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ABSTRACT
In the past decade, cloud computing has emerged as an eco-
nomical and practical alternative to in-house datacenters.
But due to security concerns, many enterprises are still averse
to adopting third party clouds. To mitigate these concerns,
several authors have proposed to use partially homomorphic
encryption (PHE) to achieve practical levels of confiden-
tiality while enabling computations in the cloud. However,
these approaches are either not performant or not versatile
enough. We present two novel PHE schemes, an additive
and a multiplicative homomorphic encryption scheme, which,
unlike previous schemes, are symmetric. We prove the secu-
rity of our schemes and show they are more efficient than
state-of-the-art asymmetric PHE schemes, without compro-
mising the expressiveness of homomorphic operations they
support. The main intuition behind our schemes is to trade
strict ciphertext compactness for good “relative” compact-
ness in practice, while in turn reaping improved performance.
We build a prototype system called Symmetria that uses
our proposed schemes and demonstrate its performance im-
provements over previous work. Symmetria achieves up to
7× average speedups on standard benchmarks compared to
asymmetric PHE-based systems.
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1. INTRODUCTION
Cloud computing has become ubiquitous due to its eco-

nomical and practical paradigm. Third-party clouds are
nowadays used by both corporations and governments to
perform cost-effective computations. Oftentimes, these com-
putations require sensitive data to be moved to the cloud
which places trust on the cloud provider. Resource sharing
among multiple tenants only adds to the problem of ensuring
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data confidentiality. Due to this fact, many organizations
are still reluctant to use third party clouds.

One approach being pursued to alleviate the confidentiality
concerns is homomorphic encryption. Fully homomorphic en-
cryption (FHE) allows arbitrary operations to be performed
directly over encrypted data and thus preserves the confiden-
tiality of data throughout computations. Gentry introduced
FHE and a first cryptosystem [16, 17] that provably achieves
it. Though FHE has been becoming more practical [28], it
still exhibits performance costs that are prohibitive for many
computations. An alternative to FHE is partially homomor-
phic encryption (PHE). PHE denotes schemes that allow
individual operations over encrypted data, e.g., addition,
multiplication. By using multiple PHE schemes side-by-side,
many operations can be supported with practical overhead.
This is particularly true when property-preserving encryption
(PPE) schemes are used, in addition to PHE. Ciphertexts
of PPE schemes preserve some property of the underlying
plaintext and can be used to carry out comparisons.

Although PHE is much faster compared to FHE, its over-
head remains non-trivial. This is because most existing PHE
schemes such as ElGamal [12], Benaloh [14], Paillier [33],
and RSA [38] are asymmetric. Asymmetric schemes use a
public key to encrypt messages and another private key to
decrypt messages and tend to fall behind symmetric schemes
in terms of performance since they have large ciphertext
spaces leading to large ciphertext size overheads. Further-
more, the homomorphic operations of asymmetric schemes
require complex computations involving arbitrary-precision
arithmetic operations.

Previous attempts to propose symmetric PHE schemes
that are more performant than their asymmetric counterparts
have done so at the expense of expressiveness. The additively
symmetric homomorphic encryption scheme (ASHE) [34] for
example is a symmetric additive homomorphic encryption
(AHE) scheme that enables addition of two encrypted values.
ASHE is much faster than asymmetric AHE schemes such as
Paillier but has limited expressiveness. Specifically, ASHE
only supports addition of two ciphertexts, whereas other,
asymmetric, AHE schemes support addition and subtraction
between two ciphertexts or between a ciphertext and a plain-
text value, negation of a ciphertext, as well as multiplication
between a ciphertext and a plaintext.

The paucity of PHE schemes that are both performant
(symmetric) and expressive in terms of the homomorphic op-
erations they support, forced previous PHE-based systems to
utilize multiple schemes for the same type of homomorphism.
For example, Cuttlefish [39] switches between the symmetric,
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more performant, ASHE scheme when only additions are
required, and falls back to the asymmetric, more computa-
tionally expensive, Paillier scheme when additional homo-
morphic computations (such as the ones described above)
are required. Similarly, Cipherbase [1] uses a dual hardware
and software co-design, switching between PHE schemes
and a trusted co-processor for secure computations. While
switching between schemes allows these systems to execute
queries more efficiently, having to utilize multiple schemes
makes their design less flexible due to switching overhead.

In this paper, we thus introduce two novel symmetric
encryption schemes (a) symmetric additive homomorphic
encryption (SAHE) and (b) symmetric multiplicative homo-
morphic encryption (SMHE) designed specifically to retain
the expressiveness of state-of-the-art PHE schemes while pro-
viding improved performance compared to previously used
asymmetric PHE schemes. The main intuition behind the
design of our schemes is to trade ciphertext compactness (size
remains the same as homomorphic operations are performed)
in the strict sense (i.e., qualitatively) for good “relative” com-
pactness in practice (quantitatively), while in turn reaping
improved performance in practice. We observe that:

1. In many scenarios ciphertext compactness (or lack thereof)
has little to no effect on performance. Many applications
require arithmetic operations between a few, fixed number
of ciphertext values – in the case of relational data, one
can simply think of computations across columns for
individual rows. Here the ciphertext size overhead added
due to the lack of compactness guarantee is bounded.

2. By applying a set of compaction techniques (see § 3.4)
we can limit the ciphertext expansion in unbounded se-
quences of operations such as aggregations over à priori
unbounded sets of values. Examples include aggregations
across rows in relational data. As we show empirically in
§ 6, our schemes achieve practical overhead despite not
being compact.

3. Many of the homomorphic operations our schemes sup-
port, by their nature, do not increase the ciphertext size.

We provide formal proofs of security of our schemes and
show that they satisfy standard notions of security, i.e., se-
mantic security under chosen plaintext attack (CPA). To the
best of our knowledge, there is no symmetric AHE scheme
that preserves the expressiveness of existing asymmetric
AHE schemes and there is no symmetric multiplicative ho-
momorphic encryption (MHE) scheme at all. Here we make
a distinction between PHE and somewhat homomorphic en-
cryption (SWHE) [6] schemes. Symmetric SWHE schemes
that support multiplication do exist but, unlike our schemes,
only allow a limited number of operations.

We present a prototype system called Symmetria1 that uses
our proposed schemes SAHE and SMHE to perform arith-
metic operations over encrypted data. We further extend
Symmetria to utilize a number of existing PPE schemes to
allow comparisons over encrypted data and therefore support
a wider range of queries. We compare our symmetric schemes
against asymmetric schemes such as Paillier and ElGamal.
We evaluate Symmetria and demonstrate its low overhead
over plaintext computations. Symmetria achieves average
speedups of 3.8× and 7× over state-of-the-art asymmetric
PHE-based systems on the standard TPC-H and TPC-DS

1
https://github.com/ssavvides/symmetria.

benchmarks respectively. In summary, in this paper we make
the following contributions:

• We propose a novel semantically secure AHE scheme
called SAHE that supports addition as well as other ho-
momorphic operations over encrypted data.

• We propose a novel semantically secure MHE scheme
called SMHE that supports multiplication as well as other
homomorphic operations over encrypted data.

• We introduce a set of compaction techniques to limit the
overhead of ciphertext size for our proposed schemes.

• We show the design and evaluation of a system called
Symmetria that uses our proposed schemes and employs
a set of query optimizations to execute queries over en-
crypted data with little overhead.

In the rest of the paper, we first present background infor-
mation and related work in § 2 and then describe the design
of SAHE and SMHE in § 3. In § 4 we provide an overview of
Symmetria and in § 5 we discuss implementation details of
Symmetria. In §6 we empirically evaluate Symmetria and our
proposed schemes. In § 7 we conclude with final remarks.

2. BACKGROUND AND RELATED WORK
In this section, we first present pertinent background in-

formation on partially homomorphic encryption (PHE) and
property-preserving encryption (PPE) schemes, and then
overview most closely related existing PHE-based systems.

2.1 PHE and PPE
PHE [37] schemes have the property that their ciphertexts

can be altered in certain ways so that the underlying plaintext
is also changed in predictable and controllable ways. An
encryption scheme is said to be partially homomorphic with
respect to certain operations if it enables those operations on
encrypted data by altering a given ciphertext or combining
ciphertexts. E.g., if enc and dec denote encryption and
decryption functions respectively, then an encryption scheme
is said to be homomorphic with respect to addition if ∃ψ s.t.

dec(enc(m1) ψ enc(m2)) = m1 +m2

Such an encryption scheme is thus called an additive homo-
morphic encryption (AHE) scheme. Similarly, a scheme is
said to be a multiplicative homomorphic encryption (MHE)
scheme, if ∃χ s.t.

dec(enc(m1) χ enc(m2)) = m1 ×m2

Several PHE schemes support various homomorphic opera-
tions. The Paillier [33] cryptosystem is an AHE scheme, the
security of which is based on the decisional composite resid-
uosity assumption. Informally, the additive homomorphic
property of Paillier can be described as:

dec(enc(m1)× enc(m2) mod N2) = m1 +m2 mod N

where m1 and m2 are two plaintext values and N is the
public key. Another useful homomorphic feature of Paillier
is multiplication between a ciphertext and a plaintext value:

dec(enc(m1)m2 mod N2) = m1 ×m2 mod N

Other AHE schemes include Benaloh [14] and Damg̊ard-
Jurik [11]. These schemes support addition and subtraction
between ciphertexts, addition and multiplication between a
ciphertext and a plaintext, and negation of ciphertexts.

The ElGamal [12] cryptosystem is an asymmetric MHE
scheme based on the computational Diffie-Hellman assump-
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tion, allowing homomorphic multiplications. In addition,
raising an encrypted value to a plaintext value and decrypt-
ing the result gives the exponentiation of the first value
raised to the power of the second one. RSA [38] (unpadded),
similarly supports multiplication and division (multiplication
with the inverse) between two ciphertexts, multiplication
and exponentiation between a ciphertext and a plaintext,
and computing of the multiplicative inverse of a ciphertext.

The AHE and MHE cryptosystems mentioned above are
asymmetric and their security is based on mathematical prob-
lems that are hard to solve for large numbers. For example,
if the public key N of Paillier can be factored, the security
of the cryptosystem no longer holds. For small values of
N , solving this problem is trivial and therefore sufficiently
large numbers should be used. As of the time of this writing,
NIST recommends N to be at least 2048-bits long [3], making
the mod N2 homomorphic computations in Paillier 4096-bits
long. Furthermore, NIST recommends that 2048-bits keys
should not be used beyond the year 2030, with other or-
ganizations suggesting that 3072-bit long keys are already
needed today [7, 10]. Oftentimes, these cryptosystems and
the associated homomorphic computations are implemented
using an arbitrary-precision arithmetic library such as GMP,
or the BigInteger arithmetic primitive in Java. These li-
braries, though highly optimized, can exhibit high overheads
for computations involving large numbers.

ASHE [34] is a recent AHE scheme which is symmetric.
ASHE was designed for summations and only supports addi-
tions between two ciphertexts. In this work, we present not
only a symmetric AHE scheme but also a symmetric MHE
scheme that supports homomorphic multiplication. But most
importantly, unlike ASHE, SAHE was designed to support all
homomorphic operations that previous (asymmetric) AHE
allowed, and not only addition between two ciphertexts.

Another category of cryptosystems that allow computa-
tions over encrypted data is property-preserving encryption
(PPE). Ciphertexts of PPE schemes preserve some properties
of the underlying plaintext allowing operations to be applied
on the ciphertext such as equality and order comparisons,
and search over encrypted data. For example, deterministic
schemes (DET) can be used to support equality comparisons
since encrypting the same plaintext will always yield the same
ciphertext. Boldyreva et al. [4, 5] present an order-preserving
encryption (OPE) scheme that allows order comparisons over
encrypted data. Lastly, the SWP [41] cryptosystem is an ex-
ample of a searchable encryption (SRCH) scheme that allows
searches over encrypted strings. In the past, PPE schemes
have been criticized for having low-security guarantees [8, 18,
20, 31], but recent work has introduced new PPE schemes
that provide semantic security [35].

2.2 PHE-based Systems
Several PHE-based systems have been proposed that show

how PHE can be made practical for confidentiality-preserving
computations. CryptDB [36] extends a MySQL database
to enable the execution of SQL queries in a confidentiality-
preserving manner by using PHE. CryptDB uses Paillier
to perform homomorphic additions but does not support
any MHE scheme so multiplications cannot be performed.
Arx [35] is a PHE-based system that extends MongoDB
to support confidentiality-preserving database applications.
Arx introduces the ArxEq and ArxRange primitives that
enable equality and range computations over data encrypted

using semantically secure encryption. We plan to extend
Symmetria to support these primitives and replace the PPE
schemes currently used which offer lower security guarantees.
Since the focus of Symmetria is to demonstrate the bene-
fits of using our symmetric PHE schemes over asymmetric
PHE schemes, in the current version of Symmetria we chose
to use PPE schemes whose implementations are publicly
available. Seabed [34] is a system built on Apache Spark
that introduced ASHE. ASHE and Seabed were designed
with the goal of performing large-scale summations efficiently
and have limited homomorphic expressiveness, as opposed
to Symmetria that uses SAHE and SMHE that support a
wider range of homomorphic operations. Cuttlefish [39] is a
PHE-based system built on Apache Spark. Cuttlefish uses
ElGamal for multiplications and both Paillier and ASHE for
additions. While ASHE is faster because it is symmetric, it
does not support subtraction operations or multiplications
between a ciphertext and a plaintext value. SAHE supports
all these operations as well as others, while being symmetric.

Several techniques have been proposed to compact cipher-
texts of PHE schemes [15, 21, 30]. Most prominently, Ge and
Zdonik [15] describe a technique that allows packing multiple
plaintext values into a single ciphertext, thereby amortizing
the ciphertext size overhead. The technique applies to asym-
metric AHE schemes but not to symmetric AHE schemes
or to MHE schemes. In addition, it introduces the issue of
overflows for aggregation functions and limits expressiveness,
as homomorphic operations cannot be performed to packed
values individually, nor can some homomorphic operations
such as multiplication with plaintext, negation, or subtrac-
tion be performed on packed ciphertexts. Monomi [48] is
a PHE-based database system using the above-mentioned
packing technique to reduce ciphertext size overhead and
accelerate summations. Similarly, Liu et al. [27] employ
packing to reduce the overheads of computing the trajectory
similarity function over encrypted data. These works inherit
the drawbacks of the packing technique described above. In
contrast, the compaction techniques we introduce herein (§
3.4) do not limit the expressiveness of homomorphic opera-
tions, and do not suffer other drawbacks of packing multiple
values into one ciphertext.

2.3 Trusted Hardware-based Systems
Recently, trusted execution environments (TEEs) like In-

tel Software Guard eXtensions (SGX) [29] have also gained
traction for performing secure computations in the cloud.
SGX allows the creation of isolated areas of execution, called
enclaves. Within enclaves, operations can be performed on
sensitive data in a way protected against accesses from the
outside environment, including those from the operating
system and hypervisor. Works like VC3 [40], Opaque [50],
and TensorScone [24], leverage SGX for ensuring data con-
fidentiality and integrity during computation in untrusted
environments. In this work, we focus on a software-only solu-
tion based on PHE and PPE that does not require specialized
hardware and place emphasis on improving the performance
and expressiveness of existing PHE and PPE based systems.

3. SYMMETRIC PHE
We describe two novel symmetric PHE schemes that can

replace existing asymmetric schemes such as Paillier and
ElGamal used for arithmetic operations in state-of-the-art
PHE-based systems [13, 36, 39, 47, 49]. Our schemes trade
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strict compactness for quantitatively good compactness in
practice, which is supported by a set of compaction tech-
niques. These techniques allow our schemes to achieve better
performance than asymmetric schemes without sacrificing
expressiveness, as they retain the full range of homomorphic
operations of traditional PHE schemes.

3.1 Symmetric AHE
Symmetric additive homomorphic encryption (SAHE) is a

symmetric AHE scheme that allows homomorphic additions.

3.1.1 Scheme description
SAHE is defined in the abelian additive group ZN of or-

der N > 1. Let F : {0, 1}n × {0, 1}n → ZN defined as
Fk(x) = F (k, x) be a pseudorandom function (PRF) map-
ping strings of length n to elements of ZN , where n is the
security parameter which dictates the length of the key and
must be set according to the application needs. Below we
formally define the scheme ΠSAHE = (gen, enc, dec).

gen(1n): output uniform k ∈ {0, 1}n as the symmetric key.

enc(k,m): on input key k ∈ {0, 1}n and message m ∈ ZN

choose uniform r ∈ {0, 1}n and output the ciphertext

c := 〈(m+ Fk(r)) mod N, [r],∅〉
The resulting ciphertext c is a triplet 〈v, lp, ln〉 where v is
the obfuscated value, lp is a list of identifiers (ids) each
of which is used to generate a random element in ZN and
added to m, and, ln is a list of ids used to generate a
random element in ZN and subtracted from m. When
initially encrypting a value m, there is only one id added
to m to get v = (m+Fk(r)) mod N and therefore lp = [r]
and ln = ∅ (empty list).

dec(k, c): on input key k ∈ {0, 1}n and ciphertext c =
〈v, lp, ln〉 output the plaintext message

m := (v −
∑
r1∈lp

Fk(r1) +
∑

r2∈ln

Fk(r2)) mod N

3.1.2 Proof of security
We provide proof of the security of SAHE and show that

it is secure under the assumption that Fk is a secure PRF.
Note that lists lp and ln hold ids that act as inputs to Fk and
can remain in the clear as long as the key k is kept secret.

Theorem 1. If F is a PRF, the cryptographic construc-
tion ΠSAHE is a semantically secure under CPA (IND-CPA)
private-key encryption scheme for messages of ZN .

Proof. We assume a probabilistic polynomial-time (PPT)
adversary A that attempts to break the semantic security of
ΠSAHE = (gen, enc, dec), for the rest of the proof simply Π.
We denote the probability of A succeeding as Pr[CPAA

Π = 1]
where CPAA

Π is the CPA indistinguishability experiment.
We show that if A can break the semantic security of Π we
can construct an attacker that can distinguish a PRF F from
a truly random function f .

We proceed by a proof by reduction by using adversary
A as a subroutine to construct a distinguisher D. D has
oracle access to a function R : {0, 1}n → ZN which can
either be a PRF or a truly random function, and the goal of
D is to determine which is the case. D emulates CPAA and
when A requests the encryption of a message m ∈ ZN , D
generates a uniform string r ∈ {0, 1}n, uses the oracle to get
x := R(r), and returns the ciphertext 〈(m+x) mod N, [r],∅〉
to A. Recall that n is chosen such that adversary A can

issue a polynomial number of such encryption requests which
we denote as poly(n). This process is repeated until A
outputs messages m0,m1 ∈ ZN . In return, D chooses a
uniform bit b ∈ {0, 1}, a uniform string r ∈ {0, 1}n, uses the
oracle to get x := R(r), and returns the challenge ciphertext
〈(mb + x) mod N, [r],∅〉 to A. Finally, when A outputs a
bit b′ indicating a guess on what message was encrypted, D
outputs 1 if b = b′, and 0 otherwise.

Let Π̃ be a cryptographic construction same as Π but
where the PRF F is replaced with a truly random function f .
Notice that if R is a PRF then x := Fk(r) and the emulation
of CPAA matches the experiment with construction Π, i.e.,
CPAA

Π. Similarly, when R is a truly random function then
x := f(r) and the emulation of CPAA matches the exper-

iment with construction Π̃, i.e., CPAA
Π̃

. Therefore, by the
assumption that Fk is a secure PRF, there exists negligible
probability ε s.t.

| Pr[CPAA
Π = 1]− Pr[CPAA

Π̃
= 1] | ≤ ε (1)

In the case of R being a truly random function, we con-
sider the probability of the adversary A having received
a ciphertext encrypted using the same random string r ∈
{0, 1}n as the one used to generate the challenge ciphertext
c = 〈(m+ f(r)) mod N, [r],∅〉. Note that in such event, A
can infer f(r) = (c−m) mod N and use that to determine
whether the challenge cipher was generated from m1 or m2,
winning the indistinguishability game. Since A can perform
poly(n) number of encryption requests, and each encryption
requires one out of a total of 2n possible strings, such an

event can occur with probability poly(n)
2n . Therefore we have

Pr[CPAA
Π̃

= 1] ≤ 1

2
+
poly(n)

2n
. (2)

Using Eq. 1 and Eq. 2 we get

Pr[CPAA
Π = 1] ≤ 1

2
+
poly(n)

2n
+ ε

where poly(n)
2n + ε is negligible and therefore the advantage of

adversary A is negligible.

3.1.3 Homomorphic operations
Next, we describe the set of homomorphic operations

ΦSAHE = (add, adp, mlp, neg, sub) of SAHE. In what
follows, we use c to denote a ciphertext (c = 〈v, lp, ln〉), c1
and c2 to denote a pair of ciphertexts (c1 = 〈v1, lp1 , ln1〉 and
c2 = 〈v2, lp2 , ln2)〉 and m to denote a plaintext value. As
previously mentioned, ciphertexts are randomized and none
of the operations in ΦSAHE require the use of trapdoors.

add: This operation homomorphically adds two ciphertexts:

add(c1, c2) := 〈(v1 + v2) mod N, lp1 ∪ lp2 , ln1 ∪ ln2〉
Here ∪ indicates list concatenation.

adp: The add plaintext operation expresses a homomorphic
addition between a ciphertext and a plaintext value:

adp(c,m) := 〈(v +m) mod N, lp, ln〉

mlp: Even though SAHE is an AHE scheme, it supports
multiplication between a ciphertext and a plaintext value
through the mlp (multiply plaintext) operation:

mlp(c,m) := 〈(v ×m) mod N, l1, l2〉
where

l1, l2 =


l
|m|
n , l

|m|
p if m < 0

∅,∅ if m = 0

l
|m|
p , l

|m|
n if m > 0

(3)
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In the above, |m| denotes the absolute value of m and the

list operation l|m| denotes |m−1|-fold concatenation of list
l with itself. For example, if l = [r1, r2] and m = 3 then

l|m| = [r1, r2, r1, r2, r1, r2]. This example shows that the
lists can grow quickly as more homomorphic operations
are performed. In § 3.4 we introduce a set of compaction
techniques to alleviate this concern.

neg: We define neg, the unary operation of negating an
encrypted value based on the mlp function:

neg(c) := mlp(c,−1) = 〈−v mod N, ln, lp〉

sub: We define the subtraction operation sub based on the
homomorphic operations add and neg:

sub(c1, c2) := add(c1, neg(c2))

= 〈(v1 − v2) mod N, lp1 ∪ ln2 , ln1 ∪ lp2〉

3.2 Symmetric MHE
Symmetric multiplicative homomorphic encryption (SMHE)

is a symmetric MHE scheme that allows homomorphic oper-
ations with respect to multiplication.

3.2.1 Scheme description
SMHE is defined in the abelian multiplicative group Z∗N of

order N > 1. Just like with SAHE, we assume there exists
a PRF Fk(x) = F (k, x) generating elements of Z∗N , and use
a fixed generator g for the selected group order. Below we
formally define the scheme ΠSMHE = (gen, enc, dec).

gen(1n): same as SAHE gen function.

enc(k,m): on input key k ∈ {0, 1}n and message m ∈ Z∗N
choose uniform r ∈ {0, 1}n and output the ciphertext

c := 〈(m× gFk(r)) mod N, [r],∅〉
Ciphertext c is a triplet 〈v, lp, ln〉 but for SMHE lp denotes
the list of ids each of which is used to generate a random
element in Z∗N which is then raised to the power of g and
multiplied by m to generate the obfuscated value v. ln is
similar except that the generated value gFk(r) for a given
r is inverted before being multiplied by m.

dec(k, c): on input key k ∈ {0, 1}n and ciphertext c =
〈v, lp, ln〉 output the plaintext message

m := (v ×
∏

r1∈lp

g−Fk(r1) ×
∏

r2∈ln

gFk(r2)) mod N

3.2.2 Proof of security
Here, we prove that SMHE is secure under the assumption

that F is a secure PRF.

Theorem 2. If F is a PRF, the cryptographic construc-
tion ΠSMHE is a semantically secure under CPA (IND-CPA)
private-key encryption scheme for messages of Z∗N .

Proof. As the proof is similar to the one for SAHE, we
only provide the parts specific to SMHE. First, we note that
since g is a generator of the group Z∗N every element in the
group can be expressed via gx for some x. Thus, assuming
a truly random function f , for uniform r, gf(r) is uniformly
distributed in the group. Since g is a generator and m ∈ Z∗N
then m = gx for some x. Therefore m× gf(r) = gx× gf(r) =
gx+f(r) mod N is uniform as well. The rest of the proof
proceeds in three steps like the proof for SAHE by 1. proving
that replacing f with the PRF Fk only gives the adversary
negligible advantage, 2. showing that a modified ΠSMHE

scheme where Fk(r) is replaced with f is semantically secure

and 3. showing that poly(n) is the upper bound on the
number of queries that the adversary can send to the oracle of
the indistinguishability game, and the only way the adversary
has an advantage is when the same r is used more than once
which happens only with negligible probability.

3.2.3 Homomorphic operations
In this section, we describe the set of homomorphic opera-

tions ΦSMHE = (mul, mlp, pow, inv, div) of SMHE.

mul: This operation denotes homomorphic multiplication:

mul(c1, c2) := 〈(v1 × v2) mod N, lp1 ∪ lp2 , ln1 ∪ ln2〉

mlp: The multiply plaintext operation denotes homomorphic
multiplication between a ciphertext and a plaintext:

mlp(c,m) := 〈(v ×m) mod N, lp, ln〉

pow: SMHE supports exponentiation between a ciphertext
and a plaintext value through the pow operation:

pow(c,m) := 〈(vm) mod N, l1, l2〉
Here l1 and l2 are computed as per Eq. 3.

inv: The multiplicative inverse of a ciphertext can be homo-
morphically computed as follows:

inv(c) := pow(c,−1)

div: Finally, homomorphic division (multiplication with the
inverse) is defined as:

div(c1, c2) := mul(c1, inv(c2))

3.3 Security Properties
We discuss some security properties of SAHE and SMHE.

3.3.1 Statefulness
So far the description of SAHE and SMHE required that we

generate a uniform id r ∈ {0, 1}l when encrypting, although
the homomorphic operations and the security of our schemes
do not require r to be uniform. It is sufficient for r to be
unique across all values encrypted under the same key k. We
can thus change the enc algorithm of both of our schemes
from being randomized to being stateful. By keeping track
of the last id used (for a given key k), ids can be chosen in an
incremental fashion. By default, Symmetria uses the stateful
implementation of enc for both SAHE and SMHE which
leads to more regular lists of ids and make the application of
the compactness techniques described in § 3.4 more effective.

3.3.2 Malleability and null values
Similar to other PHE schemes, homomorphic operations of

our schemes are a result of the schemes being malleable and,
therefore, allow some limited alterations to ciphertexts which
result in predictable changes to the underlying plaintexts.
As a result, stronger notions of security such as IND-CCA2
are not satisfied by our (or any previous) homomorphic
schemes. Asymmetric schemes allow the creation of any
ciphertext without access to the private key since encryption
only requires the public key. So far the description of our
schemes permits the creation of arbitrary ciphertexts without
having access to the secret key k, despite our schemes being
symmetric. For example, for either SAHE or SMHE and for
any message 0 ≤ m < N , one can construct the ciphertext
c∗ = 〈m,∅,∅〉 where the obfuscated value of the ciphertext
is set to m itself and both id lists lp and ln are empty. As
per discussion so far, c∗ is a legitimate ciphertext that once
decrypted will return the message m, i.e., dec (c∗, k) = m.
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Ciphertexts with both id lists being empty can also occur by
applying operations on a non-empty ciphertext. For instance,
given a SAHE ciphertext c one can perform the operation
c0 = mlp(c, 0) to get a valid (per discussion so far) ciphertext
c0 of the value 0. Then, by repeated application of adp(c0, 1)
one can create a valid ciphertext for any value desired. To
address this issue we treat ciphertexts with both id lists being
empty in a special way. Given a ciphertext triplet 〈v, lp, ln〉,
if both lists are empty (lp = ∅ and ln = ∅) the ciphertext
is considered as a null ciphertext regardless of the value v.
We denote the null ciphertext of SAHE and SMHE by ∅A

and ∅M respectively. Decryption considers such ciphertexts
as a special case. For both SAHE dec(∅A, k) = 0 (identity
element of ZN ) and SMHE dec(∅M , k) = 1 (identity element
of Z∗N ), the obfuscated value v is ignored.

3.4 Compaction Techniques
Ciphertexts of SAHE and SMHE are made up of three

elements 〈v, lp, ln〉. The size of v depends on the choice of
N and is fixed. The size of id lists lp and ln however can
vary as homomorphic operations are performed. As lp and
ln increase in size, the memory footprint of Symmetria grows.
Moreover, the performance of homomorphic operations and
decryption of ciphertexts degrades as these lists grow. To
reduce these overheads we propose a set of techniques to
compact these lists. We also define alternatives for enc and
dec that leverage the techniques for improved performance.

3.4.1 List aggregation
Ids in lists lp and ln are used to generate a random value

using a PRF Fk which in turn is used to apply an operation
during encryption or decryption. For both SAHE and SMHE,
lists lp and ln describe inverse operations. For instance, in
SAHE, list lp holds ids used to generate a random value added
to the message m, and ln holds ids used to generate a random
value subtracted from m. These operations can cancel each
other out, meaning that ids that appear in both lists can be
safely removed. For example, the two lists lp = [r1, r2, r3]
and ln = [r1, r4] can be reduced to lp = [r2, r3] and ln = [r4].

3.4.2 Id grouping
Homomorphic operations of both SAHE and SMHE can

lead to ids appearing multiple times in the same id list. For
example, after an mlp operation using the SAHE scheme,
each id will by copied multiple times in both id lists lp and ln,
as per Eq. 3. To keep id lists more concise, same ids within a
list can be grouped. For example, the list of ids [r1, r1, r1, r2]
can be represented as [3 : r1, r2]. Here “3 :” indicates the
cardinality of the id r1. Furthermore, subsequent additions
of the id r1 to the list do not change the list size or the
overall ciphertext size and instead, the cardinality of the id
r1 is increased. This technique not only reduces ciphertext
footprint but also improves decryption performance as we
describe next. We define a function C : {0, 1}l → N which,
given an id r ∈ {0, 1}l, returns the cardinality of that id in
the list, i.e., how many times that id appears in the list. Using
this function, we can change the definitions of decryption
functions (dec) for SAHE and SMHE respectively as follows:

m := (v−
∑
r1∈lp

C(r1)×Fk(r1)+
∑

r2∈ln

C(r2)×Fk(r2)) mod N

m := (v ×
∏

r1∈lp

g−C(r1)×Fk(r1) ×
∏

r2∈ln

gC(r2)×Fk(r2)) mod N

With this technique enabled, list concatenation (Eq. 3) can be
efficiently implemented simply by updating id cardinalities.

3.4.3 Range folding
Sequences of consecutive ids is another pattern appearing

in id lists, especially when ids are selected sequentially at
encryption (see § 3.3.1). These sequences can be folded into
a range of ids. E.g., consider the id list [2, 3, 4, 5, 8]. This list
can be compacted to [2− 5, 8]. In this example, subsequent
additions of the ids 1 or 6 do not increase the size of the list
as these ids will simply extend the existing range. To make
this technique more effective, we generalize range folding to
fold sequences of ids of any step and not just consecutive
sequences, i.e., sequences of step 1. We have observed that in
practice such patterns appear frequently, for instance when
summing over a column, even after some rows are filtered.

3.4.4 Telescoping
To enable efficient execution of aggregation functions we

use the telescoping technique. Consider the case where a
sizable number of ciphertexts need to be summed. The ids
of these ciphertexts can be consecutive in which case the
resulting ciphertext will be compact due to the range folding
technique discussed above. Even if this is the case, while
decrypting, Fk(r) needs to be generated for each id r even
if r is folded in a range, making decryption impractical. To
avoid this, we change the encryption functions for SAHE
and SMHE respectively as follows:

c := 〈(m+ Fk(r)− Fk(r + 1)) mod N, [r], [r + 1]〉

c := 〈(m× gFk(r) × g−Fk(r+1)) mod N, [r], [r + 1]〉
Here, for each id r we generate Fk(r) and Fk(r+1) and apply
inverse operations based on these, storing r in lp and r+ 1 in
ln. For consecutive values of r, these operations cancel each
other out based on our list aggregation technique, making
decryption practical, at the expense of having to generate
an additional pseudorandom number (PRN) at encryption.

3.4.5 Integer list compression
Our schemes can also benefit from compaction techniques

proposed in previous work. In particular, the problem of
efficiently compressing arrays of integers has been studied
extensively [25, 26]. A requirement of such algorithms is that
the integers of the array are not random. Our lists of ids
satisfy this requirement by storing ids in non-decreasing order.
Another requirement for these algorithms to be effective is
that most integers in the array are small or gaps between
them are small. These requirements are met by our schemes
by choosing ids in an incremental manner (§ 3.3.1).

3.5 Scheme Compactness
As SAHE and SMHE are not strictly compact each appli-

cation of a homomorphic operation might yield a ciphertext
with increased size. Here we discuss how the compactness
techniques proposed above can be applied to achieve ho-
momorphic operations that are (quantitatively) compact in
practice. Tab. 1 outlines the conditions for respective opera-
tions to retain compactness. Any homomorphic operation is
compact if it involves (a) adding an id to the lp list and the
same id exists in the ln list or vice-versa (§ 3.4.1); (b) adding
an id to a list that already contains the id (§3.4.2); (c) adding
an id to a list that falls within an existing range (§ 3.4.3).
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Table 1: Scheme operation compactness.

SAHE SMHE Compactness condition

add mul Techniques § 3.4.1, § 3.4.2, and § 3.4.3
adp mlp By definition
mlp pow Technique § 3.4.2
neg inv By definition
sub div Techniques § 3.4.1, § 3.4.2, and § 3.4.3

Some homomorphic operations of our schemes are also com-
pact by definition. In particular, operations involving a single
ciphertext (e.g., neg, inv) as well as operations involving a
ciphertext and a plaintext value (e.g. SAHE operations adp
and mlp, SMHE operations mlp and pow) are always compact.
We evaluate the effects of (a) scheme compactness in terms
of ciphertext size overhead and execution time in § 6.4 and
(b) individual compaction techniques in § 6.6.

4. Symmetria: SYSTEM DESIGN
We first explain the threat model underlying our Symmetria

system and then give an overview of its design, followed by
details on how it transforms queries to operate over encrypted
data using our schemes. Lastly, we introduce query opti-
mizations based on the properties of our schemes applied by
Symmetria at query transformation to improve performance.

4.1 Symmetria Threat Model
Symmetria aims to preserve data confidentiality in the pres-

ence of a semi-honest adversary. We assume the adversary
has access to all cloud nodes and can observe data and query
executions, including any intermediate results. In addition,
the adversary can observe data in transit between the cloud
nodes and between the cloud nodes and the trusted appli-
cation driver (described below). We assume the adversary
cannot make changes to the queries, results, or data stored in
the cloud, and consider integrity and availability attacks as
well as access patterns and side-channel attacks out of scope.
These attacks are orthogonal to our work and have been
studied extensively in previous works. We plan to extend
Symmetria to handle such attacks as part of our future work,
using ideas from existing works [32, 40, 42, 43, 44, 50].
Symmetria uses a set of PPE schemes proposed in pre-

vious work for comparisons over encrypted data. Some of
these schemes, e.g., OPE and DET, have been shown to
provide lower security guarantees and even reveal partial
plaintext [8, 18, 20, 31]. We plan to replace these schemes
with more recent ones that offer semantic security [35] when
their implementations become public.

Another concern specific to our encryption schemes SAHE
and SMHE is the information leakage due to lack of strict
compactness. Specifically, an adversary that observes the re-
sult of a query encrypted under SAHE or SMHE can infer the
number of rows used to generate the result, e.g., how many
items were added together to generate an aggregated sum.
We note that an adversary that can observe the execution
of queries, as well as any intermediate results (such as the
adversary assumed in this work and by many previous PHE-
based systems [36, 45, 48]), can infer the above information
even when the homomorphic encryption schemes used are
compact. But for a weaker adversary that can only observe
the final results of the queries, the ciphertext size of our
schemes can reveal the number of rows used to generate the
final result. Under this weaker adversarial model, compact

homomorphic schemes such as Paillier and ElGamal hide
this information. Note that in some cases, our compaction
techniques can hide the exact number of items used to gen-
erate a ciphertext, such as through the application of list
aggregation (§ 3.4.1) and telescoping (§ 3.4.4).

4.2 Symmetria Design Overview
Fig. 1 shows the high-level design of Symmetria which

includes several components divided between the trusted
client and the untrusted cloud:

Transformation module: transforms a query designed to op-
erate over plaintext data to a query that operates on
encrypted data to preserve data confidentiality.

Encryption module: holds the cryptographic keys, encrypts
traffic sent to the cloud and decrypts traffic received from
the cloud. Also stores the crypto schema which contains
the available encryptions of each column in the database.

Application driver: deploys user-submitted queries to the
cloud after they have been transformed. Receives en-
crypted results from the cloud, decrypts them using the
encryption module and returns the results to the user.

Compute service: a distributed computing framework that
executes the submitted queries in the untrusted cloud. Uti-
lizes a set of cryptographic user-defined functions (UDFs)
to perform operations over encrypted data.

Encrypted database: holds the encrypted data.

Symmetria operates in two phases. During the setup phase
when Symmetria is deployed, the data provider submits the
plaintext data along with associated schema to the trusted
client. The data provider also identifies operations expected
to be performed on each column, following the approach used
in previous work [19]. Using this information, the encryption
module (1) encrypts each column under one or more encryp-
tion schemes according to the operations expected for it,
(2) replaces the original column name with a random string
for anonymization, and (3) uploads the encrypted data to
the cloud. The encryption module also generates and stores
a crypto schema with a mapping from each of the original
column names to the resulting anonymized ones, along with
the encryption scheme used to encrypt the column.

The second phase is the query execution phase. Users of
Symmetria are oblivious of the underlying encryption strat-
egy used to preserve data confidentiality and do not know
the structure of the encrypted database. Users, therefore,
submit queries designed to operate over plaintext data and as-
sume that the database structure follows the original schema
as submitted by the data provider during setup. When a
query is submitted, the transformation module intercepts
and transforms it into one that operates over encrypted data.
To transform queries Symmetria follows the approach of pre-
vious works [22, 45, 46]. Firstly, the query is parsed into a
logical plan which has the form of a directed acyclic graph
(DAG) with nodes representing operations, column names,
or literal values, and edges representing the flow of data
in the query. For each operation in the logical plan, the
transformation module considers the available schemes the
involved column(s) are encrypted under. A column can ei-
ther be a data column that exists in the encrypted database,
in which case the available encryption schemes are kept in
the crypto schema, or the column is derived from previous
operations, in which case the lineage of the logical plan is
used to derive the available encryption schemes of the col-

1296



Compute
service

Encrypted
database

Untrusted cloudTrusted client

Application 
driver

Encryption
module

Transformation
module

User
Transformed

query

Encrypted
results

Encrypted
dataData

Query

Data
provider

Decrypted
results Crypto

UDFs
Crypto
keys

Crypto
schema

Figure 1: Symmetria system architecture. Dashed arrows indicate setup phase. Solid arrows indicate query execution phase.

umn. If one of the available encryption schemes supports
the operation currently considered, then (i) the operation
in the logical plan is replaced by the equivalent homomor-
phic operation, (ii) the involved column names are replaced
with the (anonymized) names of the appropriately encrypted
columns, and (iii) literal values are encrypted using the same
scheme that supports the operation. If none of the available
encryption schemes support the operation, the query is split
(split execution [48]) and all remaining computation in the
query is performed on the trusted client, after intermediate
results are decrypted.

Once query transformation completes, the transformed
query is passed to the application driver which deploys it in
the cloud. The compute service in the cloud is an unmodified
distributed computing framework able to perform homomor-
phic operations on encrypted data by means of cryptographic
UDFs. These UDFs do not contain any sensitive information
and are submitted to the compute service as part of the de-
ployed application. Once the query execution completes, the
(intermediate) encrypted results are sent back to the trusted
client, decrypted, any remaining computation is performed,
and the plaintext results are returned to the user.

4.3 Query Optimizations
We describe a set of optimizations, specific to SAHE and

SMHE, applied to queries by the transformation module.

4.3.1 Expression re-writing
To improve performance for expressions involving multiple

SAHE or SMHE homomorphic operations we introduce a
set of re-writing rules (see Tab. 2 for SAHE and Tab. 3 for
SMHE). The null operations category shows rules that replace
expressions with null values during query transformation.
Identity operation rules replace expressions that have no
effect on the input ciphertext with the ciphertext itself. The
operation replacing category replaces one expression with
another equivalent expression with the goal of generating
more uniform expressions that can be further optimized.
Addition re-ordering and multiplication re-ordering rules
re-arrange expressions to enable the application of other re-
writing rules. Constant folding and constant factoring rules
simplify operations involving constants. Term factoring rules
replace an add operation with an mlp operation or remove an
add operation altogether and similarly, term simplification
rules remove or replace a mul operation with a pow operation.

Our re-writing rules go against traditional compilation.
As, in general, plaintext multiplication is more expensive
than addition [23], compilers replace integer multiplication
with constants with consecutive additions or shift operations.
E.g., 2 × x is replaced by x + x (verified using gcc v7.3.0,
Ubuntu v18.04). In contrast, in SAHE mlp is preferred over
add as can be seen in rule category term factoring (Tab. 2);

Table 2: Re-writing rules for SAHE. † indicates that order
of operands is not relevant.

Category Before After

Null
operations

add(∅A,∅A), adp(∅A,m), ∅A

mlp(∅A,m), mlp(c, 0)

Identity
operations

add(c,∅A)†, adp(c, 0),
c

mlp(c, 1)

Operation
replacing

neg(c) mlp(c,−1)
sub(c1, c2) add(c1, neg(c2))

Addition
re-ordering

add(add(c1, c2), c1)† add(add(c1, c1), c2)
add(adp(c1,m), c2)† adp(add(c1, c2),m)

Constant
folding

adp(adp(c,m1),m2) adp(c,m1 +m2)
mlp(mlp(c,m1),m2) mlp(c,m1 ×m2)

Constant
factoring

add(mlp(c1,m),mlp(c2,m)) mlp(add(c1, c2),m)

Term
factoring

add(c, c) mlp(c, 2)
add(mlp(c,m), c)† mlp(c,m+ 1)
add(mlp(c,m1),mlp(c,m2)) mlp(c,m1 +m2)

similarly for SMHE pow is preferred over mul as shown in
the rule category term simplification (Tab. 3).

4.3.2 Operation pipelining
A query can include expressions involving multiple homo-

morphic operations. For each operation on ciphertexts of
the form c = 〈v, lp, ln〉, a modulo arithmetic computation is
performed on v and, if the operation involves two ciphertexts,
the two sets of id lists need to be merged, creating larger
lists. Furthermore, any associated data-structures needed to
enable compaction techniques (§ 3.4), e.g., data-structures
used to hold cardinalities of ids, also need to be initialized
and populated to create the resulting ciphertext. Finally,
depending on the use case, the resulting ciphertext for each
operation in the expression might have to be serialized.

To avoid repeated memory allocation and the creation of
objects that hold intermediate results Symmetria pipelines all
homomorphic operations in expressions, thereby amortizing
their cost. All ciphertexts in an expression are collected and
all homomorphic operations are applied in one go so that only
data-structures for final ciphertexts need to be created. E.g.,
in the expression c = add(add(add(c1, c2), c3), c4), instead of
creating intermediate ciphertexts for each add operation, all
three operations are pipelined. Enough memory is pessimisti-
cally (assuming no compaction techniques apply) allocated
to hold the data of all 4 input ciphertexts c1–c4, and only
the final ciphertext object c is created and serialized.

Operation pipelining is particularly effective in aggregation
functions. Instead of deserializing and aggregating a single
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Table 3: Re-writing rules for SMHE. † indicates that order
of operands is not relevant.

Category Before After

Null
operations

mul(∅M ,∅M ), mlp(∅M ,m), ∅M

pow(∅M ,m), pow(c, 0)

Identity
operations

mul(c,∅M )†, mlp(c, 1),
c

pow(c, 1)

Operation
replacing

inv(c) pow(c,−1)
div(c1, c2) mul(c1, inv(c2))

Multipl.
re-ordering

mul(mul(c1, c2), c1)† mul(mul(c1, c1), c2)
mul(mlp(c1,m), c2)† mlp(mul(c1, c2),m)

Constant
folding

mlp(mlp(c,m1),m2) mlp(c,m1 ×m2)
pow(pow(c,m1),m2) pow(c,m1 ×m2)

Term
simplificat.

mul(c, c) pow(c, 2)
mul(pow(c,m), c)† pow(c,m+ 1)
mul(pow(c,m1), pow(c,m2)) pow(c,m1 +m2)

ciphertext value at a time into the intermediate aggregated
result, a small number of serialized ciphertexts are kept in
a cache. Once a threshold is reached, all are deserialized,
aggregated together in one go as shown in the example above,
and then added to the intermediate aggregation result.

4.3.3 Pre-computing PRNs
To encrypt a plaintext value or decrypt a ciphertext, both

SAHE and SMHE require to generate one or more PRNs
using Fk(r) for a given r. When encryption is stateful (§
3.3.1), r is chosen in an incremental fashion and is therefore
known before a request to encrypt a value is made. In this
case, to speed up encryption, Symmetria pre-computes and
stores a small amount of such PRNs and uses them when a
value needs to be encrypted. Similarly, decryption can be
sped up by pre-computing Fk(r) if the value r is known.

4.3.4 Plaintext multiplication
The mlp operation that allows multiplication between a

ciphertext and a plaintext value is supported by both SAHE
and SMHE. At query transformation, Symmetria chooses
the most appropriate scheme for mlp depending on what
other operations the corresponding column is involved in.
This allows Symmetria to perform as much computation
as possible over encrypted data in the cloud and prevents
returning to the trusted client before strictly necessary. E.g.,
in the expression 2× (a+ b) SAHE is used to perform the
multiplication with the constant 2 as a+b involves an addition
that is only supported by SAHE. On the other hand, in the
expression 2× a× b SMHE is used so the entire expression
can be executed in the cloud. If there are no conflicting
operations and either of the schemes can be used, to perform
mlp, Symmetria uses SMHE as it is more performant (§6.3).

5. IMPLEMENTATION
In this section, we provide implementation details on our

schemes SAHE and SMHE, as well as our Symmetria system.

5.1 Encryption Schemes
We implemented SAHE and SMHE and all associated

compaction techniques in Java and using AES as PRF Fk.

Each ciphertext triplet 〈v, lp, ln〉 includes an 8-byte integer
value v and two id lists lp and ln which are implemented
using immutable arrays. We use a separate hashmap to map
ids to their cardinalities. To keep this map small, we as-
sume a default cardinality of 1 and only keep track of higher
cardinalities. To compress the list of ids we implemented
a custom compression function that implements the com-
paction technique discussed in § 3.4.3. We further compress
the arrays of ids as described in § 3.4.5 using the JavaFastP-
FOR2 library v0.1.12 and enable the compression codecs for
differential coding, variable byte and fast PFOR (patched
frame-of-reference). To speed up serialization/deserializa-
tion we implemented custom serialization functions for both
SAHE and SMHE ciphertext objects. We also incorporate
3 PPE schemes, namely deterministic AES (ECB mode),
OPE [4, 5], and SWP [41], as well as two asymmetric PHE
schemes, namely Paillier [33] and ElGamal [12], which we use
to compare against SAHE and SMHE. For Paillier and ElGa-
mal we use 2048-bit long keys and use the Java BigInteger
class for arbitrary-precision arithmetic computations.

5.2 Trusted Client
The trusted client contains the transformation module,

encryption module, and application driver, and is therefore
deployed in a trusted node. We implemented the transforma-
tion module by extending Apache Spark’s Catalyst optimizer.
By default, Catalyst applies a set of transformation rules to
create a logical plan out of the query, optimize it, and turn it
into an executable physical plan [2]. We created a set of trans-
formation rules by extending the Spark Rule[ LogicalPlan ]
class and use these rules to carry out the transformation of
the query to one that operates over encrypted data. The
query optimizations proposed in § 4.3 are also implemented
as transformation rules. We register these rules with the
Catalyst optimizer externally, i.e., without modifications to
Spark, so that they are recursively applied to all nodes of
the logical plan. We implement the application driver by ex-
tending the Spark driver. The application driver deploys the
transformed query in the cloud and receives the encrypted
results. The driver loads these results into a Scala parallel
collection with default parallelization. The results are then
decrypted in parallel and any remaining computation (see §
4.2) is performed in parallel before final results are returned.

5.3 Untrusted Cloud
The compute service runs an unmodified Apache Spark

service. To enable the use of homomorphic operations of
the schemes employed we created a Spark UDF function for
each operation. For non-aggregation operations, we created
a Spark UDF by extending the Spark UserDefinedFunction
class; for aggregation functions such as summation and prod-
uct we extend the UserDefinedAggregateFunction class. These
functions are again externally registered.

6. EVALUATION
In this section, we evaluate the expressiveness and perfor-

mance of our proposed schemes SAHE and SMHE as well
as our prototype system Symmetria. We first assess the ex-
pressiveness of our schemes compared to previous schemes
(§ 6.2). Then, we evaluate the performance of individual
operations of our schemes (§ 6.3) and quantify the effect of

2
https://github.com/lemire/JavaFastPFOR.
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Table 4: Expressiveness comparison. Type indicates
whether a scheme is symmetric (sym) or asymmetric (asym).

(a) AHE

Paillier ASHE SAHE

Type asym sym sym
add 3 3 3
adp 3 7 3
mlp 3 7 3
neg 3 7 3
sub 3 7 3

(b) MHE

ElGamal SMHE

Type asym sym
mul 3 3
mlp 3 3
pow 3 3
inv 3 3
div 3 3

scheme compactness compared to other compact and non-
compact schemes (§ 6.4). We then examine the encryption
time and ciphertext size overhead of Symmetria compared
to previous systems (§ 6.5) and finally we assess the overall
efficiency of Symmetria and the performance benefits of our
proposed compaction techniques and query optimizations by
comparing its end-to-end latency with other systems (§ 6.6).

6.1 Evaluation Setup
We conduct all our experiments on Amazon EC2. We use

a cluster of 10 m5.2xlarge (8 vCPUs, 32 GB RAM) slave
nodes running Apache Spark v2.4.0 and deploy the Spark
driver on a separate m5.4xlarge (16 vCPUs, 64 GB RAM)
node. The Spark driver is assumed to be trusted and handles
the decryption of the results. Decryption is parallelized and
utilizes all available CPUs on the driver. We set up Spark to
deploy a single executor per slave node with 8 tasks each (1
for each CPU) and a total of 28 GB memory. We load data
into Hadoop HDFS (Hadoop v2.9.2) with replication factor 3
and use the Apache Parquet storage format to compress data.
We carry out comparisons of primarily 3 system setups:

Plaintext setup does not use any encryption and does not
offer any confidentiality guarantees,

Symmetria utilizes our proposed schemes SAHE and SMHE
for arithmetic operations, and

Asym utilizes the asymmetric schemes Paillier and ElGamal
for arithmetic operations

We use two industry-adopted benchmarks for our evalua-
tions. (1) TPC-H is a decision support benchmark comprising
22 queries. We use TPC-H v2.18 at a scale of 100 which
uses over 100 GB of input data. (2) TPC-DS is a benchmark
for big data decision solutions comprising 100 queries. Due
to lack of space, we show the results of 19 of the TPC-DS
queries as done in previous work [9]. We use TPC-DS v2.10
at a scale of 100 which uses 38.6 GB of plaintext input data.

Unless stated otherwise, reported execution times in our
experiments are the average of 5 executions.

6.2 Scheme Expressiveness
Before conducting an empirical evaluation, we first show

a simple comparison of our schemes with previous homo-
morphic schemes in terms of expressiveness. Tab. 4 shows
the supported operations of various (a) AHE and (b) MHE
schemes. As can be seen from the table, SAHE supports
all homomorphic operations that Paillier supports though
being symmetric. ASHE [34] is another AHE scheme that is
symmetric like SAHE, but unlike SAHE, it has limited expres-
siveness and only supports additions between two ciphertexts
(add). SMHE supports all homomorphic operations that El-
Gamal supports though being symmetric. We know of no
other symmetric MHE scheme to compare against SMHE.

6.3 Operation Execution Times
We now examine the execution times of individual opera-

tions in the sets ΠSAHE , ΦSAHE , ΠSMHE , and ΦSMHE . We
compare these against the equivalent operations of the state-
of-the-art asymmetric schemes Paillier and ElGamal. Paillier
encryption and its associated homomorphic operations re-
quire arbitrary-precision arithmetic operations and modulo
operations on the square of the public key. This means that
the length of Paillier ciphertexts are 4096 bits long. ElGamal
ciphertexts are made of two parts, each 2048 bits long. The
increased ciphertext size and arbitrary-precision arithmetic
operations required to achieve the homomorphic operations
of Paillier and ElGamal lead to significant overhead. We
also include a comparison against “Packed Paillier” which
implements the packing technique introduced by Ge and
Zdonik [15]. We pack 21 plaintext values in a ciphertext and
include 32 bits of padding to account for overflows. Tab. 5
shows the results of this evaluation. This experiment was run
on a single m5.2xlarge node. Each reported execution time is
the average of 1 million executions after 100 warm-up execu-
tions. We observe that SAHE’s encryption and decryption
are 4 orders of magnitude faster than Paillier’s. These can
be made even faster by pre-computing the required PRNs
as explained in § 4.3.3. Packed Paillier improves the perfor-
mance of encryption and decryption significantly, but SAHE
remains 2 orders of magnitude faster than Packed Paillier.
Performing a homomorphic addition using Paillier requires
a multiplication of the two ciphertexts modulo the square
of the public key which is a 4096-bit value. This makes
homomorphic addition of SAHE 76× faster than Paillier or
4× faster than Packed Paillier. The performance gains of
other operations in ΦSAHE compared to Paillier are even
more dramatic because in Paillier these operations require
exponentiation modulo the square of the public key which
is a very expensive operation. We note that Packed Paillier
does not support the operations mlp, neg, and sub. Due to
this limitation, we do not use Packed Paillier for the rest of
our evaluations. We observe similar results when comparing
SMHE to ElGamal. Encryption and decryption functions of
SMHE are 3 orders of magnitude faster than ElGamal. Arith-
metic operations in ΦSMHE range from 2× faster to 230×
faster compared to the equivalent operations with ElGamal.

6.4 Effect of Non-Compactness
Next, we examine how the lack of compactness in our

schemes affects ciphertext size and execution time and how
effective our compaction techniques are in mitigating these
effects. We perform a summation involving 1 million rows
and to examine how our schemes behave when some of these
rows are filtered out, we randomly sample the rows and per-
form a summation over the selected rows. We measure the
size of the resulting ciphertext and the overall time taken to
perform the summation as we change the sampling size from
5% to 100%. We compare Symmetria with all techniques
enabled against Asym which uses asymmetric schemes that
are compact. To examine the other extreme we also com-
pare Symmetria against a Strawman setup which uses a näıve
construction for arithmetic operations that encrypts indi-
vidual values using the AES (CBC mode) block cipher and
performs homomorphic operations by concatenating opera-
tors and encrypted operands. Unlike Symmetria, Strawman
has no compaction techniques to limit ciphertext expansion.
Fig. 2 shows the results of this evaluation. We observe that
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Table 5: Operation execution times of SAHE and SMHE compared to asymmetric schemes. All reported times are given in
nanoseconds followed by the relative standard error. Values in parentheses indicate pre-computation.

Paillier Packed Paillier SAHE

enc 17285376 ± 0.13% 880921 ± 0.11% 1321 (63) ± 1.43%
dec 16390295 ± 0.01% 781727 ± 0.01% 1202 (153) ± 4.18%
add 34807 ± 1.37% 1666 ± 1.21% 457 ± 3.10%
adp 917141 ± 2.38% 104775 ± 0.95% 71 ± 0.37%
mlp 857943 ± 2.54% – 406 ± 0.18%
neg 1370859 ± 0.07% – 397 ± 0.11%
sub 1408870 ± 0.08% – 819 ± 3.88%

ElGamal SMHE

enc 8700278 ± 0.04% 2974 (752) ± 0.29%
dec 4768193 ± 0.02% 3090 (1420) ± 0.23%
mul 25803 ± 0.16% 419 ± 0.92%
mlp 678 ± 1.17% 371 ± 0.11%
pow 505675 ± 2.53% 2856 ± 0.37%
inv 809711 ± 0.09% 3529 ± 0.24%
div 841260 ± 0.14% 4172 ± 0.25%

Table 6: Encryption overheads. Plaintext (text) indicates
uncompressed data. All other setups use Parquet to store
compressed data. Time column refers to compression time
for Plaintext, and adds encryption time for other setups.

Benchmark System setup Size Time

TPC-H

Plaintext (text) 106.8 GB –
Plaintext 34.0 GB 2.4 min
Asym 363.7 GB 84 min
Symmetria 67.8 GB 14 min

TPC-DS

Plaintext (text) 38.6 GB –
Plaintext 15.1 GB 1.5 min
Asym 482.4 GB 228 min
Symmetria 39.7 GB 4 min

the ciphertext size of the Strawman system setup increases
linearly as the number of rows (sampling size) increases due
to lack of any form of compaction. Even worse, its execution
time increases exponentially since every subsequent addition
operation occurs on a strictly larger aggregated result.

As expected, the ciphertext size of the Asym system setup
remains constant (512 bytes) since it uses Paillier (with a
2048-bit modulo resulting in 4096-bit ciphertexts) to per-
form summation which is a compact scheme. Naturally, its
execution time increases linearly with respect to sampling
size, but due to the complex modulo operations involved in
homomorphic addition the overall execution time is high.

Unlike Strawman, the compaction techniques of Symmetria
keep the ciphertext size more bounded in practice, resulting
in a much lower execution time. We also note that due to
non-compactness, the ciphertext size of Symmetria is higher
than that of Asym. At 50% sampling size, half of the rows
are randomly filtered out making the range folding technique
(3.4.3) less effective. Once the sampling size increases further,
more sequences of consecutive ids occur, leading to more
compact ciphertexts and therefore better execution times. At
100% selectivity, Symmetria achieves optimal compactness
with the ciphertext becoming smaller than that of Asym
(50 bytes compared to 512 bytes for Asym). Despite the
overall higher ciphertext size of Symmetria, the execution
time of Symmetria remains on average 30× faster than the
Asym system. We further investigate the effect of increased
ciphertext size in Symmetria and the associated network and
decryption time overheads in § 6.6.

6.5 Encryption Overhead
Next, we assess the time needed to encrypt the input data

for the TPC-H and TPC-DS benchmarks and examine the
size of the resulting encrypted data. We show the results
of this evaluation in Tab. 6. TPC-H at scale 100 generates
106.8 GB of uncompressed data. We load this data into
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Figure 2: Summation of 1 million rows as sampling size
(x-axes) changes from 5% to 100%, with y-axes in log scale.

HDFS using the Parquet format which generates a total of
34 GB of compressed data and takes 2.4 min to complete the
compression. We then encrypt the data using the two setups
Asym and Symmetria. Under Asym, the size of the encrypted
data is 363.7 GB which is over 5× larger than the encrypted
data generated by Symmetria. In addition, Asym takes 84 min
to complete encryption compared to 14 min with Symmetria.
TPC-DS uses 38.6 GB of uncompressed data which, when
compressed using Parquet, occupies 15.1 GB. Encrypting
with Asym results in 482.4 GB of encrypted data which is
a size overhead of 32× compared to plaintext data. In
comparison, Symmetria generates only 39.7 GB of encrypted
data with a size overhead of 2.6×. Encryption time with
Asym takes 228 min compared to only 4 min with Symmetria.

6.6 End-to-End Execution Latency
Finally, we use the TPC-H and TPC-DS benchmarks to

compare end-to-end execution times of Plaintext, Asym, and
Symmetria, by measuring the time from the point each query
is submitted until the results are returned to the user after
having been returned to the driver and decrypted. For this
evaluation, Asym closely follows Monomi’s choice of cryp-
tosystems [48] which we further augment by an MHE scheme
(ElGamal [12]) and a SRCH scheme (SWP [41]), implemented
in Spark instead of the proposed PostgreSQL though. The
resulting system called Monomi* uses split execution the same
way as Symmetria. To further understand the performance
benefits of each of our proposed compaction techniques and
query optimizations, we repeat the experiment with different
features enabled each time.

Fig. 3 shows the results of this experiment for TPC-H. To
be able to evaluate homomorphic operations that operate
on a ciphertext value and a plaintext value such as adp and
mlp we choose 4 columns out of a total of 61 columns that
do not seem to hold sensitive data, namely the columns tax,
discount, available-quantity, and supplier-quantity and leave
them in plaintext (also for Monomi*). The Symmetria bars
show the execution times of Symmetria with all compaction
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Figure 4: TPC-DS (subset) end-to-end execution times normalized to Plaintext execution (slowdown factor)

techniques and query optimizations enabled, normalized to
the Plaintext execution time (Plaintext execution times in
absolute are shown in parentheses under the query names (x-
axis)). Each subsequent Symmetria bar shows the normalized
execution time with one less feature enabled. Specifically,
Symmetria-ER shows the normalized execution time when ex-
pression re-writing (§ 4.3.1) is disabled, Symmetria-OP shows
the normalized execution time when in addition to expres-
sion re-writing, operation pipelining (§ 4.3.2) is disabled, in
Symmetria-PC PFOR compression (§ 3.4.5) is disabled and
finally, in Symmetria-RC range compression (§ 3.4.3) is dis-
abled. We keep some compaction techniques permanently
enabled — list aggregation (§ 3.4.1), id grouping (§ 3.4.2),
and telescoping (§3.4.4) — as without these techniques the id
lists of ciphertexts become too large and many of the queries
time out. The average execution time overheads compared
to plaintext execution time of Symmetria, Symmetria-ER,
Symmetria-OP, Symmetria-PC and Symmetria-RC are 5.35×,
5.40×, 9.50×, 10.57×, and 11.39× respectively. In compari-
son the average overhead of Monomi* is 20.39×. We further
observe that for Symmetria, the bulk of the work is done
in the untrusted cloud. On average, only 1% of the overall
query execution is spent on the trusted client side. This
time includes communication overhead and decryption of
final results. A notable exception is Q22 where 12.96% of
the time is spent on the client side.

Fig. 4 shows the results of the same experiment on 19
queries of TPC-DS. TPC-DS uses 9 input tables and a to-
tal of 166 columns. A single column, sales-price, remains
in plaintext. We show again the breakdown of Symmetria
with some features disabled. Expression re-writing did not
apply to any of the queries. The average execution time over-
heads compared to Plaintext execution time of Symmetria,
Symmetria-OP, Symmetria-PC and Symmetria-RC are 2.73×,

2.95×, 3.66×, and 4.45× respectively and the average execu-
tion time overhead of Monomi* is 19.16×. The average time
spent on client side is only 2.12% for Symmetria.

Overall, Symmetria with all compaction techniques and
query optimizations enabled is on average 3.8× faster on
TPC-H queries than the state-of-the-art PHE-based systems
using asymmetric schemes, and 7× faster on TPC-DS queries.
This demonstrates the practicality of our schemes SAHE and
SMHE despite the lack of strict ciphertext compactness and
shows the effectiveness of our proposed optimizations.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we tackle the important problem of pre-

serving the confidentiality of sensitive information while
executing queries on it in an untrusted cloud. We introduce
two novel symmetric PHE schemes that allow us to efficiently
perform operations over encrypted data. Our schemes are
faster compared to existing asymmetric PHE schemes and do
not compromise homomorphic expressiveness. Our system
Symmetria utilizes these schemes to enable the execution of
queries over encrypted data. Symmetria achieves average
speedups of 3.8× and 7× over state-of-the-art asymmetric
PHE schemes on the standard TPC-H and TPC-DS bench-
marks respectively. Besides possible adoption of other PPE
schemes proposed recently [35], as part of our future work, we
are investigating stronger security models and consider com-
bining our proposed schemes with complementary techniques
such as ORAM [32, 42, 44] to prevent active attacks.
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[21] H. Hacigümüs, B. R. Iyer, and S. Mehrotra. Efficient
execution of aggregation queries over encrypted
relational databases. In Y. Lee, J. Li, K. Whang, and
D. Lee, editors, Database Systems for Advances
Applications, 9th International Conference, DASFAA
2004, Jeju Island, Korea, March 17-19, 2004,
Proceedings, volume 2973 of Lecture Notes in Computer
Science, pages 125–136. Springer, 2004.

[22] M. Hauck, S. Savvides, P. Eugster, M. Mezini, and
G. Salvaneschi. Securescala: Scala embedding of secure
computations. In Proceedings of the 2016 7th ACM
SIGPLAN Symposium on Scala, pages 75–84, 2016.

[23] Intel. Intel 64 and ia-32 architectures optimization
reference manual. https://software.intel.com/en-
us/download/intel-64-and-ia-32-architectures-

optimization-reference-manual.

[24] R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov,
P. Bhatotia, and C. Fetzer. Tensorscone: A secure
tensorflow framework using intel sgx. arXiv preprint
arXiv:1902.04413, 2019.

[25] D. Lemire and L. Boytsov. Decoding billions of integers
per second through vectorization. Software: Practice
and Experience, 45(1):1–29, 2015.

[26] D. Lemire, N. Kurz, and C. Rupp. Stream vbyte:
Faster byte-oriented integer compression. CoRR,
abs/1709.08990, 2017.

[27] A. Liu, K. Zheng, L. Li, G. Liu, L. Zhao, and X. Zhou.
Efficient secure similarity computation on encrypted
trajectory data. In J. Gehrke, W. Lehner, K. Shim,
S. K. Cha, and G. M. Lohman, editors, 31st IEEE
International Conference on Data Engineering, ICDE
2015, Seoul, South Korea, April 13-17, 2015, pages
66–77. IEEE Computer Society, 2015.

[28] P. Martins, L. Sousa, and A. Mariano. A survey on fully
homomorphic encryption: An engineering perspective.
ACM Comput. Surv., 50(6):83:1–83:33, Dec. 2017.

[29] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R.
Savagaonkar. Innovative instructions and software
model for isolated execution. In Proceedings of the 2Nd
International Workshop on Hardware and Architectural
Support for Security and Privacy, HASP ’13, pages
10:1–10:1, New York, NY, USA, 2013. ACM.

[30] E. Mykletun and G. Tsudik. Aggregation queries in the
database-as-a-service model. In E. Damiani and P. Liu,
editors, Data and Applications Security XX, 20th

1302

https://github.com/cloudera/impala-tpcds-kit
https://github.com/google/encrypted-bigquery-client
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-optimization-reference-manual
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-optimization-reference-manual
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-optimization-reference-manual


Annual IFIP WG 11.3 Working Conference on Data
and Applications Security, Sophia Antipolis, France,
July 31-August 2, 2006, Proceedings, volume 4127 of
Lecture Notes in Computer Science, pages 89–103.
Springer, 2006.

[31] M. Naveed, S. Kamara, and C. V. Wright. Inference
attacks on property-preserving encrypted databases. In
Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15,
pages 644–655, New York, NY, USA, 2015. ACM.

[32] R. O. Oded Goldreich. Software protection and
simulation on oblivious rams. Journal of the ACM,
43(3):431–473, 1996.

[33] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Int. Conf. on
The Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 223–238, 1999.

[34] A. Papadimitriou, R. Bhagwan, N. Chandran,
R. Ramjee, A. Haeberlen, H. Singh, A. Modi, and
S. Badrinarayanan. Big data analytics over encrypted
datasets with seabed. In Symp. on Op. Sys. Design and
Implementation (OSDI), 2016.

[35] R. Poddar, T. Boelter, and R. A. Popa. Arx: an
encrypted database using semantically secure
encryption. PVLDB, 12(11):1664–1678, 2019.

[36] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. Cryptdb: Processing queries on an
encrypted database. Commun. ACM, 55(9):103–111,
Sept. 2012.

[37] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On
data banks and privacy homomorphisms. Foundations
of Secure Computation, Academia Press, pages 169–179,
1978.

[38] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126, Feb.
1978.

[39] S. Savvides, J. J. Stephen, M. S. Ardekani,
V. Sundaram, and P. Eugster. Secure data types: A
simple abstraction for confidentiality-preserving data
analytics. In Symp. on Cloud Computing (SoCC),
SoCC ’17, pages 479–492, New York, NY, USA, 2017.
ACM.

[40] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,

M. Peinado, G. Mainar-Ruiz, and M. Russinovich. Vc3:
Trustworthy data analytics in the cloud using sgx. In
Security and Privacy (SP), 2015 IEEE Symposium on,
pages 38–54. IEEE, 2015.

[41] D. X. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In Symp. on
Security and Privacy (S&P), pages 44–55, 2000.

[42] E. Stefanov and E. Shi. Multi-cloud oblivious storage.
In CCS ’13 Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security,
pages 247–258, 2013.

[43] E. Stefanov, E. Shi, and D. Song. Towards practical
oblivious ram. arXiv preprint arXiv:1106.3652, 2011.

[44] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path oram: an extremely
simple oblivious ram protocol. In CCS ’13 Proceedings
of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, pages 299–310, 2013.

[45] J. J. Stephen, S. Savvides, R. Seidel, and P. Eugster.
Practical confidentiality preserving big data analysis.
In W. on Hot Topics in Cloud Computing (HotCloud),
2014.

[46] J. J. Stephen, S. Savvides, R. Seidel, and P. T. Eugster.
Program analysis for secure big data processing. In Int.
Conf. on Automated Software Engineering (ASE),
pages 277–288, 2014.

[47] J. J. Stephen, S. Savvides, V. Sundaram, M. S.
Ardekani, and P. Eugster. Styx: Stream processing
with trustworthy cloud-based execution. In Proceedings
of the Seventh ACM Symposium on Cloud Computing,
SoCC ’16, pages 348–360, New York, NY, USA, 2016.
ACM.

[48] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data.
PVLDB, 6(5):289–300, 2013.

[49] D. Ulybyshev, A. O. Alsalem, B. Bhargava, S. Savvides,
G. Mani, and L. B. Othmane. Secure data
communication in autonomous v2x systems. In 2018
IEEE International Congress on Internet of Things
(ICIOT), pages 156–163. IEEE, 2018.

[50] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.
Gonzalez, and I. Stoica. Opaque: An oblivious and
encrypted distributed analytics platform. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 283–298, 2017.

1303


	Introduction
	Background and Related Work
	PHE and PPE
	PHE-based Systems
	Trusted Hardware-based Systems

	Symmetric PHE
	Symmetric AHE
	Scheme description
	Proof of security
	Homomorphic operations

	Symmetric MHE
	Scheme description
	Proof of security
	Homomorphic operations

	Security Properties
	Statefulness
	Malleability and null values

	Compaction Techniques
	List aggregation
	Id grouping
	Range folding
	Telescoping
	Integer list compression

	Scheme Compactness

	Symmetria: System Design
	Symmetria Threat Model
	Symmetria Design Overview
	Query Optimizations
	Expression re-writing
	Operation pipelining
	Pre-computing PRNs 
	Plaintext multiplication


	Implementation
	Encryption Schemes
	Trusted Client
	Untrusted Cloud

	Evaluation
	Evaluation Setup
	Scheme Expressiveness
	Operation Execution Times
	Effect of Non-Compactness
	Encryption Overhead
	End-to-End Execution Latency

	Conclusions and Future Work
	Acknowledgments
	References

