
ADnEV: Cross-Domain Schema Matching using Deep
Similarity Matrix Adjustment and Evaluation

Roee Shraga, Avigdor Gal
Technion, Haifa, Israel

{shraga89@campus.,avigal@}technion.ac.il

Haggai Roitman
IBM Research - AI, Haifa, Israel

haggai@il.ibm.com

ABSTRACT
Schema matching is a process that serves in integrating
structured and semi-structured data. Being a handy tool
in multiple contemporary business and commerce applica-
tions, it has been investigated in the fields of databases,
AI, Semantic Web, and data mining for many years. The
core challenge still remains the ability to create quality algo-
rithmic matchers, automatic tools for identifying correspon-
dences among data concepts (e.g., database attributes). In
this work, we offer a novel post processing step to schema
matching that improves the final matching outcome without
human intervention. We present a new mechanism, similar-
ity matrix adjustment, to calibrate a matching result and
propose an algorithm (dubbed ADnEV) that manipulates,
using deep neural networks, similarity matrices, created by
state-of-the-art algorithmic matchers. ADnEV learns two
models that iteratively adjust and evaluate the original sim-
ilarity matrix. We empirically demonstrate the effectiveness
of the proposed algorithmic solution for improving matching
results, using real-world benchmark ontology and schema
sets. We show that ADnEV can generalize into new domains
without the need to learn the domain terminology, thus al-
lowing cross-domain learning. We also show ADnEV to be a
powerful tool in handling schemata which matching is par-
ticularly challenging. Finally, we show the benefit of using
ADnEV in a related integration task of ontology alignment.

PVLDB Reference Format:
Roee Shraga, Avigdor Gal, and Haggai Roitman. ADnEV: Cross-
Domain Schema Matching using Deep Similarity Matrix Adjust-
ment and Evaluation. PVLDB, 13(9): 1401-1415, 2020.
DOI: https://doi.org/10.14778/3397230.3397237

1. INTRODUCTION
The rapid growth in data source volume, variety, and ve-

racity increases the need of schema matching, a data integra-
tion task that provides correspondences between concepts
describing the meaning of data in various heterogeneous,
distributed data sources. Examples include SQL and XML

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 9
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3397230.3397237

schemata, ontology descriptions, and Web forms [24],[56].
The need arises in a variety of domains including data ware-
house loading and exchange, linking datasets and entities
for data discovery [28, 40], integrating displays in interac-
tive data analysis [49], aligning ontologies for the Semantic
Web [27], and business document format merging (e.g., or-
ders and invoices in e-commerce) [56]. As an example, con-
sider a shopping comparison app, answering queries to find
“the cheapest computer among retailers” or “the best rate
for a hotel in Tokyo in September.” Such an app requires
integrating and matching several data sources of product
purchase orders and airfare Web forms.

Originated in the database community [56], research into
schema matching has been ongoing for more than 30 years
now, focusing on designing high quality matchers, automatic
tools for identifying correspondences among database at-
tributes. It has also been a focus for other disciplines as
well, from artificial intelligence [19, 35] to Semantic Web [27]
to data mining [31]. Numerous algorithmic attempts were
suggested over the years for handling the problem (e.g.,
COMA [20], Similarity Flooding [48], and BigGorilla [14]).
Theoretical grounding for schema matching [12, 22, 29] have
shown that schema matching is inherently an uncertain de-
cision making process due to ambiguity and heterogeneity
of structure, semantics, and forms of representation of iden-
tical concepts. Despite the increased necessity of schema
matching, the development of advanced schema matching
techniques is stagnating, revisiting existing heuristics that
rely on string matching, structure, and instances.

The quality of automatic schema matching outcome is
usually assessed using some evaluation metric (e.g., Pre-
cision, Recall, F1, etc.) Applying such metrics requires
human involvement to validate the decisions made by au-
tomatic schema matchers [75]. Yet, human validation of
schema matching requires domain expertise [23] and may
be laborious [75], biased [10], and diverse [60, 66]. This in
turn, limits the amount of qualitative labels that can be pro-
vided for supervised learning, especially when new domains
are introduced. Schema matching predictors [30, 64] have
been proposed as alternative evaluators for schema match-
ing outcome, opting to correlate well with evaluation metrics
created from human judgment. Previous works have been
focused so far on manually designed features and their com-
bination [31]. Furthermore, trying to “adjust” (improve)
schema matching outcome, previous works have utilized sev-
eral human crafted rules and heuristics [14, 21, 28].

In this work, we offer a method to improve the outcome
of automatic schema matchers without human support. We

1401

do so by offering a novel post processing step based on deep
learning. Training data for supervised learning is created
from existing reference models, while no human involvement
is required during the matching process itself. Furthermore,
the proposed method performs cross-domain matching ef-
fectively, learning using whatever domains are available and
still performing well on new domains, without any need to
inject domain-specific matching information.

The proposed method uses a novel mechanism of similar-
ity matrix adjustment to automatically calibrate a matching
result, conceptualized in a similarity matrix. We make use
of deep neural networks, providing a data-driven approach
for extracting hidden representative features for an auto-
matic schema matching process, removing the requirement
for manual feature engineering. To this end, we first learn
two conjoint neural network models for adjusting and evalu-
ating a similarity matrix. We then propose the ADnEV algo-
rithm, which applies these models to iteratively adjust and
evaluate new similarity matrices, created by state-of-the-art
matchers. With such a tool at hand, we enhance the ability
to introduce new data sources to existing systems without
the need to rely on either domain experts (knowledgeable
of the domain but less so on the best matchers to use)
or data integration specialists (who lack sufficient domain
knowledge). Having a trained ADnEV model also supports
systems where human final judgement is needed by regu-
lation, e.g., healthcare, by offering an improved matching
recommendation. Our contribution is therefore threefold:
• A novel framework for schema matching using au-

tomatic similarity matrix adjustment and evaluation
with performance guarantees (Section 2).
• A learning methodology using similarity matrices

based on deep neural networks and an algorithm (AD-
nEV) to improve the matching outcome (Section 3).
• A large-scale empirical evaluation, using real-world

benchmark ontology and schema sets, to support the
practical effectiveness of the proposed algorithmic so-
lution for improving matching results. In particu-
lar, we show that the ADnEV algorithm has strong
cross-domain capabilities, can improve performance of
a challenging matching problem, and serves in solving
a related problem of ontology alignment (Section 4).

Sections 5,6 discuss related work and conclude the paper.

2. MODEL
We position the schema matching task as a similarity ma-

trix adjustment process, enabling a view of schema matching
as a machine learning task, which leads to a natural deep
learning formulation (Section 3). This in turn, supports the
significant improvement in our ability to correctly match
real-world schemata (Section 4). A schema matching model
(Section 2.1) is followed by a definition of two post process-
ing steps (evaluation and adjustment) for a matching out-
come. Similarity matrix evaluation (Section 2.2) assesses
a matching outcome in the absence of a reference match
while similarity matrix adjustment (Section 2.3) calibrates
a matching result based on the evaluation. We conclude the
section with a formal specification of the relationships be-
tween the two post processes (Definition 2). Throughout,
we shall use the following illustrative example.

Example 1. Figure 1 presents two simplified purchase
order schemata [20]. PO1 has four attributes (foreign

 𝑃𝑂1 𝑃𝑂2

Figure 1: Schema Matching example

keys are ignored for simplicity): purchase order’s number
(poCode), timestamp (poDay and poTime) and shipment
city (city). PO2 has three attributes: order issuing date (or-
derDate), order number (orderNumber), and shipment city
(city). A matching process aims to match the schemata at-
tributes, where a match is given by double-arrow edges.

2.1 Schema Matching Model
The presented schema matching model is mainly based

on [29]. Let S, S′ be two schemata with the unordered sets
of attributes {a1, . . . , an} and {b1, . . . , bm}, respectively. A
matching process matches schemata by aligning their at-
tributes using matching algorithms (matchers for short),
which deduce similarity using data source characteristics,
e.g., attribute labels and domain constraints.

A matcher’s output is conceptualized as a similarity ma-
trix, denoted hereinafter M(S, S′) (or simply M), with Mij

(typically a real number in [0, 1]) representing similarity of
ai ∈ S and bj ∈ S′. Matrix M is defined as binary if for all
1 ≤ i ≤ n and 1 ≤ j ≤ m, Mij ∈ {0, 1}. M ⊆ [0, 1]n×m is
the set of all possible similarity matrices. A match between
S and S′ comprises all M ’s non-zero entries.

Let f(M) denote a schema pair similarity function, as-
signing an overall value to a similarity matrix, M . Typically,
these functions are additive, e.g., f(M) =

∑n
i=1

∑m
j=1Mij .

𝑎1, 𝑎2, … , 𝑎𝑛

𝑏 1
,𝑏

2
,…

,𝑏
𝑚

…
 𝐴𝑝𝑝𝑙𝑦 𝑚𝑎𝑡𝑐ℎ𝑒𝑟𝑠

𝑃𝑂1

𝑃𝑂2

Figure 2: Similarity matrix generation

𝑻𝒆𝒓𝒎 𝑴𝒂𝒕𝒄𝒉𝒆𝒓

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑡𝑒

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟

𝑃𝑂2. 𝑐𝑖𝑡𝑦

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑡𝑒

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟

𝑃𝑂2. 𝑐𝑖𝑡𝑦

 (
▢ ▢ ▢ ▢
▢ ▢ ▢ ▢
▢ ▢ ▢ ▢

) (
. 22 . 11 . 11 . 11
. 09 . 09 . 09 0.0
. 20 . 17 0.0 1.0

)

Figure 3: Similarity matrix example

Example 1 (cont.). Figure 2 illustrates the general
matching process, resulting in a similarity matrix, and Fig-
ure 3 provides an example of a similarity matrix over the two
purchase order schemata from Figure 1. The similarity ma-
trix is the outcome of Term [29], a string-based matcher. The
projected match includes all correspondences besides {(city,
orderNumber), (poCode, city)} with f(M) = 2.19.

1402

2.2 Similarity Matrix Evaluation
Let Me be a binary matrix, which represents a refer-

ence match such that Mij = 1 whenever the correspondence
(ai, bj) is part of the reference match of the schema pair
(S, S′) and Mij = 0 otherwise. Reference matches are typi-
cally compiled by domain experts over the years in which a
dataset has been used for testing. Given a reference match,
similarity matrices can be measured using an evaluation
function, EMe :M→ [0, 1], assigning a score to a similarity
matrix according to its ability to identify correspondences in
the reference match matrix. Whenever the reference match
is clear from the context, we shall refer to EMe simply as E.

The most common evaluation functions in schema match-
ing are precision (P) and recall (R), defined as follows:

P (M) =
|M+ ∩Me+ |
|M+ | ,

(1)

R(M) =
|M+ ∩Me+ |
|Me+ | ,

(2)

where Me+ and M+ represent the non-zero entries of Me

and M , respectively. The F1 measure, F (M), is calculated
as the harmonic mean of P (M) and R(M).

Sagi and Gal proposed methods for evaluating non-binary
similarity matrices using a matrix-to-vector transformation
of a matrixM into an (n×m) size vector, given by v(M) [65].
We use this representation to introduce a similarity matrix
as input to a Recurrent Neural Network (RNN), capturing
the memory needed when comparing the value of a specific
entry in the similarity matrix to those of its preceding neigh-
bors (Section 3.1). Cosine similarity serves as a distance
measure with respect to a reference match:

Cos(M) =
v(M) · v(Me)

||v(M)|| · ||v(Me)|| (3)

Continuing Example 1, let {(poDay, orderDate), (poTime,
orderDate), (poCode, orderNumber), (city, city)} be the ref-
erence match. Then, P (M)= .40, R(M)= 1.0, F (M)= .57,
and Cos(M) = .65 (using a vector representation of M (Fig-
ure 3): (.22, .11, .11, .11, .09, .09, .09, .00, .20, .17, .00, 1.0)).

Note that match evaluation depends by-and-large on the
preferred evaluation measure. For example, in Figure 3,
since the first three attributes in PO1 are equally likely to
match orderNumber, a matcher may include all of them to
gain maximum recall, by covering all likely-to-be correct cor-
respondences and include none to avoid losing in precision.

In many real-world scenarios, there is no reference match
against which evaluation is performed. A predictor Ê :
M → [0, 1] uses human intuition to evaluate a match in
the absence of a reference match [64]. Generally, matching
predictors operate in an unsupervised manner, except an
initial attempt to supervisedly learn a predictor [31]. We
characterize next a monotonic similarity matrix evaluator
(predictor), which “behaves” approximately the same as the
evaluation function it aims to estimate.

Definition 1. Let E be an evaluation function and Ê a
predictor. Ê is monotonic w.r.t. E if for any two similar-
ity matrices M,M ′ ∈ M, E(M) ≤ E(M ′) ⇐⇒ Ê(M) ≤
Ê(M ′).

2.3 Similarity Matrix Adjustment
Recall that a schema matcher’s result is represented as a

similarity matrix. A similarity matrix adjustment is a pro-
cess that uses a mapping SMA :M→M, which transforms

a similarity matrix into a (potentially) better adjusted simi-
larity matrix (with respect to some evaluation criteria). Un-
like matchers (Section 2.1), which operate over the schemata
themselves, adjustment solely operates in the similarity ma-
trix space. In the context of schema matching, such an
adjustment process is typically referred to in the literature
as a second line matcher (2LM) [29]. 2LMs may come in
two flavors, namely decisive or indecisive. The former ma-
nipulates the similarity matrix to determine which entries
remain non-zero (and hence part of a match). The latter
is meant to improve the matrix using some heuristic rea-
soning. Indecisive 2LMs are typically used in tasks such as
pay-as-you-go schema matching [18].

Example 2. We present five SMAs, based on known
2LMs. Threshold(ν) and Max-Delta(δ) [20] apply selec-
tion rules, eliminating background noise in a similarity ma-
trix. Threshold(ν) keeps entries (i, j) having Mij ≥ ν
while nullifying others. Max-Delta(δ) selects entries that
satisfy Mij + δ ≥ max{maxj′Mij′ ,maxi′Mi′j}. Maximum
weighted bipartite graph match (MWBG) [32] and stable
marriage (SM) [46] use well-known matching algorithms,
given a score or ordering over elements. Dominants [29] se-
lects correspondences that dominate (i.e., have the maximal
similarity value) all entries in their row and column.

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑡𝑒

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟

𝑃𝑂2. 𝑐𝑖𝑡𝑦

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑡𝑒

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟

𝑃𝑂2. 𝑐𝑖𝑡𝑦

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑡𝑒

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟

𝑃𝑂2. 𝑐𝑖𝑡𝑦

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑡𝑒

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟

𝑃𝑂2. 𝑐𝑖𝑡𝑦

 (
. 22 . 11 . 11 . 11
. 09 . 09 . 09 0.0
. 20 . 17 0.0 1.0

) (
. 22 . 11 . 11 . 11
0.0 0.0 0.0 0.0
. 20 . 17 0.0 1.0

)

 (
. 22 . 11 . 11 . 11
. 09 . 09 . 09 0.0
. 20 . 17 0.0 1.0

) (
. 𝟐𝟐 0.0 0.0 0.0
0.0 . 𝟎𝟗 0.0 0.0
0.0 0.0 0.0 𝟏. 𝟎

)

𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 (𝟎. 𝟏)

𝑴𝑾𝑩𝑮

Figure 4: Similarity matrix adjustment example

Figure 4 provides two examples of SMAs over the simi-
larity matrix of Figure 3. Threshold(0.1) reduces noise by
nullifying the matrix row of orderNumber with f(M)=1.92.
MWBG selects for each attribute in PO2 the most similar
attribute from PO1, while satisfying a 1 : 1 matching con-
straint. The result is the match {(poDay, orderDate), (po-
Time, orderNumber), (city, city)} with f(M)=1.31. Recall-
ing the reference match {(poDay, orderDate), (poTime, or-
derDate), (poCode, orderNumber), (city, city)} and dubbing
the corresponding matrices of Threshold and MWBG as M t

and Mm, respectively, we have P (M t)= .43, R(M t)= .75,
F (M t)= .55 and P (Mm)= .67, R(Mm)= .50, F (Mm)= .57.

The similarity matrix abstraction captures rich structures
(including taxonomies, ontologies, and others, see [29] for
details) that can be employed as part of an adjustment pro-
cess. Typically, however, SMAs in the literature are lim-
ited in the way they adjust a similarity matrix, using some
human-guided rules, e.g. 1 : 1 matching as in MWBG and
SM or limiting the space of the output matrix values to the
original similarity values (e.g., Threshold, Max-Delta, and
Dominants). Contemporary SMAs are also limited in that
they do not take into account the evaluation measure (see
Section 2.2). We hypothesize that a similarity matrix con-
tains hidden information that is not captured by human

1403

designed rules. In addition, to support evaluation-conscious
SMAs we aim at consistent similarity matrix adjustment,
with respect to an evaluation measure E, as follows.

Definition 2. Let E be an evaluation function and ε >
0 an improvement factor. A similarity matrix adjustment
mapping SMA is consistent w.r.t. E if for any similar-
ity matrix M ∈ M, it holds that: min(E(M) + ε, 1) ≤
E(SMA(M)).

A consistent SMA (CSMA) assures quality improvement of
the original matrix with respect to an evaluation function.
By Definition 2, CSMA can identify perfect matches, given
sufficient time to improve. In what follows, predictors (Sec-
tion 2.2) can be used to assess our ability to adjust similarity
matrices, which will be a main component of the proposed
algorithm (Section 3.3).

3. DEEP SIMILARITY MATRIX ADJUST-
MENT AND EVALUATION

Equipped with predictors and understanding their possi-
ble role in improving similarity matrices we are now ready
to introduce our approach for deep similarity matrix adjust-
ment and evaluation. Our tools of choice are deep neural
networks (DNNs, see Section 3.1). The advantage of us-
ing DNN models is that we no longer need to hand-craft
features when designing adjustors, nor do we need to de-
cide a-priori which predictors would work well for a specific
domain. DNNs assist in capturing complex relationships
among similarity matrix elements, as detailed in Section 3.2.
The ADnEV algorithm (Section 3.3) utilizes two interacting
DNNs (adjustor and evaluator), incrementally modifying an
input similarity matrix. We provide an illustrative example
of the algorithm and a methodology to utilize ADnEV when
the input consists of multiple matrices (Section 3.4).

3.1 Neural Networks for Similarity Matrices
Unlike most state-of-the-art SMAs operate, DNNs were

shown to capture relationships in structured data automat-
ically [34, 44]. The basic idea of deep learning is to perform
non-linear transformations of an input data (using activa-
tion functions, e.g., Sigmoid or ReLU [33]) to produce an
output. Specifically, in this work, we use two DNN types,
namely Convolutional Neural Networks (CNNs) and Recur-
rent Neural Networks (RNNs). CNN is rooted in process-
ing grid-like topology data [43], with applications in Image
and Video Processing [42], Recommender Systems [69], etc.
RNN is rooted in processing sequential data [63], with ap-
plications in Natural Language Processing [15], Time Series
Prediction [17], and Entity Resolution [26, 50]. Next, we
focus on the application of DNNs to similarity matrices. A
broader description of the foundations of DNNs is given in
an extended version [67] and may be found in [34, 44].

We utilize both CNN and RNN to capture (hidden) data
patterns in similarity matrices. CNNs can identify spa-
tial patterns between correspondences by learning matrix
features using small subareas of the input data (convolu-
tional and pooling layers). Several SMAs in the literature
are heuristically designed with manually-crafted feature ex-
traction rules that capture grid-like dependencies within the
matrix. Recalling Example 2, both Dominants and Max-
Delta(δ) essentially use a max-pooling approach when they

make a match decision based on a correspondence respec-
tive row or column. We believe that CNNs can learn such
spatial dependencies automatically.

RNNs can sequentially process the similarity matrix, al-
lowing the model to make a decision regarding a single cor-
respondence based on previous selections, and therefore, in
a sense, imitating a human-like sequential schema matching
decision process. Finally, by combining both CNN and RNN
(into CRNN), we exploit the benefits of both DNN types (an
empirically validated choice, see Section 4.3).

3.2 Learning to Adjust and Evaluate Similar-
ity Matrices

The input for an adjustor and an evaluator is a set of K
similarity matrices M (K) = {Mk}Kk=1. An adjustor applies
an SMA (Section 2.3), returning a matrix in M (space of
similarity matrices) and an evaluator returns a value in [0, 1].

In this paper we adopt a supervised learning methodol-
ogy. As such, we assume that (only) during training the

input similarity matrices M (K) are available with their re-
spective reference matrices {Me

k}Kk=1. Reference matrices
were created over years with the assistance of multiple do-
main experts. They are only used during training, enabling
a “human-less” matching process after a model is trained.
We note that while it is not realistic to have a reference
match for each domain, it is reasonable to assume that some
human labeled data exists (in our case using existing bench-
marks, see Section 4.1) to learn a model that can be ap-
plied in scenarios where no reference match exists. We show
empirically (see Section 4.5.2) that the ADnEV algorithm
(Section 3.3) provides effective cross-domain learning.

The adjustor, AD, receives similarity matrices {Mij ∈
[0, 1]}n,m

i=1,j=1 as training examples (M ∈ M) and their re-
spective labels: l(Mij) = 1 if Mij ∈Me; otherwise, l(Mij) =
0. Spatial and sequential relationships among similarity ma-
trix entries, as captured by the network, essentially allowing
each entry to be represented not only by its own value but
also by its context within the similarity matrix. Adjustors
solve a binary classification problem for each entry (indepen-
dently of other entries), trained using a binary cross entropy
(CE) loss defined over each train matrix M :

CE(M) = −
n∑

i=1

m∑
j=1

l(Mij) · log(M̂ij)+

(1− l(Mij)) · log(1− M̂ij),

(4)

where M̂ij denotes the predicted value of l(Mij). Note that

M̂ij basically represents the probability of l(Mij) to be as-
signed with a value of 1, and its value is therefore in [0, 1].

The evaluator, EV , also receives similarity matrices
{Mij ∈ [0, 1]}n,m

i=1,j=1 as training examples (M ∈ M) to-
gether with their overall evaluation function value, E(M),
calculated using a reference match (see Section 2.2). The
evaluator solves a regression problem, tuned using a mean
squared error (MSE) loss computed, givenM (K), as follows:

MSE(M (K)) =
1

K

K∑
k=1

(
Ê(Mk)− E(Mk)

)2
, (5)

where Ê(Mk) denotes the predicted value of E(Mk).
As a design of the overall neural network, we suggest the

use of a multi-task NN [13, 62] with two objectives, one
corresponds to SMA (AD) and the other corresponds to

1404

𝑀𝑎𝑥𝑃𝑜𝑜𝑙
(2,2)

𝐹𝐶𝐶𝑜𝑛𝑣

(
1 𝑓𝑖𝑙𝑡𝑒𝑟𝑠

4 × 4 𝑠𝑡𝑟𝑖𝑑𝑒𝑠
)

2𝑛 × 2𝑚 × 32
𝑛 × 𝑚 𝑛 × 𝑚 × 32 𝑛 × 𝑚 𝑛 × 𝑚

𝐹𝐶𝐶𝑜𝑛𝑣

(
32 𝑓𝑖𝑙𝑡𝑒𝑟𝑠

4 × 4 𝑠𝑡𝑟𝑖𝑑𝑒𝑠
)

+ 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚

+ 𝑅𝑒𝐿𝑈

2𝑛 × 2𝑚 × 32

𝐹𝐶𝐶𝑜𝑛𝑣

(
32 𝑓𝑖𝑙𝑡𝑒𝑟𝑠

4 × 4 𝑠𝑡𝑟𝑖𝑑𝑒𝑠
)

+ 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚

+ 𝑅𝑒𝐿𝑈

𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝑛 ⋅ 𝑚

𝑛 ⋅ 𝑚 × 64

𝑛 ⋅ 𝑚 × 64

1

𝑛 ⋅ 𝑚

(𝑇𝑖𝑚𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑) 𝐷𝑒𝑛𝑠𝑒

𝐴𝑑𝑗𝑢𝑠𝑡𝑜𝑟

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟

𝐹𝑙𝑎𝑡𝑡𝑒𝑛

Figure 5: Adjust and Evaluate network architecture.

matrix evaluation (EV). This allows the network to learn
a joint representation of the input matrix while updating
the weights with respect to both objectives. The novelty
of the proposed network architecture is in making the SMA
evaluation-aware (and vice versa). Multi-task NN linearly
combines both models via a joint loss based on CE (Eq. 4)
and MSE (Eq. 5) using uniform weights.

Figure 5 illustrates the network architecture using both
convolutional and recurrent layers (denoted as CRNN). To
handle variable size input matrices, we begin with a fully
convolutional network (FCN), following [45], which is inde-
pendent of the input shape and does not affect weights and
biases of layers (noticing input shape is larger than the filter
size). For readability, n×m in Figure 5 represents variable
size input matrices.

Convolutional and pooling layers can be fine-tuned us-
ing hyperparameters such as filtering size and the strides
in which the number of neighboring cells are considered, as
illustrated in Figure 5. Each of the two first convolutional
layers are followed by batch normalization1 and ReLU ac-
tivation2. Between these layers we perform upsampling3 to
increase resolution and reduce noise. Then, we scale back
to the input matrix dimension using a max-pooling layer
that semantically merges back the upsampled surroundings
of each entry. The convolution part of the network helps to
represent each correspondence by its context in the matrix,
similar to the way pixels are represented in image-to-image
frameworks, e.g., for image super-resolution [72].

Next, we flatten the output and feed it into the recur-
rent part of the network. Following [73], we use a Gated
Recurrent Unit (GRU)-based RNN [15]. GRU uses a reset
gate to decide how much of past information should be dis-
regarded, and an update gate to decide how much of past
states information should pass through. Finally, we obtain a
64-dimensional context vector for each correspondence that
can be used for independent classification (adjustor, top part
of the final layer) as well as for overall regression based on
the representations of all the entries (evaluator, bottom part
of the final layer).

1batch normalization is a technique for improving the sta-
bility of a neural network by normalizing its layers [37]
2ReLU is a widely used activation function defined as fol-
lows; f(x) = max(0, x) [33]
3upsampling simply repeats entries in the input in order to
change its dimension [72]

𝑻𝒆𝒓𝒎 +

𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 (𝟎. 𝟐)

𝑃 = .56, 𝑅 = .74, 𝐹 = .6

𝑨𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏

𝑨𝒅𝒋𝒖𝒔𝒕

𝑪𝒐𝒏𝒗 𝑭𝒊𝒍𝒕𝒆𝒓𝒔:

𝑻𝒆𝒓𝒎

 𝑃 = .31, 𝑅 = 1.0, 𝐹 = .47

𝑮𝑹𝑼

𝑻𝒆𝒓𝒎 +

𝑴𝑾𝑩𝑮

𝑃 = .53, 𝑅 = .52, 𝐹 = .5

𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆

𝑴𝒂𝒕𝒓𝒊𝒙

𝑃 = 𝑅 = 𝐹 = 1.0

𝑨𝒅𝒋𝒖𝒔𝒕𝒆𝒅

𝑴𝒂𝒕𝒓𝒊𝒙

 𝑃 = .76, 𝑅 = 1.0, 𝐹 = .83

(a) Adjustment

𝑮𝑹𝑼 𝑪𝒐𝒏𝒗 𝑭𝒊𝒍𝒕𝒆𝒓𝒔:

𝑻𝒆𝒓𝒎

+ 𝑴𝒂𝒙𝑫𝒆𝒍𝒕𝒂(𝟎. 𝟏)

𝑓𝑛𝑜𝑟𝑚 = .6 (𝐹 = .71)

𝑭̂ =. 𝟕𝟏

(b) Evaluation

Figure 6: AD and EV illustration over Web-forms pairs
(Section 4.1). Entries are marked by a gray scale color map.4

We empirically validated that CRNN performs better than
GRU and CNN independently. Dropout did not improve
results, thus not included in the networks. We have also
trained standalone versions for AD and EV , by omitting
the bottom and top two layers of the network respectively,
to assess the value of a multi-task network (see Section 4.3).

Example 3. Figure 6 presents a gray scale color map4 of
adjusting and evaluating similarity matrices from the Web-
forms dataset (see Section 4.1). It visualizes the two parts
of the network architecture (Figure 5) using trained layers
with respect to a dataset on an input similarity matrix.

Figure 6a illustrates the adjustment process, the convolu-
tional filters highlight prominent areas in the matrix which
is than fused using max pooling. Then, the GRU injects
sequential knowledge, nullifying the left and top parts of the
matrix and the activation projects the final matrix. Figure 6b

4 0 and 1 entries are colored white and black, respectively.
Entries closer to 1 are darker than those closer to 0.

1405

(
𝑀11

1 ⋯ 𝑀1𝑚
1

⋮ ⋱ ⋮
𝑀𝑛1

1 ⋯ 𝑀𝑛𝑚
1

)

(
𝑀11

𝑇 ⋯ 𝑀1𝑚
𝑇

⋮ ⋱ ⋮
𝑀𝑛1

𝑇 ⋯ 𝑀𝑛𝑚
𝑇

)

(
𝑀11 ⋯ 𝑀1𝑚

⋮ ⋱ ⋮
𝑀𝑛1 ⋯ 𝑀𝑛𝑚

)

EV

𝐸෠1

AD AD

⋯ AD

𝑅𝑒𝑝𝑒𝑎𝑡 𝑢𝑛𝑡𝑖𝑙

𝐸𝑉ሺ𝑀𝑡ሻ < 𝐸𝑉൫𝑀𝑡−1൯

𝑀0 = 𝑀 𝑀1 = 𝐴𝐷ሺ𝑀0ሻ 𝑀𝑜𝑢𝑡 = 𝐴𝐷ሺ𝑀𝑡−1ሻ 𝑀𝑡 = 𝐴𝐷ሺ𝑀𝑡−1ሻ

EV

𝐸෠0

Figure 7: ADnEV algorithm illustrated

demonstrates how the network managed to predict accurately
the F1 value of an input matrix (F̂ = F = 0.71).

3.3 Iterative Adjust & Evaluate (ADnEV)
We now suggest an iterative Adjust and Evaluate (AD-

nEV) algorithm. In addition to an evaluation-aware adjustor
training, using a hill-climbing approach, the ADnEV algo-
rithm attempts to employ the best out of an input similarity
matrix by performing iterative adjustments. Also, we show
that the algorithm converges to the optimal matrix given
well-behaved adjustors (Def. 2) and evaluators (Def. 1).

The algorithm uses pre-trained adjustorAD and evaluator
EV as described in Section 3.2. Given an input similarity
matrix, AD returns an adjusted similarity matrix and EV
returns an evaluation value. Figure 7 illustrates the main
idea of the ADnEV algorithm. A pseudocode is given in [67].
ADnEV begins with a new unseen similarity matrix (test
phase) and readjusts it as its evaluation value continues to
improve. The algorithm evaluates (using EV) the output
at each step to decide whether the adjusted matrix is better
than its predecessor until no improvement is achieved.

The adjustment process aims to improve the matching
outcome, thus the algorithm should not return matching
results that are inferior to the initial match. The main com-
ponent of the algorithm in charge of assessing the matching
outcome is the evaluator. While it is immediate from the
stopping condition that the predicted evaluation value of the
output similarty matrix will be at least as good as the in-
puts, ADnEV dominance (Proposition 3.1) assures that given
a well-behaved evaluator the true evaluation will behave the
same. Using a well-behaved adjustor, ADnEV is also guar-
anteed to converge (Proposition 3.2) to an ideal matrix with
respect to an evaluation function.

Proposition 3.1 (ADnEV Dominance). Let EV (·) be
a monotonic evaluator (Definition 1) and let M and M∗ be
the input and output matrices of ADnEV, respectively. Then,
E(M∗) ≥ E(M).�

Proposition 3.2 (ADnEV Convergence). Let AD(·)
be a CSMA (Definition 2) with 0 < ε ≤ 1, let EV (·) be a
monotonic evaluator (Definition 1), and let M and M∗ be
the input and output matrices of ADnEV, respectively. AD-
nEV returns a matrix with an ideal evaluation (E(M∗) = 1)
in less than d 1

ε
e steps.�

To intuitively explain the role of monotonic evaluation,
recall that ADnEV iterates until its halting condition is met.
At each iteration t the adjusted matrix is estimated to be
better than its predecessor (Ê(M t) > Ê(M t−1)) and thus
better in terms of the true evaluation (E(M t) > E(M t−1))
and the algorithm converges to an optimal output similarity
matrix.

�Proposition proofs are given in an extended version [67].

𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆 𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆

𝑭̂ =. 𝟒𝟖 >. 𝟒𝟔

𝑪
𝒐

𝒏
𝒕𝒊

𝒏
𝒖

𝒆

𝑨𝒅𝒋𝒖𝒔𝒕 𝑨𝒅𝒋𝒖𝒔𝒕

𝑨𝒅𝒋𝒖𝒔𝒕𝒆𝒅

𝑴𝒂𝒕𝒓𝒊𝒙:

 𝑃 = .5 , 𝑅 = .5, 𝐹 = .5

𝑾𝒐𝒓𝒅𝒏𝒆𝒕:

 𝑃 = .23, 𝑅 = .52 𝐹 = .27

𝑨𝒅𝒋𝒖𝒔𝒕

𝑭̂ =. 𝟏𝟖

𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆

𝑭̂ =. 𝟒𝟔 >. 𝟏𝟖

𝑭̂ =. 𝟒𝟖 >. 𝟒𝟖

𝑪
𝒐

𝒏
𝒕𝒊

𝒏
𝒖

𝒆

𝑶𝒖𝒕𝒑𝒖𝒕

𝑃 = .52, 𝑅 = .53, 𝐹 = .53

𝑺𝒕𝒐𝒑

𝑨𝒅𝒋𝒖𝒔𝒕𝒆𝒅

𝑴𝒂𝒕𝒓𝒊𝒙:

 𝑃 = .52 , 𝑅 = .53, 𝐹 = .53

𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆

Figure 8: ADnEV Illustrative Example over a Web-forms
Schema Pair (see Section 4.1). Entries are marked by a gray
scale color map4

Example 3 (cont.). Figure 8, provides a gray scale
color map4 example of using ADnEV over a challenging
schema pair to obtain the output similarity matrix. The
input matrix has a fairly low precision due to many non-
zero entries. After applying an adjustment step, most low-
similarity entries (light gray) are removed from the matrix,
boosting precision and slightly reducing recall. As the esti-
mated value is improved the algorithm continues with an-
other adjustment, which spots 7 additional correspondences,
improving all quality measures. Finally, the algorithm ter-
minates as the next adjustment fails to improve the predicted
quality of the matrix.

3.4 ADnEV with Multiple Matrices
Until now, we treated ADnEV as a single-input-single-

output algorithm. However, having a trained adjustor and a
trained evaluator opens the door for additional alternatives.
Explicitly, let M(S, S′)(K) be a set of K similarity matrices,
generated with respect to a specific schema pair S, S′. Us-
ing ADnEV, we can obtain an improved set, M(S, S′)(K)∗,

where each matrix M∗ ∈ M(S, S′)(K)∗ is an adaptation of
an initial input matrix. Accordingly, we have gathered a set
of 2K matrices addressing the schema pair S, S′. Next, hav-
ing a trained evaluator EV , we can select the best matrix
for this pair aiming at the best possible outcome, i.e.,

argmax
M∈M(S,S′)(K)∪M(S,S′)(K)∗

EV (M).

This approach corresponds to earlier works on matcher en-
sembles [20]. A matcher ensemble considers multiple match-
ers input as it computes a weight for each one (which can
be learned, e.g., using a boosting method [47]) to create a
matching decision. Our method, instead, learns a model
based on an individual similarity matrix, which is the focus
for this work. The learned models can be applied to select
a top similarity matrix out of a set. We leave the design of
ensemble deep framework for future work.

4. EMPIRICAL EVALUATION
We now present an empirical evaluation of the ADnEV al-

gorithm, evaluating each component (adjustor and evalua-
tor) separately and jointly using real-world datasets. We es-
tablish the applicability of the proposed algorithm by exper-
imenting with a variety of application datasets, from small
scale Web form schemata, extracted from diverse domains

1406

Table 1: Datasets used in the evaluation

Dataset Purchase Order OAEI Web-forms
#Elements 50-400 80-100 10-30
#Pairs 44 100 147
#Augs 10 5 4
#Matrices 17, 424 21, 600 26, 460
#App.
Domains 1 1 18
Task large-scale ontology cross-domain
Type schema matching matching schema matching

such as flights, dating, booking, etc. to large purchase or-
ders used by retailers, to bibliographic references ontologies
from various resources. Code repository is available. [1] In
our empirical analysis we demonstrate the following three
properties of our proposed algorithm:
• Cross Domain: ADnEV generalizes beyond a single

domain. Using a network that was pre-trained on one
domain (e.g., flights), the algorithm can significantly
improve the performance of matchers, applied to a dif-
ferent domain (e.g., job finding).
• Challenging Matches: ADnEV significantly im-

proves the performance of state-of-the-art matchers
when applied to a large, particularly hard to solve
benchmark (purchase orders).
• Agility: ADnEV is shown to perform well on varying

data integration tasks, including ontology alignment,
making use of either a single or multiple matchers si-
multaneously.

4.1 Datasets
Table 1 provides details of the datasets used in the ex-

periments. All datasets offer a schema matching challenge.
In addition, each dataset allows us to investigate a differ-
ent facet of the proposed algorithm, aiming to illustrate its
variability. The Purchase Order [20] dataset represents a
classic large-scale schema matching problem between XML
documents of purchase orders, extracted from various sys-
tems. This dataset has been a focus of interest to multiple
schema matching research, including [10, 11, 21, 31, 68].
The OAEI dataset represents a slightly different matching
problem, where instead of matching schema attributes, we
aim to match ontology elements. OAEI contains ontologies
from the bibliographic references domain, introduced in the
OAEI 2011 and 2016 competitions [7], matching 100 ontolo-
gies against a reference ontology. Finally, the Web-forms [29]
dataset represents a cross-domain matching problem and
contains schemata of varying sizes that were automatically
extracted from Web forms of diverse domains. Web forms
present an ongoing matching challenge to Web interface inte-
gration [24, 71]. Cross domain Web form matching was also
a focus for holistic schema matching, integrating multiple-
source schemata rather than pairwise matching [16].

The three benchmark datasets represent schema pairs
with differing levels of difficulties, introducing alongside easy
matches also complex relationships and attributes, which
may yield low precision and recall levels, even when using the
strongest of matchers. Reference matches for these dataset
were manually constructed by domain experts over the years
and considered as ground truth for our purposes.

4.2 Generating Similarity Matrices
Next we describe how we generate an initial set of sim-

ilarity matrices as input for our algorithm. First, we de-

scribe how we derive similarity matrices from state-of-the-
art schema matchers (Section 4.2.1). Then, we describe an
augmentation methodology to expand a given (training) set
of similarity matrices inspired by the effectiveness of data
augmentation in computer vision, see for example, Perez
and Wang [53] (Section 4.2.2).

4.2.1 Schema Matchers
We used three matchers (Term, WordNet, and Token Path)

to generate our baseline set of similarity matrices. The
first two, Term and WordNet, are implemented in the Onto-
Builder Research Environment [8] (ORE) – a research proto-
type for large scale matching experiments. Term [29] com-
pares attribute names to identify syntactically similar at-
tributes (e.g., using edit distance and soundex). WordNet
[59] uses abbreviation expansion and tokenization methods
to generate a set of related words for matching attribute
names. The third matcher, Token Path, is based on SAP’s
Auto-Mapping Core (AMC) [54], which provides an infras-
tructure and a set of algorithms to match business schemata.
Token Path integrates node-wise similarity with structural
information by comparing the syntactic similarity of full
root-to-node paths. We used ORE’s embedded implemen-
tation of AMC’s Token Path algorithm.

Each matcher’s similarity matrix is used in its original
form. In addition, we apply to the similarity matrix the five
state-of-the-art SMAs that were presented in Section 2.3.
Among those SMAs, both Threshold(ν) and Max-Delta(δ)
are based on COMA [3], a state-of-the-art schema matching
research tool, whose details are given in Example 2. Follow-
ing [30, 31] we set ν = 0.5 and δ = 0.1, respectively.

4.2.2 Similarity Matrix Augmentation
We created 18 similarity matrices per schema pair,3 yield-

ing for example, 2, 646 matrices for the Web-forms domain.
Using properties of schema attribute order independence

and matching process symmetry, we also propose a similarity
matrix augmentation method, which enables increasing the
train set size, as follows.

Given a similarity matrix M and a requested number of
augmentations A, a transpose of M (MT) is created and
added to the training set. Then, for each iteration a ∈
{1, . . . A}, the following operations are applied:
• Randomly select i, j from {1, 2, ..., n} and t, k from
{1, 2, ...,m}
• Replace the i’th row with the j’th row and the t’th

column with the k’th column in both M and MT .
• Add the augmented versions to the training set.

To enhance reproducibility, an illustrative example is given
in Figure 9 using the similarity matrix of Example 2.1. First,
MT is generated (top right). Then, for each matrix, we
randomly select two rows and columns to swap (bottom).

Each similarity matrix is accompanied by (2 + 2A) aug-
mented matrices during the training phase. For example,
with A = 4, the Web-forms domain would have 26, 460 ma-
trices. Table 1 details the number of augmentations per-
formed for each dataset and the total number of matrices
used in the experiments. It is noteworthy that augmenta-
tion was applied only in the training phase.

3Using 3 matchers without an SMA, and also applying each
of the 5 SMAs.

1407

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑡𝑒

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟

𝑃𝑂2. 𝑐𝑖𝑡𝑦

𝑃𝑂1. 𝑝𝑜𝐷𝑎𝑦

𝑃𝑂1. 𝑝𝑜𝑇𝑖𝑚𝑒

𝑃𝑂1. 𝑝𝑜𝐶𝑜𝑑𝑒

𝑃𝑂1. 𝑐𝑖𝑡𝑦

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑡𝑒

𝑃𝑂2. 𝑜𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟

𝑃𝑂2. 𝑐𝑖𝑡𝑦

𝑃𝑂1. 𝑝𝑜𝐷𝑎𝑦

𝑃𝑂1. 𝑝𝑜𝑇𝑖𝑚𝑒

𝑃𝑂1. 𝑐𝑖𝑡𝑦

𝑃𝑂1. 𝑝𝑜𝐶𝑜𝑑𝑒

 (
. 22 . 11 . 11 . 11
. 09 . 09 . 09 0.0
. 20 . 17 0.0 1.0

) (

. 22 . 09 . 20

. 11 . 09 . 17

. 11 . 09 0.0

. 11 0.0 1.0

)

 (
. 09 . 09 . 09 0.0
. 11 . 22 . 11 . 11
. 17 . 20 0.0 1.0

) (

. 22 . 09 . 20

. 11 . 09 . 17

. 11 0.0 1.0

. 11 . 09 0.0

)

𝑀3,∗ = 𝑀4,∗

𝑀∗,1 = 𝑀∗,1

𝑀𝑇

𝑀1,∗ = 𝑀2,∗

𝑀∗,1 = 𝑀∗,2

Figure 9: Similarity matrix augmentation example.
Swapped rows/columns are colored respectively.

4.3 Experimental Setup
We now turn our attention to specifying hardware, imple-

mentation, methodology, and baselines.

4.3.1 Hardware and Implementation
Evaluation was performed using 8 GPU servers and 3

CPU servers. All have a CentOS 6.4 operating system. The
main GPU server contains two Nvidia gtx 2080 Ti, a sec-
ond server contains two Nvidia GeForce gtx 1080 GPUs,
while the others contain a single NVIDIA Tesla K80 GPU.
The CPU server has 28 Intel(R) Core(TM) i9-7940X CPU
@ 3.10GHz, 128GB RAM cores, while the others have 8
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 32GB RAM.

All networks were implemented using Keras [6] with a
tensorflow backend and are available online [1]. The Adam
optimizer [38] was used, with a learning rate of 0.001 and
β1 = 0.9, β2 = 0.999, following [61]. We also trained sep-
arately CNN, RNN and a simple fully connected DNN ,
which gave inferior results. Hence, due to space consider-
ations, we only focus on our suggested CRNN architecture
(see Section 3.1). Dropout did not improve results, thus not
used. We fed the network with each matrix independently
(batchsize = 1), going over the dataset (including the aug-
mented versions, see Section 4.2.1) only once (epochs = 1).

4.3.2 Methodology
The experiments are performed per dataset. We use k-

fold cross validation for evaluation. For Purchase Order and
OAEI, we randomly split the schema pairs in each dataset
into 5 folds and repeat an experiment 5 times, using 4 folds
for training and the remainder fold for testing. For the Web-
forms dataset, we split the schema pairs by domain, having
distinct domains in each fold.

For each experiment, we first generate an initial training
set of similarity matrices (Section 4.2.1) and expand this
set using augmentation (Section 4.2.2). Then, we train the
CRNN -based adjustor and the CRNN -based evaluators as
described in Section 4.3. For each evaluation measure E,
we train a different evaluator, which, in turn, represent four
versions of ADnEVE (displayed in Table 2). Then, we use the
ADnEV algorithm (Section 3.3) to adjust and evaluate the
test set of similarity matrices (generated from the remaining
fold of schema pairs). Model training of each epoch took≈45
minutes on two Nvidia gtx 2080 Ti GPUs. Applying ADnEV
during the test phase takes ∼2.5 seconds per matrix.

In addition, to enhance the learning ability of our model,
we include the reference matrix as an example during train-
ing only. A reference matrix obtains a perfect score with
respect to both adjustor (all labels are correct by definition)
and evaluator (all evaluation functions will return a value
of 1 given the reference matrix). Reference matrices have
been complied over the years for the datasets used in our
experiments and serve as a desiderata for the best similar-
ity matrix of a given schema pair. This, in turn, assists in
quickly “homing” on the appropriate model weights during
training and allows the trained model to represent reality
better. We emphasize here that reference matches are not
included during the test phase.

Statistically significant differences in performance are
marked with an asterisk using a paired two-tailed t-test with
Bonferroni correction for 95% confidence level.

4.3.3 Baselines
We have tested our methods against several baselines. We

provide next details on baselines for adjustors, evaluators
and neural networks. All baselines are available online [1].
• Adjustors are compared to the similarity matrices

that were generated by state-of-the-art schema match-
ers and employed as an initial input to the ADnEV al-
gorithm (due to space considerations we aggregatively
refer to them as Orig). In addition, we observe a re-
semblance of the adjustment problem to matrix factor-
ization (MF) [41, 57, 58]. Using MF terminology, the
original matrix M is the “user-item” matrix that rep-
resents the implicit “ratings” to be adjusted by MF.
We use the following state-of-the-art MF methods as
baselines: 1) SV D++ [9, 41], using singular value de-
composition to learn latent representations of ai ∈ S,
bj ∈ S′ and adjust a similarity matrix by multiplying
the representations per matrix entry; 2) Bayesian Per-
sonalized Ranking (BPR) [2, 58], which treats the cor-
responding pairs as implicit feedback and learns pref-
erence of candidate attributes with respect to a tar-
get attribute (i.e., if Mij > Mij′ , then bj ≺ai b

′
j); 3)

Factorization Machines (FM) [4, 57], which captures
high order non-linear interactions; and 4) Isotonic Re-
gression (IR), [5, 51] which learns a calibration func-
tion to order corresponding attribute pairs before non-
corresponding ones.
• Evaluators were compared to f(M) (see Section 2.1)

and to a feature-based evaluation, where matching
predictors [64] are used as features to learn an eval-
uation model [31] (LRSM). To this end, we used
the state-of-the-art predictors proposed in [31], com-
bined in LRSM using a LambdaMART model. Base-
line evaluators were also used in a multiple matri-
ces input setting, where f(M) (Maxf) and LRSM
(MaxLRSM) are used to select the best performing
matrix. We further tested the following alternative re-
gressors4: Linear Regression, Lasso Regression, Ridge
Regression, Theil-Sen Regression, Passive Aggressive
Regression, SGD Regression, and Support Vector Re-
gression (SV R) [25]. We present the results of SV R,
whose performance was superior.
• Vanilla deep neural network (DNN) was used as

a baseline to our proposed deep neural network archi-

4Implemented using https://scikit-learn.org.

1408

https://scikit-learn.org

Table 2: Precision (P), Recall (R), F1 (F) of ADnEV with single input (a) and multiple inputs (b).

CRNN CRNN CRNN CRNN CRNN
Orig BPR SV D ++ FM IR DNN AD ADnEVF ADnEVP ADnEVR ADnEVCos

P .44 .41 .50 .51 .49 .62 .64 .65 .66 .65 .64
R .39 .43 .50 .50 .50 .69 .66 .64 .65 .66 .59

Purchase
Order

F .35 .42 .49 .50 .49 .63 .65 .65 .65 .65 .58

P .57 .41 .50 .51 .50 .54 .57 .75∗ .73∗ .61 .75∗

R .51 .42 .50 .52 .50 .54 .55 .65 .61 .68∗ .65
Web-
forms

F .48 .43 .49 .51 .50 .52 .55 .64 .65∗ .65∗ .64

P .50 .42 .51 .54 .50 .59 .60 .71 .71 .68 .72∗

R .44 .39 .50 .53 .51 .59 .60 .71 .69∗ .72∗ .70OAEI
F .44 .32 .51 .53 .51 .54 .58 .67∗ .62 .65 .66

(a) Single Input ADnEV vs. Baseline Methods (Section 3.3)

best best
(Orig) Maxf MaxLRSM ADnEVF ADnEVP ADnEVR ADnEVCos (Adjusted)

P .56 .52 .56 .66∗ .80∗ .68∗ .68∗ .92
R .81 .52 .54 .67∗ .77∗ .72∗ .68∗ .88

Purchase
Order

F .63 .52 .53 .66∗ .78∗ .70∗ .65∗ .90

P .74 .50 .69∗ .79∗ .79∗ .67∗ .81∗ .81
R .86 .51 .78∗ .66∗ .69∗ .79∗ .69∗ .87

Web-
forms

F .75 .50 .69∗ .69∗ .70∗ .70∗ .72∗ .78

P .76 .56 .59 .72∗ .78∗ .73∗ .75∗ .83
R .74 .62 .60 .82∗ .76∗ .77∗ .77∗ .86OAEI
F .75 .57 .59 .72∗ .76∗ .72∗ .74∗ .85

(b) Multiple Inputs ADnEV vs. Baseline Methods (see Section 3.4). Best (Orig) and best (Adjusted) represent the best matrix per
schema pair chosen in hindsight out of the original set and the improved set, respectively.

tecture CRNN . DNN is a fully connected network
over the original similarity matrix values.

4.4 ADnEV with Single/Multiple Matcher Input
Table 2 reports on the average performance of ADnEV over

all datasets, in terms of precision (P), recall (R), and F1
(F). Results of a single similarity matrix input (Section 3.3)
are reported in Table 2a, where matching results of AD-
nEV are compared to a non-iterative adjustment step (ap-
plying only AD) and the baselines.Table 2b reports on the
use of a set of similarity matrices for each schema pair (in
the test set) as described in Section 3.4. Here, we compared
our method with two selection baselines, f(M) (Maxf) and
LRSM (MaxLRSM) [31].

ADnEV improves the quality of matching in each of the
matching challenges it faced. Overall, a single adjustment
step (AD) improves over the original matching (Orig) by
22%, 38% and 44% on average in terms of precision, re-
call, and F1, over all reported datasets, respectively. This
validates that using CRNN can improve matching quality.
Even when compared to the top SMA (out of Orig) in hind-
sight (using an oracle to choose a matcher that yields the
best quality, not shown explicitly in the table) AD achieves
better results (e.g., 5% improvement in F1 on average).
AD performs significantly better than BPR, SV D++,

FM , and IR, with 55%, 21%, 15%, and 19% better F1 score,
respectively. In terms of neural models, the CRNN -based
AD also performs mostly better than DNN , 6% improve-
ment on average in F1 over all datasets (except the case of
recall over the Purchase Order dataset). This indicates that
the similarity matrices contain indirect entry dependencies
that are captured by the CRNN but not the DNN .

All deep neural models (DNN and CRNN) performed
better than the original and matrix factorization baselines,
demonstrating that similarity matrices feature higher-order
(both spatial and sequential) relationships that can be uti-
lized to improve the matching results via neural networks.

ADnEV performs significantly better than a single adjust-
ment step (AD) as it takes into account an evaluation func-
tion. ADnEVP boosts precision by 17%, ADnEVR boosts
recall by 15%, and ADnEVF boosts F1 by 11% on average
over all datasets. When compared to Orig, the improve-
ments are substantial, e.g., average absolute gain of .22 in
F1. Thus, we can empirically deduce that involving an eval-
uation (prediction) phase in the adjustment boosts desired
performance.

As for the multiple input scenario, analyzing the best
matching result for each schema pair (Table 2b), ADnEV cre-
ates (adjusts) and detects (evaluates) high quality results.
Compared to selecting from the original matching results us-
ing Maxf , ADnEV improves, on average, matching results
by 51% precision (ADnEVP), 39% recall (ADnEVR), and
30% F1 (ADnEVF), over all datasets. When compared to a
feature-based approach (MaxLRSM), ADnEV fuses higher
quality matrices, lifting average absolute values from P =
0.61, R = 0.64, F = 0.60 to P = 0.78, R = 0.74, F = 0.75
(ADnEVP). This demonstrates again the model’s potential
to resolve indirect relationships in a similarity matrix and
generate better matches.

Analyzing the best similarity matrix in hindsight, we ob-
serve that the improved set (best (Adjusted)) contains bet-
ter matrices than the original set (best (Orig)). This indi-
cates that ADnEV creates a better pool of similarity matrices
to choose from. Our evaluators were able to select high qual-
ity matrices, compare to best (Adjusted), ADnEV achieves
88% of the former’s F1 (on average). However, it also re-
veals room for improvement when it comes to choosing the
best similarity matrix out of a pool.

4.5 ADnEV Algorithm Evaluation
Next, we evaluate ADnEV performance, analyzing each of

the three matching challenges separately (see Table 1).

1409

(a) Precision (P)

Ne
ws

Av
ia
tio

n
Ca

rR
en
ta
l

Se
ar
ch
En
gi
ne
s

Ti
ck
et
St
or
es

Fi
na
nc
e

M
ag
az
in
eS
ub

sc
r

Co
m
pl
ai
nt
sF
or
m

Da
te
M
at
ch
in
g

Ho
te
lS
ea
rc
h

Ho
te
ls

Sh
oe
sS
ho
ps

W
eb
M
ai
l

Bo
ok
Sh

op
s

Fa
nC

lu
bs

Be
tti
ng

Jo
bF
in
d

Fo
ru
m
s0.0

0.2

0.4

0.6

0.8

1.0

(b) Recall (R)

Ne
ws

Av
ia
tio

n
Ca

rR
en
ta
l

Se
ar
ch
En
gi
ne
s

Ti
ck
et
St
or
es

Fi
na
nc
e

M
ag
az
in
eS
ub

sc
r

Co
m
pl
ai
nt
sF
or
m

Da
te
M
at
ch
in
g

Ho
te
lS
ea
rc
h

Ho
te
ls

Sh
oe
sS
ho
ps

W
eb
M
ai
l

Bo
ok
Sh

op
s

Fa
nC

lu
bs

Be
tti
ng

Jo
bF
in
d

Fo
ru
m
s0.0

0.2

0.4

0.6

0.8

1.0

(c) F1 (F)

Ne
ws

Av
ia
tio

n
Ca

rR
en
ta
l

Se
ar
ch
En
gi
ne
s

Ti
ck
et
St
or
es

Fi
na
nc
e

M
ag
az
in
eS
ub

sc
r

Co
m
pl
ai
nt
sF
or
m

Da
te
M
at
ch
in
g

Ho
te
lS
ea
rc
h

Ho
te
ls

Sh
oe
sS
ho
ps

W
eb
M
ai
l

Bo
ok
Sh

op
s

Fa
nC

lu
bs

Be
tti
ng

Jo
bF
in
d

Fo
ru
m
s0.0

0.2

0.4

0.6

0.8

1.0

Figure 10: ADnEVCos performance by domain compared to Maxf (multiple matrices input)

4.5.1 ADnEV for Large-Scale Schema Matching
The Purchase Order dataset represents a large-scale match-

ing problem, with similarity matrices reaching ∼60, 000 en-
tries. The original matching scores (Orig) are quite low
with P = 0.44, R = 0.39, F = 0.35. Being a challeng-
ing matching task, several works (e.g., [21]) have focused
on this dataset developing domain specific methodologies
to deal with its characteristics. Token Path5 was a matcher
that was designed to deal with this dataset, see Section 4.2.1
and improves over the general purpose matchers with P =
0.55, R = 0.56, F = 0.55. It is worth noting that for the
Web-forms dataset, which introduces a cross-domain chal-
lenge (see Section 4.5.2), its performance is unsatisfying
(P = 0.29, R = 0.61, F = 0.38), suggesting our flexible pro-
posed adjustment methodology to be valuable.

We observe that for the Purchase Order dataset, a single
adjustment (AD) is sufficient to achieve a statistically signif-
icant improvement over the original matching (Figure 2a).
A possible explanation for that may be the structural na-
ture [20] of this dataset, is successfully captured by the neu-
ral network. ADnEV did not manage to boost the perfor-
mance over a single adjustment, indicating that the itera-
tive adjustment may be redundant at times. It is noteworthy
that even when adjustment is redundant, the evaluation step
restricts quality reduction by rejecting poor adjustments.
Still, ADnEVCos reduce quality of results created by AD,
which can be explained by the difficulty of the CRNN eval-
uator to correlate with cosine (see Section 4.6.3).

When it comes to multiple matrices input, Maxf and
MaxLRSM improve over Orig as they consider multi-
ple matching inputs, which manifests in improved qual-
ity reaching P = 0.52, R = 0.52, F = 0.52 and P =
0.56, R = 0.54, F = 0.53, respectively. ADnEV fuses an even
higher matching quality, especially when optimizing preci-
sion (ADnEVP), obtaining P = 0.8, R = 0.77, F = 0.78.

4.5.2 ADnEV for Cross-Domain Schema Matching
The Web-forms dataset represents a cross-domain match-

ing problem, with fairly small matrices of ∼1, 000 entries.
Generally, the Web-forms dataset is considered easier to
match than the Purchase Order dataset due to its scale,
which is indicated by relatively higher original matching

5Token Path results are aggregated with the other baseline
matchers under Orig in Table 2

(Orig) quality. However, an absolute value of .48 F1 score
is simply insufficient, especially in a cross-domain setting
where acquiring domain expertise may be hard.

For the Web-forms dataset, while a single adjustment step
(AD) slightly improved matching results, applying ADnEV
significantly improves over these results no matter which
quality measure is emphasized. This indicates that in a
cross-domain setting it is insufficient to have an initial ad-
justment with knowledge about a specific domain. Rather,
the adjustment process needs to be guided by evaluating
(predicting) its performance in an iterative manner.

In a multiple matrices input scenario, we observe first that
Maxf performs poorly in choosing the best matrix for pre-
cision. Beyond this baseline, we see an increased perfor-
mance of other methods with respect to all quality measures.
Yet, when compared to learning an evaluator using human
designed features (MaxLRSM), the performance boost is
quite similar to the those of ADnEV. This implies that when
the input is less sparse (compared to the other datasets)
even human designed features capture essential properties
of the matrix, particularly with respect to recall. Notably,
in this case, the performance benefits from ADnEVCos. Here,
capturing the similarity between the derived matrix and the
reference matrix, allows selecting higher quality matrices,
where for other datasets this strategy fails.

Figure 10 analyzes the quality per domain using a multi-
ple matrices input. Light color represents the performance of
Maxf compared to dark color that represents the results of
ADnEVCos. We observe variability across domains using AD-
nEV indicating that transferring a trained model is hard for
some domains. Focusing on precision (Figure 10a), we see
that the baseline values revolve around .50, indicating that
in each domain, some correspondences, e.g., a correspon-
dence such as E-mail ↔ Email, are easy to identify. How-
ever, considering the full context of a match (as captured
by a similarity matrix) allows a better adjustment to harder
correspondences, e.g., correspondences such as doa yy ↔
tn checkin year and Prev. Revenue ↔ Prior Year’s Sales,
which are challenging and domain-specific. Other works
also experimented with matching multi-domain Web forms,
e.g., [16, 71]. While in our case the extracted Web forms
from the News and Aviation domains were the most chal-
lenging, others were challenged by domains of Jobs [16] and
Airfare [71]. In the domains of JobFind and Forums, the pro-
posed model obtains ∼90% F1 scores. This, in turn, empha-

1410

sizes the difficulty variability of Web forms and the ability
of ADnEV to handle effectively cross-domain matching.

4.5.3 ADnEV for Ontology Matching
The OAEI dataset represents a slightly different challenge.

When it comes to aligning ontologies, some basic character-
istics are relatively different having, for example, ontology
elements rather than schemata attributes (see Section 5).
ADnEV was successful at improving over state-of-the-art
matchers. The improvement is split between the single ad-
justment step (AD), which significantly improves over ini-
tial results (Orig), and the iterative improvement of AD-
nEV. Additionally, when compared to the winners of the
2016 competitors of the ontology alignment competition, our
methodology (which is generic and is not specifically tailored
to this or that competition) achieves slightly better results
by improving over recall, with P = 0.81, R = 0.69, F = 0.72
compared to P = 0.81, R = 0.61, F = 0.67.6

4.6 ADnEV Algorithm Properties
Having shown the algorithm effectiveness we next ana-

lyze ADnEV’s properties. First, we investigate the effective-
ness of multi-task network training compared to individu-
ally trained adjustor and evaluator. Next, we show that
increasing the training set size using similarity matrix aug-
mentation (see Section 4.2.2) improves the quality of the
final outcome. Finally, we analyze the prediction capabil-
ities of the suggested evaluators as a standalone, provising
an empirical backing to the assumptions of Proposition 3.2.

P R F
0.50

0.55

0.60

0.65

0.70

0.75

0.80 ADnEV
ADnEV w/o Multi-task
ADnEV w/o Augmentation

Figure 11: Effect of Multi-task Learning and Augmenta-
tion on ADnEV’s performance: (P)recision , (R)ecall, (F)1

4.6.1 Multi-task Learning
To investigate the impact of multi-task learning, we trained

two separate standalone versions of AD and EV (see Sec-
tion 3.2) to be used in ADnEV.
Figure 11 compares aggregated performance of multi-task
trained ADnEV (black) to the one of individually trained
ADnEV (dark grey).

Multi-task ADnEV performs slightly better, yet not statis-
tically significant. On average, multi-task training improves
all quality measures by ∼4% overall measures. When zoom-
ing in on the different datasets, we identify a significant im-
provement with the Web-forms dataset, indicating that when
a cross-domain matching challenge is on the line, multi-task
learning becomes handy as it allows for better generalization
of each of the networks. These results align well with the
insight that combining the networks by their losses can help
each network to collaborate with the other.

6see http://oaei.ontologymatching.org/2011/
results/benchmarks/index.html and http://oaei.
ontologymatching.org/2016/conference/eval.html

Table 3: Correlation of the Evaluators (Predictors) with
Precision (P), Recall (R), F1 (F), and Cosine (Cos). Non-
augmented are given in parentheses (see Section 4.6.2)

corrP corrR corrF corrCos

P
u
rc
h
as
e
O
rd
er

f(M) .28∗ -.24∗ -.30∗ -.21∗

LRSMP .28∗ -.25∗ -.29∗ .04
LRSMR .21∗ .33∗ .12∗ .04
LRSMF .24∗ .03 .01 -.02
LRSMCos -.20∗ -.10∗ -.18∗ -.11∗

DNNP .26∗ (.24∗) .10∗ (.10∗) .02 (.03∗) -.05∗ (.25∗)
DNNR .19∗ (.07∗) .28∗ (.07∗) .07∗ (.04∗) -.05∗ (.11∗)
DNNF .30∗ (.22∗) .06∗ (.10∗) .04 (.03) -.03 (.22∗)
DNNCos -.26∗ (-.11∗) -.21∗ (-.19∗) -.13∗ (-.10∗) .05 (-.17∗)
EVP .78∗ (.72∗) .49∗ (.37∗) .72∗ (.78∗) .16∗ (.17∗)
EVR .54∗ (.46∗) .85∗ (.62∗) .86∗ (.83∗) .06∗ (.22∗)
EVF .21∗ (.36∗) .54∗ (.56∗) .95∗ (.84∗) .13∗ (.15∗)
EVCos .41∗ (.31∗) .57∗ (.48∗) .75∗ (.66∗) .18∗ (.08∗)

W
eb
-f
or
m
s

f(M) -.08∗ -.61∗ -60∗ -.27∗

LRSMP .76∗ .34∗ .36∗ -.02
LRSMR .35∗ .76∗ .36∗ -.02
LRSMF .68∗ .31∗ .32∗ -.02
LRSMCos .76∗ .35∗ .36∗ -.04∗

DNNP .36∗ (-.06∗) .36∗ (.07∗) .27∗ (.03∗) .42∗ (.06∗)
DNNR .34∗ (.20∗) .30∗ (.25∗) .22∗ (.21∗) .41∗ (.07∗)
DNNF .33∗ (.35∗) .42∗ (.32∗) .35∗ (.23∗) .20∗ (.42∗)
DNNCos .23∗ (.19∗) .06∗ (.12∗) .01 (.09∗) .34∗ (.08∗)
EVP .82∗ (.79∗) .20∗ (.42∗) .83∗ (.78∗) .31∗ (.36∗)
EVR .45∗ (.20∗) .69∗ (.76∗) .87∗ (.72∗) .37∗ (.32∗)
EVF .45∗ (.18∗) .76∗ (.66∗) .87∗ (.85∗) .35∗ (.30∗)
EVCos .48∗ (.35∗) .68∗ (.75∗) .71∗ (.75∗) .50∗ (.34∗)

O
A
E
I

f(M) -.27∗ -.66∗ -.67∗ -.30∗

LRSMP -.28∗ -.11∗ -.38∗ -.01
LRSMR -.17∗ -.25∗ -.32∗ -.03
LRSMF -.28∗ -.14∗ -.13∗ -.02
LRSMCos -.28∗ -.15∗ -.13∗ -.02
DNNP -.45∗ (.01) -.26∗ (.04) -.23∗ (.02) -.02 (.03)
DNNR -.32∗ (-.08∗) -.26∗ (-.05) -.21∗ (-.06) -.02 (-.05)
DNNF -.03 (-.02) .12∗ (-.03) -.01 (-.01) -.06∗ (-.03)
DNNCos -.42∗ (-.05) -.27∗ (-.07∗) -.22∗ (-.05) -.05 (-.04)
EVP .75∗ (.69∗) .46∗ (.23∗) .85∗ (.84∗) .42∗ (.39∗)
EVR .50∗ (.20∗) .72∗ (.35∗) .82∗ (.41∗) .46∗ (.16∗)
EVF .31∗ (.48∗) .71∗ (.76∗) .88∗ (.87∗) .40∗ (.43∗)
EVCos .40∗ (.17∗) .65∗ (.50∗) .69∗ (.58∗) .53∗ (.43∗)

4.6.2 Augmentation
We analyze the effect of similarity matrix augmentation

by training our neural adjustors and evaluators without ex-
panding the train set. The performance of such networks
as a part of the ADnEV (light grey) is compared to the full
ADnEV in Figure 11. Recall that augmentation was aimed
to overcome the scale of training data, which is a concern
when training neural models for schema matching.

Overall, using augmentation during training increases the
performance significantly by an average of +18%, +16%,
+14%, in precision, recall, and F1, respectively, overall
datasets. Specifically, we observe a boost of F1 performance
by +10% over the Purchase Order dataset, +16% over the
OAEI dataset, and +17% over the Web-forms dataset. This
indicates that the augmentation improves generalization, en-
abling better performance over the test set.

4.6.3 Prediction Monotonicity
Finally, following previous works [30, 31, 64], we assess

the quality of evaluators by comparing the Pearson’s-r cor-
relation between the predicted values and the actual match
quality.

We expect monotone evaluators (Definition 1) to demon-
strate high correlation with the evaluation measure they aim
to estimate. Recall that, for each evaluation measure E, we
have trained an evaluator EVE . Prediction performance was
compared to f(M) and two learning-based methods, namely,
LRSME [31] and DNNE as described in Section 4.3.3. Ta-

1411

http://oaei.ontologymatching.org/2011/results/benchmarks/index.html
http://oaei.ontologymatching.org/2011/results/benchmarks/index.html
http://oaei.ontologymatching.org/2016/conference/eval.html
http://oaei.ontologymatching.org/2016/conference/eval.html

ble 3 reports Pearson’s-r correlation over the four match
quality measures (see Section 2.2).

All the evaluators proposed in this work have high statisti-
cally significant correlations with respect to their estimated
binary evaluation function with an average of .78 for pre-
cision, .75 for recall, and .90 for F1 overall datasets. The
non-binary evaluation, Cos, seems to be the hardest to pre-
dict and especially when dealing with large-scale matching
problems (Purchase Order), demonstrating lower, yet still
statistically significant, correlations.

Finally, EV evaluators display higher overall correlations
(in absolute value) compared to all baselines. Evidently,
applying data-driven feature extraction (as in CRNN) is
better than human knowledge encoding as represented by
LRSM , achieving better approximate evaluators, validating
their usage in the ADnEV algorithm.

5. RELATED WORK
Some problems in data integration, e.g., entity resolu-

tion [26, 50], ontology alignment [39], and dataset link-
ing [28] have benefited from the recent advances, both in
theory [34] and in the application [44] of deep learning. Mud-
gal et al. apply supervised deep learning using pre-trained
character-level embedding to represent entities [50]. Ebra-
heem et al. [26], Kolyvakis et al. [39] and Fernandez et al. [28]
assume a rich textual information (typically not the case in
schema matching) and utilize word embeddings for better
entity resolution, ontology alignment, and dataset linking.
Recent attempts in schema matching assume the availabil-
ity of instance data to apply supervised machine learning
models [14]. However, schema matching by itself was not
considered a good candidate for deep learning, due to in-
sufficient amount of data. Our work is, to the best of our
knowledge, the first to enable the use of deep learning via
the similarity matrix abstraction, learning to adjust similar-
ity matrices for improved match results.

Deep learning was used for other matching problems, e.g.,
patch-based image matching [36] and graph matching [74],
learning to compute a similarity matrix, given two elements
(images/graphs). We train our networks with similarity ma-
trices as inputs, capturing spatial and sequential dependen-
cies between entries. We reuse the trained networks in an
iterative manner to achieve an optimized output.

Our work is the first to use deep learning for similarity
matrix adjustment and evaluation and was shown here to
give superior results on the tested datasets. 2LMs (SMAs)
were suggested in schema matching literature to achieve sim-
ilar goals by adjusting similarity matrices, as introduced and
discussed in Section 2.3. We further define the notion of con-
sistent similarity matrix adjustment (Definition 2) to set a
desiderata for well-behaved adjustors and show empirically
that the proposed adjustor approximate this property well.
Moreover, we compare against state-of-the-art 2LMs and
show significant improvement using the proposed method.

Various mechanisms were proposed to manage matching
uncertainty. Matching predictors were suggested to eval-
uate similarity matrices [64] in an unsupervised manner.
Human experts are presented with a top-K ranked list of
matches [55]. A recent work [31] combined both approaches
using supervised learning, limited to F1 measure, propos-
ing human engineered matching predictors as features to
learn to improve the ranking of a top-K schema match list.
We, instead, train a supervised deep learning evaluator with

respect to an evaluation function of choice and show domi-
nance (Section 4.6.3) over a feature-based evaluation. More-
over, we introduce the notion of monotonic prediction to
characterize well-behaved predictors (Definition 1) and em-
pirically validate that our newly designed evaluator approx-
imates well a monotonic predictor, being highly correlated
with a target evaluation measure.

Finally, we note that schema matching and ontology align-
ment [27] are closely related research areas, both aiming at
finding matches between concepts. The two vary in their
matching objects (schemata vs. ontologies), matching re-
finement (equivalence vs. richer semantics such as inclu-
sion), and the underlying mathematical tools (e.g., similar-
ity matrix analysis vs. logic). They share many matching
techniques (e.g., [52]) and their benchmarks can be used in-
terchangeably (we have evaluated our model on OAEI, an
ontology dataset benchmark, as well). We believe this re-
search can be readily applied to ontology alignment.

6. CONCLUSIONS AND FUTURE WORK
In this work we proposed a post processing step to schema

matching that uses deep neural networks to improve the
matching outcome. The ADnEV algorithm adjusts and
evaluates similarity matrices, as created by state-of-the-art
matchers, in an iterative manner. We showed that using a
consistent similarity matrix adjustment and monotonic eval-
uation the algorithm satisfies dominance and convergence.
Finally, we empirically validated our algorithmic solution ef-
fectiveness using real-world benchmark ontology and schema
sets and analyzed our various design choices.

We see this work as a proof-of-concept to using deep learn-
ing for schema matching, which fits well with the ongoing
investigation of machine learning-based solutions to classi-
cal data management problems. Applying deep learning as
a supervised learning tool, without the need of human in-
volvement once the model is learned, carries high promise
for effectively utilizing schema matching in contemporary
applications; specifically to those that depend on contin-
uous online large-scale integration of new data sources to
remain competitive in dynamic markets. In particular, the
cross domain ability of the proposed algorithm allows the
use of models, learned in a domain where human expertise
exists, in new domains where expertise may be scarce.

As a possible future direction we intend to use pointer net-
works [70] to introduce constraints such as 1 : 1 matching
into the learned network. Additionally, after showing the ap-
plicability over ontology alignment, tackling other data inte-
gration tasks such as entity matching and process matching
using ADnEV is another direction for future work.

Acknowledgments
Technion’s part of this research was funded in part by JP-
Morgan Chase & Co. Any views or opinions expressed
herein are solely those of the authors listed, and may differ
from the views and opinions expressed by JPMorgan Chase
& Co. or its affiliates. This material is not a product of the
Research Department of J.P. Morgan Securities LLC. This
material should nost be construed as an individual recom-
mendation for any particular client and is not intended as
a recommendation of particular securities, financial instru-
ments or strategies for a particular client. This material does
not constitute a solicitation or offer in any jurisdiction.

1412

7. REFERENCES
[1] Adnev. https://github.com/shraga89/DSMA.

[2] Bpr. https://github.com/gamboviol/bpr.

[3] Coma. http://sourceforge.net/p/coma-ce/mysvn/
HEAD/tree/coma-project.

[4] Factorization machines.
https://github.com/coreylynch/pyFM.

[5] Isotonic regression, howpublished =.

[6] Keras. https://keras.io/.

[7] Oaei benchmark. http:
//oaei.ontologymatching.org/2011/benchmarks/.

[8] Ontobuilder research environment.
https://bitbucket.org/tomers77/

ontobuilder-research-environment.

[9] Surprise. http://surpriselib.com/.

[10] R. Ackerman, A. Gal, T. Sagi, and R. Shraga. A
cognitive model of human bias in matching. In Pacific
Rim International Conference on Artificial
Intelligence, pages 632–646. Springer, 2019.

[11] D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm.
Schema and ontology matching with coma++. In
Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 906–908.
Acm, 2005.

[12] Z. Bellahsene, A. Bonifati, and E. Rahm, editors.
Schema Matching and Mapping. Data-Centric Systems
and Applications. Springer, 2011.

[13] R. Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

[14] C. Chen, B. Golshan, A. Y. Halevy, W.-C. Tan, and
A. Doan. Biggorilla: An open-source ecosystem for
data preparation and integration. IEEE Data Eng.
Bull., 41(2):10–22, 2018.

[15] K. Cho, B. van Merrienboer, C. Gulcehre,
D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn
encoder–decoder for statistical machine translation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1724–1734, 2014.

[16] S.-L. Chuang and K. C.-C. Chang. Integrating web
query results: holistic schema matching. In
Proceedings of the 17th ACM conference on
Information and knowledge management, pages 33–42,
2008.

[17] J. T. Connor, R. D. Martin, and L. E. Atlas.
Recurrent neural networks and robust time series
prediction. IEEE transactions on neural networks,
5(2):240–254, 1994.

[18] A. Das Sarma, X. Dong, and A. Halevy. Bootstrapping
pay-as-you-go data integration systems. In Proceedings
of the 2008 ACM SIGMOD international conference
on Management of data, SIGMOD ’08, pages 861–874,
New York, NY, USA, 2008. ACM.

[19] D. De Una, N. Rümmele, G. Gange, P. Schachte, and
P. J. Stuckey. Machine learning and constraint
programming for relational-to-ontology schema
mapping. In IJCAI, 2018.

[20] H. H. Do and E. Rahm. Coma: a system for flexible
combination of schema matching approaches. In
Proceedings of VLDB, pages 610–621. VLDB

Endowment, 2002.

[21] H.-H. Do and E. Rahm. Matching large schemas:
Approaches and evaluation. Information Systems,
32(6):857–885, 2007.

[22] X. Dong, A. Halevy, and C. Yu. Data integration with
uncertainty. The VLDB Journal, 18:469–500, 2009.

[23] Z. Dragisic, V. Ivanova, P. Lambrix, D. Faria,
E. Jiménez-Ruiz, and C. Pesquita. User validation in
ontology alignment. In International Semantic Web
Conference, pages 200–217. Springer, 2016.

[24] E. C. Dragut, W. Meng, and C. T. Yu. Deep web
query interface understanding and integration.
Synthesis Lectures on Data Management, 7(1):1–168,
2012.

[25] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola,
and V. Vapnik. Support vector regression machines. In
Advances in neural information processing systems,
pages 155–161, 1997.

[26] M. Ebraheem, S. Thirumuruganathan, S. Joty,
M. Ouzzani, and N. Tang. Distributed representations
of tuples for entity resolution. PVLDB, 11(11), 2018.

[27] J. Euzenat and P. Shvaiko. Ontology matching.
Springer-Verlag New York Inc, 2007.

[28] R. C. Fernandez, E. Mansour, A. A. Qahtan,
A. Elmagarmid, I. Ilyas, S. Madden, M. Ouzzani,
M. Stonebraker, and N. Tang. Seeping semantics:
Linking datasets using word embeddings for data
discovery. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE), pages
989–1000. IEEE, 2018.

[29] A. Gal. Uncertain Schema Matching. Morgan &
Claypool Publishers, 2011.

[30] A. Gal, H. Roitman, and T. Sagi. From
diversity-based prediction to better ontology &
schema matching. In Proceedings of the 25th
International Conference on World Wide Web, pages
1145–1155. International World Wide Web
Conferences Steering Committee, 2016.

[31] A. Gal, H. Roitman, and R. Shraga. Learning to
rerank schema matches. IEEE Transactions on
Knowledge and Data Engineering (TKDE), (PrePrint
https://ieeexplore.ieee.org/document/8944172),
2019.

[32] Z. Galil, S. Micali, and H. Gabow. An o(ev\logv)
algorithm for finding a maximal weighted matching in
general graphs. SIAM Journal on Computing,
15(1):120–130, 1986.

[33] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse
rectifier neural networks. In Proceedings of the
fourteenth international conference on artificial
intelligence and statistics, pages 315–323, 2011.

[34] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

[35] A. Y. Halevy and J. Madhavan. Corpus-based
knowledge representation. In IJCAI, volume 3, pages
1567–1572, 2003.

[36] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C.
Berg. Matchnet: Unifying feature and metric learning
for patch-based matching. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pages 3279–3286, 2015.

1413

https://github.com/shraga89/DSMA
https://github.com/gamboviol/bpr
http://sourceforge.net/p/coma-ce/mysvn/HEAD/tree/coma-project
http://sourceforge.net/p/coma-ce/mysvn/HEAD/tree/coma-project
https://github.com/coreylynch/pyFM
https://keras.io/
http://oaei.ontologymatching.org/2011/benchmarks/
http://oaei.ontologymatching.org/2011/benchmarks/
https://bitbucket.org/tomers77/ontobuilder-research-environment
https://bitbucket.org/tomers77/ontobuilder-research-environment
http://surpriselib.com/
https://ieeexplore.ieee.org/document/8944172

[37] S. Ioffe and C. Szegedy. Batch normalization:
Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd
International Conference on International Conference
on Machine Learning - Volume 37, ICML’15, page
448–456. JMLR.org, 2015.

[38] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[39] P. Kolyvakis, A. Kalousis, and D. Kiritsis.
Deepalignment: Unsupervised ontology matching with
refined word vectors. In NAACL, 2018.

[40] H. Köpcke and E. Rahm. Frameworks for entity
matching: A comparison. Data & Knowledge
Engineering, 2010.

[41] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In
SIGKDD, 2008.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In NIPS, 2012.

[43] Y. Le Cun, L. D. Jackel, B. Boser, J. S. Denker, H. P.
Graf, I. Guyon, D. Henderson, R. E. Howard, and
W. Hubbard. Handwritten digit recognition:
Applications of neural network chips and automatic
learning. IEEE Communications Magazine,
27(11):41–46, 1989.

[44] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
nature, 521(7553):436, 2015.

[45] J. Long, E. Shelhamer, and T. Darrell. Fully
convolutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3431–3440, 2015.

[46] A. Marie and A. Gal. Managing uncertainty in schema
matcher ensembles. In International Conference on
Scalable Uncertainty Management, pages 60–73.
Springer, 2007.

[47] A. Marie and A. Gal. Boosting schema matchers.
5331:283–300, 2008.

[48] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching. In Proceedings 18th
International Conference on Data Engineering, pages
117–128. IEEE, 2002.

[49] T. Milo and A. Somech. Next-step suggestions for
modern interactive data analysis platforms. In
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 576–585. ACM, 2018.

[50] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park,
G. Krishnan, R. Deep, E. Arcaute, and
V. Raghavendra. Deep learning for entity matching: A
design space exploration. In Proceedings of the 2018
International Conference on Management of Data,
pages 19–34. ACM, 2018.

[51] A. Niculescu-Mizil and R. Caruana. Predicting good
probabilities with supervised learning. In Proceedings
of the 22nd international conference on Machine
learning, pages 625–632. ACM, 2005.

[52] L. Otero-Cerdeira, F. J. Rodŕıguez-Mart́ınez, and
A. Gómez-Rodŕıguez. Ontology matching: A literature
review. Expert Systems with Applications,

42(2):949–971, 2015.

[53] L. Perez and J. Wang. The effectiveness of data
augmentation in image classification using deep
learning. arXiv preprint arXiv:1712.04621, 2017.

[54] E. Peukert, J. Eberius, and E. Rahm. AMC-a
framework for modelling and comparing matching
systems as matching processes. In ICDE, 2011.

[55] A. Radwan, L. Popa, I. R. Stanoi, and A. Younis.
Top-k generation of integrated schemas based on
directed and weighted correspondences. In Proceedings
of the 2009 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’09, pages
641–654, New York, NY, USA, 2009. ACM.

[56] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. the VLDB Journal,
10(4):334–350, 2001.

[57] S. Rendle. Factorization machines with libfm. ACM
Transactions on Intelligent Systems and Technology
(TIST), 3(3):57, 2012.

[58] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. Bpr: Bayesian personalized
ranking from implicit feedback. In Proceedings of the
twenty-fifth conference on uncertainty in artificial
intelligence, pages 452–461. AUAI Press, 2009.

[59] P. Rodŕıguez-Gianolli and J. Mylopoulos. A semantic
approach to xml-based data integration. In
International Conference on Conceptual Modeling,
pages 117–132. Springer, 2001.

[60] J. Ross, L. Irani, M. Silberman, A. Zaldivar, and
B. Tomlinson. Who are the crowdworkers?: shifting
demographics in mechanical turk. In CHI’10 Extended
Abstracts on Human Factors in Computing Systems,
pages 2863–2872. ACM, 2010.

[61] S. Ruder. An overview of gradient descent
optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[62] S. Ruder. An overview of multi-task learning in deep
neural networks. arXiv preprint arXiv:1706.05098,
2017.

[63] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning representations by back-propagating errors.
nature, 323(6088):533, 1986.

[64] T. Sagi and A. Gal. Schema matching prediction with
applications to data source discovery and dynamic
ensembling. The VLDB Journal, 22(5):689–710, 2013.

[65] T. Sagi and A. Gal. Non-binary evaluation measures
for big data integration. The VLDB Journal,
27(1):105–126, Feb. 2018.

[66] R. Shraga, A. Gal, and H. Roitman. What type of a
matcher are you?: Coordination of human and
algorithmic matchers. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics,
HILDA@SIGMOD 2018, Houston, TX, USA, June
10, 2018, pages 12:1–12:7, 2018.

[67] R. Shraga, A. Gal, and H. Roitman. Adnev:
Cross-domain schema matching using deep similarity
matrix adjustment and evaluation [technical report],
2020. https://tinyurl.com/r7lnhwv.

[68] N. T. Toan, P. T. Cong, D. C. Thang, N. Q. V. Hung,
and B. Stantic. Bootstrapping uncertainty in schema
covering. In Australasian Database Conference, pages

1414

https://tinyurl.com/r7lnhwv

336–342. Springer, 2018.

[69] A. Van den Oord, S. Dieleman, and B. Schrauwen.
Deep content-based music recommendation. In
Advances in neural information processing systems,
pages 2643–2651, 2013.

[70] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer
networks. In Advances in Neural Information
Processing Systems, pages 2692–2700, 2015.

[71] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive
clustering-based approach to integrating source query
interfaces on the deep web. In Proceedings of the 2004
ACM SIGMOD international conference on
Management of data, pages 95–106, 2004.

[72] W. Yang, X. Zhang, Y. Tian, W. Wang, and J.-H.
Xue. Deep learning for single image super-resolution:

A brief review. IEEE Transactions on Multimedia,
2019.

[73] W. Yin, K. Kann, M. Yu, and H. Schütze.
Comparative study of cnn and rnn for natural
language processing. arXiv preprint arXiv:1702.01923,
2017.

[74] A. Zanfir and C. Sminchisescu. Deep learning of graph
matching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages
2684–2693, 2018.

[75] C. Zhang, L. Chen, H. Jagadish, M. Zhang, and
Y. Tong. Reducing uncertainty of schema matching
via crowdsourcing with accuracy rates. IEEE
Transactions on Knowledge and Data Engineering,
2018.

1415

	Introduction
	Model
	Schema Matching Model
	Similarity Matrix Evaluation
	Similarity Matrix Adjustment

	Deep similarity matrix adjustment and evaluation
	Neural Networks for Similarity Matrices
	Learning to Adjust and Evaluate Similarity Matrices
	Iterative Adjust & Evaluate (ADnEV)
	ADnEV with Multiple Matrices

	Empirical Evaluation
	Datasets
	Generating Similarity Matrices
	Schema Matchers
	Similarity Matrix Augmentation

	Experimental Setup
	Hardware and Implementation
	Methodology
	Baselines

	ADnEV with Single/Multiple Matcher Input
	ADnEV Algorithm Evaluation
	ADnEV for Large-Scale Schema Matching
	ADnEV for Cross-Domain Schema Matching
	ADnEV for Ontology Matching

	ADnEV Algorithm Properties
	Multi-task Learning
	Augmentation
	Prediction Monotonicity

	Related Work
	Conclusions and Future Work
	References

