
VHP: Approximate Nearest Neighbor Search
via Virtual Hypersphere Partitioning

Kejing Lu†, Hongya Wang‡
∗

, Wei Wang§, Mineichi Kudo†
†Graduate School of Information Science and Technology, Hokkaido University, Japan

‡School of Computer Science and Technology, Donghua University, China
§School of Computer Science and Engineering, University of New South Wales, Australia

{lkejing,mine}@ist.hokudai.ac.jp, hywang@dhu.edu.cn, weiw@unsw.edu.au

ABSTRACT
Locality sensitive hashing (LSH) is a widely practiced c-
approximate nearest neighbor(c-ANN) search algorithm in
high dimensional spaces. The state-of-the-art LSH based al-
gorithm searches an unbounded and irregular space to iden-
tify candidates, which jeopardizes the efficiency. To address
this issue, we introduce the concept of virtual hypersphere
partitioning. The core idea is to impose a virtual hyper-
sphere, centered at the query, in the original feature space
and only examine points inside the hypersphere. The search
space of a hypersphere is isotropic and bounded, and thus
more efficient than the existing one. In practice, we use
multiple physical hyperspheres with different radii in cor-
responding projection subspaces to emulate the single vir-
tual hypersphere. We also developed a principled method to
compute the hypersphere radii for given success probability.

Based on virtual hypersphere partitioning, we propose a
novel disk-based indexing and searching scheme VHP to an-
swer c-ANN queries. In the indexing phase, VHP stores LSH
projections with independent B+-trees. To process a query,
VHP keeps increasing the radii of physical hyperspheres co-
ordinately, which in effect amounts to enlarging the virtual
hypersphere, to accommodate more candidates until the suc-
cess probability is met. Rigorous theoretical analysis shows
that the proposed algorithm supports c-ANN search for ar-
bitrarily small c ≥ 1 with probability guarantee. Extensive
experiments on a variety of datasets, including the billion-
scale ones, demonstrate that VHP could achieve different
tradeoffs between efficiency and accuracy, and achieves up to
2x speedup in running time over the state-of-the-art meth-
ods.

PVLDB Reference Format:
Kejing Lu, Hongya Wang, Wei Wang, Mineichi Kudo. VHP:
Approximate Nearest Neighbor Search via Virtual Hypersphere
Partitioning. PVLDB, 13(9): 1443-1455, 2020.
DOI: https://doi.org/10.14778/3397230.3397240

∗Corresponding author

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 9
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3397230.3397240

1. INTRODUCTION
The nearest neighbor (NN) search in the high dimensional

Euclidean space is of great importance in areas such as
database, information retrieval, data mining, pattern recog-
nition and machine learning [2, 18]. To remove the curse of
dimensionality, the common wisdom is to design efficient c-
approximate NN search algorithms by trading precision for
speed [6]. A point o is called a c-approximate NN (c-ANN)
of q if its distance to q is at most c times the distance from
q to its exact NN o∗, i.e., ‖q, o‖ ≤ c‖q, o∗‖, where c is the
approximation ratio. As one of the most promising c-ANN
search algorithms, Locality Sensitive Hashing (LSH) owns
attractive query performance and probability guarantee in
theory [16], and finds broad applications in practice [1, 18].

As a matter of fact, the original LSH method (E2LSH)
does not support c-ANN search directly and a naive ex-
tension may cause prohibitively large storage cost [29]. To
this end, several LSH variants such as LSH-forest [29],
C2LSH [12] and QALSH [15], have been proposed in or-
der to answer c-ANN queries with reasonably small indexes,
constant success probability and sub-linear query overhead.
We focus on QALSH next since it is more efficient compared
with LSH-forest and C2LSH, and closely related to our pro-
posal.

QALSH uses the so-called dynamic collision counting
technique to identify eligible candidates. Briefly, one hash
function h(·) defines many buckets (search windows) and
two points collide if they fall into the same bucket. With
a compound hash function gm(·) = 〈h1(·), h2(·), · · · , hm(·)〉,
o is mapped from the feature space into the m-dimensional
projection space. Point o collides with q over gm(·) if the
collision number out of m hash functions is no less than
L, where L is a pre-defined collision threshold. All points
that collide with q are regarded as candidates and further
screened by QALSH.

As will be discussed in Section 4, this technique essen-
tially examines points within an irregular and unbounded
region in the original feature space. By statistical analysis,
we observed that points with large collision numbers may
be less likely to be NNs if their projection distances to q
are very large (areas that are inside the crossroad-like re-
gion and outside the circle in Figure 1), whereas points with
small collision numbers may be promising ones if they are
rather close to the query in the projection space (red area in
Figure 1). This suggests that the collision-threshold-based
filtering may miss promising points and check unfavorable
ones.

1443

Motivated by this observation, we introduce the concept
of virtual hypersphere partitioning (VHP). As illustrated in
Figure 1, the core idea is to impose a virtual hypersphere
of radius l, centered at query, in the original feature space.
For each o, we estimate its distance to q, denoted by d̃(o, q),
in the original space using the LSH projection information.
If d̃(o, q) ≤ l, i.e., o falls inside the hypersphere, we say o
collides with q and put o into the candidate set for fur-
ther examination. Because the search space is isotropic
and bounded, virtual hypersphere partitioning is potentially
more efficient than the collision-threshold-based filtering.

Since it is difficult to construct a real hypersphere di-
rectly in the original feature space, we developed a principled
method to emulate a single virtual hypersphere by using m
physical hyperspheres in different projection subspaces in
this paper. The working mechanism and soundness of our
proposal will be discussed in detail in Section 5.

t ! t

q

QALSH

Figure 1: An illustrative example of the search spaces of
virtual sphere partitioning and collision-threshold-based fil-
tering. The dimensionality d of the feature space is 2, the
number of hash functionsm is 2 and the collision threshold L
is set to 1. The search window is of size 2t. The crossroad-
like region is the search space of collision-threshold-based
filtering, which is irregular and unbounded. Points in this
region are estimated to be the NNs by QALSH. In contrast,
virtual sphere partitioning imposes a virtual hypersphere in
the feature space, which is isotropic and bounded. Points
whose distances to q are less than the radius of the hyper-
sphere (in estimation) are regarded as candidates.

Using virtual hypersphere partitioning, we proposed an
efficient c-ANN algorithm named VHP for searching disk-
based large datasets. In the indexing phase, VHP stores
LSH projections with independent B+-trees. To process a
query, VHP keeps increasing the radii of physical hyper-
spheres coordinately, which in effect amounts to enlarging
the virtual hypersphere, to accommodate more candidates
until the success probability is met. Rigorous theoretical
analysis shows that the proposed algorithm supports c-ANN
search for arbitrarily small c ≥ 1 with probability guarantee.
Extensive experiments on a variety of datasets, including the
billion-scale ones, demonstrate that VHP is a preferable c-
ANN search algorithm.

Our main contributions are summarized as follows.

• We introduce the concept of virtual hypersphere parti-
tioning, which uses the estimated distance of o to q as
a more efficient indicator to distinguish relevant and
irrelevant points in the pruning phase. The soundness
is proved based on the solid estimation theory.

• We proposed an efficient disk-based c-ANN search al-
gorithm VHP, which is guaranteed in supporting c-
ANN search for arbitrary c ≥ 1 with user-specified
success probability.

• Extensive experiments show that VHP offers desirable
recalls for a variety of real datasets with different sizes
and distributions, and achieves up to 4x speedup over
the state-of-the-art algorithms.

The rest of this paper is organized as follows: Prelim-
inaries are presented in Section 2. The related work is
overviewed in Section 3. Section 4 outlines the limitations
of QALSH. Section 5 explains the basic idea of VHP and
presents the algorithm. The theoretical analysis is presented
in Sections 6 and 7. Section 8 lists some discussions about
VHP. The experimental comparison is shown in Section 9.
Section 10 concludes the paper.

2. PRELIMINARIES
In this paper, we focus on the Euclidean space with `2

norm. For a dataset D of N d-dimensional data points, NN
search finds the point o∗ in D with the minimum distance
to query q. For c-ANN search, only a c-approximate neigh-
bor o needs to be returned, that is, ‖q − o‖ ≤ c ‖q − o∗‖,
where ‖q − o‖ denotes the `2 distance between q and o. kNN
search returns k results o∗j (1 ≤ j ≤ k), where o∗j is the
j-th nearest neighbor of q. Its c-approximate version, c-k-
ANN, returns a set of k objects oj (1 ≤ j ≤ k) satisfying
‖q − oj‖ ≤ c

∥∥q − o∗j∥∥.
Let d(o1, o2) denote ‖o1 − o2‖. Suppose ~a =

[a1, a2, · · · , ad] is a random projection vector, each entry
of which is an i.i.d. random variable following the standard
normal distribution N (0, 1). The inner product between ~a
and vector ~o, denoted as h(o) = 〈~a, ~o〉 is an LSH signature
of o. We have the following important Lemma [9].

Lemma 1. For any points o1, o2 in <d, h(o1) − h(o2)
follows the normal distribution N (0, d2(o1, o2)).

Lemma 1 holds due to the fact that the standard nor-
mal distribution N (0, 1) is a p-stable distribution for p = 2.
Lemma 1 suggests that the difference between two LSH sig-
natures follows the normal distribution with mean 0 and
standard deviation d(o1, o2), i.e., the Euclidian distance be-
tween the two original points. This establishes analytical
connection between the distances in the projection space
and original feature space, which is the building block for
constructing the LSH family.

Given a positive real number t, the interval [h(q) − t,
h(q) + t] is referred to as a query-aware search window. For
ease of presentation, we will refer to it as a search window
[−t, t] henceforth. For any point o, the probability p(s) that
h(o) (s = d(o, q)) falls into this window is given by Equa-
tion (1) [15].

p(s) = Pr[δ(o) ≤ t] =

∫ t
s

− t
s

ϕ(x)dx, (1)

where δ(o) = |h(q)−h(o)| and ϕ(x) is the probability density
function (PDF) of N (0, 1).

According to Equation (1), it is easy to see that p(s) is a
monotonically decreasing function for fixed t. This means
that the probability that q and o fall into the same search

1444

window decreases with their Euclidian distance. Based on
the definition of locality sensitive hashing, one can prove
that h(·) is the query-aware LSH family [15].

Suppose X follows the normal distribution N (µ, σ2) and
lies within the interval X ∈ [a, b], −∞ ≤ a < b ≤ ∞. Then
X conditional on a ≤ X ≤ b has a truncated normal distri-
bution N (x ∈ [a, b];µ, σ2). Its probability density function,
f , in support [a, b], is defined by:

f(x;µ, σ2, a, b) =
ϕ(x−µ

σ
)

Φ(b−µ
σ

)− Φ(a−µ
σ

)
(2)

where Φ(x) is the CDF of the standard normal distribu-
tion.

Truncated normal distribution is important for our pro-
posal since, instead of only caring about whether q and o
fall into the same bucket, we exploit the precise position
information of o to obtain a more fine-grained filtering con-
dition. Suppose o lies in the query-aware search window
already, then h(q) − h(o) follows the truncated normal dis-
tribution f(x; 0, d2(o1, o2),−t, t) instead of the normal dis-
tribution N (0, d2(o1, o2)).

Table 1 summarizes the notations that are frequently used
in this paper, where the precise explanations of some nota-
tions will be deferred to Section 5.

3. RELATED WORK
NN search in high dimensional spaces is a challenging

problem that has been studied extensively in the past two
decades [11, 19, 20, 22, 29, 32, 33]. There is extensive work
on hashing for similarity search in high dimensional spaces,
as discussed in literature surveys [1, 31] and empirical com-
parison [4, 28]. A recent survey of tree-based NN search
algorithms can be found in [27].

3.1 LSH-based Algorithms
E2LSH, the classical LSH implementations for `2 norm,

cannot solve c-ANN search problem directly. In practice,
one has to either assume there exists a “magical’ radius r,
which can lead to arbitrarily bad outputs, or uses multiple
hashing tables tailored for different radii, which may lead
to prohibitively large space consumption in indexing. To
reduce the storage cost, LSB-Forest [29] and C2LSH [12]
use the so-called virtual rehashing technique, implicitly or
explicitly, to avoid building physical hash tables for each
search radius.

Based on the idea of query-aware hashing, the two state-
of-the-art algorithms QALSH and SRS further improve
the efficiency over C2LSH by using different index struc-
tures and search methods, respectively. SRS uses an m-
dimensional R-tree (typically m = 6) to store the 〈g(o), oid〉
pair for each point o and transforms the c-ANN search in
the d-dimensional space into the range query in the m-
dimensional projection space. The rationale is that the
probability that a point o is the NN of q decreases as ∆m(o)
increases, where ∆m(o) = ‖gm(q)− gm(o)‖. During c-ANN
search, points are accessed in the ascending order of their
∆m(o).

To achieve better efficiency, many LSH extensions such
as Multi-probe LSH [24], SK-LSH [23], LSH-forest [5] and
Selective hashing [14] use heuristics to access more plausible
buckets or re-organize datasets, and do not ensure any LSH-
like theoretical guarantee.

Table 1: Notations
Notation Explanation

ϕ(x) the probability density function (PDF) of
N (0, 1).

Φ(x) the cumulative distribution function
(CDF) of N (0, 1).

P∗ the success probability specified by users.
L the collision threshold used by QALSH.
o∗ the nearest neighbor of q.
omin the nearest neighbor returned by the NN

search algorithm.
d(o1, o2) the exact `2 distance between o1 and o2.

s∗ s∗ = d(o∗, q)
m the number of projection vectors.
h(·) the locality sensitive hash function.
δi(o) the `2 distance between hi(o) and hi(q).
gm(·) the compound hash function 〈 h1(·), h2(·),

· · · , hm(·) 〉.
li the radius of physical hypersphere in the

i-constrained projection subspace.
σ̃(li) the radius of the virtual hypersphere asso-

ciated with i and li.
[−t, t] the search window of size 2t.
It(o) The set of hash functions satisfying |hi(q)−

hi(o)| ≤ t.
rt(o) the collision number of point o with respect

to [−t, t].
∆t(o) the observable projection distance of point

o in the rt(o)-constrained projection sub-
space.

d̃(o, q) d̃(o, q) = σ̃(∆t(o)) is the estimated dis-
tance from o to q.

3.2 Non-LSH Algorithms
DSH learns the LSH functions for kNN search directly

by computing the minimal general eigenvector and then
optimizing the hash functions iteratively with the boost-
ing technique [13]. Production quantization (PQ) divides
the feature space into disjoint subspaces and then quan-
tizes each subspace separately into multiple clusters [17].
By concatenating codes from different subspaces together,
PQ partitions the feature space into a large number of
fine-grained clusters which enables efficient NN search. As
pointed in [31], the high training cost (preprocessing over-
head) is a challenging problem for learning to hash while
dealing with large datasets. Moreover, almost all learning-
based hashing methods are memory-based and do not ensure
the answer quality theoretically.

FLANN [26] is a meta algorithm which selects the most
suitable techniques among randomized kd-tree, hierarchical
k-mean tree and linear scan for a specific dataset. As a
representative of graph-based algorithms, HNSW uses long-
range links to simulate the small-world property based on
an approximation of the Delaunay graph [25]. The experi-
ment study in a recent paper shows that the main-memory-
based ANN algorithms such as HNSW and PQ find diffi-
culty to work with large datasets in a commodity PC [3].
HD-index [3] is proposed to support the approximate NN
search for disk-based billion-scale datasets, which consists
of a set of hierarchical structures called RDB-trees built on
Hilbert keys of database objects.

1445

Ciaccia and Patella have also considered using a hyper-
sphere to delimit the search space and proposed an algo-
rithm PAC-NN to support probabilistic kANN queries [7].
While both VHP and PAC-NN use hyperspheres, there are
two fundamental differences between them: (1) PAC-NN
uses a single physical hypersphere in the original space
directly, whereas VHP employs multiples physical hyper-
spheres in projection subspaces to emulate one virtual hy-
persphere in the original feature space. (2) PAC-NN and
VHP deliver different kinds of theoretical guarantee. Specifi-
cally, PAC-NN supports data-dependent probability guaran-
tee, which needs data distribution information around each
query. In contrast, as an LSH-style algorithm, VHP has no
assumption on data distribution, and thus is data indepen-
dent.

A recent experimental study extends some data-series al-
gorithms, i.e., iSAX2+ and DSTree, to support PAC (prob-
ably approximately correct) NN query [10]. The extension
is based on the idea of PAC-NN [7], which makes the PAC
iSAX2+ and DSTree data dependent in answering probal-
istic δ-ε-approximate queries when δ < 1. As a result, it
is reported that they demonstrate better accuracy and effi-
ciency than SRS and QALSH.

4. LIMITATIONS OF QALSH
In this section, we discuss how QALSH works and its lim-

itations from a geometric point of view.

4.1 Brief Review
As discussed in Section 1, QALSH applies the query-aware

search window [−t, t] to each hash function hi(·). Point o
collides with q with respect to hi(·) if −t ≤ hi(o)−hi(q) ≤ t.

Given query q and the search window of size 2t, point o
might not collide with q over all m random hash functions.
To distinguish relevant and irrelevant points, QALSH counts
the collision number for each point. If the collision number
is greater than some given threshold L, it is said that o
collides with q over gm(·). A formal treatment for this is
given in Inequality (3).

|{i, 1 ≤ i ≤ m | |hi(o)− hi(q)| ≤ t}| ≥ L (3)

In QALSH, the exact `2 distance between o and q is eval-
uated only if o collides with q over gm(·), which avoids the
traversal of whole dataset D. In the quick example in Fig-
ure 2, three hash functions are used and the search window
size is 9 (t=4.5). Suppose the counting threshold L = 2,
QALSH will mark o2 and o3 as relevant points because they
appear in the search windows twice and leave o1 untouched.

4.2 Geometric Interpretation and Its Limita-
tions

In this subsection, we will examine the principle of
QALSH from a geometric point of view, whereby its lim-
itations are outlined. For the statement that o collides
with q w.r.t. h(·), a geometric interpretation is that o
lies in the region bounded by two hyperplanes, defined by
d∑
i=1

aixi = h(q) − t and
d∑
i=1

aixi = h(q) + t, in the d-

dimensional space.
Similarly, for QALSH, visiting candidates (points which

collide with q over gm(·)) is like checking points in the region
bounded by j ≥ L hyperplane pairs, which are defined by j

01234567 21 3 4 5 6 7
xxx

01234567 21 3 4 5 6 7
xx x

01234567 21 3 4 5 6 7
xxx

1o
3o 2o

1o

1o

3o

3o

2o

2o

1h

2h

3h

q

q

q

x

x

x

Window Size

Figure 2: A running example. Three hash functions are
used and the search window is of size 9. Three points o1, o2
and o3 are mapped into different projection subspaces.

different hash functions. Sincem, the number of projections,
is often less than the dimensionality d of the ambient space,
the search space is actually irregular and unbounded. It is
difficult to visualize such space in high-dimensional cases,
and thus we depict a simple example in 2-dimensional space
to train the reader’s intuition.

As illustrated in Figure 1, the crossroad-like region depicts
the search space of QALSH in the case of d = m = 2 and
L = 1, where the solid line represents a degraded hyperplane
in the 2-dimensional space. It is easy to see that the search
strategy of QALSH has two limitations: (1) close points in
the red areas (with collision number of 0) are missed and
(2) many irrelevant points that are far away from q (out-
side the hypersphere but inside the crossroad-like region)
may be examined since the region is unbounded. To rem-
edy these limitations, we will propose a more fine-grained
filtering strategy in the following section.

5. VIRTUAL HYPERSPHERE PARTITION-
ING

In this section, we present a novel disk-based indexing and
searching algorithm VHP. The idea of virtual hypersphere
partitioning and an illustrative example of query processing
workflow are given in Section 5.1 and Section 5.2, respec-
tively. The detailed algorithm is described in Section 5.3.

5.1 The Idea
In view of the limitations of QALSH discussed earlier, we

suggest to use a hypersphere centered at the query, which
is isotropic and bounded, to partition the original feature
space and distinguish promising candidates and irrelevant
ones. The idea is illustrated in Figure 1, where the inner
region of the hypersphere is the search space. Since imposing
a real hypersphere directly in the original space is difficult,
we propose to use multiple physical hyperspheres to achieve
the same goal. A few notations and definitions are needed
before we present our proposal.

Recall that the compound hash function gm(·) maps point
o in <d into the m-dimensional projection space <m. Due
to the existence of search window [−t, t], a point may lie in
a query-centric i-constrained projection subspace, which is
defined as follows.

Definition 1. A query-centric i-constrained projection
subspace is composed of x ∈ <m such that hj(q)− t ≤ xj ≤
hj(q) + t (1 ≤ j ≤ i) for any i out of m hash functions.

Let It(o) denote the set of hash functions spanning the
i-constrained projection subspace that o sits in and rt(o) =

1446

|It(o)|. We denote by ∆t(o) the distance between q and o
in this subspace. Take Figure 2 as an example, o1 and o2
lie in the 1-constrained and 2-constrained projection sub-
spaces, respectively. For o2, we have I4.5(o2) = {h1, h3}
and r4.5(o2) = 2. ∆4.5(o2) = 5 since h1(o2)− h1(q) = 4 and
h3(q)−h3(o2) = 3, thus their Euclidian distance is

√
42 + 32

=5. In the sequel, we will omit the term i-constrained if it
is obvious from the context.

There are m classes of the i-constrained (1 ≤ i ≤ m)
projection subspaces in total and m choose i i-constrained
projection subspaces for each given i. Obviously, different
points may lie in different projection subspaces. For point
o in any one of the i-constrained projection subspaces, o is
regarded as a candidate only if ∆t(o) ≤ li, which is like im-
posing a physical hyperspheres of radius li, centered at the
projection signature of q, to distinguish candidates and ir-
relevant points. As will be discussed in Section 6.2, such
a physical hypersphere is equivalent (in estimation) to a
virtual hypersphere with radius σ̃(li) in the original space.
Moreover, checking points such that ∆t(o) ≤ li is like ex-

amining candidates satisfying d̃(o, q) ≤ σ̃(li).
We say that o collides with q under virtual hypersphere

partitioning, i.e., o is a candidate, if ∆t(o) ≤ li for any
1 ≤ i ≤ m, that is, Equation (4) holds. Note that the
statement o lies in some i-constrained projection subspace
is equivalent to o collides with q w.r.t. g(·) i times.

∨
i

{rt(o) = i ∧∆t(o) ≤ li}, 1 ≤ i ≤ m (4)

It is easy to see that Equation (4) is more stringent and
will degrade to Inequality (3) if one sets li = 0 for 1 ≤ i < L
and li = +∞ for L ≤ i ≤ m.
m physical hyperspheres lead to m virtual hyperspheres

in the original space, which may be of different radii. To
emulate a single virtual hypersphere, we judiciously choose
li to make the radii of the m virtual hyperspheres identical
with each other. In this way, using Equation 4 as a filtering
condition is like examining points whose exact distances to
q (in estimation) are less than the virtual radius.

5.2 An Illustrative Example of Query Process-
ing Workflow

In this subsection, we highlight the workflow of the pro-
posed solution using an illustrative example as shown in
Figure 3.

Before query processing, we need to set proper li to guar-
antee the result quality. As will be discussed in Section 6.3,
the radii of physical hyperspheres depend on the distance
between the given query and its NN. To circumvent this is-
sue, we first calculate the base distance thresholds lt0i in an
off-line fashion for user-specified success probability, under
the assumption that the base search window is [−t0, t0] and
d(o∗, q) = 11.

As illustrated in Figure 3(a) and Figure 3(b), the half-
width of search window and radii of physical hyperspheres
are set to t0 and lt0i (1 ≤ i ≤ m) in the beginning. The
corresponding virtual hypersphere VHP0 is depicted in Fig-
ure 3(c). Please note that, while lt0i are of different values,
they are chosen judiciously such that they are equivalent

1In practice, we may set d(q, o∗) to the minimum possible
NN distance. We set d(q, o∗) = 1 here for ease of presenta-
tion.

to the radius of VHP0. When t = t0, both o1 and o2 are
not located in VHP0 because their estimated distances to
q in the feature space are greater than the corresponding
hypersphere radius, that is, d̃(o1, q) > r0 and d̃(o2, q) > r0.
This is computationally done by evaluating ∆t0(o2) > lt03
and ∆t0(o1) > lt02 in the respective projection subspaces
(Figure 3(b)).

Figure 3 also illustrates how the search window, radii of
physical hyperspheres and the virtual hypersphere grow co-
ordinately. To accommodate more candidates, VHP extends
the search window from t0 to t1 first (Figure 3(a)). As a
result, o2 jumps from 3-constrained to 4-constrained pro-
jection subspace while o1 keeps the same collision number
with q. The physical hypersphere radii are updated from
{lt0i } to {lt1i } accordingly as shown in Figure 3(b). As one
can see, both o1 and o2 are identified as candidates since
∆t1(o2) ≤ lt14 and ∆t1(o1) ≤ lt12 . The equivalent effect is
illustrated in Figure 3(c), where o1 and o2 are bounded by
the enlarged virtual hypersphere VHP1. Please note that
the radii σ̃(li) of all virtual hyperspheres are identical with
each other all the time.

By extending the search window and hypersphere radii
gradually, VHP is able to find o∗ no matter how far it is
away from q. The theoretical analysis in Section 6.4 and
Section 7.1 guarantees that, for arbitrary d(o∗, q), o∗ will be
found with probability at least P∗ when the search window
extends to [−d(omin, q)t0, d(omin, q)t0] and the radii reach
d(omin, q)l

t0
i , where omin is the nearest point found by VHP

so far.

5.3 The Algorithm
Index Building Phase: To index the data, m LSH ran-

dom projections ~ai are generated first. Then, each o ∈ D
is projected from the d-dimensional feature space into m 1-
dimensional spaces. For each projection vector ~ai, a sorted
list is built to store the hash values and object identifiers
for all points, and the list is sorted in the ascending order
of hi(o). Finally, we index each sorted list using a B+-tree
and store it on the disk.

NN Search Phase: When a query q arrives, we perform
a range search [h(q)− t, h(q)+ t] over each B+-tree for given
search window of size 2t. During the range search, each
point o is associated with 2-tuple 〈rt(o),∆t(o)〉. Recall that
rt(o) denotes the collision number and ∆t(o) refers to the
distance between o and q in the rt(o)-constrained projection
subspace. Take o2 in Figure 2 as an example, r4.5(o2) = 2
and ∆4.5(o2) = 5.

We present the probabilistic NN version of VHP in Algo-
rithm 1, while leaving the c-k-ANN version to Section 7.2.
It takes the query q as the input, as well as a set of pa-
rameters: the base search window of size 2t0 and the base
hypersphere radii (lt01 , l

t0
2 , ..., l

t0
m). The parameters m, t0 and

(lt01 , l
t0
2 , ..., l

t0
m) are determined before the query processing.

VHP returns the point omin as the final answer.
Starting with t0, VHP extends the search window grad-

ually, which brings in more points. In each iteration, the
2-tuple 〈rt(o),∆t(o)〉 is updated if rt(o) increases (Line 4).
The exact distance between q and o will be computed if
∆t(o) is no greater than the radius ltrt(o) = t

t0
lt0rt(o). Then

omin is updated if necessary (Lines 5-7). The while loop
terminates if the window size becomes large enough to meet
the success probability (Line 2) and omin is returned as the
final answer (Line 8).

1447

Algorithm 1: VHP(q; t0, (lt01 , l
t0
2 , ..., l

t0
m))

Input: q is the query point; 2t0 and (lt01 , l
t0
2 , ..., l

t0
m) are

the base search window size and base radii,
respectively;

Output: omin

1 t = 0; omin = a point at infinity;

2 while d(omin, q) >
t
t0

do

3 t = t+ ∆t (∆t > 0);

4 ∀o ∈ D update rt(o) and ∆t(o) if necessary;

5 if o is not visited and ∆t(o) ≤ t
t0
lt0rt(o) then

6 calculate d(o, q);
7 update omin if necessary;

8 return omin

Update of windows size: Since VHP uses B+-trees
as the underlying index structure, there is a natural way
to determine ∆t (line 3 in Algorithm 1) as follows. We
maintain a minimum heap of size 2m, each element of which
keeps track of the search direction (left or right) and offsets
w.r.t. the query for a hash function. The increment in t (∆t)
is determined in a data-driven fashion, i.e., VHP searches all
B+-trees until a new point is found in any B+-tree and the
position of this point determines the new window size.

1

4

3

2

0

4

t
l

1

1

t
l

1

2

t
l

1

3

t
l

0

1

t
l

0

3

t
l

0

2

t
l

1

4

t
l

2o

1o

0t−

0t−

0t−

0t−

1t−

1t−

1t−

1t−

0t

0t

0t

0t

1t

1t

1t

1t

1o

1o

2o

2o

2o

2o

q

q

q

q

collision number

1o

1o

q

0VHP

1VHP

1o

2o

0r

1r

0 0

0 1 4() ()
t t

r l l = = =

1 1

1 1 4() ()
t t

r l l = = =

(a)

1

4

3

2

0

4

t
l

1

1

t
l

1

2

t
l

1

3

t
l

0

1

t
l

0

3

t
l

0

2

t
l

1

4

t
l

2o

1o

0t−

0t−

0t−

0t−

1t−

1t−

1t−

1t−

0t

0t

0t

0t

1t

1t

1t

1t

1o

1o

2o

2o

2o

2o

q

q

q

q

collision number

1o

1o

q

0VHP

1VHP

1o

2o

0r

1r

0 0

0 1 4() ()
t t

r l l = = =

1 1

1 1 4() ()
t t

r l l = = =

(b)

1

4

3

2

0

4

t
l

1

1

t
l

1

2

t
l

1

3

t
l

0

1

t
l

0

3

t
l

0

2

t
l

1

4

t
l

2o

1o

0t−

0t−

0t−

0t−

1t−

1t−

1t−

1t−

0t

0t

0t

0t

1t

1t

1t

1t

1o

1o

2o

2o

2o

2o

q

q

q

q

collision number

1o

1o

q

0VHP

1VHP

1o

2o

0r

1r

0 0

0 1 4() ()
t t

r l l = = =

1 1

1 1 4() ()
t t

r l l = = =

 (c)

Figure 3: An illustrative example of how VHP works.

6. DETERMINE THE RADII OF PHYSI-
CAL HYPERSPHERES

In this section, we will discuss how to determine the radii
of physical hyperspheres. The collision probability between
two points is derived in Section 6.1. The method to estimate
the virtual radius for one physical hypersphere is discussed
in Section 6.2 and the soundness of virtual hypersphere par-
titioning is shown in Section 6.3. The way to calculate the
base hypersphere radii and the practical termination condi-
tion are presented in Section 6.4.

6.1 Collision Probability
To conduct theoretical analysis for virtual hypersphere

partitioning, we need to derive the collision probability
for any two points first. To start with, some prerequi-
sites are needed. Let X1, X2, ..., Xj ∈ [−t, t] be i.i.d. ran-
dom variables following the truncated normal distribution

N (x ∈ [−t, t];µ, σ2). Let Y =

√
i∑

j=1

X2
j and obviously

Y ∈ [0,
√
it]. We use Ωti(µ, σ

2) to denote the distribution
of Y and denote its CDF as Gti (x;µ, σ2).

Assume d(o, q) = s. Recall that δ(o) = h(q)−h(o) follows
the normal distribution N (0, s2) and It(o) denotes the set
of h(·) over which o collides with q. We have the following
important fact.

Fact 1. For any hi(·) ∈ It(o), δi(o) follows the truncated
normal distribution N (x ∈ [−t, t]; 0, s2) and ∆t(o) follows
the distribution Ωtrt(o)(0, s

2).

Let A denote the event ∆t(o) ≤ lrt(o) and B denote the
event rt(o) = i (1 ≤ i ≤ m), thus the conditional probability
Pr[A|B] is:

Pr[A|B] = Gti (li; 0, s2)

It is easy to see that rt(o) obeys the Binomial distribution
B(m, p(s)), that is, Pr[B] = C(m, i)(p(s))i(1 − p(s))m−i.
Then the joint probability Pr[A ∩ B] can be written as

Pr[A ∩ B] = C(m, i)(p(s))i(1− p(s))m−i · Gti (li; 0, s2)

Since there are m classes of projection subspaces, the col-
lision probability, denoted by ptL(s), can be calculated as
follows, where L = (l1, l2, · · · , lm) is the set of radii of m
hyperspheres.

ptL(s) =

m∑
i=1

C(m, i)(p(s))i(1− p(s))m−i · Gti (li; 0, s2) (5)

Suppose that we could know s∗ beforehand. Then, to
achieve the success probability P∗, we only need to choose
proper m, t and L such that:

ptL(s∗) = P∗ (6)

There may exist many L’s that make Equation (6) hold.
Next, we will show how to determine a unique and reason-
able sequence (l1, l2, ..., lm) in order to fulfill virtual hyper-
sphere partitioning.

6.2 Estimate the Virtual Radius for One Phys-
ical Hypersphere

In this subsection, we focus on working out the estimate
of the radius for one physical hypersphere in the feature
space. To begin with, we need some notations and defi-
nitions first. An observation x sampled from the normal
distribution N (0, σ2) is called a full observation if it lies in
the interval t1 ≤ x ≤ t2 and a censored observation oth-
erwise, where t1 and t2 are two censoring points [8]. Here
the term “censored” means that, instead of the exact value
of this sample, we only know that it is situated outside the
interval defined by the censoring points.

Suppose m i.i.d. samples xj , 1 ≤ j ≤ m are drawn from
N (0, σ2). Without the loss of generality, assume the first
i samples are full observations, and there are c1 censored

1448

observations such that x < t1 and c2 censored observations
such that x > t2. It is easy to see that i+c1+c2 = m. Based
on these evidences, the likelihood function L(σ) is intro-
duced in [8] to estimate the standard deviation of N (0, σ2)
under the MLE framework.

L(σ) = [Φ(t1; 0, σ2)]c1 · [1− Φ(t2; 0, σ2)]c2 ·
i∏

j=1

ϕ(xj ; 0, σ2)

where Φ(x;µ, σ2) and ϕ(x;µ, σ2) are the CDF and PDF
of normal distribution with mean µ and variance σ2.

Since we are only interested in the special case where two
censoring points are symmetric(−t1 = t2 = t), L(σ) can be
rewritten as follows

L(σ) = [Φ(t; 0, σ2)]m−i ·
i∏

j=1

ϕ(xj ; 0, σ2) (7)

By taking the partial derivative of L(σ), the estimate of
σ, denoted by σ̃(‖xj‖), could be obtained by solving the

following equation, where ‖xj‖ =

√
i∑

j=1

x2j and ξ = −t/σ.

∂(lnL(σ))

∂σ
= − (m− i)ϕ(ξ; 0, σ2)

σΦ(ξ; 0, σ2)
− i

σ
+

1

σ3

i∑
j=1

x2j = 0 (8)

Recall that δ(o) = |h(q) − h(o)| follows N (0, d2(o, q)) ac-
cording to Lemma 1. By regarding the search window [−t, t]
as the interval defined by two censoring points, the esti-
mate of d(o, q), denoted by σ̃(∆t(o)), can be obtained using
Equation (8) if we substitute ‖xj‖ with ∆t(o). Similarly,
by substituting ‖xj‖ with li, we can obtain the estimate of
the radius in the d-dimensional space, denoted by σ̃(li), for
each physical hypersphere. Note that the variance of the
estimate is a constant for given m, t and li as shown in [8].

It is easy to see that σ̃(‖xj‖) is a function of m, i, t and
‖xj‖. In order to express their relation more clearly, we
transform Equation (8) into the following equation, where
G(i, ξ) = [ξ · m−i

i
) ·ϕ(ξ; 0, σ2) + Φ(ξ; 0, σ2)]/[ξ2 ·Φ(ξ; 0, σ2)].

‖xj‖2 = it2G(i, ξ) (9)

Next, we present an important property of G(i, ξ).

Lemma 2. For fixed i > 0, Equation G(i, ξ) = 0 has only
one root ξ0 < 0. In addition, when ξ > ξ0, G(i, ξ) is mono-
tonically increasing with ξ and lim

ξ→0−
G(i, ξ) = +∞.

By taking the derivative ofG(i, ξ), one can prove Lemma 2
readily, which implies that 1) a unique solution exists for
Equation (9), and 2) σ̃(‖xj‖) increases monotonically with
‖xj‖ for given m, i and t.

6.3 Soundness of Virtual Hypersphere Parti-
tioning

In this subsection, we show the soundness of virtual hy-
persphere partitioning.

We can derive m estimated radii σ̃(li) (1 ≤ i ≤ m) for m
physical hyperspheres. To make them equivalent to a unique
virtual hypersphere, it is reasonable to set σ̃(li) identical to
each other as follows.

σ̃(li) = σ̃(lj), 1 ≤ i, j ≤ m (10)

Next we will show that, given P∗, m, t and s, Equa-
tion (10) along with Equation (6) gives a unique solution
for each li. To start with, we need to establish the connec-
tion between σ̃(‖xj‖) with different i.

Lemma 3. Given i full samples xj (1 ≤ j ≤ i) out of
m samples with respect to the censoring points −t and t,

let σ̃(

√
i∑

j=1

x2j) (i ∈ [1,m − 1]) be the estimate calculated

using Equation (8), the inequality σ̃(

√
i+w∑
j=1

x2j + w · t2) <

σ̃(

√
i∑

j=1

x2j) holds for any w ≤ m− i.

Proof. We only need to consider the case w = 1 since
more general cases can be proved by induction. Let ξi =

−t

σ̃(

√√√√ i∑
j=1

x2j)

. By definition we know that
i∑

j=1

x2j = it2G(i, ξi)

and
i+1∑
j=1

x2j = (i+ 1)t2G(i+ 1, ξi+1). Since |xj | ≤ t, we have

(i+ 1)t2G(i+ 1, ξi+1)− it2G(i, ξi) ≤ t2

We can prove the following inequality (the details are te-
dious and omitted)

(i+ 1)t2G(i+ 1, ξi)− it2G(i, ξi) > t2

As a result, G(i+1, ξi) > G(i+1, ξi+1) holds. Please note
that ξi > ξ0, ξi+1 > ξ0 and G(i, ξ) increases monotonically
with ξ > ξ0 for fixed i. Thus, we have ξi > ξi+1, which leads

to σ̃(

√
i∑

j=1

x2j) > σ̃(

√
i+1∑
j=1

x2j + t2) immediately.

With the help of Lemma 3, we can readily prove the fol-
lowing proposition by contradiction.

Proposition 1. If (l1, l2, ..., lm) satisfies Equation (10),
we have li < lj for any 1 ≤ i < j ≤ m.

Now we are in the position to show the uniqueness of
(l1, l2, ..., lm) under the constraints of Equation (10) and
Equation (6).

Theorem 1. Given P∗, m, t and s, there exists a unique
sequence (l1, l2, ..., lm) such that Equation (10) and Equa-
tion (6) hold.

Proof (Sketch). This theorem can be proved by con-
tradiction according to Proposition 1, the facts that
m∑
i=0

C(m, i) pi(1 − p)m−i = 1 for 0 < p < 1, and functions

Gti (li) and σ̃(li) increase monotonically with li.

By Theorem 1 and the fact σ̃(‖xj‖) increases monotoni-
cally with ‖xj‖, we can prove that the condition ∆t(o) ≤ li
for any 1 ≤ i ≤ m (Equation 4) is equivalent to σ̃(∆t(o)) ≤
σ̃(li) readily, which justifies the soundness of virtual hyper-
sphere partitioning.

1449

6.4 Calculate the Base Hypersphere Radii
Based on Theorem 1, we could come up with a simple al-

gorithm to find NN if s∗ were known somehow beforehand.
Specifically, one can compute (l1, l2, ..., lm) first. Then by
examining all points such that ∆t(o) ≤ lrt(o), it is guaran-
teed that one can achieve P∗ in finding o∗.

Unfortunately, s∗ is unavailable in the first place. As a
workaround, we first derive the base hypersphere radii lt0i
such that pt0L (1) = P∗ using Algorithm 2, under the as-
sumptions that the base search window is equal to [−t0, t0]
and d(o∗, q) = 1. Thanks to Proposition 2, we are able to
scale the search window and hypersphere radii properly and
achieve the desirable success probability for any s.

Proposition 2. pst0Ls
(s) = pt0L1

(1) (s > 0), where L1 =

{lt01 , l
t0
2 , . . . , l

t0
m} and Ls = {slt01 , sl

t0
2 , . . . , sl

t0
m}

Proof. This proposition can be proved easily by the facts
that, for any s > 0, Gst0i (slt0i ; 0, s2) = Gt0i (lt0i ; 0, 1) and p(s)
under t = st0 is equal to p(1) in the case of t = t0.

Proposition 2 suggests that, for any point o such that
d(q, o) = s, we can simply extend the search window and
hypersphere radii from the base ones to [−st0, st0] and (slt01 ,
slt02 ,. . . , slt0m) respectively to achieve P∗ for o. In addition to
ensuring the success probability, the other benefit of Propo-
sition 2 is that we do not have to evaluate (l1, l2,. . . , lm) at
runtime as the search windows grow.

Based on Proposition 2, VHP can work as follows. Start-
ing with the base hypersphere radii {lt01 , l

t0
2 , . . . , l

t0
m}, VHP

enlarges the hypersphere radii in a coordinated way by mul-
tiplying lt0i with t

t0
, where 2t is the new window size. By

examining all points such that ∆t(o) ≤ lrt(o), VHP main-
tains omin, which is the nearest point to q found so far. As
will be proved in Section 7.1, the probability that VHP finds

omin, which is equal to p
d(q,omin)t0
L (d(q, omin)), is a lower

bound of the probability of getting o∗. Then, by setting

p
d(q,omin)t0
L (d(q, omin)) ≥ P∗ as the termination condition,

we can find o∗ with probability P∗ for sure, which means
that VHP will succeed with probability at least P∗. In prac-
tice, we use the following Inequality (11) as the termination
condition, which is much cheaper to evaluate.

d(q, omin) ≥ t

t0
(11)

Algorithm 2: Compute the base radii ()

Input: m is the number of hash functions; 2t0 is the
search window size, s∗ = 1 is the distance
between q and its NN and P∗ is the expected
success probability;

Output: radii (lt01 , l
t0
2 , ..., l

t0
m)

1 Solve Equation (6) and Equation (10) to get a unique

solution (lt01 , l
t0
2 , ..., l

t0
m);

2 return (lt01 , l
t0
2 , ..., l

t0
m)

The equivalency between Inequality (11) and p
d(q,omin)t0
L

(d(q, omin)) ≥ P∗ can be proved readily using Proposition 2.
The following proposition, which can be proved using

Equation (9), shows that the radius of the virtual hyper-
sphere is still unique after scaling.

Proposition 3. For any 1 ≤ i, j ≤ m and s > 0, if
σ̃(lt0i) = σ̃(lt0j) then σ̃(lst0i) = σ̃(lst0j) and σ̃(lst0i) = sσ̃(lt0i).

7. THEORETICAL ANALYSIS

7.1 Probability Guarantee for NN Search
In this subsection we show that, by extending the search

windows and increasing the radii of the hyperspheres coor-
dinately, VHP is guaranteed to find the NN of q with prob-
ability at least P∗. To prove this, we need to introduce an
Oracle algorithm VHPo first. Simply put, VHPo is the same
as VHP except that it is told by the Oracle the distance be-
tween o∗ and q. Obviously, VHPo finds o∗ with probability
P∗ for sure as discussed in the last subsections.

According to the terminating condition in Algorithm 1
(Line 2), t∗ = s∗t0 and lt∗i = s∗l

t0
i when VHPo terminates,

where s∗ = d(o∗, q). Similarly, ta = sat0 and ltai = sal
t0
i

when the actual VHP terminates, where sa = d(omin, q).
Since sa ≥ s∗, we have ta ≥ t∗ and ltai ≥ l

t∗
i . In other words,

the final search window size and radii imposed by VHP are
greater than those by VHPo. To show the probability with
which VHP finds o∗ is greater than that of VHPo, we need
to prove the following Lemma first.

Lemma 4. Given m random B+-trees, dataset D and two
search windows of sizes 2t1 and 2t2 (t2 > t1), ∀o ∈ D, it
holds that ∆t2(o) ≤ t2

t0
lt0rt2 (o) if ∆t1(o) ≤ t1

t0
lt0rt1 (o).

Proof. Assume the radii associated with lt1rt1 (o) and

lt2rt2 (o) are σ̃(lt1rt1 (o)) and σ̃(lt2rt2 (o)), respectively. To prove

this Lemma, we only need to show that σ̃(∆t2(o)) ≤
σ̃(lt2rt2 (o)) if σ̃(∆t1(o)) ≤ σ̃(lt1rt1 (o)).

By definition ∆t1(o) and ∆t2(o) are equal to√ ∑
hi∈It1 (o)

δ2i (o) and
√ ∑
hi∈It2 (o)

δ2i (o), respectively.

Please note that It1(o) is a subset of It2(o). Let
w = |It2(o)| − |It1(o)|. Suppose there are two
points o† and o‡ such that (1) It2(o†) = It1(o) and
δi(o†) = t2

t1
δi(o) for i ∈ It1(o); (2) It2(o‡) = It2(o) and

δi(o‡) = t2
t1
δi(o) for i ∈ It1(o) and, (3) δi(o‡) = δi(o)

for i ∈ It2(o) − It1(o). By definition we have

∆t2(o†) =
√ ∑
hi∈It1 (o)

(t2
t1
δi(o))2. It is easy to see that

σ̃(∆t2(o†)) ≤ t2
t1
σ̃(lt1rt1 (o)) by Equation (9). Then, with the

help of Lemma 3 we know that σ̃(∆t2(o‡)) ≤ σ̃(∆t2(o†))
since (∆t2(o†))

2 +wt22 ≥ (∆t2(o‡))
2. Recall that σ̃(∆t(o)) is

an increasing function of ∆t(o) for fixed t and i, and thus we
have σ̃(∆t2(o)) ≤ σ̃(∆(t2o‡)) considering ∆t2(o) ≤ ∆t2(o‡).
By putting these inequalities together, it holds that
σ̃(∆t2(o)) ≤ t2

t1
σ̃(lt1

rt1 (o)
). According to Proposition 3, we

have t2
t1
σ̃(lt1

rt1 (o)
) = σ̃(lt2

rt2 (o)
), thus complete this proof.

Lemma 4 indicates that, as VHP increases the radius of
the virtual hypersphere dynamically, the candidate set un-
der [−t1, t1] is always a subset of that under [−t2, t2] for any
t2 ≥ t1. Thus, we proved the self-consistency of the virtual
hypersphere partitioning.

Now we are ready to show the correctness of VHP based
on Lemma 4.

1450

Theorem 2. Algorithm 1 returns the NN of q with prob-
ability at least P∗.

Proof. We first define the following two events:
E1: o∗ is found by VHPo.
E2: o∗ is found by VHP.
As discussed earlier, ta ≥ t∗ and ltai ≥ lt∗i hold. By

Lemma 4 we know that the points visited by VHPo are
contained in a subset of those examined by VHP, and thus
P [E2] ≥ P [E1] follows. By the fact that VHPo is guaranteed
to find o∗ with P∗, we have P [E2] ≥ P∗, and thus complete
the proof.

7.2 Extension for c-k-ANN Search
To support the c-k-ANN search, it is sufficient to re-

place the terminating condition (line 2 in Algorithm 1) with
d(omink

,q)

c
> t

t0
, where omink is the k-th nearest neighbor of

q found so far. VHP outputs k neighbors, i.e. omin1 , omin2 ,
..., omink instead of omin. In this way, VHP supports prob-
abilistic NN and c-k-ANN search in the same framework.

Next, we will show that VHP returns c-ANN (c > 1) of q
with probability at least P∗. For clarity of presentation, we
refer to VHPc (c > 1) as the c-ANN version of Algorithm 1.
For the c-k-ANN version of VHP, the probability guarantee
can be proved in the similar vein and omitted due to space
limitation.

Theorem 3. VHPc returns a c-ANN of q with probability
at least P∗

Proof. Besides the two events E1 and E2 defined in The-
orem 1, we need the following three events:
E3: VHPc terminates before the search window extends

to [−t∗, t∗], where t∗ = s∗t0.
E4: a c-ANN of q is found.
E5: o∗ is found.
Let [−tc, tc] denote the final search window when VHPc

terminates. Obviously we have P [E4] = P [E4|E3]P [E3] +
P [E4|Ē3]P [Ē3]. To prove the theorem, we only need to
show P [E4|E3] ≥ P [E1|E3] and P [E4|Ē3] ≥ P [E1|Ē3] since
P [E1] = P∗. The former inequality holds by the fact
P [E4|E3] equals 1, which can be proved by contradiction.
Particularly, assume VHPc terminates before the search
window reaches [−t∗, t∗], i.e. tc < t∗, and did not find
any c-ANN. Then we must have d(omin, q) > c · d(o∗, q).
According to the terminating condition of Algorithm 1,

VHPc terminates only if d(omin,q)
c

≤ tc
t0

, which implies that
tc > t∗, and thus a contradiction. The latter inequality
holds because P [E4|Ē3] ≥ P [E5|Ē3] (with the same search
window, a c-ANN must be identified if o∗ is found) and
P [E5|Ē3] ≥ P [E1|Ē3] (Lemma 4). Thus we conclude.

8. DISCUSSION
In the worst case, the time complexity of VHP is O(n(m+

d)). As will be discussed in Section 9, m is far smaller than
n and thus can be regarded as a small constant. Thus, the
worst case time complexity is reduced to O(nd), which is
consistent with the common wisdom on the hardness of NN
search in high-dimensional spaces. However, as shown in
Section 9, the actual performance of VHP is far better than
the worst case one. The space consumption consists of two
parts: the space for storing the data set O(nd) and the space
of index O(mn). Thus, the total space complexity of VHP
is O(n(m+ d)).

VHP can easily support updating (insertion, deletion and
modification) due to the utilization of B+-trees. It is notable
that, although {lt0i } need to be determined beforehand, their
values only depend on the user-specified parameters m, P∗
and t0. Hence, the updates, which might affect the data
distribution, has no impact on {lt0i }.

9. EXPERIMENTAL VALIDATION
In this section, we study the performance of VHP using

six real datasets of various size and dimensionality. For com-
parison, we choose QALSH and SRS as the baseline algo-
rithms because they are state-of-the-art methods that fall
into the same category with our proposal, i.e., disk-based
indexing techniques that support c-ANN search for large
datasets with theoretical guarantee. In addition, we com-
pared VHP with HD-index, a state-of-the-art non-LSH ex-
ternal memory algorithm for billion-scale ANN search.

Our method is implemented in C++. All the experiments
were carried on a PC with Intel(R), 3.40GHz i7-4770 eight-
cores processor and 8 GB RAM, in Ubuntu 16.04.

9.1 Experiment Setup

9.1.1 Benchmark methods

• SRS [28]. We use SRS-2, a variant of SRS, in our ex-
periments because SRS-2 supports arbitrary c ≥ 1 and
P∗ < 1 like VHP. m was set to the default value, i.e. 6,
as suggested in [21,28] and P∗ was set to 0.9 by default.

• QALSH [15]. The success probability of QALSH was
set to (1/2− 1/e), as suggested in [15]. m was computed
using the method described in [15] as well. c was set to 2
by default unless stated otherwise.

• HD-index [3]. HD-index is a recently proposed repre-
sentative of non-LSH methods (without quality guaran-
tee) for disk-based ANN search. All internal parameters
of HD-index were adjusted to be experimentally optimal,
as suggested in [3].

• VHP. In all experiments, P∗ was set to the same value as
that of SRS, i.e. P∗ = 0.9. Optimal t0 and m depend on
the concrete data distributions. As will be shown in Sec-
tion 9.1.4, VHP obtains near optimal performance when
t0 = 1.4 and m = 60 for all datasets we experimented
with. Thus, t0 and m were set to 1.4 and 60 by default,
respectively.

For all methods, we used their external-memory versions.
To be specific, for SRS we use the R-tree based external-
memory version, which is originally proposed to support bil-
lion scale datasets on a commodity PC [28]. As for HD-index
and VHP, we build RDB-tree/B+-tree by bulk loading such
that they can scale in our setting.

9.1.2 Datasets
We used six publicly available real-world datasets as listed

below. The page size was set to 4KB. The value of k is fixed
to 100 unless stated otherwise.

• Sun2 consists of GIST features of images.

2http://groups.csail.mit.edu/vision/SUN/

1451

c=2

0.1

1

10

100

40 60 80

Running time (s)

Sun Deep

Gist Sift10M

× 10

𝑚

(a) Different m c=2

0.1

1

10

100

1.3 1.4 1.5

Running time (s)

Sun Deep
Gist Sift10M

× 10

𝑡0

(b) Different t0
Figure 4: The impact of different parameters

aw

0

2

4

6

8

10

1 10 20 30 40 50 60 70 80 90 100
k

I/O cost ()
c=1.0
c=1.1
c=1.2

× 104

(a) Gist, I/O Cost

aw

0

3

6

9

12

15

1 10 20 30 40 50 60 70 80 90 100
k

Running time (s)

c=1.0

c=1.1

c=1.2

(b) Gist, Running time

Figure 5: The performance of VHP under different approx-
imation ratios

Table 2: Dataset Statistics
Dataset Dimensionality Size Page size

Sun 512 79,106 4KB
Deep 256 1,000,000 4KB
Gist 960 1,000,000 4KB

Sift10M 128 11,164,666 4KB
Sift1B 128 999,494,170 4KB

Deep1B 96 1,000,000,000 4KB

• Deep3 contains deep neural codes of natural images ob-
tained from the activations of a convolutional neural net-
work.
• Gist4 is an image dataset which contains about 1 million

data points.
• Sift10M5 consists of 10 million 128-dim SIFT vectors.
• Sift1B6 consist of 1 billion 128-dim SIFT vectors.
• Deep1B7 consist of 1 billion 96-dim DEEP vectors.

9.1.3 Evaluation metrics
We consider the following four performance metrics simi-

lar to [15,21,28]:

• I/O cost. I/O cost, which denotes the number of pages
accessed, is an important metric for external memory al-
gorithms. I/O costs consist of the overhead in both index
and data access. For the fairness, only identified candi-
dates will be accessed during the search.
• Running time. The running time for processing a query

is also considered. It is defined as the wallclock time for
a method to solve the c-k-ANN problem.

3https://yadi.sk/d/I yaFVqchJmoc
4http://corpus-texmex.irisa.fr/
5https://archive.ics.uci.edu/ml/datasets/SIFT10M
6http://corpus-texmex.irisa.fr/
7https://github.com/facebookresearch/faiss/tree/master/

Table 3: Comparison of index sizes. (CR means crash in
the indexing phase)

SRS QALSH HD-index VHP

Sun 3.1M 21.2M 250M 18.9M
Deep 36.5M 350.9M 2.0G 228.5M
Gist 36.8M 350.9M 18.1G 228.5M

Sift10M 524.7M 4.1G 10.2G 2.5G
Sift1B 39.2G CR 1.2T 251G

Deep1B 39.5G CR 0.9T 251G

• Overall ratio. Overall ratio is used to measure the accu-
racy of these algorithms. For c-k-ANN search, the overall

ratio is defined as 1
k

k∑
i=1

d(oi,q)
d(o∗i ,q)

.

• Recall. Recall is used as the other important metric to
measure the accuracy of algorithms. Its value is equal to
the ratio of the number of returned true nearest neighbors
to k.

It is notable that, in some recent papers such as [3], Mean
Average Precision(mAP) is also used as an important per-
formance metric. In this paper, since all methods adopt the
filter-and-verify strategy and return objects in the ascend-
ing order of their exact distances to queries, their mAPs are
exactly equal to the corresponding recalls.

9.1.4 Parameter setting of VHP
Parameters t0 and m have important impact on the per-

formance and index size of VHP. We empirically determine
the near optimal t0 and m. Partial statistics over four
datasets under different combinations of t0 and m are shown
in Figure 4, where c = 1.0 and k = 100. According to the
results, we can see:

(1) t0 = 1.4 is an appropriate choice under which VHP
runs fastest for four datasets when m is fixed. In fact, the
performance degrades dramatically for too small or too large
t because the collision probability tends to 0 or 1 for all
points.

(2) As for m, we can see that VHP works well when
m = 60. It is notable that the performance of VHP on Gist
can be better in the case of m = 80. This is because the
dimensionality of Gist is much higher (dim 960) and more
hash functions may help to distinguish nearest neighbors
better.

Based on these observations, we chose m = 60 and t0 =
1.4 as the default for all datasets we experimented with.

9.2 The Effect of Approximation Ratio
Like most LSH-based methods, VHP can trade the re-

sult quality for speed by tuning the approximation ratio c.
Figure 5 depicts the performance of VHP on Gist under dif-
ferent approximation ratios (similar trends were observed on
other datasets). As one can see, both I/O cost and running
time of VHP increases with k. This is because the larger k
is, the more points have to be visited to achieve the desir-
able answer quality. Also, by setting larger c, the searching
process can be accelerated at the cost of accuracy.

The overall ratios (answer quality) of VHP for k = 100
under c = 1.0, c = 1.1 and c = 1.2 are around 1.001, 1.02 and
1,04, respectively. We can see the real overall ratio is much
smaller than the corresponding approximation ratio. The
reason is that the probability guarantee of VHP is obtained

1452

c=2

0

8

16

24

32

40

60 70 80 90
Recall(%)

I/O cost ()
SRS QALSH

VHP

× 103

(a) Sun, I/O Cost c=2

0

6

12

18

24

30

60 70 80 90
Recall(%)

I/O cost ()
SRS QALSH

VHP

× 104

(b) Deep, I/O Cost c=2

0

9

18

27

36

45

60 70 80 90
Recall(%)

I/O cost ()
SRS QALSH
VHP

× 104

(c) Gist, I/O Cost c=2

0

5

10

15

20

25

60 70 80 90
Recall(%)

I/O cost ()
SRS QALSH
VHP

× 105

(d) Sift10M, I/O Cost

c=2

0

6

12

18

24

60 70 80 90
Recall(%)

I/O cost ()

SRS VHP

× 107

(e) Sift1B, I/O Cost c=2

0

5

10

15

20

60 70 80 90
Recall(%)

I/O cost ()

SRS VHP

× 107

(f) Deep1B, I/O Cost c=2

0

0.25

0.5

0.75

1

1.25

1.5

60 70 80 90
Recall(%)

Running time (s)
SRS QALSH

VHP

(g) Sun, Running time c=2

0

3

6

9

12

15

60 70 80 90
Recall(%)

Running time (s)

SRS QALSH

VHP

(h) Deep, Running time

c=2

0

8

16

24

32

40

60 70 80 90
Recall(%)

Running time(s)
SRS QALSH

VHP

(i) Gist, Running time c=2

0

40

80

120

160

60 70 80 90
Recall(%)

Running time (s)

SRS QALSH

VHP

(j) Sift10M, Running time c=2

0

20

40

60

80

100

60 70 80 90
Recall(%)

Running time(s)

SRS VHP

× 102

(k) Sift1B, Running time c=2

0

20

40

60

80

60 70 80 90
Recall(%)

Running time (s)

SRS VHP

× 102

(l) Deep1B, Running time

Figure 6: The comparison on the accuracy-efficiency tradeoffs of VHP, SRS and QALSH

using the worst-case analysis, which is often not the case of
real datasets.

9.3 Index Size, Indexing Time and Memory
Consumption

Table 3 lists the index size of four methods over the six
datasets. We can see that the index size of SRS is the small-
est whereas HD-index requires the maximum space con-
sumption. The index size of VHP is around 6 − 7 times
greater than that of SRS, but around 1.5 times smaller than
that of QALSH. This is because, for LSH-based methods,
the index size is proportional to the number of hash func-
tions. QALSH crashed on large datasets due to the out of
memory exception.

Among all methods, the indexing time of VHP is the
smallest, followed by QALSH, SRS and HD-index. Take the
largest dataset Sift1B as an example, VHP takes 18 hours
for indexing while SRS and HD-index need 4 days and 11
days, respectively. This is because B+-tree costs less time
than R-tree and RDB-tree in index construction.

As for the main memory consumption in the indexing
phase, we report the results on Sift1B as follows: SRS con-
sumes 1.1GB, VHP takes 1.9GB and HD-index needs 97MB.
Thus, the indexing phase of all three methods can be accom-
plished successfully on a commodity PC.

9.4 VHP vs. LSH-based Methods
In this section, we compare VHP with the baseline LSH-

based methods SRS and QALSH. In order to make the com-
parison more reasonable, we fix the expected recall and mea-

sure how much running time and I/O cost it takes for three
LSH-based methods in this paper. Such a comparison is
feasible because all of them can make the tradeoff between
cost and answer quality by tuning the approximation ratio
c.

9.4.1 Experimental results under the same recall
In Figure 6, the target recalls are set to 60%, 70%, 80%,

90% because they are high enough for the practical use.
According to the results, we have following observations.

(1) At the same precision level, VHP needs only around
1
7

to 1
4

I/O cost of QALSH and 1
3

to 1
2

I/O cost of SRS. The
reason is that VHP uses a relatively small index and more
selective filtering method. Accordingly, VHP achieves up to
2x speedup over SRS and up to 4x speedup over QALSH.
Please note that the speedup is not exactly proportional to
the gain over I/O cost due to the (uncontrolled) impact of
caching at different levels.

(2) The superiority of VHP over the other two methods
becomes relatively less significant at low recall, say 60%.
This is because, as the target recall is getting lower, it be-
comes easier for all three methods to find answers satisfying
the less strict requirement, which in turn reduces the differ-
ences among their performance. In practice, however, end
users often expect high answer quality, where VHP can per-
form very well as shown above. On datasets Sun and Gist
of high dimensionality, VHP performs better in speed than
it does on those of low dimensionality, which indicates that
VHP is more preferable for high dimensional datasets.

1453

aw

0

5

10

15

20

25

1 10 20 30 40 50 60 70 80 90 100
k

I/O cost ()
SRS
VHP
QALSH

× 104

(a) Deep, I/O Cost

aw

0

3

6

9

12

1 10 20 30 40 50 60 70 80 90 100
k

Running time (s)
SRS
VHP
QALSH

(b) Deep, Running timeaw

0

50

100

150

200

250

1 10 20 30 40 50 60 70 80 90 100
k

I/O cost ()
SRS
VHP
QALSH

× 104

(c) Sift10M, I/O Cost

aw

0

30

60

90

120

150

1 10 20 30 40 50 60 70 80 90 100
k

Running time (s)
SRS
VHP
QALSH

(d) Sift10M, Running time

Figure 7: The performances of VHP under different k at
recall 80%

9.4.2 Experimental results under different k
The results above were all obtained under k = 100, we also

compared three methods for different k in Figure 7. Due to
space limitation, we only list the results of Sift10M and Deep
under target recall 80%. Similar trends were observed on
other datasets. From the results, we can see that (1) for all k,
VHP beats SRS and QALSH in both running time and I/O
cost, which suggests that the performance of VHP is very
stable as k varies. (2) As k increases, the cost of QALSH
increases dramatically while the performance of VHP and
SRS degrades rather smoothly. This indicates that VHP
and SRS are more promising than QALSH for the k-ANN
search where k is large.

9.5 VHP vs. HD-index
In this section, VHP is compared with HD-index, the

state-of-the-art non-LSH (without probability guarantees)
ANN search algorithm for large disk-based dataset. HD-
index cannot solve c-ANN search problem and does not col-
lect the statistics about the I/O cost, thus we only evaluate
the recall and running time to measure the accuracy and
efficiency. Figure 8 lists the experimental results for VHP
and HD-index. For VHP, c was set to 1.1 and k = 100. For
HD-index, the optimal parameters were used, by which the
best performance could be achieved [3]. A few interesting
observations are made as follows.

(1) Regardless of the data types and distributions, VHP
constantly delivers satisfactory recalls (78%-85%), which
demonstrates again the advantage of ANN search algorithms
with theoretical guarantee. In contrast, the accuracy of HD-
index varies significantly for different datasets. Specifically,
HD-index reaches the minimum recall of 13% for Sift1B and
the maximum recall of 55% for Deep. Such unpredictabil-
ity makes it hard to meet the expectation of end users in
practice. Note that even laborious parameter tuning cannot
help here - the parameters of HD-index have been adjusted
to be experimentally optimal and the accuracy could not be
improved by tuning internal parameters as reported in [3].

c=2

0

20

40

60

80

100

Sun Deep Gist Sift10M Sift1B Deep1B
HD-index VHP

(a) Recall(%)

0.1

1

10

100

1000

10000

Sun Deep Gist Sift10M Sift1B Deep1B
HD-index VHP

(b) Running time(s)

Figure 8: HD-index vs. VHP (c = 1.1), k = 100

(2) The accuracy of HD-index gets lower on high-
dimensional or large datasets (Gist, Sift1B). One possible
reason is that HD-index uses heuristics such as filling curve
to identify NN. Since the filling curve is one-dimensional,
many true kNNs are far away form the query on each RDB-
tree due to the so-called “boundary effect” [30], which re-
sults in that HD-index could not achieve high accuracy even
if it is allowed a larger search range as admitted in [3]. In
contrast, VHP uses the virtual hypersphere partitioning to
selectively examine those points with high probability being
the NN of the query. Hence, even for datasets with high di-
mensionality and/or large size, VHP can still achieve much
higher accuracy than HD-index.

(3) As for efficiency, we can see that, in most cases, HD-
index spends less running time than VHP, especially for
large datasets. This, however, may not necessarily mean
that VHP is less efficient since the recalls of VHP are far
higher than those of HD-index, not mentioning its salient
feature in ensuring the answer quality. One interesting ob-
servation is that VHP outperforms HD-index in both recall
and running time on those datasets with higher dimensions
(Sun and Gist).

In short, VHP is more preferable than HD-index in sit-
uations where the answer quality and stability are of great
importance.

10. CONCLUSION
The nearest neighbor search in high dimensional spaces

is a difficult problem. In this paper, we propose a novel
approximate NN search algorithm called VHP. VHP works
with arbitrarily small approximation ratio c ≥ 1 and is guar-
anteed to identify c-k-ANN with the given success probabil-
ity, which is of great practical importance. Compared with
existing methods over large real datasets, VHP achieves bet-
ter efficiency under the same answer quality.

Acknowledgment
The work reported in this paper is partially supported
by NSFC under grant number 61370205, NSF of Xinjiang
Key Laboratory under grant number 2019D04024 and JSPS
KAKENHI under grant number 19H04128. Wei Wang were
supported by ARC DPs 170103710 and 180103411, and
D2DCRC DC25002 and DC25003.

1454

11. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing

algorithms for approximate nearest neighbor in high
dimensions. Commun. ACM, 51(1):117–122, 2008.

[2] W. G. Aref, A. C. Catlin, J. Fan, A. K. Elmagarmid,
M. A. Hammad, I. F. Ilyas, M. S. Marzouk, and
X. Zhu. A video database management system for
advancing video database research. In Multimedia
Information Systems, pages 8–17, 2002.

[3] A. Arora, S. Sinha, P. Kumar, and A. Bhattacharya.
Hd-index: Pushing the scalability-accuracy boundary
for approximate knn search in high-dimensional
spaces. PVLDB, 11(8):906–919, 2018.

[4] M. Aumüller, E. Bernhardsson, and A. Faithfull.
Ann-benchmarks: A benchmarking tool for
approximate nearest neighbor algorithms. In SISAP,
pages 34–49, 2017.

[5] M. Bawa, T. Condie, and P. Ganesan. Lsh forest:
self-tuning indexes for similarity search. In WWW,
pages 651–660, 2005.

[6] A. Chakrabarti and O. Regev. An optimal randomised
cell probe lower bound for approximate nearest
neighbour searching. In FOCS, pages 473–482, 2004.

[7] P. Ciaccia and M. Patella. PAC nearest neighbor
queries: Approximate and controlled search in
high-dimensional and metric spaces. In ICDE, pages
244–255, 2000.

[8] A. C. Cohen. Truncated and censored samples :
theory and applications. CRC Press, 1991.

[9] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SoCG, pages 253–262, 2004.

[10] K. Echihabi, K. Zoumpatianos, T. Palpanas, and
H. Benbrahim. Return of the lernaean hydra:
Experimental evaluation of data series approximate
similarity search. PVLDB, 13(3):403–420, 2019.

[11] R. Fagin, R. Kumar, and D. Sivakumar. Efficient
similarity search and classification via rank
aggregation. In SIGMOD, pages 301–312, 2003.

[12] J. Gan, J. Feng, Q. Fang, and W. Ng.
Locality-sensitive hashing scheme based on dynamic
collision counting. In SIGMOD, pages 541–552, 2012.

[13] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi. DSH:
data sensitive hashing for high-dimensional
k-nnsearch. In SIGMOD, pages 1127–1138, 2014.

[14] J. Gao, H. V. Jagadish, B. C. Ooi, and S. Wang.
Selective hashing: Closing the gap between radius
search and k-nn search. In SIGKDD, pages 349–358,
2015.

[15] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng.
Query-aware locality-sensitive hashing for approximate
nearest neighbor search. PVLDB, 9(1):1–12, 2015.

[16] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In STOC, pages 604–613, 1998.

[17] H. Jégou, M. Douze, and C. Schmid. Product
quantization for nearest neighbor search. IEEE Trans.
Pattern Anal. Mach. Intell., 33(1):117–128, 2011.

[18] Y. Ke, R. Sukthankar, and L. Huston. An efficient
parts-based near-duplicate and sub-image retrieval
system. In ACM Multimedia, pages 869–876, 2004.

[19] Y. Lei, Q. Huang, M. Kankanhalli, and A. Tung.
Sublinear time nearest neighbor search over
generalized weighted space. In ICML, pages
3773–3781, 2019.

[20] M. Li, Y. Zhang, Y. Sun, W. Wang, I. W. Tsang, and
X. Lin. I/O efficient approximate nearest neighbour
search based on learned functions. In ICDE, 2020.

[21] W. Li, Y. Zhang, Y. Sun, W. Wang, W. Zhang, and
X. Lin. Approximate nearest neighbor search on high
dimensional data - experiments, analyses, and
improvement. CoRR abs, 2016.

[22] W. Liu, H. Wang, Y. Zhang, W. Wang, and L. Qin.
I-LSH: I/O efficient c-approximate nearest neighbor
search in high-dimensional space. In ICDE, pages
1670–1673, 2019.

[23] Y. Liu, J. Cui, Z. Huang, H. Li, and H. T. Shen.
SK-LSH: an efficient index structure for approximate
nearest neighbor search. PVLDB, 7(9):745–756, 2014.

[24] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe lsh: Efficient indexing for
high-dimensional similarity search. In VLDB, pages
950–961, 2007.

[25] Y. A. Malkov and D. A. Yashunin. Efficient and
robust approximate nearest neighbor search using
hierarchical navigable small world graphs. CoRR,
abs/1603.09320, 2016.

[26] M. Muja and D. G. Lowe. Scalable nearest neighbor
algorithms for high dimensional data. IEEE Trans.
Pattern Anal. Mach. Intell., 36(11):2227–2240, 2014.

[27] P. Ram and K. Sinha. Revisiting kd-tree for nearest
neighbor search. In KDD, pages 1378–1388, 2019.

[28] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS:
solving c-approximate nearest neighbor queries in high
dimensional euclidean space with a tiny index.
PVLDB, 8(1):1–12, 2014.

[29] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and
efficiency in high dimensional nearest neighbor search.
In SIGMOD, pages 563–576, 2009.

[30] E. Valle, M. Cord, and S. Philipp-Foliguet.
High-dimensional descriptor indexing for large
multimedia databases. In CIKM, pages 739–748, 2008.

[31] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen.
A survey on learning to hash. IEEE Trans. Pattern
Anal. Mach. Intell., 40(4):769–790, 2018.

[32] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In VLDB, pages
194–205. Morgan Kaufmann, 1998.

[33] B. Zheng, X. Zhao, L. Weng, N. Q. V. Hung, H. Liu,
and C. S. Jensen. PM-LSH: A fast and accurate LSH
framework for high-dimensional approximate NN
search. PVLDB, 13(5):643–655, 2020.

1455

