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ABSTRACT
TPC-H continues to be the most widely used benchmark
for relational OLAP systems. It poses a number of chal-
lenges, also known as “choke points”, which database sys-
tems have to solve in order to achieve good benchmark re-
sults. Examples include joins across multiple tables, corre-
lated subqueries, and correlations within the TPC-H data
set. Knowing the impact of such optimizations helps in de-
veloping optimizers as well as in interpreting TPC-H results
across database systems.

This paper provides a systematic analysis of choke points
and their optimizations. It complements previous work on
TPC-H choke points by providing a quantitative discus-
sion of their relevance. It focuses on eleven choke points
where the optimizations are beneficial independently of the
database system. Of these, the flattening of subqueries and
the placement of predicates have the biggest impact. Three
queries (Q2, Q17, and Q21) are strongly influenced by the
choice of an efficient query plan; three others (Q1, Q13, and
Q18) are less influenced by plan optimizations and more de-
pendent on an efficient execution engine.
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1. MOTIVATION
TPC-H continues to be relevant for the evaluation of rela-

tional database systems. Hundreds of papers reference the
benchmark each year. It is more widely discussed than its
successor, TPC-DS, as shown in Figure 1. This is despite of
its shortcomings, such as the linear scaling of non-fact tables,
its homogeneous data distribution, the use of 3NF instead
of a star schema layout (which is more typical for this type
of analytical workloads [35]), or the non-comparability of
its handcrafted queries with the auto-generated queries of
actual workloads [56].
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Figure 1: Number of publications indexed on
Google Scholar referencing “TPC-H”, “TPC-DS”,
or “TPCx-HS”, starting with the year of the bench-
mark’s publication. In the nine years after being
published (1999-2007), TPC-H was referenced in
1 633 publications, while TPC-DS was only refer-
enced 1 094 times in the respective nine-year frame.

While TPC-H was originally designed to compare database
systems end-to-end, researchers also use it to benchmark
implementation details and algorithms. Higher throughput
numbers are taken as “proof” that the chosen approach is
better. This may be true when all other components are
identical, but more often than not, comparisons use differ-
ent database systems and better throughput numbers are
(at least implicitly) taken as support for the presented ap-
proach. In this case, the influence of other optimizations
that differ between the systems is often underestimated [46].

For example, when looking at the performance of our re-
search DBMS Hyrise on TPC-H Q6, Hyrise is almost seven
times faster than MonetDB. As Q6 is scan-heavy, one might
argue that Hyrise is better at scanning. However, that per-
formance benefit is achieved by an optimization that avoids
access to 82% of the input data (cf. Section 4.5). Without
this optimization, Hyrise is only 1.8× faster. While the for-
mer comparison might be more interesting from a marketing
perspective, we consider the latter to be more accurate when
discussing the performance of a scan-heavy query.

To allow for a better comparison of TPC-H results be-
tween systems, we believe that a discussion of these opti-
mizations should be part of their evaluation. In 2013, Boncz,
Neumann, and Erling presented an analysis of the “choke
points” within TPC-H, i.e., of the challenges a DBMS needs
to address to efficiently execute the benchmark [11]. They
define choke points to be the “technological challenges un-
derlying a benchmark, whose resolution will significantly im-
prove the performance of a product”. For TPC-H, 28 choke
points were identified and grouped into challenges for the
aggregate and join operators, the locality of data accesses,
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the evaluation of expressions, the handling of correlated sub-
queries, and the parallel execution of the benchmarks.

Their work serves as an excellent reference when describ-
ing the different optimizations made in a given DBMS. While
the choke points were described in great detail, no bench-
mark numbers were given, making it difficult to estimate
their impact. This paper provides such a quantitative eval-
uation. For new database systems, this knowledge helps in
deciding which choke points to focus on first. While a full-
fledged commercial DBMS cannot forgo any of these opti-
mizations, developers of purpose-built research systems of-
ten have to focus their resources. Knowing the relevance
of different optimizations enables a more educated priori-
tization. Furthermore, when comparing different systems,
knowing how much an optimization or the lack thereof af-
fects the final results helps in comparing the systems. Fi-
nally, a quantification of the choke points enables benchmark
designers to compare their relevance to real-world workloads
and adapt the benchmarks accordingly.

With this paper, we make the following contributions:
(1) For eleven choke points, we provide analyses of their
impact. We focus on choke points that optimize the query
plan on a logical level and, as such, can be studied mostly
independently of the execution engine and the scheduling
model. The analyses show that three choke points have an
impact of one order of magnitude or more for affected queries
while for two others even the biggest impact is 25% or less.
(2) We share our experiences when implementing these opti-
mizations and provide pointers into open-source code both
as a reference for their implementation and to enable the
reproduction of our results. (3) We describe optimizations
that have not yet been listed as TPC-H choke points, namely
semi join reductions and between compositions.

This paper is organized as follows: In Section 2, we clas-
sify the choke points depending on which step of the query
execution is affected. Our experimental setup is described
in Section 3, where we describe Hyrise as the DBMS being
used in this evaluation, compare its performance to other
database systems, and describe the methodology with which
we isolate and evaluate the choke points. The evaluation is
split into Section 4, which covers the choke points that affect
the structure of the query plan, and Section 5, where logical
choke points within the operators are covered. In Section 6,
we compare the relative impact of all choke points and share
our learnings from implementing the related optimizations.
Related work covering the areas of TPC-H optimizations
and benchmarks outside of TPC-H is discussed in Section 7.

2. CHOKE POINT CATEGORIZATION
We group the choke points into three categories: First,

plan-level choke points affect the cardinalities of the inter-
mediary tables early on. This includes join ordering, pred-
icate pushdown and ordering, as well as the flattening of
subqueries. The cardinality reductions achieved by these
optimizations are on the logical/relational level.

Second, logical operator choke points are those that affect
the plan on the level of a single operator. While the input
and output cardinalities of the operator remain unchanged,
its logical efficiency is improved. An optimization in this
group is to remove group-by columns that are functionally
dependent on other group-by columns. Doing so reduces the
logical complexity of the aggregate.

Finally, for implementation-specific choke points, the query
plan is unchanged, but the physical efficiency of operators
is improved. An example of this is to add bloom filters to
joins or to replace the regular expressions used for LIKE ex-
pressions with a more efficient Boyer-Moore matcher.

We focus on the logical optimizations, i.e., the first two
groups, as these are more comparable across database sys-
tems. Hyrise also addresses choke points on the operator
level and uses optimizations such as SIMD, compressed exe-
cution, and bloom filters. These are enabled throughout all
experiments but not discussed in this paper.

All systems profit from accessing fewer tuples, indepen-
dently of whether the system is row- or column-oriented, in-
memory or disk-based. For columnar in-memory systems,
the absolute numbers are expected to be similar to ours.
In the case of disk- and row-based systems, optimizations
at the early stages of a plan, such as physical access avoid-
ance, that reduce the number of tuples read from disk, are
expected to have a bigger impact.

Our grouping differs from that used in Boncz et al. in that
we use the scope of the choke point (plan-level or operator-
level) and the difference between logical or physical opti-
mizations as the primary criteria, while they group their
choke points by the affected operator(s). A mapping be-
tween the choke point categorizations is given in Table 3.

3. EXPERIMENTAL SETUP
Our evaluation is based on the research DBMS Hyrise [17].

We chose this system because we are deeply familiar with it
and know where to turn off specific optimizations as well as
how doing so affects other components. As such, it allows us
to perform more in-depth analyses than a high-level compar-
ison of different database systems would. In this section, we
give an introduction to the architecture of Hyrise, limited to
the key points that become relevant in the remainder of the
paper. For a more detailed explanation of Hyrise, we refer to
our previous work [17]. We then benchmark Hyrise against
other in-memory database systems. We show that the base-
line performance is comparable, which gives us the confi-
dence that the choke point analyses are not weakened by
fundamental performance bottlenecks. Finally, we describe
the methodology with which the choke points are evaluated.

3.1 Characterization of Hyrise
Hyrise1 is a columnar in-memory DBMS that serves as a

platform for research projects [6, 22, 50] in the area of enter-
prise data management. One of the common goals of these
is to evaluate new concepts in an actual DBMS. As such,
we are spending significant time building a system that can
execute both the most common benchmarks as well as en-
terprise workloads [7]. We do not rely on hand-optimized
query plans tailored to TPC-H, but make sure that the op-
timizations presented here also apply outside of TPC-H.

Tables are horizontally partitioned into chunks that hold
100 000 rows. We have experimentally determined this num-
ber to be efficient for TPC-H [17]. Chunks serve as a unit
for parallelization, compression, and have their own statis-
tics. In that, the best comparison would be to HyPer’s
morsels [28], which are also partitions of the table data
based on the number of rows and are used for dynamic place-
ment and parallelization. Interestingly, the optimal size for

1C++ code at https://github.com/hyrise/hyrise
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morsels was also determined to be 100 000. In Hyrise, a
chunk holds one segment per column of the table. As a
result, all tables are stored in a column-oriented fashion.
These segments can be compressed using the dictionary, run-
length, LZ4, and frame of reference compression schemes. In
this paper, dictionary encoding is used.

The translation from SQL to operator plans follows a com-
mon pattern: SQL strings are parsed using our flex/bison-
based SQL parser2. The parsing result is translated into a
logical query plan (LQP), which is then transformed by the
optimizer. Next, the LQP is translated into a physical query
plan (PQP), which contains the actual operators.

Optimizations convert the LQP from one consistent state
into a more efficient one. Some optimizations are exclu-
sively rule-based, such as the one-time calculation of con-
stant arithmetic expressions. Others are cardinality-based,
such as the join ordering algorithm. For this, histograms
with bins of equal distinct counts (on a table level) and
MinMax filters (on a chunk level, cf. [31]) are used.

Operators are executed one table at a time. With the
exception of aggregates and projections, they produce posi-
tion lists, which are indirections into the original table [1].
We will shortly discuss the operators that are most rele-
vant for TPC-H: Table scans are vectorized using AVX-512
for a faster generation of the resulting position lists. Pro-
jections calculate results by interpreting the expression tree
on materialized inputs. For joins, Hyrise uses a single-pass
radix-partitioned hash join (cf. [10]). While a sort-merge
based join operator exists, the implementation of the hash
join is more efficient. The sort operator uses a stable sort al-
gorithm and does multiple passes for sorting a table on mul-
tiple columns. Similar to the join, the evaluations in this
paper use only a hash-based aggregate operator. Finally,
Hyrise follows the insert-only principle where rows are never
updated, only invalidated and re-inserted with new values.
The MVCC validate operator is responsible for removing
rows that are invisible to the current transaction [51, 57].

The relative cost of these operators is visualized in Fig-
ure 2. For each query, the time spent in the respective op-
erator is tracked and plotted as a percentage of the entire
execution time. Operators that take less than 1% of the

2https://github.com/hyrise/sql-parser
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Figure 2: Relative time spent in the different op-
erators. UnionPositions is an operator that unifies
the results from disjunctive predicates. The table
scan is over-represented in Q11 and Q22, as it in-
cludes the cost of evaluating a subquery that was
intentionally not flattened.

queries’ execution time are excluded. This hides five opera-
tors that do not contribute significantly to the run time. For
this reason, not all bars add up to 100%. The right-most
bar represents the arithmetic mean of their relative costs
across all executions, meaning that all queries are weighted
the same, independently of their absolute execution time.

3.2 Preliminary Evaluation
In this paper, we aim at neutrally evaluating the bene-

fits and drawbacks of certain TPC-H optimizations. At the
same time, we believe that this evaluation is only meaning-
ful if the test system has a reasonable baseline performance.
For Figure 3, we compared Hyrise to four other systems.
DuckDB [47], MonetDB [9] and Umbra [38] were evaluated
on our own hardware. The numbers for HyPer [25], which
is not open-source, were taken from the Flare paper [19],
but were measured on comparable hardware. Umbra, the
SSD-enabled “evolution of HyPer”, was benchmarked us-
ing a pre-release prototype and the included TPC-H demo
script. The benchmarks on MonetDB were executed using
their provided tpch-scripts3. For DuckDB, we used the in-
cluded benchmark, which was slightly modified to allow for
a scale factor of 10. These systems were chosen not as di-
rect competitors but because of their active development,
the variety of chosen approaches, and the ease of obtain-
ing TPC-H numbers. Single-threaded execution is not the
default mode for most systems and these results cannot be
used to establish a ranking.

The partition pruning (cf. Section 4.5) in Hyrise allows it
to skip more than 80% of the data in Q6 and Q20, making it
the fastest DBMS for those queries. On the other hand, the
hash-based aggregate operator in Hyrise is relatively slow,
leading to the worst result across all systems in Q1 and Q18.

3.3 Methodology
For all choke points, we modified Hyrise and removed the

optimizations in question. Depending on the choke point,
this was achieved by removing a plan optimization or re-
moving optimizing code within an operator. We have then
re-executed the benchmark. The throughput difference be-
tween the binaries with and without optimizations is re-
ported as the optimization’s benefit. Optimizations that
were unrelated to the choke point were left in place. In
some cases, optimizations are dependent on each other and
the lack of one optimization might make a different opti-
mization cause performance regressions. In these cases, we
temporarily disabled the following optimizations, too.

For the aforementioned groups of choke points, the impact
of cardinality-reducing optimizations is independent of the
degree of parallelism. For example, the cardinality-reducing
effects of a join ordering algorithm are independent of the
number of threads and the effort required of the join will be
the same. However, parallelism introduces a number of ad-
ditional influence factors: The hardware (more specifically,
the number of CPU cores and the NUMA layout) becomes
more important, the number of parallel query streams ei-
ther favors inter- or intra-query parallelism, and orthogonal
optimizations such as scan and join sharing [24] become rele-
vant. In the interest of an in-depth discussion of the selected
choke points, these dimensions are excluded from the scope
of this paper. We thus limit the evaluation to choke points
that apply to single- and multi-threaded executions alike.

3https://github.com/MonetDBSolutions/tpch-scripts
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
Hyper 498 47 969 725 821 207 804 467 1,782 846 111 460 3,307 283 227 1,112 485 3,061 1,666 345 1,347 177
Umbra 1,258 119 676 629 536 196 665 435 1,938 574 116 617 2,645 229 245 653 301 1,538 1,216 247 1,386 477
MonetDB 7,488 31 816 1,185 1,505 372 1,965 1,136 1,252 708 74 786 2,970 258 259 403 23 1,054 765 560 3,535 605
DuckDB 4,874 2,083 2,080 2,283 2,533 723 4,832 2,217 32,681 3,377 241 2,363 4,466 887 1,232 925 3,837 10,039 2,807 1,192 7,452 939
Hyrise 13,559 57 1,719 1,796 3,579 50 1,404 1,078 9,740 4,496 173 882 6,388 282 113 1,318 894 13,628 642 282 11,104 794
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Figure 3: TPC-H query execution time in milliseconds compared across different database systems. Single-
threaded, SF 10. For HyPer, which is not available publicly, numbers are taken from Essertel et al. [19].
Umbra, MonetDB, DuckDB, and Hyrise were measured using TPC-H benchmark facilities as provided by
their respective authors on hardware that is comparable to that used for the HyPer benchmarks.

The system used is a 2017 Fujitsu Primergy RX4770 M4
with four Xeon 8180 CPUs (2.5 GHz base, 3.8 GHz turbo,
28 physical cores). Benchmarks were bound to a single node
using numactl -N 0 -m 0. Each NUMA node has 512 GB
of DDR4-2666 memory, distributed over 8 DIMMs. This
results in a combined read/write throughput of 20 553.32
MB/s for a single core and a 2:1 read/write ratio. Hyrise
was compiled with GCC 9.24 and -O3 -march=native.

TPC-H was executed using the hyriseBenchmarkTPCH bi-
nary, which automatically generates the data and the queries,
executes the benchmark, and stores the results. To mea-
sure the impact of optimizations on individual queries, the
queries were executed for 60 seconds each, after which the
last run was allowed to finish. We report how the number of
queries executed in that time frame has changed as a result
of the optimization. The used scale factor was 10. For larger
scale factors, disabling optimizations such as subquery flat-
tening or predicate pushdown results in execution times of
more than an hour for a single execution of a single query.

In Hyrise, the discussed optimizations have to be disabled
in the source code. For each experiment, patch files were
applied to the Hyrise source code. These are provided as
a starting point for reproduction and exploring the opti-
mizations’ implementation5. Instructions for compilation,
execution, and visualization are included.

4. PLAN-LEVEL CHOKE POINTS
The first group of choke points contains those that af-

fect the entire query plan by reducing the cardinalities early
on. These are beneficial for all systems, as an operator that
has to work on fewer rows will be faster than one working
on a high number of rows, even if the latter is better opti-
mized. We start with the order of joins in the query plan, as
changing this order is one of the most significant structural
changes to the entire plan. Next, we look at the position
and order of single-table predicates and show how pushing
these further down the query plan improves performance.

4For Hyrise, GCC performs consistently better than clang;
GCC 9.2 binaries have a TPC-H throughput that is 11%
higher than that of clang 9.
5https://github.com/hyrise/tpch_paper

After that, we discuss how clustering the data does not only
help with executing these predicates faster, but also allows
for entire partitions to be pruned, which reduces the cardi-
nality of a table even before the first operator is executed.
Next, we look at how the twelve queries that use subqueries
can be reformulated to use a more efficient query plan. Fi-
nally, we look how reusing results across query plans and
across query executions affects the TPC-H performance.

4.1 Join Ordering
All but two queries (Qs 1 and 6) operate on multiple tables

and most queries operate on three tables or more. In most
cases, join predicates are not explicitly stated as t1 JOIN

t2 ON ..., but implicitly as FROM t1, t2 WHERE t1.a =

t2.a. The first responsibility of a join ordering algorithm
is to match unpredicated cross joins and their predicates.
Without this step, only seven of the 20 join queries, which
would otherwise run in the scale of milliseconds, finish within
a minute (Qs 4, 13, 15, 18, 20, 21, and 22). The other
14 queries are virtually unexecutable. As such, we do not
consider join predicate matching an optimization, but an
indispensable feature. It is not part of our evaluation.

The second responsibility of the join ordering algorithm is
to determine the order in which tables are joined. Both steps
can be handled by a join ordering algorithm that transforms
the LQP to a join graph [42], performs the join ordering on
that graph, and rebuilds an optimized LQP.

For the experiment in Figure 4, three join orders are com-
pared. The baseline is the join order as defined by the SQL
query. The two bars show the improvement of the dynamic

-50% 0% 50%

Q02
Q05
Q07
Q11

. (1)
76%

(2)
77%

45% 43%
-4% -67%
52% 51%

Figure 4: Benefit of (1) DPccp and (2) greedy join
ordering compared to the order as defined in the
original SQL queries. Queries with a change <10%
are omitted in this and following graphs.
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programming-based DPccp [32] and a bottom-up greedy join
ordering algorithm [20]. Three queries (Qs 2, 5, and 11) are
improved significantly. Q7 is the only query where DPccp
and the greedy algorithm produce a different join order. The
greedy algorithm joins the unfiltered customers and orders
table, destroying the join order that was initially optimal.
DPccp first reduces the size of the customers table by joining
it with the nation table and reducing the list of customers
to those from the two queried nations. This is equivalent to
the initial order; the performance hit of 4% is thus caused
by the cost of join ordering itself.

Neumann et al. found that the difference between the
worst and best execution time of Q5 is more than a factor
of 100 [37]. When executing Q5 with an inverse-greedy join
ordering (i.e., picking the two biggest tables first), Hyrise ran
out of memory, as it did for Q7. As such, we can validate this
finding. All other queries were not affected as significantly.

While some workloads, such as TPC-DS, require sophis-
ticated join ordering algorithms and complex statistics, we
find that a greedy join ordering algorithm and very simple
(min/max/count/distinct count) statistics are sufficient for
all but Q7. For implementors in the early phase of devel-
opment, we thus suggest to focus the development effort on
other optimizations before starting to implement more com-
plex join ordering algorithms such as DPccp.

4.2 Predicate Pushdown and Ordering
A primary goal of query optimization is to reduce car-

dinalities as early as possible. The easiest way to achieve
this is to execute the most selective predicates first. This
consists of two steps that operate on a plan where conjunc-
tive predicates have already been separated: First, Predi-
cate Pushdown moves predicates past joins, aggregates, and
projections. Hyrise uses a recursive implementation, which
starts at the top of the LQP, removes predicates from the
query plan as they are encountered and re-inserts them once
they cannot be pushed any further. Second, for Predicate
Ordering, multiple predicates that share a common final po-
sition are reordered with regards to their selectivity so that
the most restrictive predicate is executed first. To estimate
these costs, Hyrise uses the columns’ histograms. More so-
phisticated algorithms might also take the execution time of
the predicate itself into account, which might be affected by
the data type of the scanned column, the length of string
columns, or the column’s compression method.

While database systems that compile multiple successive
predicates on different columns into a single operator do not
need to materialize their intermediary results [18], they still
benefit from evaluating the most restrictive predicate first.
This is because they can use short-circuit evaluation and
skip the load of the values from the other columns.

For Figure 5, the baseline is a query plan where all pred-
icates are executed at their original position in the SQL
query. Joins operate on unfiltered tables and aggregates cal-
culate groups that are later excluded from the result. Sub-
queries are flattened (Section 4.7) but not reordered. The
first bar shows the effect of predicate pushdown, the second
bar that of both predicate pushdown and reordering.

Most queries profit from a better predicate placement. In
extreme cases, predicate pushdown reduces cardinalities by
orders of magnitude. In Q14, the predicate on l_shipdate

removes more than 98% of the rows in the lineitem table,
which is then joined with the unfiltered part table.

0% 2000% 4000% 6000%

Q02
Q03
Q05
Q06
Q07
Q08
Q09
Q10
Q11
Q12
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22

. (1)
359%

(2)
361%

964% 999%
734% 715%

6% 170%
2386% 2427%
6378% 6542%
1021% 1025%
575% 559%
373% 223%

1843% 1893%
4207% 4297%

8% 21%
111% 79%
101% 103%
81% 84%

3547% 7368%
534% 576%
281% -13%

8% 25%

Figure 5: Benefits of (1) Predicate Pushdown and
(2) Predicate Ordering.

For TPC-H, predicate pushdown can be done entirely rule-
based, without any statistics being required. As such, it is
among the first optimizations that should be implemented.

4.3 Between Composition
In Q19, a range predicate on l_quantity is expressed us-

ing >= and <= predicates. Qs 4, 5, 6, 10, 12, 14, and 15
filter by a date range using >= and < predicates. This is
unavoidable as SQL only supports inclusive between predi-
cates. Identifying these cases and rewriting them into left- or
right-exclusive between predicates helps with optimization.
For example, o_orderdate >= ’[DATE]’ AND o_orderdate

< ’[DATE]’ + ’1’ year in Q5 can be rewritten into [date

, date + 1 year) (left inclusive, right exclusive).

0% 20% 40% 60%

Q14
Q15

.
13%
66%

Figure 6: Qs 14 and 15 profit from rewriting lower
and upper bounds into a single range predicate.

The DBMS can benefit from this optimization in two
ways. First, for database systems that produce interme-
diary results after each operator, this step can be avoided if
one operator is executed instead of two. Second, the com-
bined predicate will likely be more restrictive than the two
individual predicates. As such, it will be placed lower in the
query plan, reducing the cardinality earlier.

Figure 6 shows that only Qs 14 and 15 profit noticeably.
In the other queries, the between predicate comes too late
in the query plan to still make a noticeable difference.

4.4 Join-Dependent Predicate Duplication
Two queries, Q7 and Q19, include predicates that operate

on multiple tables without being a join predicate. In Q17,
(n1.name = ’NATION1’ AND n2.name = ’NATION2’)OR

(n1.name = ’NATION2’ AND n2.name = ’NATION1’) uses
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n1 and n2 and thus cannot be pushed below the join. This
means that the join is first performed on all input rows even
though only rows that belong to two of 25 nations can qual-
ify. By extracting the condition n_name = ’NATION1’ OR

n_name = ’NATION2’ and adding it to both inputs of the
join, the input cardinality, and thus, the cost of the join can
be reduced. This is not a predicate pushdown as the original
predicate is still needed after the join to reject tuples where
both nation names are identical. Figure 7 shows the results
of this optimization for both affected queries.

0% 200% 400% 600%

Q07
Q19

.
673%
12%

Figure 7: In Qs 7 and 19, additional predicates
should be created to filter input tables before they
reach the join.

It makes sense to make this optimization part of the pred-
icate pushdown, even if it does not actually perform a push-
down. This is so that (a) predicates that cannot be pushed
down below a join can be identified together with the corre-
sponding join and (b) the newly created, additional predi-
cates can be part of the pushdown on the join’s input sides.

4.5 Physical Locality
The lineitem table is filtered by its l_shipdate attribute

in seven out of 22 queries, more than on any other attribute.
Similarly, the orders table is filtered on the o_orderdate at-
tribute in five queries. Clustering the tables on these at-
tributes enables the scan to use a binary search instead of a
linear search, reducing the logical cost of the scan. At the
same time, the clustering can be used to reduce the cardinal-
ity even before the scan: Ranges of the tables where no tuple
qualifies can be identified and skipped entirely. This can be
based on partition criteria, range-based statistics (e.g., small
materialized aggregates [31], zone maps [58]), or, in the case
of Hyrise, MinMax statistics on the chunk level. l_shipdate
contains values within an 83-month frame. For Q6, which
selects line items that were shipped within a twelve-month
frame, clustering allows to exclude up to 85% of the data
without touching a single row.

For Figure 8, the data as generated by tpch-dbgen serves
as the baseline. Three comparative benchmarks were ex-
ecuted. First, the lineitem and orders tables were shuf-
fled, making sure that not even the default order can be
exploited. Second, the tables were clustered by l_shipdate

and o_orderdate, but the DBMS could not exploit this in-
formation, meaning that partition pruning and early exits
in operators were disabled. Third, the same clustering was
used and the DBMS was allowed to use partition pruning6.

Compared to the original order, shuffling the data (first
bar) has a negative impact of 10% or more on twelve queries.
This is because the data as generated by tpch-dbgen is not
in a random order, but sorted by the primary key. This
is beneficial for joins, as it either reduces the cost of the
sort phase (for sort-based joins) or improves the physical
locality (i.e., the number of DRAM cache hits) of the hash
table lookups (for hash-based joins).

6In all cases, we exclude the detection of correlations, which
will be described as the following choke point.
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Figure 8: Performance impact of different cluster-
ing attributes with and without access avoidance.
The baseline uses the tables as generated by tpch-
dbgen. The tables lineitem and orders are (1) shuf-
fled, (2) clustered by l_shipdate and o_orderdate

without exposing that information to the DBMS,
and (3) clustered with exposing the information, en-
abling access avoidance and sorted scans.

Clustering the data (second bar) without allowing the
DBMS to make use of this fact has an ambivalent effect.
Most notably, in Q18, the unfiltered group-by on l_orderkey

suffers from reduced physical access locality. On the other
hand, queries that filter on l_shipdate profit from the clus-
tering even if it is not exposed to the DBMS. This is because
of better CPU cache locality and a lower ratio of branch mis-
predictions [49]. Across all queries, the effects even out.

Once the DBMS is allowed to take the clustering into ac-
count (third bar), the benefits of physical locality and access
avoidance outweigh the reduced join and aggregate perfor-
mance. Excluding 85% of data in Q6 more than triples its
throughput. This is especially notable as join and aggre-
gate operations are the biggest cost factor for Hyrise when
executing TPC-H (cf. Figure 2).

When compared to similar evaluations [26, 30], Hyrise
spends less time on the scans (where partition pruning saves
it from performing the actual scan) and projections, but
disproportionately much on joins and aggregates. This is
caused by the implementation of these operators material-
izing more data than necessary.

4.6 Correlated Columns
Clustering the lineitem table on l_shipdate does not only

improve accesses on that column, but also helps in exploit-
ing correlations between columns. For example, the val-
ues in l_shipdate and l_receiptdate are always apart by
a maximum of 30 days. When the table is clustered by
l_shipdate, the first segment holds values from 1992-01-02

to 1992-04-08. Because of the relationship between the two
columns, l_receiptdate is now between 1992-01-04 and
1992-05-08 (which is the highest ship date plus 30 days).
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Figure 9: Allowing the DBMS to exploit the cor-
relation between a clustered and an unclustered
column improves the performance of predicates on
l_receiptdate and l_returnflag.

Table 1: Pruning ratios based on a chunk size of
100 000 rows. Numbers vary slightly depending on
the random query parameters.

Q lineitem orders Q lineitem orders Q lineitem orders

1 3 / 600 n/a 9 0 / 600 0 / 150 17 0 / 600 n/a
2 n/a n/a 10 300 / 600 143 / 150 18 0 / 600 0 / 150
3 277 / 600 76 / 150 11 0 / 600 0 / 150 19 0 / 600 n/a
4 0 / 600 143 / 150 12 501 / 600 0 / 150 20 508 / 600 n/a
5 0 / 600 126 / 150 13 n/a n/a 21 0 / 600 71 / 150
6 508 / 600 n/a 14 591 / 600 n/a 22 n/a 0 / 150
7 417 / 600 0 / 150 15 576 / 600 n/a
8 0 / 600 104 / 150 16 n/a n/a avg 205 / 600 55 / 150

Scans that probe only for values outside of that range may
skip the first chunk. Note that this is possible even though
the table is not explicitly clustered by l_receiptdate.

While the TPC-H specification prohibits giving that knowl-
edge explicitly to the database, the DBMS is allowed to iden-
tify these correlations and exploit them. This enables the
system to propagate pruning information from one column
to another. In Hyrise, this information is retrieved from the
respective segment’s MinMax statistics.

An additional correlation exists between l_shipdate and
l_returnflag. The return flag is defined to be randomly
’R’ or ’A’ if l_receiptdate <= ’1995-06-17’ and ’N’ oth-
erwise. As the range of potential receipt dates is corre-
lated with the range of ship dates within a chunk, this
means that for chunks where l_shipdate > ’1995-06-18’,
a search for l_returnflag = ’R’ will return no results. The
effect of this can be seen in Q10, where accesses to half of the
lineitem table can be avoided. The columns o_orderstatus
and l_linestatus are correlated with the clustered date

columns, but not used by the queries in a way where the
DBMS can profit from this correlation.

We have shown the benefits of clustering and access avoid-
ance in Section 4.5. For the previous choke point, we have
explicitly prohibited the DBMS from exploiting pruning in-
formation on columns without an explicit clustering. Fig-
ure 9 shows that removing this restriction has a notable
positive impact on Q10 (which filters on l_returnflag) and
Q12 (which filters on l_receiptdate).

Summarizing the last two choke points, TPC-H is ex-
tremely amenable for range-based access avoidance. On av-
erage, when a query accesses the lineitem or orders table, a
third of data in that table does not have to be accessed, see
Table 1. These results match those found by Nica et al. [41].
This is a pattern that also occurs in real-world workloads.
Naturally, the dates of orders and their shipping date will
be increasing during the lifetime of the database and both
transactional and analytical workloads tend to access recent
data more frequently. We have witnessed this in the ERP
system of a Global 2000 system [7]. SAP has even reported
an improvement of 2 to 3 orders of magnitude reached by
using partition pruning on a central finance system [41].

Recently, it has been suggested that these correlations
can also be exploited across joins [43]. After local partition
pruning, the statistics of the pruned partitions can be used
to create a new predicate over the join columns, which is
then pushed across the join. The authors claim that for half
of the queries, a third of all data accesses can be avoided.

From a benchmarking perspective, we question the miss-
ing correlation between the primary keys and the dates.
For us, it seems plausible that orders are entered into the
database roughly in the order of their order date. As such,
auto-generated primary keys can reasonably be expected to
be in increasing order, too. This would save benchmark im-
plementors from having to choose between exploiting phys-
ical locality in the joins or in the predicates.

4.7 Flattening Subqueries
Six TPC-H queries use correlated subqueries (Qs 2, 4, 17,

20, 21, 22). The easiest way to implement these is to fol-
low the semantics of this language construct: “Each <sub-
query> in the <search condition> is effectively executed
for each row of T and the results used in the application
of the <search condition> to the given row of T. If any
executed <subquery> contains an outer reference to a col-
umn of T, then the reference is to the value of that column
in the given row of T.” [2, page 7.6]. In fact, we found it
helpful to implement this approach first and gradually work
towards more effective query plans. One of the most com-
mon approaches to improve these subqueries is to remove
the comparisons with outer values from the subquery, which
causes the subquery to return a table containing the values
for all instances of these outer values. This table is then
joined onto the outer table using the previously removed
predicates as the join conditions. Neumann et al. call this
“Simple Unnesting” [39]. The approach applies to (NOT) IN

and (NOT) EXISTS as well as scalar subqueries and differs
only in the selection of the join predicate. Additionally, it
can be used to flatten (NOT) IN expressions that operate on
uncorrelated subqueries (cf. Section 5.2).

An optimization that we recently became aware of and
that is not yet implemented in Hyrise is the coalescence
of different subquery types [4], which would apply to Q21.
Other subquery flattening approaches can cover additional
quantifiers such as ALL queries [23] or cases where the cor-
related attribute is not immediately available in the outer
query [39] but were not found to be necessary for TPC-H.

This is the choke point with the biggest impact. For six
queries, it reduces the runtime by two orders of magnitude
or more as shown in Figure 10. Qs 2, 17, and 20 profit from

0% 200000% 400000% 600000% 800000%
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.
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13%
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27907%

Figure 10: Flattening all correlated subqueries is
one of the most important optimizations, as it keeps
the DBMS from having to execute the subquery
once per input row. Its impact is dependent on the
cardinality of the outer relation.
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correlated scalar subqueries being flattened while Qs 4, 21,
and 22 use correlated (NOT) EXISTS subqueries. In Q18, the
benefit comes from replacing an uncorrelated IN expression
with a join. While Q15 does not have a correlated subquery,
flattening the scalar subquery enables the optimizer to reuse
subplans (cf. Section 4.9).

4.8 Semi Join Reduction
Part of flattening the subqueries was to remove the cor-

related predicate from the subquery. In Q17, this means
that 0.2 * AVG(l_quantity), which was previously calcu-
lated once for each of the part × lineitem combinations that
qualified on p_brand and p_container predicates, is now
calculated on the entire lineitem table. Of the resulting
rows, less than a percent is used.

The goal of the optimizer should be that the average quan-
tity is calculated only for those partkeys that are relevant
for the following join. For this, the Hyrise optimizer adds
a semi join [5] in front of the aggregate and removes all
lineitem rows that will not find a join partner in the follow-
ing join. This is visualized in Figure 11.

Stocket et al. describe these semi join reductions as fol-
lows: “[A]pply join predicates early in a plan in order to
reduce the size of intermediate query results and, thus, re-
duce the cost of other operations. In other words, [...] ap-
ply the same join predicates twice or more often in a query
plan” [54]. This plan-level optimization is orthogonal to
join optimizations in the execution engine, such as bloom
filters. We ran experiments that showed that the combina-
tion of semi join reductions and join bloom filters result in a
better performance than the two approaches on their own.
Bloom filters bring their own optimization challenges, such
as choosing an appropriate accuracy, which are outside the
scope of this paper.

In TPC-H, another use case can be found in Q4, which
filters the lineitem table for rows where l_commitdate <

l_receiptdate. This reduces its cardinality by less than
40%. It is then joined with the orders table, which was
filtered on l_orderdate. Less than 5% of the orders qual-
ify. Adding a semi join reduction reduces the input to the
predicate on the lineitem table accordingly.

Figure 12 shows performance improvements for three que-
ries when the tables used in the subquery are filtered based
on external predicates (Qs 2, 17, and 20) as well as two
queries where the cardinality is reduced by removing rows

Flattened Inner Query

lineitem

(cardinalities rounded)

AVG(l_quantity)
GROUP BY l_partkey

JOIN
outer.p_partkey = 

inner.l_partkey

lineitem

JOIN
l_partkey = p_partkey

part

p_container = ‘…’

p_brand = ‘…’

60k lineitems

Flattened Inner Query
lineitem

AVG(l_quantity)
GROUP BY l_partkey

JOIN
outer.p_partkey = 

inner.l_partkey

60M lineitems

lineitem

JOIN
l_partkey = p_partkey

part

p_container = ‘…’

p_brand = ‘…’

60k lineitems

SEMI JOIN REDUCT.
p_partkey = l_partkey

200k quantities 2k quantities

2k parts 2k parts

60k lineitems

5k rows5k rows

60M lineitems

Figure 11: Comparison of the flattened query plan
for Q17 without (left) and with (right) semi join
reductions. The input cardinality for the aggregate
operator is reduced by a factor of 1 000.
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Figure 12: Semi joins remove rows that will not find
a join partner in a later join. Adding them improves
five queries. If they are added to all joins (1), their
selectivity is often insufficient to justify their cost.
Selectively adding them based on cardinality esti-
mations (2) improves the overall results.

that will not qualify for the following join (Qs 4 and 21).
When the semi join reduction is applied indiscriminately
(first bar), nine queries have performance regressions of 10%
or more. When the decision on whether to add a semi join
reduction is based on the input tables’ cardinalities, this
regression is fixed for six queries. The regression for the
remaining queries is not a conceptional issue, but the result
of suboptimal cardinality estimations.

Boncz et al. propose a different approach to reducing the
cardinalities in the inner query: They propagate the pred-
icates from the outer query into the subquery7. For Q17,
this requires adding the filtered part table into the subquery
and joining it with lineitem before the aggregate is calcu-
lated. Similarly, in Q2, the filters on p_size and p_type can
be propagated into the subquery. For the queries affected
by their optimization, Qs 2, 17, and 20, we have manually
rewritten the queries to reflect this second approach and con-
firmed that the performance is indistinguishable from that
achieved when using semi join reductions.

We chose semi join reductions over predicate propagations
for three reasons: First, semi join reductions only require
the addition of a single join on a predicate that has already
been identified when it was extracted from the subquery
before. As such, we found this approach easier to imple-
ment than having to find predicate candidates and identi-
fying joins that need to be duplicated. Second, semi join
reductions can be estimated and pushed down similarly to
a predicate and do not introduce new join ordering issues.
Third, as seen for Q4, they can be applied outside of flat-
tened subqueries, too. However, as seen in the benchmark,
identifying cases where this is beneficial is not trivial.

4.9 Subplan Reuse
In four queries (Qs 2, 11, 15, 17, and 21), the same in-

termediary result is used in the inner and outer query. For
example, Q15 uses the revenue view (which contains the rev-
enue per supplier for a given time frame) both to calculate
the highest revenue achieved and to filter for the supplier(s)

7CP5.2: Moving Predicates into a Subquery
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that achieved this revenue. As the view is dropped after
each execution, it has to be recalculated independently of
how the DBMS implements views. This calculation makes
for more than 80% of Q15s execution cost. Q21 has two
almost identical subqueries on lineitem, which, when flat-
tened, can share their self join with the outer instance of
lineitem. Duplicate subplans also occur outside of an out-
er/inner join relationship. In Q7, two instances of the nation
table are filtered by the same predicates (cf. Section 4.4).

TPC-H makes it relatively easy to identify such reuse
opportunities. In the mentioned cases, the subqueries are
identical and comparing their LQP subtrees recursively is
sufficient. This could already be made more difficult if the
syntactical order of columns in predicates was different in
the outer and inner queries (e.g., p_partkey = ps_partkey

vs. ps_partkey = p_partkey). Furthermore, if one of the
subtrees had an additional predicate, the plans would not be
logically equal anymore. In that case, the optimizer would
have to decide whether pulling that predicate out of the
common subplan (and thereby undoing the predicate push-
down) is justified by the opportunity to reuse the subplan.
If the additional predicate had caused a different join order,
the optimizer would also have had to prove the equivalence
of the two join graphs.

The subplan reuse detection in Hyrise does not detect
all reuse opportunities. The reason for that is a Hyrise-
specific rule, the column pruning rule. It detects columns
that are unused in the query plan and removes them early
on. For the projection, this means that fewer columns have
to be materialized. However, in Q21, one subquery requires
l_receiptdate and l_commitdate, while the other does not.
Enabling subplan reuse for these cases is ongoing work.

For this reason, we present two experiments in Figure 13:
First, we show the improvement of subplan reuse as it is
currently implemented in Hyrise. Second, we disable the
column pruning rule, thus enabling more common subplans
to be detected. The performance regressions seen here are
caused by the unnecessary projections being introduced as
the result of the disabled column pruning and are not in-
dicative of the performance of this optimization.

Boncz et al. also report optimization opportunities for
Q208. We believe that this is due to the predicates dupli-
cated into the inner join. This does not occur in Hyrise, as
it uses a semi join reduction instead (cf. Section 4.8).

For HyPer, it is reported that “decorrelation [cf. Sec-
tion 4.7], selective join push-down [cf. Section 4.4], and

8CP5.3: Overlap between Outer- and subquery
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Figure 13: When joins or predicates occur multiple
times in the logical query plan, they should only be
translated to a single physical operator and should
share its results. In Hyrise, the column pruning rule
hinders the detection in Qs 17 and 21. We show the
performance of subplan reuse with (1) and without
(2) enabled column pruning.

re-use together result in a speedup of a factor 500” [11]. For
Hyrise, we measured a comparable factor of 520.

4.10 Result Reuse
Instead of reusing the result of subplans within a TPC-

H query’s execution plan, a DBMS could also cache entire
results. Some queries have a very limited parameterization
space. Q18, for example, chooses its l quantity parameter
from the integers from the range between 312 and 315. As
such, it would be sufficient to run the query four times and
store the small results in a 7 KB cache. On the other side
of the spectrum, Q16 has 1.6 × 1016 variations and a result
size of 28 232 B, requiring almost 400 EB for a fully popu-
lated cache. In Table 2, we show the required size and the
estimated benefit of such a result cache.

While result caching is a technique employed by various
DBMSs in production, we have not seen it playing any role
in the dissemination of TPC-H results in the research world.
As such, we present the theoretical benefits of such a result
cache only for the sake of completeness.

Table 2: Analysis of TPC-H queries (SF=1) with
regards to their number of parameters, the number
of parameter variations, the size of the validation
result, the size of a fully filled cache, the execution
duration, and the relative benefit (calculated as ex-
ecution duration in µs divided by the size of a fully
filled cache).

Q Params Variations Result Full Cache Execution Benefit

1 1 61 2871 B 171 KB 1,654 s 9,44
2 3 1250 2207 B 2,6 MB 0,113 s 0,04
3 2 155 1836 B 277,9 KB 0,165 s 0,58
4 1 58 1142 B 64,7 KB 0,357 s 5,39
5 2 25 1130 B 27,6 KB 0,234 s 8,28
6 3 80 716 B 55,9 KB 0,010 s 0,17
7 2 600 1693 B 992 KB 0,642 s 0,63
8 2 3750 977 B 3,5 MB 0,193 s 0,05
9 1 92 15622 B 1,4 MB 0,641 s 0,45

10 1 24 7697 B 180,4 KB 0,328 s 1,78
11 1 25 9532 B 232,7 KB 0,040 s 0,17
12 3 210 1185 B 243 KB 0,116 s 0,47
13 1 16 1795 B 28 KB 0,444 s 15,45
14 1 60 721 B 42,2 KB 0,022 s 0,50
15 1 58 1561 B 88,4 KB 0,014 s 0,15
16 1 1.6E16 4.5E20 B 397,6 EB 0,140 s 0,00
17 2 1000 718 B 701,2 KB 0,715 s 1,00
18 1 4 1784 B 7 KB 1,279 s 179,22
19 6 15625000 716 B 10,4 GB 0,117 s 0,00
20 3 11500 972 B 10,7 MB 0,368 s 0,03
21 1 25 921 B 22,5 KB 0,889 s 38,62
22 7 2.4E9 1472 B 3321,3 GB 0,076 s 0,00

5. LOGICAL OPERATOR CHOKE POINTS
The previous optimizations modified the structure of the

query plan to be semantically identical but more efficient.
By reducing cardinalities early, the amount of work for fol-
lowing operators was reduced. The following choke points
differ from the previous group of optimizations in that the
structure of the plan, and thus, the input and output car-
dinalities of all operators remain unchanged. Instead, the
logical properties of a single plan node are changed. This
means that the potential impact of the related choke point
is limited to the cost of those operators. We discuss the re-
moval of functionally dependent group-by columns as well
as different execution strategies for IN predicates.
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5.1 Dependent Group-By Keys
TPC-H uses the SQL-92 standard. It requires output

columns in an aggregated query to either be aggregate func-
tions or part of the group-by definition [2, 7.9 (7)]. As such,
Q10, which “identifies customers who might be having prob-
lems” and returns them by descending revenue, does not
only group on the customer key, which would be sufficient
to identify a customer. Six additional columns, including the
customer’s name and address, are also part of the group-by
clause. Identifying these functional dependencies based on
primary and foreign keys allows reducing the cost of group-
ing in both hash- and sort-based aggregate operators.

This applies to queries 3, 10, and 18. However, only Q10
shows a significant improvement of 24%. Q3 is dominated
by a join between the almost unfiltered lineitem and orders
table. In Q18, two aggregates are calculated: First, SUM

(l_quantity), grouped by l_partkey is calculated on the
unfiltered lineitem table. Only later, a second aggregate
contains functionally dependent columns from lineitem and
customer. For SF 10, this aggregate operates on less than
1 000 rows, depending on the random parameters.

SQL-99 changed the syntax rules for a query specifica-
tion to allow not only group-by columns, but also addi-
tional columns that are functionally dependent on these [3,
7.11 (13)]. Given that database systems like Oracle 11g do
not support this syntax and still require all non-aggregate
columns to be included in the group-by list, this pattern is
still in use and this optimization continues to be relevant.

This optimization can be extended to include cases where
the primary key is not present. Queries 5, 7, 9, and 10
group on n_name, Q21 groups on s_name. Both columns
are non-null and unique9. Replacing GROUP BY s_name with
s_suppkey would change the column type from 18 charac-
ters to a simple integer. However, as Figure 2 shows, the
relative importance of the aggregate is low in these queries.
In Q10, the only query where it has a share of 20%, this op-
timization does not bring a noticeable performance benefit
as the nation table holds only 25 records. While we see ben-
efits of this in other workloads, this extension is presented
as a negative result in the context of TPC-H.

5.2 Large IN Clauses
TPC-H uses IN clauses with constant elements in Qs 12

(2 elements), 16 (8 elements), 19 (2 and 4 elements), and
22 (7 elements). In a DBMS that does not use just-in-time
compilation, there are three ways to evaluate this type of IN
expression. The first is to use an interpretative expression
evaluator, which handles arbitrarily complex and nested ex-
pressions (e.g., x IN (1, 2.1, 3 + a)). While this is the
most flexible approach, it requires two nested loops, check-
ing for each input value whether it is contained in the list
of IN values. It also comes with the interpretative cost in-
curred by the flexibility of general-purpose expressions (e.g.,
virtual method calls). The second way is to split IN val-
ues into disjunctive predicates, which are evaluated inde-
pendently. This enables optimizations which can only han-
dle a single predicate, e.g., scans on dictionary-compressed
columns. The results of the disjunction are later merged.
Finally, in the third approach, a semi join hashes the list of

9While explicit unique indexes on these columns are pro-
hibited as per paragraph 1.5.6 of the specification, implicit
knowledge, for example from the cardinality of the columns’
dictionaries, can be used.

IN values and probes the input values. While this allows for
an O(1) probing step, the overhead of the join may outweigh
its benefits. Also, in case of the join, all IN expressions have
to be of the same type.
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Figure 14: Cost of SELECT * FROM lineitem WHERE

l_suppkey IN (...) on SF 1 (6M rows in lineitem)
with a varying length of the IN list using different
evaluation strategies. The shaded ”Auto” line de-
notes the approach chosen by the Hyrise optimizer.

We have conducted an experiment to evaluate the three
approaches using a predicate on the l_suppkey column with
up to 99 values. For up to three values, the disjunctive
strategy outperforms the evaluative approach. At about 30
IN values, the join strategy becomes most advantageous as
the initial costs have been amortized and the hash lookup
becomes faster than the linear search (Figure 14).

Looking at the TPC-H queries, this means that only Qs 12
and 19 benefit from being rewritten into disjunctions. For
the latter, the join and aggregate operators outweigh the
p_type filter and the benefit is only 3.5%. The improvement
in Q12 of 60% is due to the replacement of the interpretative
expression evaluator with a more efficient scan operator for
the scan of the lineitem table.

An interesting finding is that l_shipmode in (’AIR’,

’AIR REG’) in Q19 can be rewritten to l_shipmode =

’AIR’. This is because the TPC-H specification defines
seven different shipping modes [55, 4.2.2.13]. “AIR REG” is
not among them, but “REG AIR” is. An optimizer with ac-
curate statistics containing the values of the table may thus
rewrite the predicate to skip “AIR REG”. This improves
the overall throughput of Q19 by another 12%. We have
found no information on whether this optimization is made
possible by intention or is an error in the specification.

6. LEARNINGS
This section summarizes the experiments from the previ-

ous sections, compares the relevance of the different choke
points and provides insights gained during the implementa-
tion of the optimizations.

6.1 Relevance of Choke Points
In Table 3, we give an overview of all choke points eval-

uated in this paper. For each query, the relative change in
percent is reported. Also, we provide the geometric mean,
which describes the relevance of the choke point for the en-
tire TPC-H benchmark.

Addressing two choke points, namely Predicate Pushdown
and Ordering (Section 4.2) and the flattening of subqueries
(Section 4.7) improves the TPC-H performance by almost
30×. The combined benefit of the remaining optimizations
is less than a factor of 3.
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Table 3: Influence of choke points in percent. Cells for queries that are not affected by a choke point are left
empty, queries where the relative change was less than 10% are marked with * for better readability. The
last column references the respective choke point as described by Boncz et al.
Section, Choke Point Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Mean Boncz

4.1: Join Ordering +76 * * +45 * * * * +52 * * * * * * * * * * * +7 2.3
4.2: Pred. Positioning * +361 +999 * +715 +170 +2427 +6542 +1025 +559 +223 +1893 * +4297 +21 +79 +103 +84 +7368 +576 -13 +25 +396 4.2d
4.3: Between Comp. * * * * +13 +66 * +3 -
4.4: Pred. Duplication +673 +12 +10 4.2b
4.5: Phys. Locality * +52 +13 +15 +335 +32 +13 * * * +26 +90 +124 * -56 * +209 -20 * +21 3.2
4.6: Correl. Columns +13 +10 * +1 3.3
4.7: Flattening Subq. +799134 +446 +93 +29815 +13 +145000 +18591 +27907 +510 5.1
4.8: Semi Join Red. +1255 * +288 -24 * * * -14 * * * +1656 -39 +1773 +604 +62 -
4.9: Subplan Reuse +46 * +92 +73 +32 +9 5.3
5.1: Dependent group-by * +24 * +1 1.4
5.2: Large IN Clauses +60 * * * +2 4.2c

For us, the most surprising finding is the low relevance
of the join ordering algorithm, which only makes for a no-
ticeable difference in three queries. The other surprising
discovery is how uneven the optimization potential is dis-
tributed across the TPC-H queries. In six queries (Qs 2,
4, 17, 20, 21, and 22), flattening subqueries brought an im-
provement of two orders of magnitude or more. This plan
transformation can thus be considered to be the single most
important optimization for TPC-H.

On the other hand, there are four queries in which even
the most significant improvement did not double the per-
formance, namely Qs 1, 13, 16, and 18. For these queries,
performance differences between multiple systems are more
likely to be caused by their runtime performance.

6.2 Implementation
When developing optimizations for TPC-H, developers

have to be aware that SQL features introducing edge cases
are largely missing from TPC-H. With the exception of Q13,
no NULL values and no outer joins occur in TPC-H. Also, all
joins are equi-joins, tempting developers to implement plan
transformations that stop being correct when non-inner or
non-equi joins are added later on. Projects such as sqllog-
ictest from SQLite10 and SQLsmith11 provide comprehen-
sive test suites. The gold standard would be to integrate
automatic validation of query plan transformations [13, 14].

Even when optimizations are correct and beneficial for
TPC-H, this does not necessarily mean that they are bene-
ficial for other benchmarks or real-world applications. Espe-
cially because of the homogeneous data distribution in SQL,
developers should include additional benchmarks, such as
TPC-DS, JCC-H [8], the Join Order Benchmark [29], or a
skewed version of the star schema benchmark [48] and en-
sure that the optimizer can deal with such skewed data. On
the other hand, sophisticated optimizations come with their
own fixed costs that have to be amortized. Due to the ana-
lytical nature of TPC-H, the internal cost of the optimizer
rarely plays a significant role. Developers that optimize not
exclusively for analytical workloads should also run trans-
actional workloads (e.g., TPC-C or -E) with short-running
queries to ensure that the cost of plan optimization does not
dominate that of the execution.

To enable an iterative development process, we found it
vital to minimize the time and number of steps needed for

10https://www.sqlite.org/sqllogictest/doc/trunk/
about.wiki

11https://github.com/anse1/sqlsmith

a single benchmark iteration, thus increasing the develop-
ers’ efficiency. This includes reducing the compile time and
being able to easily execute TPC-H in different configura-
tions (varying scale factors, number of threads, number of
streams, isolated or mixed query execution, ...). Besides our
hyriseBenchmarkTPCH binary, we found DuckDB’s bench-
mark suite to be a good example of this. Ideally, this would
not be the responsibility of the DBMS developers but would
be provided by the benchmark itself [34].

Finally, developers should be aware of external influence
factors to their benchmarks that may influence their bench-
marks. Some factors, such as CPU frequency scaling or
background processes on the system, are well known. Of-
ten these are alleviated through repeated executions of the
same benchmark. However, there are additional influences
that are persistent across multiple executions of the same
benchmark. A code modification in one place may change
the size of the binary, moving parts of a hot loop over page
boundaries and thus affecting the performance in seemingly
unrelated places. Even worse, iterative rebuilds of the same
code may show different performance characteristics than
a fresh build. This can be caused by varying linking or-
ders, which again affect the locality and cache-friendliness
of hot code [33]. In extreme cases, where the hot loop of
our SIMD scan was affected, this reduced the performance
by up to 10%. Existing mitigation approaches [12, 16] are
outdated or difficult to integrate into a DBMS benchmark
setup. We implore compiler researchers to further look into
mitigations for these variations. In the absence of this, con-
tinuous benchmarking helps in distinguishing outliers from
actual performance regressions. Again, DuckDB serves as a
good example12.

7. RELATED WORK
To our knowledge, this is the first paper to systematically

compare the impact of the different plan-level choke points.
However, individual choke points have been studied before:

Join Ordering (Section 4.1) was discussed by Neumann
and Radke [40], who compare 14 different join ordering algo-
rithms for their optimization cost. They found that “TPC-H
is no challenge for join ordering algorithms”. This confirms
our finding that the join ordering choke point is of relatively
low significance for TPC-H.

Hellerstein and Stonebraker first identified that in addi-
tion to predicate pushdown, the order of the predicates (Sec-
tion 4.2) is becoming increasingly important [53]. Their ar-

12https://www.duckdb.org/benchmarks/individual_
results/Q02
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gument was that some predicates containing user-defined
functions are more expensive to execute than others, for ex-
ample, because they perform more complicated calculations.
In the world of columnar in-memory databases, these differ-
ences in the performance of predicate evaluation are also
caused by the CPU’s caches, the cost of writing positional
result lists, and even the efficiency of branch prediction [49].

Physical locality, partition pruning, and column correla-
tions (Section 4.5f) are also discussed by Nica et al. [41].
They used the same clustering for the lineitem and orders
tables in order to simulate enterprise databases where data
is aged into cold storage. While they find similar pruning
ratios for TPC-H data, they found that the latency of ac-
cessing the cold storage was the bottleneck in the parallel
execution, making it difficult for their implementation to
benefit from partition pruning.

On the side of the execution engine, which is not cov-
ered in this paper, it is more difficult to comprehensively
analyze all choke points and their potential optimizations.
This is not only because of the variety of different implemen-
tations for a single choke point, but also because they are
more tightly coupled. For example, the arithmetic opera-
tor performance (CP4.1a [11]) and the interpreter overhead
(CP4.1d) interact. The first can be addressed by using vec-
torized execution, the latter by using JIT. These approaches
are hard to unite. Kersten et al. built a test system to allow
for an isolated comparison of both [27]. Across five TPC-H
queries (Qs 1, 3, 6, 9, and 18), they did not identify one
approach as clearly superior.

Looking at the area of benchmarking, database bench-
marks nowadays serve two purposes that are hard to rec-
oncile. On the one hand, they are supposed to allow for
a comprehensive comparison of database systems from dif-
ferent vendors. For this, they need to cover as many use
cases as possible and make it difficult for implementors to
implement unfair shortcuts. On the other hand, researchers
use database benchmarks to compare new concepts either to
their own implementation or to third-party systems. Here,
benchmarks should be easy to implement and reproduce.

An example of the first approach is TPC-DS, which was
designed to be more complicated than TPC-H in almost all
dimensions [35, 44]. An analysis that focuses on the physical
system resources stressed by TPC-DS was done by Poess et
al. [45]. They compare the utilization of the CPU, the mem-
ory, and the network across four unnamed database systems,
finding that TPC-DS covers a wide spectrum of resource
requirements. While this complexity makes the benchmark
more reflective of the variety of queries seen in the real world,
it also makes it significantly harder to implement. Only a
few publications use the entire TPC-DS benchmark. Oth-
ers cite either missing support for SQL features or subpar
results caused by incomplete optimizations as reasons for
lacking queries. Floratou et al. called these selective exe-
cutions of the benchmark “unscientific comparisons in the
name of marketing” [21].

The TPC found that “TPC benchmarks have become ex-
tremely complicated to develop and run” [34]. As a reaction,
the TPC Express series of benchmarks has been introduced.
TPCx-HS [36] is designed to be easier to execute, but, as of
now, has not reached the popularity in the research commu-
nity that TPC-H and TPC-DS have (cf. Figure 1).

The CH-benCHmark [15] combines the transactional and
analytical challenges of TPC-C and TPC-H. Others have

worked on reducing the complexity of TPC-H. Shao et al.
developed DBmbench, a benchmark suite that contains the
scaled-down benchmarks µTPC-C and µTPC-H [52]. Be-
sides the complexity of setting up a correct TPC bench-
mark, they have found the “complex sequences of database
operations that may be reordered by the database system
depending [sic] the nature of the sequence, the database
system configuration and the dataset size” to be an issue
that causes substantial variances to the benchmark behav-
ior. Their benchmarks contain only three simplified queries
that are claimed to accurately reflect the microarchitectural
challenges of TPC-C and TPC-H. This effectively removes
most of the plan-based choke points in TPC-H, allowing for
a more direct comparison of two execution engines.

A first comparison of the TPC-H choke points to real-
world data sets has been done by Vogelsgesang et al. [56].
Some choke points, such as the correlations between columns
(cf. Section 4.6) were found to be specific to TPC-H. They
highlight the relevance of larger IN clauses (cf. Section 5.2)
and two other execution-side choke points.

With this paper, we are the first to isolate multiple logical
choke points and quantify their impact within a uniform
experimental setup.

8. CONCLUSION
We have evaluated eleven TPC-H choke points using the

columnar in-memory DBMS Hyrise. Of these, predicate
placement, which, on average, increases the query perfor-
mance by 4×, and subquery flattening (5.1×) were found to
be the most relevant. Not all queries benefit equally from
the presented optimizations. Qs 2, 17, and 21 are virtu-
ally not executable without optimizations; Qs 1, 13, and 18
hardly benefit from plan-level optimizations at all.

Knowing the choke points’ relevance helps in understand-
ing the characteristics of the benchmark and in comparing
it to real-world workloads. For new systems without a full-
featured optimizer, it supports the prioritization of the de-
velopment efforts. When comparing database systems with
differing levels of optimization, it helps in understanding
which queries might be affected by the differences.

The evaluation focused on logical optimizations that trans-
form the query plan to reduce cardinalities early. For these
optimizations, we expect other database systems to produce
comparable results. For reproducibility, we have provided
the source code modifications for the individual benchmarks.

Future work should include an analysis of choke points in
variations of TPC-H as well as in more complex benchmarks,
such as TPC-DS. Similarly, industry could contribute by
providing choke point analyses of their applications. While
choke points in the execution engine are not applicable across
database systems to the same degree as logical optimiza-
tions, future analyses of their impact in different systems,
including row- or disk-based systems, and their interplay
with different scale factors and multi-threading approaches
would give developers a more solid data basis when deciding
between different approaches.
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