Quantization-Based Algorithms. Quantization [34] is
another commonly used technique. Its basic idea is to quan-
tize the data in D to a small (relative to n, the number of
points in D) set of designated points and the search is per-
formed over those points in D that are quantized to the same
designated point as the query point, and to the nearby des-
ignated points. The state-of-the-art quantization-based al-
gorithms include OPQ [33], Inverted Multi-Index (IMI) [11],
and Faiss [43] (a GPU-based variant of OPQ).
Other ANN Algorithms. Since there are many of them,
we describe only a few representatives here. Tree-based data
structures have been widely used for both exact NN and
ANN. Representative tree-based ANN algorithms include
FLANN [54] and Annoy [3]. A recent work for external-
memory queries, called HD-index [9], is based on space-
filling curves [65]. Its basic idea is to map each point β
in D to a so-called ordering value that corresponds roughly
to the along-the-curve distance between β and the origin of
the space-filling curve, so that points close in D are mapped
to similar ordering values. The (one-dimensional) ordering
values of all points in D are then indexed using a reference
distance B+ tree. Multiple trees are generally required to
achieve a good efficiency-quality tradeoff. As shown in [9],
the index size of HD-index is around 2 to 3 times larger
than that of SRS (for external-memory). In comparison,
the index size of iDEC is 2 times smaller than that of SRS.

9. CONCLUSION
In this paper, we propose indexable distance estimating

codes (iDEC), a new solution framework to the approximate
nearest neighbor (ANN) search problem that fundamentally
extends and improves the LSH framework. We also discover
subtle deep connections between EEC, LSH, and iDEC. We
show that our iDEC-based solutions for ANN-H and ANN-E
outperform the respective state-of-the-art LSH-based solu-
tions in both index sizes and query time complexities. We
also show that our iDEC-based in-memory ANN-H solution
significantly outperforms the respective state-of-the-art so-
lutions in peak memory usage and indexing time, which al-
lows it to easily scale to massive datasets.
Acknowledgment. This work is supported in part by US
NSF through award CNS-1909048 and by a research grant
from Keysight Technologies, Inc.

1494

10. REFERENCES
[1] http://man7.org/linux/man-pages/man2/

getrusage.2.html.

[2] https://www.mathworks.com/help/matlab/ref/

profile.html.

[3] Annoy: Approximate nearest neighbors in
C++/Python optimized for memory usage and
loading/saving to disk.
https://github.com/spotify/annoy.

[4] Datasets for approximate nearest neighbor search.
http://corpus-texmex.irisa.fr/.

[5] Enron email dataset.
http://www.cs.cmu.edu/~enron/.

[6] D. Achlioptas. Database-friendly random projections:
Johnson-Lindenstrauss with binary coins. Journal of
Computer and System Sciences, 66(4):671–687, June
2003.

[7] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
Journal of Computer and System Sciences,
58(1):137–147, Feb. 1999.

[8] A. Andoni, P. Indyk, and I. P. Razenshteyn.
Approximate nearest neighbor search in high
dimensions. CoRR, abs/1806.09823, 2018.

[9] A. Arora, S. Sinha, P. Kumar, and A. Bhattacharya.
HD-Index: Pushing the scalability-accuracy boundary
for approximate KNN search in high-dimensional
spaces. PVLDB, 11(8):906–919, 2018.

[10] M. Aumüller, E. Bernhardsson, and A. Faithfull.
ANN-Benchmarks: A benchmarking tool for
approximate nearest neighbor algorithms. In
Similarity Search and Applications, pages 34–49,
Cham, 2017.

[11] A. Babenko and V. Lempitsky. The inverted
multi-index. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
3069–3076, June 2012.

[12] M. Bawa, T. Condie, and P. Ganesan. LSH Forest:
Self-tuning indexes for similarity search. In
Proceedings of the International Conference on World
Wide Web, page 651–660, 2005.

[13] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, Sept. 1975.

[14] A. Beygelzimer, S. Kakade, and J. Langford. Cover
trees for nearest neighbor. In Proceedings of the
International Conference on Machine Learning, pages
97–104, 2006.

[15] J. L. Blanco and P. K. Rai. nanoflann: a C++11
header-only library for nearest neighbor (NN) search
with KD-trees.
https://github.com/jlblancoc/nanoflann, 2014.

[16] J. Buhler. Efficient large-scale sequence comparison by
locality-sensitive hashing. Bioinformatics,
17(5):419–428, 2001.

[17] R. Cai, C. Zhang, L. Zhang, and W.-Y. Ma. Scalable
music recommendation by search. In Proceedings of
the ACM International Conference on Multimedia,
pages 1065–1074, 2007.

[18] D. Chakraborty, E. Goldenberg, and M. Koucký.
Streaming algorithms for embedding and computing
edit distance in the low distance regime. In

Proceedings of the ACM Symposium on Theory of
Computing, pages 712–725, 2016.

[19] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings of the ACM
Symposium on Theory of Computing, pages 380–388,
2002.

[20] B. Chen, Z. Zhou, Y. Zhao, and H. Yu. Efficient error
estimating coding: Feasibility and applications. In
Proceedings of the ACM Special Interest Group on
Data Communication, pages 3–14, New Delhi, India,
Aug. 2010.

[21] K. L. Clarkson. An algorithm for approximate
closest-point queries. In Proceedings of the Annual
Symposium on Computational Geometry, pages
160–164, 1994.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[23] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the Annual Symposium
on Computational Geometry, pages 253–262, 2004.

[24] DBWangGroupUNSW. SRS - fast approximate
nearest neighbor search in high dimensional euclidean
space with a tiny index.
https://github.com/DBWangGroupUNSW/SRS.

[25] K. Echihabi, K. Zoumpatianos, T. Palpanas, and
H. Benbrahim. Return of the Lernaean Hydra:
experimental evaluation of data series approximate
similarity search. PVLDB, 13(3):403–420, 2020.

[26] R. Elmasri and S. Navathe. Fundamentals of Database
Systems. Addison-Wesley Publishing Company, USA,
6th edition, 2010.

[27] J. Feigenbaum, S. Kannan, M. J. Strauss, and
M. Viswanathan. An approximate l1-difference
algorithm for massive data streams. SIAM Journal on
Computing, 32(1):131–151, Jan. 2003.

[28] R. Fergus, A. Torralba, and W. T. Freeman. Tiny
images dataset. http:
//horatio.cs.nyu.edu/mit/tiny/data/index.html.

[29] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An
algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical
Software, 3(3):209–226, Sept. 1977.

[30] C. Fu, C. Wang, and D. Cai. Satellite system graph:
Towards the efficiency up-boundary of graph-based
approximate nearest neighbor search. CoRR,
abs/1907.06146, 2019.

[31] C. Fu, C. Xiang, C. Wang, and D. Cai. Fast
approximate nearest neighbor search with the
navigating spreading-out graph. PVLDB,
12(5):461–474, 2019.

[32] J. Gan, J. Feng, Q. Fang, and W. Ng.
Locality-sensitive hashing scheme based on dynamic
collision counting. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 541–552, Scottsdale, Arizona, USA, May
2012. Source code:
https://github.com/fengjl18/C2LSH-Code.

[33] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product
quantization for approximate nearest neighbor search.
In Proceedings of the IEEE Conference on Computer

1495

Vision and Pattern Recognition, pages 2946–2953,
June 2013.

[34] R. M. Gray and D. L. Neuhoff. Quantization. IEEE
Transactions on Information Theory, 44(6):2325–2383,
Oct 1998.

[35] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 47–57, Boston, Massachusetts, June 1984.

[36] B. Harwood and T. Drummond. FANNG: Fast
approximate nearest neighbour graphs. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, June 2016.

[37] N. Hua, A. Lall, B. Li, and J. Xu. A simpler and
better design of error estimating coding. In
Proceedings of the IEEE International Conference on
Computer Communications, pages 235–243, Orlando,
FL, USA, Mar. 2012.

[38] N. Hua, A. Lall, B. Li, and J. Xu. Towards optimal
error-estimating codes through the lens of fisher
information analysis. In Proceedings of the ACM
SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of
Computer Systems, pages 125–136, London, England,
UK, June 2012.

[39] J. Huang, S. Yang, A. Lall, J. Romberg, J. Xu, and
C. Lin. Error estimating codes for insertion and
deletion channels. In Proceedings of the ACM
SIGMETRICS international conference on
Measurement and Modeling of Computer Systems,
pages 381–393, Austin, Texas, USA, June 2014.

[40] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng.
Query-aware locality-sensitive hashing for approximate
nearest neighbor search. PVLDB, 9(1):1–12, 2015.
Source code: https://github.com/DBWangGroupUNSW/
nns_benchmark/tree/master/algorithms/QALSH.

[41] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In Proceedings of the ACM Symposium
on Theory of Computing, pages 604–613, Dallas,
Texas, USA, May 1998.

[42] S. Jayaram Subramanya, F. Devvrit, H. V. Simhadri,
R. Krishnawamy, and R. Kadekodi. DiskANN: Fast
accurate billion-point nearest neighbor search on a
single node. In Advances in Neural Information
Processing Systems 32, pages 13771–13781. Curran
Associates, Inc., 2019.

[43] J. Johnson, M. Douze, and H. Jégou. Billion-scale
similarity search with GPUs. IEEE Transactions on
Big Data, pages 1–1, 2019.

[44] W. Kong, W.-J. Li, and M. Guo. Manhattan hashing
for large-scale image retrieval. In Proceedings of the
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
45–54, Portland, Oregon, USA, Aug. 2012.

[45] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A
partition-based method for similarity joins. PVLDB,
5(3):253–264, 2011.

[46] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang,
and X. Lin. Approximate nearest neighbor search on
high dimensional data - experiments, analyses, and
improvement. IEEE Transactions on Knowledge and

Data Engineering, pages 1–1, 2019.

[47] K. Lin, H. Yang, J. Hsiao, and C. Chen. Deep learning
of binary hash codes for fast image retrieval. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages
27–35, Boston, MA, USA, June 2015.

[48] W. Liu, H. Wang, Y. Zhang, W. Wang, and L. Qin.
I-LSH: I/O efficient c-approximate nearest neighbor
search in high-dimensional space. In Proceedings of the
IEEE International Conference on Data Engineering,
pages 1670–1673, April 2019.

[49] Y. Liu, J. Cui, Z. Huang, H. Li, and H. T. Shen.
SK-LSH: An efficient index structure for approximate
nearest neighbor search. PVLDB, 7(9):745–756, 2014.

[50] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe LSH: Efficient indexing for
high-dimensional similarity search. In Proceedings of
the International Conference on Very Large Data
Bases, pages 950–961, Vienna, Austria, Sept. 2007.

[51] Y. A. Malkov and D. A. Yashunin. Efficient and
robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 42(4):824–836, 2020. Source code:
https://github.com/nmslib/hnswlib.

[52] G. S. Manku, A. Jain, and A. Das Sarma. Detecting
near-duplicates for web crawling. In Proceedings of the
International Conference on World Wide Web, pages
141–150, 2007.

[53] Y. Manolopoulos, A. Nanopoulos, A. N.
Papadopoulos, and Y. Theodoridis. R-Trees: Theory
and Applications. Springer Publishing Company,
Incorporated, 2005.

[54] M. Muja and D. G. Lowe. Scalable nearest neighbor
algorithms for high dimensional data. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 36(11):2227–2240, Nov 2014.

[55] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 1(2), 2005.

[56] T. T. Nguyen, P.-M. Hui, F. M. Harper, L. Terveen,
and J. A. Konstan. Exploring the filter bubble: The
effect of using recommender systems on content
diversity. In Proceedings of the International
Conference on World Wide Web, pages 677–686,
Seoul, Korea, Apr. 2014.

[57] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search
in Hamming space with multi-index hashing. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3108–3115,
Providence, RI, USA, June 2012.

[58] R. O’Donnell, Y. Wu, and Y. Zhou. Optimal lower
bounds for locality-sensitive hashing (except when q is
tiny). ACM Transactions on Computation Theory,
6(1):5:1–5:13, Mar. 2014.

[59] S. M. Omohundro. Five balltree construction
algorithms. Technical report, International Computer
Science Institute, 1989.

[60] R. Panigrahy. Entropy based nearest neighbor search
in high dimensions. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithm, page 1186–1195.
Society for Industrial and Applied Mathematics, 2006.

1496

[61] J. Pennington, R. Socher, and C. D. Manning. GloVe:
Global vectors for word representation.
https://nlp.stanford.edu/projects/glove/.

[62] L. Qi, X. Zhang, W. Dou, and Q. Ni. A distributed
locality-sensitive hashing-based approach for cloud
service recommendation from multi-source data. IEEE
Journal on Selected Areas in Communications,
35(11):2616–2624, Nov 2017.

[63] A. Rajaraman and J. D. Ullman. Mining of Massive
Datasets. Cambridge University Press, 2011.

[64] K. Rong, C. E. Yoon, K. J. Bergen, H. Elezabi,
P. Bailis, P. Levis, and G. C. Beroza.
Locality-sensitive hashing for earthquake detection: A
case study of scaling data-driven science. PVLDB,
11(11):1674–1687, 2018.

[65] H. Sagan. Space-filling curves. Springer Science &
Business Media, 2012.

[66] S. Sood and D. Loguinov. Probabilistic near-duplicate
detection using simhash. In Proceedings of the ACM
International Conference on Information and
Knowledge Management, pages 1117–1126, Glasgow,
Scotland, UK, Oct. 2011.

[67] M. Šošić and M. Šikić. Edlib: A C/C++ library for
fast, exact sequence alignment using edit distance.
Bioinformatics, 33(9):1394–1395, 2017.

[68] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS:
Solving c-approximate nearest neighbor queries in
high dimensional euclidean space with a tiny index.
PVLDB, 8(1):1–12, 2014.

[69] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Efficient and
accurate nearest neighbor and closest pair search in
high-dimensional space. ACM Transactions on
Database Systems, 35(3), July 2010.

[70] S. S. Vempala. The Random Projection Method,
volume 65. American Mathematical Soc., 2005.

[71] Z. Wang, W. Dong, W. Josephson, Q. Lv,
M. Charikar, and K. Li. Sizing sketches: A rank-based
analysis for similarity search. In Proceedings of the
ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems,
pages 157–168. Association for Computing Machinery,
2007. Dataset is available at
http://www.cs.princeton.edu/cass/audio.tar.gz.

[72] L. Yann, C. Corinna, and J. B. Christopher. The
MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

[73] A. C.-C. Yao. Some complexity questions related to
distributive computing (preliminary report). pages
209–213, Atlanta, Georgia, USA, Apr. 1979.

[74] P. N. Yianilos. Data structures and algorithms for
nearest neighbor search in general metric spaces. In
Proceedings of the Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, page 311–321,
USA, 1993. Society for Industrial and Applied
Mathematics.

[75] H. Zhang. String datasets. https://iu.box.com/s/
x7hg7uxj7xmmcdvc62k7iux9txtt9doi.

[76] H. Zhang and Q. Zhang. EmbedJoin: Efficient edit
similarity joins via embeddings. In Proceedings of the
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
585–594, Halifax, NS, Canada, Aug. 2017.

[77] Z. Zhang and P. Kumar. mEEC: A novel error
estimation code with multi-dimensional feature. In
Proceedings of the IEEE International Conference on
Computer Communications, pages 1–9, Atlanta, GA,
USA, May 2017.

1497

